51
|
Protein Engineering of Pasteurella multocida α2,3-Sialyltransferase with Reduced α2,3-Sialidase Activity and Application in Synthesis of 3′-Sialyllactose. Catalysts 2022. [DOI: 10.3390/catal12060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sialyltransferases are key enzymes for the production of sialosides. The versatility of Pasteurella multocida α2,3-sialyltransferase 1 (PmST1) causes difficulties in the efficient synthesis of α2,3-linked sialylatetd compounds, especial its α2,3-sialidase activity. In the current study, the α2,3-sialidase activity of PmST1 was further reduced by rational design-based protein engineering. Three double mutants PMG1 (M144D/R313Y), PMG2 (M144D/R313H) and PMG3 (M144D/R313N) were designed and constructed using M144D as the template and kinetically investigated. In comparison with M144D, the α2,3-sialyltransferase activity of PMG2 was enhanced by 1.4-fold, while its α2,3-sialidase activity was reduced by 4-fold. Two PMG2-based triple mutants PMG2-1 (M144D/R313H/T265S) and PMG2-2 (M144D/R313H/E271F) were then designed, generated and characterized. Compared with PMG2, triple mutants showed slightly improved α2,3-sialyltransferase activity, but their α2,3-sialidase activities were increased by 2.1–2.9 fold. In summary, PMG2 was used for preparative-scale production of 3′-SL (3′-sialyllactose) with a yield of >95%. These new PmST1 mutants could be potentially utilized for efficient synthesis of α2,3-linked sialosides. This work provides a guide to designing and constructing efficient sialyltransferases.
Collapse
|
52
|
Liu F, Simpson AB, D'Costa E, Bunn FS, van Leeuwen SS. Sialic acid, the secret gift for the brain. Crit Rev Food Sci Nutr 2022; 63:9875-9894. [PMID: 35531941 DOI: 10.1080/10408398.2022.2072270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bella Simpson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esmée D'Costa
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Sophia Bunn
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, Sector Human Nutrition and Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
53
|
Loh SP, Cheng SH, Mohamed W. Edible Bird's Nest as a Potential Cognitive Enhancer. Front Neurol 2022; 13:865671. [PMID: 35599726 PMCID: PMC9120600 DOI: 10.3389/fneur.2022.865671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Cognitive enhancement is defined as the augmentation of the mind's core capabilities through the improvement of internal or external information processing systems. Recently, the focus has shifted to the potential therapeutic effects of natural products in improving cognitive function. Edible bird's nest (EBN) is a natural food substance derived from the saliva of swiftlets. Until today, EBN is regarded as a high-priced nutritious food with therapeutic effects. The effectiveness of dietary EBN supplementation to enhance brain development in mammals has been documented. Although the neuroprotection of EBN has been previously reported, however, the impact of EBN on learning and memory control and its potential as a cognitive enhancer drug remains unknown. Thus, this article aims to address the neuroprotective benefits of EBN and its potential effect as a cognitive enhancer. Notably, the current challenges and the future study direction in EBN have been demonstrated.
Collapse
Affiliation(s)
- Su-Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Su-Peng Loh
| | - Shi-Hui Cheng
- Faculty of Science and Engineering, School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Selayang, Malaysia
- Wael Mohamed
| |
Collapse
|
54
|
Liu F, He S, Yan J, Yan S, Chen J, Lu Z, Zhang B, Lane J. Longitudinal changes of human milk oligosaccharides, breastmilk microbiome and infant gut microbiome are associated with maternal characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Feitong Liu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Shiting He
- H&H Group Global Research and Technology Center Guangzhou 510700 China
- College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shuyuan Yan
- Child Health Care Center Changsha Hospital for Maternal and Child Care Changsha 410007 China
| | - Juchun Chen
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Zerong Lu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Bin Zhang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jonathan Lane
- H&H Group Global Research and Technology Center Cork P61 C996 Ireland
| |
Collapse
|
55
|
Kim HM, Lee YM, Kim EH, Eun SW, Sung HK, Ko H, Youn SJ, Choi Y, Yamada W, Shin SM. Anti-Wrinkle Efficacy of Edible Bird's Nest Extract: A Randomized, Double-Blind, Placebo-Controlled, Comparative Study. Front Pharmacol 2022; 13:843469. [PMID: 35355724 PMCID: PMC8959461 DOI: 10.3389/fphar.2022.843469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate skin health's functional improvement, such as wrinkles, elasticity, moisture, and whitening, and safety following the consumption of "edible bird's nest extract" for 12 weeks by women. This single-center, double-blinded, parallel-group, placebo-controlled study included women aged 40-60 years. Our primary purpose was to assess improvement in skin wrinkles, elasticity, and moisture after 12 weeks using an SV700, cutometer, and corneometer, respectively, compared to baseline measurements. Our secondary purpose was to evaluate skin wrinkle, elasticity, and moisture changes at 4 and 8 weeks from baseline using the aforementioned equipment, and measure transdermal water loss and melanin and erythema indexes using a tewameter and mexameter, respectively. Experts performed the visual evaluation of skin wrinkles at 4, 8, and 12 weeks from baseline. The participants were randomly allocated in a 1:1 ratio into the edible bird's nest extract or the placebo group with 43 participants each, where they consumed 100 mg of the extract or placebo, respectively, daily for 12 weeks. The outcomes were measured at every visit. In this study, upon comparing changes in the skin elasticity value between the two intake groups at 12 weeks of ingestion, skin elasticity in the edible bird's nest extract group decreased significantly compared with that in the placebo group. Adverse reactions were absent in both groups. In the case of laboratory test results, changes before and after the ingestion of the extract were within the normal range, thus indicating no clinically significant difference. The edible bird's nest extract was effective in improving skin wrinkles. Moreover, it is beneficial for skin health and can be used as a skin nutritional supplement. Compared with the placebo, the edible bird's nest extract was identified as safe. Clinical Trial Registration: https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&search_page=M&pageSize=10&page=undefined&seq=21007&status=5&seq_group=20330, identifier KCT0006558.
Collapse
Affiliation(s)
- Hyung Mook Kim
- Global Cosmeceutical Center, Cheongju-si, South Korea.,College of Pharmacy, Chungbuk National University, Cheongju-si, South Korea
| | - Yong Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, South Korea
| | - Ee Hwa Kim
- Global Cosmeceutical Center, Cheongju-si, South Korea
| | | | - Hyun Kyung Sung
- Department of Pediatrics, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| | - Heung Ko
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| | | | | | - Wakana Yamada
- New Products Development Department, Oryza Oil & Fat Chemical Co., Ltd., Ichinomiya, Japan
| | - Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon-si, South Korea
| |
Collapse
|
56
|
Chen Z, Chang Y, Liu H, You Y, Liu Y, Yu X, Dou Y, Ma D, Chen L, Tong X, Xing Y. Distribution and Influencing Factors of the Sialic Acid Content in the Breast Milk of Preterm Mothers at Different Stages. Front Nutr 2022; 9:753919. [PMID: 35399671 PMCID: PMC8988678 DOI: 10.3389/fnut.2022.753919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims This study aimed to detect breast milk sialic acid (SA) content and the changing pattern, to understand the various stages of breastfeeding SA secretion, and the influence factors of the human milk SA content. Methods We recruited mothers and their infants as our subjects. At days 7, 14, 30, 120, and 365 after delivery, the contents of SA in breast milk were collected and detected through Fluorescence Detector-High Performance Liquid Chromatography. The participants completed the baseline questionnaire at ≤day 7 and were followed up at days 30, 120, and 365. Results A total of 95 mothers with 122 infants were included in the analysis, including 22 mothers with 22 term infants, 25 mothers with 35 late preterm infants, 31 mothers with 39 very preterm infants, and 17 mothers with 26 extremely preterm infants. Similar to previous findings, the results of the study showed that, compared with breast milk of term mothers at the same period, breast milk of preterm mothers contained more SA at each time node, and the content of SA in breast milk increased with decreasing gestational weeks. Moreover, maternal age, pre-pregnancy BMI, and delivery mode had significant effects on total SA in breast milk, especially for the preterm infant breast milk. Significant negative associations occurred between SA contents and infant growth status, especially in preterm infants. Conclusions We have confirmed the previous observations showing that with the prolongation of lactation time, the content of SA in breast milk gradually decreased, and the content of SA in the breast milk of preterm mothers was higher than that of term mothers. In addition, SA content was associated with maternal age, pre-pregnancy BMI, and delivery mode.
