51
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
52
|
Batistuzzo A, Ribeiro MO. Clinical and subclinical maternal hypothyroidism and their effects on neurodevelopment, behavior and cognition. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:89-95. [PMID: 32187263 PMCID: PMC10522279 DOI: 10.20945/2359-3997000000201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022]
Abstract
Clinical and subclinical hypothyroidism are the most common hormonal dysfunctions during pregnancy. Insufficient maternal thyroid hormones (THs) in the early stages of pregnancy can lead to severe impairments in the development of the central nervous system because THs are critical to central nervous system development. In the fetus and after birth, THs participate in neurogenic processes, cell differentiation, neuronal activation, axonal growth, dendritic arborization, synaptogenesis and myelination. Although treatment is simple and effective, approximately 30% of pregnant women in Brazil with access to prenatal care have their first consultation after the first trimester of pregnancy, and any delay in diagnosis and resulting treatment delay may lead to cognitive impairment in children. This review summarizes the effects of clinical and subclinical hypothyroidism on fetal neurodevelopment, behavior and cognition in humans and rodents. Arch Endocrinol Metab. 2020;64(1):89-95.
Collapse
Affiliation(s)
- Alice Batistuzzo
- Departamento de Pós-Graduação em Distúrbios do DesenvolvimentoCentro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloSPBrasilDepartamento de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie (UPM), São Paulo, SP, Brasil
| | - Miriam Oliveira Ribeiro
- Departamento de Pós-Graduação em Distúrbios do DesenvolvimentoCentro de Ciências Biológicas e da SaúdeUniversidade Presbiteriana MackenzieSão PauloSPBrasilDepartamento de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie (UPM), São Paulo, SP, Brasil
| |
Collapse
|
53
|
Sun Z, Lu J, Wu M, Ouyang C, Xing Y, Hou X, Shi Z, Wu Y. PTEN-knockdown disrupts the morphology, growth pattern and function of Nthy-Ori 3-1 cells by downregulating PAX8 expression. Oncol Lett 2019; 18:6732-6740. [PMID: 31807182 PMCID: PMC6876289 DOI: 10.3892/ol.2019.11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/03/2019] [Indexed: 11/18/2022] Open
Abstract
The incidence of thyroid disorders, which are common endocrine diseases, has rapidly increased in recent years. However, the etiology and pathogenesis of these disorders remain unclear. Phosphatase and tension homolog (PTEN) is a dual-specific phosphatase that is associated with multiple thyroid disorders; however, the role of PTEN in thyroid disorders remains unknown. In the present study, the human thyroid follicular epithelial cell line Nthy-Ori 3-1 was used to determine the role of PTEN in thyroid disorders. PTEN expression was knocked down using a PTEN-specific short hairpin RNA. Western blotting was subsequently used to determine protein expression, the Matrigel tube formation assay and iodide uptake assay were applied for evaluating the morphology and function of thyroid cells. The results showed that PTEN knockdown decreased the protein expression of paired box 8 (PAX8). The morphology and tubular-like growth pattern of thyroid cells were therefore disrupted, and restoration of PAX8 expression reversed these effects. Furthermore, PTEN-knockdown decreased the expression of specific thyroid proteins (thyroglobulin, TG; thyroid peroxidase, TPO; and sodium/iodide symporter, NIS) and inhibited the iodide uptake ability of thyroid cells by downregulating PAX8, suggesting that PTEN deficiency may impair the function of thyroid cells. In conclusion, the present study reported an important function of PTEN in normal thyroid cells and identified the involvement of PAX8. These results may improve understanding of the role of PTEN in the pathogenesis of thyroid disorders.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Department of Pathology, Zhangjiagang First People's Hospital, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Changli Ouyang
- Department of Nuclear Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yueping Xing
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiancun Hou
- Department of Nuclear Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
54
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
55
|
Zhang S, Zhang Y, Zhang W, Chen S, Liu C. Chronic exposure to green light aggravates high-fat diet-induced obesity and metabolic disorders in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:94-104. [PMID: 30999185 DOI: 10.1016/j.ecoenv.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Light is involved in many critical physiological or biochemical processes of human beings, such as visual sensing and the production of vitamin D. Recent studies have showed that the lights of different wavelengths have a profound influence in life activities. For example, blue light promotes alertness, whereas green light (GL) induces sleep in mice. On the other hand, metabolic homeostasis is regulated by a variety of factors, including dietary habits and light exposure. Our study aims to study whether certain wavelength of light would affect metabolic status of mice. Mice were divided into normal diet-fed group and high-fat diet (HFD)-fed group, and then exposed to various colors of the light. Physiological parameters, such as body weight, food intake and water drinking were regularly measured. Glucose tolerance test and pyruvate tolerance test were simultaneously performed. After mice were humanely sacrificed, liver histology and serologic analysis were performed for detecting lipid levels. We found that GL group showed obvious glucose intolerance and increased levels of serum and liver lipid contents compared to white light group. Meanwhile, the expression levels of lipid metabolism-related genes were almost down-regulated in liver. Furthermore, melatonin receptor-1b and thyroid hormone receptor-β expression levels were significantly lowered in liver of GL-treated obese mice, suggesting that these hormone pathways may mediate the changes of lipid metabolism. Our data indicate that GL has a detrimental effect on the energy metabolism and aggravates HFD-induced obesity in mice. In addition to malnutrition, the colors of the lights also have a profound influence in the metabolic homeostasis and should be taken into consideration in the therapy of metabolic disorders.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yanchen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
56
|
Abstract
OBJECTIVE Postmenopausal osteoporosis is a frequent cause of morbidity and can negatively impact life expectancy; iodine is an essential element for bone mineralization, and iodine deficiency is frequently observed. The aim of the present study was to understand the connection between postmenopausal osteoporosis and the level of iodine in the body. METHODS A total of 132 participants were divided into three groups: group 1 consisted of healthy postmenopausal women (n = 34), group 2 comprised osteopenic women (n = 38), and group 3 included women with postmenopausal osteoporosis (n = 60). The three groups were compared according to demographic, clinical, and laboratory findings. RESULTS The urinary iodine levels were recorded as 216.1 ± 125.2 in the control group, 154.6 ± 76.6 in the osteopenic group, and 137.5 ± 64.9 in the postmenopausal osteoporosis group (P < 0.001). These differences were maintained after adjustment for body mass index (P < 0.001). The urinary iodine level accurately correlated with the total T-score for the lumbar spine (r = 0.236, P = 0.008). Multiple regression analysis showed that corrected for body mass index, alkaline phosphatase isoenzyme, and urinary deoxypyridinoline, the urinary iodine level was significantly associated with total T-score (beta coefficient = 0.270, P = 0.006). CONCLUSIONS The urinary iodine level was significantly lower in women with postmenopausal osteoporosis, and iodine replacement may be important in preventing osteoporosis in areas where iodine deficiency is endemic.
Collapse
|
57
|
Bao L, Roediger J, Park S, Fu L, Shi B, Cheng SY, Shi YB. Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid 2019; 29:439-448. [PMID: 30595106 PMCID: PMC6437623 DOI: 10.1089/thy.2018.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The thyroid hormone triiodothyronine (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) >50 years ago and subsequent identification of genetic mutations in only the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in RTH patients with THRB gene mutations (RTHβ). That is, RTHα patients have constipation, implicating intestinal defects caused by THRA gene mutations. METHODS To determine how TRα1 mutations affect the intestine, this study analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes observed in patients. RESULTS In adult Thra1PV/+ mice, constipation was observed just like in patients with TRα mutations. Importantly, significant intestinal defects were discovered, including shorter villi and increased differentiated cells in the crypt, accompanied by reduced stem-cell proliferation in the intestine. CONCLUSIONS The findings suggest that further analysis of this mouse model should help to reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Sunmi Park
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI); National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49 Room 6A82, Bethesda, MD 20892
| |
Collapse
|
58
|
Jakobsson T, Vedin LL, Parini P. Potential Role of Thyroid Receptor β Agonists in the Treatment of Hyperlipidemia. Drugs 2019; 77:1613-1621. [PMID: 28865063 PMCID: PMC5613055 DOI: 10.1007/s40265-017-0791-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones have important effects on cellular development, growth, and metabolism and are necessary for the healthy function of almost all tissues. Hyperthyroid patients with excess thyroid hormone levels experience tachycardia, fatigue, muscle wasting, and osteoporosis. However, although high thyroid hormone levels have adverse effects, efforts have been made to harness the beneficial effects, such as reduced serum low-density lipoprotein (LDL) cholesterol levels, elevated basal metabolic rate, and weight loss. Thyroid hormones interact with nuclear thyroid hormone receptors (TRs), and cholesterol levels are reduced through TRβ, whereas extrahepatic adverse actions are primarily connected to TRα. Thus, to develop a useful compound for clinical use, efforts have been focusing on developing compounds with isomer-specific functions based on the structure of thyroid hormones, i.e., thyromimetics that are liver and/or TRβ specific. In this short review, we discuss the development of the early thyromimetics that enabled, through modern molecular techniques, the progress towards improved design of TRβ-selective thyromimetics. We also address the early promise shown in human clinical trials and the current status of these drugs and other emerging compounds.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Lise-Lotte Vedin
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden. .,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
59
|