Collapse
Affiliation(s)
- Zekun Chen
- School of Public Health, Peking University Health Science Center, Beijing, China
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yanmei Chang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yanpin Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co., Ltd., Beijing, China
| | - Xue Yu
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuqi Dou
- School of Public Health, Peking University Health Science Center, Beijing, China
| | - Defu Ma
- School of Public Health, Peking University Health Science Center, Beijing, China
- *Correspondence: Defu Ma
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co., Ltd., Beijing, China
- Lijun Chen
| | - Xiaomei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
- Xiaomei Tong
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
- Yan Xing
| |
Collapse
|
57
|
Development and validation of UPLC method for quantitative determination of major bovine milk oligosaccharides and their heat stability. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
58
|
Xiao M, Yao C, Liu F, Xiang W, Zuo Y, Feng K, Lu S, Xiang L, Li M, Li X, Du X. Sialic Acid Ameliorates Cognitive Deficits by Reducing Amyloid Deposition, Nerve Fiber Production, and Neuronal Apoptosis in a Mice Model of Alzheimer's Disease. NEUROSCI 2022; 3:28-40. [PMID: 39484667 PMCID: PMC11523747 DOI: 10.3390/neurosci3010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/03/2024] Open
Abstract
(1) Background: As a natural carbohydrate, sialic acid (SA) is helpful for brain development, cognitive ability, and the nervous system, but there are few reports about the effect of SA on Alzheimer's disease (AD). (2) Method: The present study evaluated the effect of SA on cognitive ability, neuronal activity, Aβ formation, and tau hyperphosphorylation in a double transgenic AD (2×Tg-AD) mice model. The 2×Tg-AD mice were randomly divided into four groups: the AD control group, 17 mg/kg SA-treated AD group, 84 mg/kg SA-treated AD group, and 420 mg/kg SA-treated AD group. Mice from all four groups were fed to 7 months of age for the behavioral test and to 9 months of age for the pathological factors investigation. (3) Results: In the Morris water maze, the escape latency significantly decreased on the fifth day in the SA-treated groups. The number of rearing and crossing times in the open field test also increased significantly, compared with the control group. SA treatment significantly reduced amyloid β-peptide (Aβ) and nerve fibers and increased the number of Nissl bodies in the brain of AD mice. (4) Conclusions: SA reduced the neuron damage by reducing Aβ and inhibited tau protein hyperphosphorylation, which improved the cognitive ability and mobility of AD mice.
Collapse
Affiliation(s)
- Min Xiao
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Chuangyu Yao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Fang Liu
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Wei Xiang
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Yao Zuo
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Kejue Feng
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Shuhuan Lu
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Li Xiang
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Muzi Li
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Xiangyu Li
- R&D Center, Cabio Biotech (Wuhan) Co., Ltd., No. 999 Gaoxin Rd., Wuhan 430073, China; (M.X.); (F.L.); (W.X.); (Y.Z.); (K.F.); (S.L.); (L.X.); (M.L.)
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
59
|
Abstract
Sialyloligosaccharides (SOS) are bioactive molecules that play an important role in brain development and the increase in immunity in infants. In adults, they act as prebiotics, enhancing protection against microbial pathogens. In the present work, we aimed to analyze the levels of SOS in mature milk, at days 60 and 120 after calving in four cow breeds: Holstein (HO), Simmental × Holstein (SM × HO), Simmental (SM), all fed with total mixed ration (TMR) in intensive production, and Podolica (POD) raised on pasture in an extensive system. The concentrations of SOS (3′-sialyllactose = 3′-SL, 6′-sialyllactose = 6′-SL, 6′-Sialyl-N-acetyllactosamine = 6′-SLN, disialyllactose = DSL, expressed in mg/L) were determined using HPAEC-PAD, a high-performance anion-exchange chromatography with pulsed amperometric detection. Results showed both breed and lactation effects. The contents of 3′-SL, 6′-SL, 6′-SLN, and DSL were higher at 60 than 120 days (p < 0.001), as well as in POD, as compared to the other breeds (p < 0.001). Furthermore, SM showed a significantly greater level of 3′-SL than HO (p < 0.001), as well as a significantly higher level of 6′-SLN in SM than HO (p < 0.001) and SM × HO (p < 0.001). Our findings may have implications for several areas of sustainability that might be used in the cattle management system.
Collapse
|
60
|
Vinjamuri A, Davis JCC, Totten SM, Wu LD, Klein LD, Martin M, Quinn EA, Scelza B, Breakey A, Gurven M, Jasienska G, Kaplan H, Valeggia C, Hinde K, Smilowitz JT, Bernstein RM, Zivkovic AM, Barratt MJ, Gordon JI, Underwood MA, Mills DA, German JB, Lebrilla CB. Human Milk Oligosaccharide Compositions Illustrate Global Variations in Early Nutrition. J Nutr 2022; 152:1239-1253. [PMID: 35179194 PMCID: PMC9071347 DOI: 10.1093/jn/nxac027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are an abundant class of compounds found in human milk and have been linked to the development of the infant, and specifically the brain, immune system, and gut microbiome. OBJECTIVES Advanced analytical methods were used to obtain relative quantitation of many structures in approximately 2000 samples from over 1000 mothers in urban, semirural, and rural sites across geographically diverse countries. METHODS LC-MS-based analytical methods were used to profile the compounds with broad structural coverage and quantitative information. The profiles revealed their structural heterogeneity and their potential biological roles. Comparisons of HMO compositions were made between mothers of different age groups, lactation periods, infant sexes, and residing geographical locations. RESULTS A common behavior found among all sites was a decrease in HMO abundances during lactation until approximately postnatal month 6, where they remained relatively constant. The greatest variations in structural abundances were associated with the presence of α(1,2)-fucosylated species. Genomic analyses of the mothers were not performed; instead, milk was phenotyped according to the abundances of α(1,2)-fucosylated structures. Mothers from the South American sites tended to have higher proportions of phenotypic secretors [mothers with relatively high concentrations of α(1,2)-fucosylated structures] in their populations compared to the rest of the globe, with Bolivia at ∼100% secretors, Peru at ∼97%, Brazil at ∼90%, and Argentina at ∼85%. Conversely, the cohort sampled in Africa manifested the lowest proportion of secretors (South Africa ∼ 63%, the Gambia ∼ 64%, and Malawi ∼ 75%). Furthermore, we compared total abundances of HMOs in secretors compared with nonsecretors and found that nonsecretors have lower abundances of HMOs compared to secretors, regardless of geographical location. We also observed compositional differences of the 50+ most abundant HMOs between milk types and geographical locations. CONCLUSIONS This study represents the largest structural HMO study to date and reveals the general behavior of HMOs during lactation among different populations.