Liu Z, Chen Y, Chen G, Mao X, Wei X, Li X, Xu Y, Jiang F, Wang K, Liu C. Impaired Glucose Metabolism in Young Offspring of Female Rats with Hypothyroidism. J Diabetes Res 2019; 2019:4713906. [PMID: 30918900 PMCID: PMC6409023 DOI: 10.1155/2019/4713906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Because thyroid hormones from the maternal thyroid glands are known to influence the growth, development, and metabolic functioning of offspring, we used a rat model to preliminarily investigate the effects of maternal hypothyroidism on glucose metabolism, pancreas cell proliferation, and insulin production in young male offspring and the possible underlying mechanisms. METHODS Female rats were divided into a maternal hypothyroidism (MH) group, which received water containing 0.02% 6-propyl-2-thiouracil before and during pregnancy to induce hypothyroidism, and a control group which consumed tap water. RESULTS Our results showed that there were no differences of islets structure between the offspring from the two groups, but glucose metabolism was impaired with higher plasma glucose concentrations at 0 and 15 min in the OGTT in 8-week-old offspring of the MH group. From birth to 8 weeks, pancreatic TRβ1 and TRβ2 mRNA level declined significantly in MH offspring, accompanied by decreased Ki67 and insulin mRNA expression. CONCLUSIONS Maternal hypothyroidism results in impaired pancreatic insulin synthesis and pancreatic cell proliferation in neonatal offspring and subsequent glucose intolerance in young offspring, which may be related to TRβ gene downregulation in the pancreas.
Collapse
Affiliation(s)
- Zhoujun Liu
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yijiao Xu
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Jiang
- The Third College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Wang
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
60
|
Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods Mol Biol 2019; 1874:507-524. [PMID: 30353533 DOI: 10.1007/978-1-4939-8831-0_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anuran Xenopus laevis has been studied for decades as a model for vertebrate cell and developmental biology. More recently, the highly related species Xenopus tropicalis has offered the opportunity to carry out genetic studies due to its diploid genome as compared to the pseudo-tetraploid Xenopus laevis. Amphibians undergo a biphasic development: embryogenesis to produce a free-living tadpoles and subsequent metamorphosis to transform the tadpole to a frog. This second phase mimics the so-called postembryonic development in mammals when many organs/tissues mature into their adult form in the presence of high levels of plasma thyroid hormone (T3). The total dependence of amphibian metamorphosis on T3 offers a unique opportunity to study postembryonic development in vertebrates, especially with the recent development gene editing technologies that function in amphibians. Here, we first review the basic molecular understanding of the regulation of Xenopus metamorphosis by T3 and T3 receptors (TRs), and then describe a detailed method to use CRISPR to knock out the TR-coactivator SRC3 (steroid receptor coactivator 3), a histone acetyltransferase, in order to study its involvement in gene regulation by T3 in vivo and Xenopus development.
Collapse
|
61
|
Delitala AP, Capobianco G, Cherchi PL, Dessole S, Delitala G. Thyroid function and thyroid disorders during pregnancy: a review and care pathway. Arch Gynecol Obstet 2018; 299:327-338. [PMID: 30569344 DOI: 10.1007/s00404-018-5018-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/12/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To review the literature on thyroid function and thyroid disorders during pregnancy. METHODS A detailed literature research on MEDLINE, Cochrane library, EMBASE, NLH, ClinicalTrials.gov, and Google Scholar databases was done up to January 2018 with restriction to English language about articles regarding thyroid diseases and pregnancy. RESULTS Thyroid hormone deficiencies are known to be detrimental for the development of the fetus. In particular, the function of the central nervous system might be impaired, causing low intelligence quotient, and mental retardation. Overt and subclinical dysfunctions of the thyroid disease should be treated appropriately in pregnancy, aiming to maintain euthyroidism. Thyroxine (T4) replacement therapy should reduce thyrotropin (TSH) concentration to the recently suggested fixed upper limits of 2.5 mU/l (first and second trimester) and 3.0 mU/l (third trimester). Overt hyperthyroidism during pregnancy is relatively uncommon but needs prompt treatment due to the increased risk of preterm delivery, congenital malformations, and fetal death. The use of antithyroid drug (methimazole, propylthiouracil, carbimazole) is the first choice for treating overt hyperthyroidism, although they are not free of side effects. Subclinical hyperthyroidism tends to be asymptomatic and no pharmacological treatment is usually needed. Gestational transient hyperthyroidism is a self-limited non-autoimmune form of hyperthyroidism with negative antibody against TSH receptors, that is related to hCG-induced thyroid hormone secretion. The vast majority of these patients does not require antithyroid therapy, although administration of low doses of β-blocker may by useful in very symptomatic patients. CONCLUSIONS Normal maternal thyroid function is essential in pregnancy to avoid adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Alessandro P Delitala
- Azienda Ospedaliero-Universitaria Di Sassari, Clinica Medica, Viale San Pietro 8, 07100, Sassari, Italy.