Collapse
Affiliation(s)
- Anita Vinjamuri
- Department of Chemistry, University of California, Davis, CA, USA,Foods for Health Institute, University of California, Davis, CA, USA
| | - Jasmine C C Davis
- Department of Chemistry, University of California, Davis, CA, USA,Foods for Health Institute, University of California, Davis, CA, USA
| | - Sarah M Totten
- Department of Chemistry, University of California, Davis, CA, USA,Foods for Health Institute, University of California, Davis, CA, USA
| | - Lauren D Wu
- Department of Chemistry, University of California, Davis, CA, USA,Foods for Health Institute, University of California, Davis, CA, USA
| | - Laura D Klein
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Melanie Martin
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - E A Quinn
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brooke Scelza
- Department of Anthropology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ,
USA
| | - Jennifer T Smilowitz
- Foods for Health Institute, University of California, Davis, CA, USA,Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Robin M Bernstein
- Department of Anthropology, University of Colorado, Boulder, CO, USA,Institute of Behavioral Science, University of Colorado, Boulder, CO, USA
| | - Angela M Zivkovic
- Foods for Health Institute, University of California, Davis, CA, USA,Department of Nutrition, University of California, Davis, CA, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO,
USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO,
USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, MO, USA
| | - Mark A Underwood
- Foods for Health Institute, University of California, Davis, CA, USA,Department of Pediatrics, University of California, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, CA, USA,Department of Food Science and Technology, University of California, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, CA, USA,Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA,Foods for Health Institute, University of California, Davis, CA, USA
| |
Collapse
|
61
|
Sprenger N, Tytgat HL, Binia A, Austin S, Singhal A. Biology of human milk oligosaccharides: from Basic Science to Clinical Evidence. J Hum Nutr Diet 2022; 35:280-299. [PMID: 35040200 PMCID: PMC9304252 DOI: 10.1111/jhn.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) have been researched by scientists for over 100 years, driven by the substantial evidence for the nutritional and health benefits of mother's milk. Yet research has truly bloomed during the last decade, thanks to the progress in biotechnology, which allowed the production of large amounts of bona fide HMOs. The availability of HMOs has been particularly crucial for the renewed interest in HMO research because of the low abundance or even absence of HMOs in farmed animal milk. This interest is reflected in the increasing number of original research publications and reviews on HMOs. Here, we provide an overview and critical discussion on structure function relations of HMOs that highlight why they are such interesting and important components of human milk. Clinical observations in breastfed infants backed by basic research from animal models provide guidance as to what physiological roles for HMOs are to be expected. From an evidence-based nutrition viewpoint, we discuss the current data supporting clinical relevance of specific HMOs based on randomized placebo controlled clinical intervention trials in formula-fed infants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Hanne Lp Tytgat
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sean Austin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Atul Singhal
- Institute of Child Health, University College London, London, WC1N 1EH, United Kingdom
| |
Collapse
|
62
|
Infant formula containing bovine milk-derived oligosaccharides supports age-appropriate growth and improves stooling pattern. Pediatr Res 2022; 91:1485-1492. [PMID: 33958719 PMCID: PMC9197766 DOI: 10.1038/s41390-021-01541-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adding bovine milk-derived oligosaccharides (MOS) enhances the oligosaccharide profile of infant formula. This study aimed to evaluate the safety and efficacy of a MOS-supplemented infant formula. METHODS In this double-blind randomized controlled trial, healthy infants 21-26 days old were either assigned to bovine milk-based, alpha-lactalbumin, and sn-2 palmitate enriched infant formula (control, n = 115) or the same formula with 7.2 g MOS/L (test, n = 115) until aged 6 months. Co-primary endpoints were weight gain through 4 months and stool consistency (validated scale: 1 = watery to 5 = hard). Secondary endpoints included parent-reported GI tolerance, health-related quality of life (HRQoL), and adverse events (AEs). RESULTS Weight gain was similar (p = 0.695); the difference between test and control (mean; 95% CI: 0.29; -1.15, 1.73 g/day) was above the non-inferiority margin (-3 g/day). Test had softer stools than control (mean difference in stool consistency score: -0.31; 95% CI: -0.42, -0.21; P < 0.0001); fewer parental reports of harder stools (OR = 0.32, 95% CI: 0.20, 0.49; P < 0.0001) and less difficulties in passing stool (OR = 0.25, 95% CI: 0.09, 0.65; P = 0.005). Parent-reported GI tolerance and HRQoL were similar between groups as were the overall low AEs. CONCLUSIONS MOS-supplemented infant formula is safe and well-tolerated while supporting normal infant growth and promotes softer stooling pattern without increasing parent-reported and physician-confirmed adverse health concerns. IMPACT This is the first study investigating the addition of bovine milk-derived oligosaccharides to an infant formula enriched with alpha-lactalbumin and elevated levels of sn-2 palmitate, providing safety and efficacy data for such a formula. Term infant formula supplemented with 7.2 g bovine milk-derived oligosaccharides per liter supported normal infant growth, was well-tolerated and safe. Addition of bovine milk-derived oligosaccharides to term infant formula promoted softer stooling pattern and reduced difficulties in passing stool. The study shows that bovine milk-derived oligosaccharide supplemented infant formula is a safe and effective option for healthy term infants who are formula-fed.
Collapse
|
63
|
Sheep’s milk cheeses as a source of bioactive compounds. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Since ancient times, sheep`s milk cheeses have been a part of a human diet. Currently, their consumption is of great interest due to its nutritional and health values. The aim of the article was to review the chemical composition of sheep’s milk cheeses and its main bioactive ingredients in the context of nutritional and health values. Sheep’s milk cheeses are rich in functionally and physiologically active compounds such as: vitamins, minerals, fatty acids, terpenes, sialic acid, orotic acid and L-carnitine, which are largely originate from milk. Fermentation and maturation process additionally enrich them in other bioactive substances as: bioactive peptides, γ-aminobutyric acid (GABA) or biogenic amines. Studies show that sheep’s milk cheese consumption may be helpful in the prevention of civilization diseases, i.e. hypertension, obesity or cancer. However, due to the presence of biogenic amines, people with metabolic disorders should be careful of their intake.
Collapse
|
64
|
How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
65
|
Pisa E, Martire A, Chiodi V, Traversa A, Caputo V, Hauser J, Macrì S. Exposure to 3'Sialyllactose-Poor Milk during Lactation Impairs Cognitive Capabilities in Adulthood. Nutrients 2021; 13:nu13124191. [PMID: 34959743 PMCID: PMC8707534 DOI: 10.3390/nu13124191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Breast milk exerts pivotal regulatory functions early in development whereby it contributes to the maturation of brain and associated cognitive functions. However, the specific components of maternal milk mediating this process have remained elusive. Sialylated human milk oligosaccharides (HMOs) represent likely candidates since they constitute the principal neonatal dietary source of sialic acid, which is crucial for brain development and neuronal patterning. We hypothesize that the selective neonatal lactational deprivation of a specific sialylated HMOs, sialyl(alpha2,3)lactose (3′SL), may impair cognitive capabilities (attention, cognitive flexibility, and memory) in adulthood in a preclinical model. To operationalize this hypothesis, we cross-fostered wild-type (WT) mouse pups to B6.129-St3gal4tm1.1Jxm/J dams, knock-out (KO) for the gene synthesizing 3′SL, thereby providing milk with approximately 80% 3′SL content reduction. We thus exposed lactating WT pups to a selective reduction of 3′SL and investigated multiple cognitive domains (including memory and attention) in adulthood. Furthermore, to account for the underlying electrophysiological correlates, we investigated hippocampal long-term potentiation (LTP). Neonatal access to 3′SL-poor milk resulted in decreased attention, spatial and working memory, and altered LTP compared to the control group. These results support the hypothesis that early-life dietary sialylated HMOs exert a long-lasting role in the development of cognitive functions.
Collapse
Affiliation(s)
- Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Martire
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Jonas Hauser
- Brain Health, Nestlé Institute of Health Science, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne, Switzerland
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| |
Collapse
|
66
|
Ferreira ALL, Alves-Santos NH, Freitas-Costa NC, Santos PPT, Batalha MA, Figueiredo ACC, Yonemitsu C, Manivong N, Furst A, Bode L, Kac G. Associations Between Human Milk Oligosaccharides at 1 Month and Infant Development Throughout the First Year of Life in a Brazilian Cohort. J Nutr 2021; 151:3543-3554. [PMID: 34313768 DOI: 10.1093/jn/nxab271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are unconjugated glycans associated with infant health and development. OBJECTIVES To investigate the associations between HMO concentrations at 1 month and infant development throughout the first year of life. METHODS A prospective cohort of Brazilian women between 18-40 years of age and their infants was studied from baseline (between 28-35 gestational weeks) and followed at 1 (n = 73), 6 (n = 51), and 12 months (n = 45). A total of 19 HMOs were quantified by HPLC with fluorescence detection. Infant development was evaluated by the Brazilian Ages and Stages Questionnaire. A directed acyclic graph was used to define the minimally sufficient adjustment (gestational age at birth, gestational weight gain, prepregnancy BMI, maternal age, parity, and the mode of breastfeeding at 1 month). Cox regression models with HRs and Benjamini-Hochberg multiple corrections were performed to estimate associations of HMOs with the cumulative risk of inadequate development for 5 developmental domains or for ≥2 developmental domains in all women and in the subset of secretor women (defined as the presence or near absence of 2'-fucosyllactose and lacto-N-fucopentaose I). RESULTS The multivariate models with multiple corrections revealed an inverse association between lacto-N-tetrose (LNT) and the risk of inadequate development for personal-social skills (0.06; 95% CI: 0.01-0.76) and for ≥2 developmental domains (0.06; 95% CI: 0.01-0.59). The secretor mothers analysis also showed inverse associations with slightly different results for personal-social skills (0.09; 95% CI: 0.02-0.84) and ≥2 developmental domains (0.05; 95% CI: 0.01-0.70). CONCLUSIONS Higher concentrations of LNT HMOs in Brazilian women are associated with their infants being less likely to be at risk of inadequate development for personal-social skills or for ≥2 developmental domains during the first year of life.
Collapse
Affiliation(s)
- Ana Lorena L Ferreira
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Nadya H Alves-Santos
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Nathalia C Freitas-Costa
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Pedro P T Santos
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Mônica A Batalha
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Amanda C C Figueiredo
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Nadia Manivong
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Annalee Furst
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
67
|
Bian D, Wang X, Huang J, Chen X, Li H. Maternal Neu5Ac Supplementation During Pregnancy Improves Offspring Learning and Memory Ability in Rats. Front Nutr 2021; 8:641027. [PMID: 34722600 PMCID: PMC8548574 DOI: 10.3389/fnut.2021.641027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Sialic acids are postulated to improve cognitive abilities. This study aimed to evaluate the effects of sialic acid on behavior when administered in a free form as N-acetylneuraminic acid (Neu5Ac) to pregnant mothers or rat pups. The experiment involved 40 male 21-day-old rat pups and 20 15-day-pregnant rats that were randomized into four Neu5Ac treated groups: 0 (control), or 10, 20, and 40 mg/kg. Morris water maze test and shuttle box test were performed on the rat pups and maternal Neu5Ac-supplemented offspring on day 100 to evaluate their cognitive performance. The Neu5Ac levels in the cerebral cortex and hippocampus were tested with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). We found that the maternal Neu5Ac-supplemented offspring showed better cognitive performance, less escape latency in the Morris water maze test, and less electric shock time shuttle box test, compared with the untreated control. In the meantime, the Neu5Ac level in the cerebral cortex and hippocampus of the offspring was higher in the Neu5Ac treatment group than that in the untreated control group. However, no significant differences were observed between rat pups in the treated and the untreated control groups in terms of cognitive performance and Neu5Ac content in the cerebral cortex and hippocampus. Maternal Neu5Ac supplementation during pregnancy could effectively promote the brain Neu5Ac content of the offspring and enhance their cognitive performance, but Neu5Ac had no such effect on rat pups while directly supplemented with Neu5Ac.
Collapse
Affiliation(s)
- DongSheng Bian
- School of Public Health, Xiamen University, Xiamen, China.,Department of Clinical Nutrition, School of Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Department of Clinical Nutrition, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Jiale Huang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoxuan Chen
- School of Public Health, Xiamen University, Xiamen, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
68
|
Wang HX, Chen Y, Haque Z, de Veer M, Egan G, Wang B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci 2021; 24:885-895. [PMID: 31746283 DOI: 10.1080/1028415x.2019.1691856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Human milk contains high concentrations and diversity of sialylated oligosaccharides that have multifunctional health benefits, however, their potential role in optimizing neurodevelopment remains unknown.Objective: To investigate the effect of sialylated milk oligosaccharides (SMOS) intervention on neurotransmitters and brain metabolites in piglets.Methods: 3-day-old piglets were randomly allocated to one of three groups and fed either standard sow milk replacer (SMR) alone (n = 15), SMR supplemented with sialyllactose 9.5 g/kg (SL, n = 16) or a combination of SL and 6'-sialyllactosamine 9.5 g/kg (SL/SLN, n = 15) for 35 days. Brain spectra were acquired using a 3T Magnetic Resonance Spectroscopic (MRS) system.Results: SMOS fed piglets were observed to have significantly increased the absolute levels of myo-inositol (mIns) and glutamate + glutamine (Glx), in particular, the SL/SLN group. Similar findings were found in the relative amount of these metabolites calculated as ratios to creatine (Cr), choline (Cho) and N-acetylaspartate (NAA) respectively (P < .05). In addition, there were significant positive correlations of brain NAA, total NAA (TNAA), mIns, total Cho (TCho), total Cr (TCr), scyllo-Inositol (SI) and glutathione (Glth) with total white matter volume; Glu and SI with whole brain volume; and SI with whole brain weight respectively (P < .01). SLN and 3'SL intake were closely correlated with the levels of brain Glu, mlns and Glx in the treatment groups only (P < .01-.05).Conclusions: We provide in vivo evidences that milk SMOS can alter many important brain metabolites and neurotransmitters required for optimizing neurodevelopment in piglets, an animal model of human infants.
Collapse
Affiliation(s)
- Hong Xin Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Yue Chen
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Ziaul Haque
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
69
|
Rivero O, Alhama-Riba J, Ku HP, Fischer M, Ortega G, Álmos P, Diouf D, van den Hove D, Lesch KP. Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation. Front Genet 2021; 12:688488. [PMID: 34650588 PMCID: PMC8505805 DOI: 10.3389/fgene.2021.688488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
Collapse
Affiliation(s)
- Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Péter Álmos
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - David Diouf
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
70
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
71
|
Kim OK, Kim D, Lee M, Park SH, Yamada W, Eun S, Lee J. Standardized Edible Bird's Nest Extract Prevents UVB Irradiation-Mediated Oxidative Stress and Photoaging in the Skin. Antioxidants (Basel) 2021; 10:antiox10091452. [PMID: 34573084 PMCID: PMC8470287 DOI: 10.3390/antiox10091452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated whether standardized edible bird’s nest extract (BNE-PK) can prevent ultraviolet B (UVB) irradiation-mediated oxidative stress and photoaging in the skin using in vitro and in vivo models. BNE-PK increased skin hydration by hyaluronic acid synthesis and activation of ceramide synthase in UVB-irradiated hairless mice and HaCaT cells. Furthermore, BNE-PK suppressed melanogenesis by down-regulation of the cAMP/PKA/CREB/MITF/TRP-1/TRP-2/tyrosinase pathway in UVB-irradiated hairless mice and 3-isobutyl-1-methylxanthine (IBMX)-treated B16F10 cells. In UVB-irradiated hairless mice, BNE-PK attenuated the wrinkle formation-related JNK/c-FOS/c-Jun/MMP pathway and activated the TGF-βRI/SMAD3/pro-collagen type I pathway during UVB-mediated oxidative stress. Based on these findings, our data suggest that BNE-PK may potentially be used for the development of effective natural anti-photoaging functional foods for skin health.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
| | - Wakana Yamada
- Oryza Oil & Fat Chemical Co., Ltd., Ichinomiya 493-8001, Japan;
| | - Sangwon Eun
- R&D Division, Daehan Chemtech Co. Ltd., Seoul 01811, Korea;
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea; (D.K.); (M.L.); (S.-H.P.)
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-31-201-3838; Fax: +82-31-204-8119
| |
Collapse
|
72
|
Tran C, Turolla L, Ballhausen D, Buros SC, Teav T, Gallart-Ayala H, Ivanisevic J, Faouzi M, Lefeber DJ, Ivanovski I, Giangiobbe S, Caraffi SG, Garavelli L, Superti-Furga A. The fate of orally administered sialic acid: First insights from patients with N-acetylneuraminic acid synthase deficiency and control subjects. Mol Genet Metab Rep 2021; 28:100777. [PMID: 34258226 PMCID: PMC8251509 DOI: 10.1016/j.ymgmr.2021.100777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In NANS deficiency, biallelic mutations in the N-acetylneuraminic acid synthase (NANS) gene impair the endogenous synthesis of sialic acid (N-acetylneuraminic acid) leading to accumulation of the precursor, N-acetyl mannosamine (ManNAc), and to a multisystemic disorder with intellectual disability. The aim of this study was to determine whether sialic acid supplementation might be a therapeutic avenue for NANS-deficient patients. METHODS Four adults and two children with NANS deficiency and four adult controls received oral NeuNAc acid (150 mg/kg/d) over three days. Total NeuNAc, free NeuNAc and ManNAc were analyzed in plasma and urine at different time points. RESULTS Upon NeuNAc administration, plasma free NeuNAc increased within hours (P < 0.001) in control and in NANS-deficient individuals. Total and free NeuNAc concentrations also increased in the urine as soon as 6 h after beginning of oral administration in both groups. NeuNAc did not affect plasma and urinary ManNAc, that remained higher in NANS deficient subjects than in controls (day 1-3; all P < 0.01). Oral NeuNAc was well tolerated with no significant side effects. DISCUSSION Orally administered free NeuNAc was rapidly absorbed but also rapidly excreted in the urine. It did not change ManNAc levels in either patients or controls, indicating that it may not achieve enough feedback inhibition to reduce ManNAc accumulation in NANS-deficient subjects. Within the limitations of this study these results do not support a potential for oral free NeuNAc in the treatment of NANS deficiency but they provide a basis for further therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Licia Turolla
- Medical Genetics Unit, Azienda ULSS 2, Treviso, Italy
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | | | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Mohamed Faouzi
- Division of Biostatistics, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Dirk J. Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ivan Ivanovski
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Institute of Medical Genetics, University of Zurich, Switzerland
| | - Sara Giangiobbe
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Superti-Furga
- Center for Molecular Diseases, Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Switzerland
| |
Collapse
|
73
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
74
|
Wang X, Cong P, Wang X, Liu Y, Wu L, Li H, Xue C, Xu J. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression. Food Funct 2021; 11:9912-9923. [PMID: 33094781 DOI: 10.1039/d0fo01605e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodevelopment of fetal and infant brains is an essential process not just during infancy but throughout the whole life. Previous studies have verified the neurotrophic effects of GM1 and milk gangliosides (GLSs) on brain development. However, it remains unclear whether the maternal GLS diet during the perinatal period can program the brain development of young offspring. Sea urchin, as a popular sea food, is a good resource of marine-derived GLSs. This study evaluated the effects of maternal diet with sea urchin gangliosides (SU-GLSs) on the utero and neonatal neurodevelopment and compared their efficacy with common GM1 and sialic acid (SA). Herein, SU-GLSs, as well as GM1 and SA, were orally administered to pregnant mice from pregnancy to lactation. The morphological and functional development of the brain was evaluated in postnatal 15-day (P15) mice. SU-GLSs were superior to GM1 and SA in enhancing neuritogenesis, spinous dendrite growth and synapse function in the hippocampus and cortex of P15 mice. Mechanistic studies found that SU-GLSs upregulated the expressions of NGF and BDNF more effectively than GM1 and SA. Furthermore, different glycosylated SU-GLSs promoted the neural differentiation of Neuro2a cells in a structure-selective manner. Sulfate-type and disialo-type GLSs were more effective than GM1. These findings suggested that maternal SU-GLS diet could promote the neurodevelopment of young offspring and would be a potential nutrition enriching substance for the early developing brain.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
den Hollander B, Rasing A, Post MA, Klein WM, Oud MM, Brands MM, de Boer L, Engelke UFH, van Essen P, Fuchs SA, Haaxma CA, Jensson BO, Kluijtmans LAJ, Lengyel A, Lichtenbelt KD, Østergaard E, Peters G, Salvarinova R, Simon MEH, Stefansson K, Thorarensen Ó, Ulmen U, Coene KLM, Willemsen MA, Lefeber DJ, van Karnebeek CDM. NANS-CDG: Delineation of the Genetic, Biochemical, and Clinical Spectrum. Front Neurol 2021; 12:668640. [PMID: 34163424 PMCID: PMC8215539 DOI: 10.3389/fneur.2021.668640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Background: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016–2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo–low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/– congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands
| | - Anne Rasing
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Merel A Post
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Willemijn M Klein
- Department of Radiology and Nuclear Medicine and Anatomy, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Machteld M Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marion M Brands
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands
| | - Lonneke de Boer
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Udo F H Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter van Essen
- Radboudumc Technology Center Clinical Studies, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sabine A Fuchs
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Leo A J Kluijtmans
- United for Metabolic Diseases, Amsterdam, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Lengyel
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gera Peters
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ramona Salvarinova
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kari Stefansson
- Decode Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur Thorarensen
- Department of Pediatrics, Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Ulrike Ulmen
- Department of Pediatrics, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Karlien L M Coene
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michèl A Willemsen
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dirk J Lefeber
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
76
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
77
|
Ambrogi V, Bottacini F, O'Callaghan J, Casey E, van Breen J, Schoemaker B, Cao L, Kuipers B, O'Connell Motherway M, Schoterman M, van Sinderen D. Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Front Microbiol 2021; 12:662959. [PMID: 34012427 PMCID: PMC8126724 DOI: 10.3389/fmicb.2021.662959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted β-galactosidases encoded by various species and strains of infant-associated bifidobacteria. In the current study, we further characterized seven out of these seventeen bifidobacterial β-galactosidases in terms of their kinetics, enzyme stability and oligomeric state. Accordingly, we established whether these β-galactosidases are capable of synthesizing GOS via enzymatic transgalactosylation employing lactose as the feed substrate. Our findings show that the seven selected enzymes all possess such transgalactosylation activity, though they appear to differ in their efficiency by which they perform this reaction. From chromatography analysis, it seems that these enzymes generate two distinct GOS mixtures: GOS with a relatively short or long degree of polymerization profile. These findings may be the stepping stone for further studies aimed at synthesizing new GOS variants with novel and/or enhanced prebiotic activities and potential for industrial applications.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Eoghan Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
78
|
Perna VN, Dehlholm C, Meyer AS. Enzymatic production of 3'-sialyllactose in milk. Enzyme Microb Technol 2021; 148:109829. [PMID: 34116750 DOI: 10.1016/j.enzmictec.2021.109829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/28/2023]
Abstract
Human milk oligosaccharides (HMOs) are lactose-based glycan molecules present in human breast milk. HMOs are essentially not present in cow's milk and hence not naturally available in infant formulas. HMOs possess several health and developmentally beneficial properties, and the sialylated HMOs are thought to play a particularly important role for infant brain development. Enzymatic transsialylation directly in cow's milk, involving enzyme catalyzed transfer of sialic acid from a sialic acid donor to an acceptor, is a novel route for producing sialylated HMOs for e.g. infant formulas. The transsialidase (EC 2.4.1.-) of Trypanosoma cruzi is linked to trypanosomatid pathogenicity, but certain hydrolytic sialidases (neuraminidases), EC 3.2.1.18, from non-pathogenic organisms, can actually catalyze transsialylation. Here, we report enzymatic production of the HMO compound 3'-sialyllactose directly in cow's milk using engineeredsialidases, Tr15 and Tr16, originating from the nonpathogenic Trypanosoma rangeli. Both Tr15 and Tr16 readily catalyzed transsialylation in milk at 5 °C-40 °C using κ(kappa)-casein glycomacropeptide (cGMP) as sialyl donor substrate. Tr15 was the most efficient as this enzyme produced 1160 mg/L (1.8 mM) 3'-sialyllactose in whole milk during 10 min of reaction at 5 °C. The activation energy values, Ea, of the enzymatic transsialylation reactions were similar in milk and in buffer solutions containing cGMP and lactose. The Ea of the Tr15 catalyzed transialylation reaction in milk was 16.5 kJ/mol, which was three times lower than the Ea of Tr16 (66 kJ/mol) and of T. cruzi transsialidase (50 kJ/mol), corroborating that Tr15 was the fastest of the three enzymes and a promising candidate for potential industrial production of 3'-sialyllactose in milk. 3'sialyllactose was stable during pasteurization (30 min. at 62.5 °C) and freeze-drying.
Collapse
Affiliation(s)
- Valentina N Perna
- Mille International ApS, Langebjerg 3, 4000, Roskilde, Denmark; Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
79
|
Boudry G, Charton E, Le Huerou-Luron I, Ferret-Bernard S, Le Gall S, Even S, Blat S. The Relationship Between Breast Milk Components and the Infant Gut Microbiota. Front Nutr 2021; 8:629740. [PMID: 33829032 PMCID: PMC8019723 DOI: 10.3389/fnut.2021.629740] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The assembly of the newborn's gut microbiota during the first months of life is an orchestrated process resulting in specialized microbial ecosystems in the different gut compartments. This process is highly dependent upon environmental factors, and many evidences suggest that early bacterial gut colonization has long-term consequences on host digestive and immune homeostasis but also metabolism and behavior. The early life period is therefore a "window of opportunity" to program health through microbiota modulation. However, the implementation of this promising strategy requires an in-depth understanding of the mechanisms governing gut microbiota assembly. Breastfeeding has been associated with a healthy microbiota in infants. Human milk is a complex food matrix, with numerous components that potentially influence the infant microbiota composition, either by enhancing specific bacteria growth or by limiting the growth of others. The objective of this review is to describe human milk composition and to discuss the established or purported roles of human milk components upon gut microbiota establishment. Finally, the impact of maternal diet on human milk composition is reviewed to assess how maternal diet could be a simple and efficient approach to shape the infant gut microbiota.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Elise Charton
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- UMR STLO INRAE, Institut Agro, Rennes, France
| | | | | | - Sophie Le Gall
- INRAE, UR BIA, Nantes, France
- INRAE, BIBS facility, Nantes, France
| | | | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| |
Collapse
|
80
|
Chen Y, Wang B, Yang C, Shi Y, Dong Z, Troy FA. Functional Correlates and Impact of Dietary Lactoferrin Intervention and its Concentration-dependence on Neurodevelopment and Cognition in Neonatal Piglets. Mol Nutr Food Res 2021; 65:e2001099. [PMID: 33641262 DOI: 10.1002/mnfr.202001099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/16/2021] [Indexed: 01/26/2023]
Abstract
SCOPE Lactoferrin (Lf), a sialylated milk glycoprotein, promotes early neurodevelopment and cognition. Functional concentrations of Lf, however, remain unknown. Our objective is to determine the concentration-dependency of Lf on genes associated with neurodevelopment and cognition in neonatal piglets. METHODS AND RESULTS Piglets are given milk replacer with Lf at concentrations of 155 (low) or 285 mg kg-1 day-1 (high) from postnatal days 3 to 38. Gene expression associated with neurodevelopment, cognition, and cognate proteins were quantitated. This study found 1) The rate of learning and long-term memory was higher with 155 mg kg-1 day-1 assessed in an eight-arm radial maze; 2) Global gene transcription profiling showed this lower concentration upregulated genes and functions correlated with neurodevelopment and cognition, while the higher concentration regulated cellular processes for neuroprotection; 3) Expression of BDNF genes and proteins were higher with both concentrations, while genes regulating BDNF signaling, including SLC6A3, IGF-1 responded more to the lower concentration; 4) The lower concentration modulated genes in the five highest networks associated with cellularity and neurocognition, while the prevention of neurodevelopmental and neurological pathologies was associated with the higher concentration. CONCLUSION The lower concentrations of Lf enhanced neurodevelopment and cognition, while higher concentrations are greater neuroprotective, findings of potential novel clinical relevance.
Collapse
Affiliation(s)
- Yue Chen
- School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen, 361005, China.,Graham Centre for Agricultural Innovation, Charles Sturt University, NSW 2678, Australia
| | - Changwei Yang
- School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Yujie Shi
- Nestle Research Centre, Beijing, 100095, China
| | - Zhizhong Dong
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, 102209, China
| | - Frederic A Troy
- School of Medicine, Xiamen University, Xiamen, 361005, China.,Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
81
|
Hobbs M, Jahan M, Ghorashi SA, Wang B. Current Perspective of Sialylated Milk Oligosaccharides in Mammalian Milk: Implications for Brain and Gut Health of Newborns. Foods 2021; 10:foods10020473. [PMID: 33669968 PMCID: PMC7924844 DOI: 10.3390/foods10020473] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component after lactose and lipids of breast milk. All mammal milk contains soluble oligosaccharides, including neutral milk oligosaccharides (NMOs) without sialic acid (Sia) moieties and acidic oligosaccharides or sialylated milk oligosaccharides (SMOs) with Sia residues at the end of sugar chains. The structural, biological diversity, and concentration of milk oligosaccharides in mammalian milk are significantly different among species. HMOs have multiple health benefits for newborns, including development of immune system, modification of the intestinal microbiota, anti-adhesive effect against pathogens, and brain development. Most infant formulas lack oligosaccharides which resemble HMOs. Formula-fed infants perform poorly across physical and psychological wellbeing measures and suffer health disadvantages compared to breast-fed infants due to the differences in the nutritional composition of breast milk and infant formula. Of these milk oligosaccharides, SMOs are coming to the forefront of research due to the beneficial nature of Sia. This review aims to critically discuss the current state of knowledge of the biology and role of SMOs in human milk, infant formula milks, and milk from several other species on gut and brain health of human and animal offspring.
Collapse
Affiliation(s)
- Madalyn Hobbs
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Seyed A. Ghorashi
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.H.); (M.J.); (S.A.G.)
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
82
|
Szigeti M, Meszaros-Matwiejuk A, Molnar-Gabor D, Guttman A. Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control. Anal Bioanal Chem 2021; 413:1595-1603. [PMID: 33558961 PMCID: PMC7921066 DOI: 10.1007/s00216-020-03119-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022]
Abstract
Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2′-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2′- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control. ![]()
Collapse
Affiliation(s)
- Marton Szigeti
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, 8200, Hungary
| | | | | | - Andras Guttman
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary. .,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, 8200, Hungary.
| |
Collapse
|
83
|
Fimbristylis ovata extract and its ability to encounter AGEs-induced neurotoxicity in SH-SY5Y. Toxicol Res 2021; 37:355-367. [PMID: 34295799 DOI: 10.1007/s43188-020-00072-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022] Open
Abstract
Abstract Advanced glycation end products (AGEs) upon binding to its receptor (receptor for AGEs, RAGE) trigger several pathological processes involving oxidative stress and inflammatory pathway which play a pivotal role in various degenerative diseases including Alzheimer's disease. Fimbristylis ovata (F. ovata) has long been reported to be used as a traditional herbal medicine; nonetheless, very few studies have been reported. In this study, the protective effects of F. ovata extract on neurotoxicity of hippocampal neuronal cells (SH-SY5Y) was investigated. When compared to normal control, AGEs treatment significantly induced oxidative stress level and enhanced NF-κB translocation to nucleus in the neuronal cells (p < 0.05). The increase in NF-κB translocation leads to increase in transcription level of the target genes including RAGE and pro-inflammatory cytokines which include interleukin 1 beta (IL1B), tumor necrosis factor-alpha (TNFA) and interleukin 6 (IL6). Pre-treatment of SH-SY5Y with the extracts of F. ovata shows favorable results by significantly suppressing oxidative stress level (p < 0.05) as well transcriptional level of RAGE (p < 0.05) and pro-inflammatory cytokines (p < 0.05). Chemical analysis of F. ovata extracts using High Resolution Liquid Chromatograph Mass Spectrometer (HR-LCMS) and Gas Chromatograph with high resolution Mass Spectrometer (GC-HRMS) suggested some potential active phytochemical compounds. The results from this study may provide possible alternative treatment for prevention and/or therapy of neurodegenerative disorders by targeting the above-mentioned pathways. The role of the phytochemical active ingredient (s) in inhibiting the AGEs-triggered signaling inflammatory pathway should be investigated in future study. Graphic abstract
Collapse
|
84
|
Affiliation(s)
- Jennyfer Tena
- Department of Chemistry, University of California, Davis, CA 95616
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616;
- Department of Biochemistry, University of California, Davis, CA 95616
| |
Collapse
|
85
|
Hauser J, Pisa E, Arias Vásquez A, Tomasi F, Traversa A, Chiodi V, Martin FP, Sprenger N, Lukjancenko O, Zollinger A, Metairon S, Schneider N, Steiner P, Martire A, Caputo V, Macrì S. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol Psychiatry 2021; 26:2854-2871. [PMID: 33664475 PMCID: PMC8505264 DOI: 10.1038/s41380-021-01054-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.
Collapse
Affiliation(s)
- Jonas Hauser
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, “Sapienza” University of Rome, Rome, Italy
| | - Alejandro Arias Vásquez
- grid.10417.330000 0004 0444 9382Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Flavio Tomasi
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Valentina Chiodi
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Francois-Pierre Martin
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Norbert Sprenger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | | | - Alix Zollinger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Metairon
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Nora Schneider
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Pascal Steiner
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Alberto Martire
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
86
|
Oba PM, Lee AH, Vidal S, Wyss R, Miao Y, Adesokan Y, Swanson KS. Effect of a novel animal milk oligosaccharide biosimilar on macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult cats. J Anim Sci 2021; 99:skaa399. [PMID: 33320182 PMCID: PMC7799586 DOI: 10.1093/jas/skaa399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Romain Wyss
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
87
|
Oba PM, Vidal S, Wyss R, Miao Y, Adesokan Y, Swanson KS. Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula. J Anim Sci 2020; 98:5897395. [PMID: 32845316 DOI: 10.1093/jas/skaa273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Milk oligosaccharides (MO) confer multiple potential physiological benefits, such as the selective growth promotion of beneficial microbiota, inhibition of enteric pathogen growth and adhesion to enterocytes, maturation of the gut mucosal barrier, and modulation of the gastrointestinal immune system. This study was conducted to determine the fermentation potential of GNU100, an animal MO biosimilar, in an in vitro system using healthy canine and feline fecal inocula. Single feline and single canine fecal samples were used to inoculate a batch fermentation system. Tubes containing a blank control (BNC), GNU100 at 0.5% (5 g/L; GNU1), or GNU100 at 1.0% (10 g/L; GNU2) were incubated for 48 h. Gas pressure, pH, lactate, short-chain fatty acids (SCFA; acetate, propionate, and butyrate), and branched-chain fatty acids (BCFA; isobutyrate, isovalerate, and valerate) were measured after 6, 24, and 48 h. Ammonium and microbiota (total bacteria by flow cytometry and Pet-16Seq; Lactobacillus and Bifidobacterium by quantitative polymerase chain reaction ) were measured after 24 and 48 h. Data were analyzed using the Mixed Models procedure of SAS. Substrates were considered to be a fixed effect and replicates considered to be a random effect. Tukey's multiple comparison analysis was used to compare least squares means, with differences considered significant with P < 0.05. In feline and canine incubations, SCFA increases were greater (P < 0.0001) in GNU100 compared with BNC, with acetate making up the largest SCFA proportion (P < 0.0001). GNU100 cultures led to greater increases (P < 0.0001) in lactate and ammonium than BNC in the feline incubations. GNU100 cultures led to greater increases (P < 0.0001) in ammonium than BNC in canine incubations and greater increases (P < 0.0001) in BCFA than BNC in feline incubations. Pet-16Seq microbial profiles from the feline and canine fecal incubations exhibited a modulation after GNU100 fermentation, with a reduction of the genera Escherichia/Shigella and Salmonella. In feline incubations, Bifidobacterium populations had greater increases (P < 0.0001) in GNU100 than BNC. In feline incubations, Lactobacillus populations had greater increases (P = 0.01) in GNU100 than BNC, with GNU1 leading to greater increases (P = 0.02) in Lactobacillus than BNC tubes in canine incubations. Overall, this study demonstrated that GNU100 was fermented in an in vitro fermentation system inoculated with canine and feline microbiota, resulting in the growth of beneficial bacteria and the production of SCFA, BCFA, and ammonium.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Épalinges, Switzerland
| | - Romain Wyss
- Gnubiotics Sciences SA, Épalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Épalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
88
|
Auer F, Jarvas G, Guttman A. Recent advances in the analysis of human milk oligosaccharides by liquid phase separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1162:122497. [PMID: 33383497 DOI: 10.1016/j.jchromb.2020.122497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Human milk is a complex, dynamically changing biological fluid, which contains a large amount of non-conjugated carbohydrates, referred to as human milk oligosaccharides (HMOs). These HMOs are very important for the infants as they play important roles in the formation of the gut microbiome, the immune system and support brain development. HMOs show highly complex structural diversity due to numerous linkage possibilities of the building monosaccharides. In order to elucidate their structure-function relationship and to develop more effective infant formulas, cutting-edge analytical technologies are in great demand. In this paper, we review the current strategies for HMO analysis based on liquid phase separation methods. High performance liquid chromatography, capillary electrophoresis and their hyphenation with mass spectrometry are critically reviewed, emphasizing their advantages and disadvantages from practical point of views. Recent advances of the methods are categorized according to their application fields.
Collapse
Affiliation(s)
- Felicia Auer
- Translational Glycomics Research Center, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Gabor Jarvas
- Translational Glycomics Research Center, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Translational Glycomics Research Center, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
89
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
90
|
Galuska CE, Rudloff S, Kuntz S, Borsch C, Reutzel M, Eckert G, Galuska SP, Kunz C. Metabolic fate and organ distribution of 13C-3′-sialyllactose and 13C-N-acetylneuraminic acid in wild-type mice – No evidence for direct incorporation into the brain. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
91
|
Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry 2020; 25:3129-3139. [PMID: 32377000 PMCID: PMC8081046 DOI: 10.1038/s41380-020-0753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Advances in genomics are opening new windows into the biology of schizophrenia. Though common variants individually have small effects on disease risk, GWAS provide a powerful opportunity to explore pathways and mechanisms contributing to pathophysiology. Here, we highlight an underappreciated biological theme emerging from GWAS: the role of glycosylation in schizophrenia. The strongest coding variant in schizophrenia GWAS is a missense mutation in the manganese transporter SLC39A8, which is associated with altered glycosylation patterns in humans. Furthermore, variants near several genes encoding glycosylation enzymes are unambiguously associated with schizophrenia: FUT9, MAN2A1, TMTC1, GALNT10, and B3GAT1. Here, we summarize the known biological functions, target substrates, and expression patterns of these enzymes as a primer for future studies. We also highlight a subset of schizophrenia-associated proteins critically modified by glycosylation including glutamate receptors, voltage-gated calcium channels, the dopamine D2 receptor, and complement glycoproteins. We hypothesize that common genetic variants alter brain glycosylation and play a fundamental role in the development of schizophrenia. Leveraging these findings will advance our mechanistic understanding of disease and may provide novel avenues for treatment development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114, Tel: +1 (617) 724-9076,
| | - Sarah E. Williams
- Massachusetts General Hospital, Department of Psychiatry.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Mark J. Daly
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Edward M. Scolnick
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Jordan W. Smoller
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| |
Collapse
|
92
|
Al-Khafaji AH, Jepsen SD, Christensen KR, Vigsnæs LK. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
93
|
Mahaq O, P. Rameli MA, Jaoi Edward M, Mohd Hanafi N, Abdul Aziz S, Abu Hassim H, Mohd Noor MH, Ahmad H. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav 2020; 10:e01817. [PMID: 32886435 PMCID: PMC7667319 DOI: 10.1002/brb3.1817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Edible bird nest (EBN) is a natural food product produced from edible nest swiftlet's saliva which consists of glycoproteins as one of its main components; these glycoproteins contain an abundant of sialic acid. The dietary EBN supplementation has been reported to enhance brain functions in mammals and that the bioactivities and nutritional value of EBN are important during periods of rapid brain growth particularly for preterm infant. However, the effects of EBN in maternal on multigeneration learning and memory function still remain unclear. Thus, the present study aimed to determine the effects of maternal EBN supplementation on learning and memory function of their first (F1)- and second (F2)-generation mice. METHODS CJ57BL/6 breeder F0 mice were fed with EBN (10 mg/kg) from different sources. After 6 weeks of diet supplementations, the F0 animals were bred to produce F1 and F2 animals. At 6 weeks of age, the F1 and F2 animals were tested for spatial recognition memory using a Y-maze test. The sialic acid content from EBN and brain gene expression were analyzed using HPLC and PCR, respectively. RESULTS All EBN samples contained glycoprotein with high level of sialic acid. Dietary EBN supplementation also showed an upregulation of GNE, ST8SiaIV, SLC17A5, and BDNF mRNA associated with an improvement in Y-maze cognitive performance in both generations of animal. Qualitatively, the densities of synaptic vesicles in the presynaptic terminal were higher in the F1 and F2 animals which might derive from maternal EBN supplementation. CONCLUSION This study provided a solid foundation toward the growing research on nutritional intervention from dietary EBN supplementation on cognitive and neurological development in the generation of mammals.
Collapse
Affiliation(s)
- Obaidullah Mahaq
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Department of Veterinary Preclinical ScienceFaculty of Veterinary MedicineShaikh Zayed UniversityKhostAfghanistan
| | - Mohd Adha P. Rameli
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Marilyn Jaoi Edward
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Nursyuhaida Mohd Hanafi
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology and MicrobiologyFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversity Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- University Agriculture ParkUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| |
Collapse
|
94
|
Zhang Y, Wang R, Feng Y, Ma F. The role of sialyltransferases in gynecological malignant tumors. Life Sci 2020; 263:118670. [PMID: 33121992 DOI: 10.1016/j.lfs.2020.118670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Sialylation is the addition of sialic acids to the terminus of various glycoconjugates, and it is involved in many essential biological processes, such as cell adhesion, signal transduction, immune regulation, etc. The levels of sialylation in a cell are tightly regulated by two groups of enzymes, sialyltransferases (STs, responsible for sialylation) and sialidases (responsible for desialylation). Many studies have reported that the occurrence, development, and survival rates of tumors are significantly associated with STs' abnormal changes. In recent years, the morbidity and mortality rates of gynecological malignant tumors have been continuously rising, which has caused great harm to women's reproduction and health. Abnormal changes of STs in gynecological malignant tumor cell membranes cause the changes of expression of sialic acids, promoting cell migration and, eventually, leading to tumor metastasis. In this review, we outlined the biological characteristics of STs and summarized the expression profiles of 20 STs in different tumors via transcriptome data from Gene Expression Profiling Interactive Analysis (GEPIA) database. Moreover, STs' functions in four common gynecological tumors (ovarian cancer, cervical cancer, endometrial cancer, and gestational trophoblast tumor) were reviewed.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
95
|
Heida R, Bhide YC, Gasbarri M, Kocabiyik Ö, Stellacci F, Huckriede ALW, Hinrichs WLJ, Frijlink HW. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov Today 2020; 26:122-137. [PMID: 33099021 PMCID: PMC7577316 DOI: 10.1016/j.drudis.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Over the past decades, several antiviral drugs have been developed to treat a range of infections. Yet the number of treatable viral infections is still limited, and resistance to current drug regimens is an ever-growing problem. Therefore, additional strategies are needed to provide a rapid cure for infected individuals. An interesting target for antiviral drugs is the process of viral attachment and entry into the cell. Although most viruses use distinct host receptors for attachment to the target cell, some viruses share receptors, of which sialic acids are a common example. This review aims to give an update on entry inhibitors for a range of sialic-acid-targeting viruses and provides insight into the prospects for those with broad-spectrum potential.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Yoshita C Bhide
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Özgün Kocabiyik
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
96
|
Pang Q, Han H, Xu Y, Liu X, Qi Q, Wang Q. Exploring Amino Sugar and Phosphoenolpyruvate Metabolism to Improve Escherichia coli N-Acetylneuraminic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11758-11764. [PMID: 32960055 DOI: 10.1021/acs.jafc.0c04725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-acetyl-d-neuraminic acid (NeuAc) has attracted considerable attention because of its wide-ranging applications. The use of cheap carbon sources such as glucose without the addition of any precursor in microbial NeuAc production has many advantages. In this study, improved NeuAc production was attained through the optimization of amino sugar metabolism pathway kinetics and reservation of a phosphoenolpyruvate (PEP) pool in Escherichia coli. N-acylglucosamine 2-epimerase and N-acetylneuraminate synthase from different sources and their best combinations were used to obtain optimized enzyme kinetics and expression intensity, which resulted in a significant increase in NeuAc production. Next, after a design was engineered for enabling the PEP metabolic pathway to retain the PEP pool, the production of NeuAc reached 16.7 g/L, which is the highest NeuAc production rate that has been reported from using glucose as the sole carbon source.
Collapse
Affiliation(s)
- Qingxiao Pang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Hao Han
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Ya Xu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Xiaoqin Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
97
|
Pharo EA. Marsupial milk: a fluid source of nutrition and immune factors for the developing pouch young. Reprod Fertil Dev 2020; 31:1252-1265. [PMID: 30641029 DOI: 10.1071/rd18197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300-350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother's pouch, permanently (0-100 days p.p.; Phase 2A) and then intermittently (100-200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.
Collapse
|
98
|
Samal J, Saldova R, Rudd PM, Pandit A, O'Flaherty R. Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain. Anal Chem 2020; 92:12842-12851. [PMID: 32815717 DOI: 10.1021/acs.analchem.0c01206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson's disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying "brain-type" glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Radka Saldova
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland.,GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Co. Dublin A94X099, Ireland
| | - Pauline M Rudd
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,Analytics Group, Bioprocessing Technology Institute (AStar), 20 Biopolis Way, 06-01 Centros, Singapore 138668
| | - Abhay Pandit
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Róisín O'Flaherty
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland
| |
Collapse
|
99
|
Akazawa H, Tsujikawa Y, Fukuda I, Suzuki Y, Choi M, Katayama T, Mukai T, Osawa R. Isolation and identification of milk oligosaccharide-degrading bacteria from the intestinal contents of suckling rats. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:27-32. [PMID: 33520566 PMCID: PMC7817515 DOI: 10.12938/bmfh.2020-024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
We report the isolation of bacteria capable of degrading milk oligosaccharides from
suckling infant rats. The bacteria were successfully isolated via a selective enrichment
method, in which the serially diluted intestinal contents of infant rats were individually
incubated in an enrichment medium containing 3′-sialyllactose (3′-SL), followed by the
isolation of candidate strains from streaked agar plates and selection of 3′-SL-degrading
strains using thin-layer chromatography. Subsequent genomic and phenotypic analyses
identified all strains as Enterococcus gallinarum. The strains were
capable of degrading both 3′-SL and 6′-SL, which was not observed with the type strain of
E. gallinarum used as a reference. Furthermore, a time-course study
combining high-performance anion-exchange chromatography with pulsed amperometric
detection revealed that the representative strain AH4 degraded 3′-SL completely to yield
an equimolar amount of lactose and an approximately one-fourth equimolar amount of sialic
acid after 24 hr of anaerobic incubation. These findings point to a possibility that the
enterococci degrade rat milk oligosaccharides to “cross-feed” their degradants to other
members of concomitant bacteria in the gut of the infant rat.
Collapse
Affiliation(s)
- Hazuki Akazawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516, Japan
| | - Itsuko Fukuda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoshihiro Suzuki
- School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| | - Moonhak Choi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takao Mukai
- School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| | - Ro Osawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
100
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|