| | - Giampiero Capobianco
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Pier Luigi Cherchi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Salvatore Dessole
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Giuseppe Delitala
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
62
|
The Antiarrhythmic Drug, Dronedarone, Demonstrates Cytotoxic Effects in Breast Cancer Independent of Thyroid Hormone Receptor Alpha 1 (THRα1) Antagonism. Sci Rep 2018; 8:16562. [PMID: 30410118 PMCID: PMC6224430 DOI: 10.1038/s41598-018-34348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone’s cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone’s anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.
Collapse
|
63
|
Sun J, Sun L, Chen W, Yin X, Lu Y, Jiang Q. A family with hypothyroidism caused by fatty acid synthase and apolipoprotein B receptor mutations. Mol Med Rep 2018; 18:4904-4912. [PMID: 30272292 PMCID: PMC6236273 DOI: 10.3892/mmr.2018.9499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
Hypothyroidism is a disease with a genetic component. The present study aimed to identify the potential causative gene mutation in a family with hypothyroidism and to investigate its potential pathology. DNA was extracted from the affected individual and his parents, maternal aunt and maternal grandmother. Whole exome sequencing was used to examine their exomes. The potential causative genes that may have an autosomal dominant mode of inheritance were selected after variant calling and filtering. Bioinformatics analysis was utilized to predict the deleteriousness of the identified variants, and multiple sequence alignment and conserved protein domain analyses were performed using online software. Finally, Sanger sequencing was used to validate the identified variants. In the present study, a total of 50 variants were screened based on the autosomal dominant mode of inheritance. Two variants, the fatty acid synthase (FASN) and apolipoprotein B receptor (APOBR) genes, were further analyzed, as they were highly associated with hypothyroidism. Genotyping results revealed that two mutations, c.G7192T (p.A2398S) in the FASN gene and c.C1883G (p.T628R) in the APOBR gene, were fully co-segregated with established hypothyroidism phenotypes in the family. These mutations were located in the conserved α/β-hydrolase fold and Na+/Ca2+ exchanger superfamily domain of FASN and APOBR, respectively. In conclusion, the present study demonstrated that the FASN c.G7192T and APOBR c.C1883G mutations may be the potential causative variants in this Chinese hypothyroidism pedigree.
Collapse
Affiliation(s)
- Jianhua Sun
- Department of Oncology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lizhi Sun
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Weijie Chen
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yong Lu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Qiang Jiang
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
64
|
Xiang D, Han J, Yao T, Wang Q, Zhou B, Mohamed AD, Zhu G. Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor. Toxicol Sci 2018; 160:205-216. [PMID: 28973306 DOI: 10.1093/toxsci/kfx177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides.
Collapse
Affiliation(s)
- Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Tingting Yao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Bingsheng Zhou
- Biology Institute of Shandong Academy of Sciences, Jinan 250014, P.R. China
| | - Abou Donia Mohamed
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
65
|
Namulema J, Nansunga M, Kato CD, Kalange M, Olaleye SB. Thyroid hormones increase stomach goblet cell numbers and mucin expression during indomethacin induced ulcer healing in Wistar rats. Thyroid Res 2018; 11:6. [PMID: 29849767 PMCID: PMC5970504 DOI: 10.1186/s13044-018-0050-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gastric ulcers are mucosal discontinuities that may extend into the mucosa, submucosa or even deeper. They result from an imbalance between mucosal aggressors and protective mechanisms that include the mucus bicarbonate layer. Thyroid hormones have been shown to accelerate gastric ulcer healing in part by increasing the adherent mucus levels. However, the effects of thyroid hormones on goblet cell numbers and expression of neutral and acidic mucins during ulcer healing have not been investigated. Methods Thirty six adult male Wistar rats were randomly divided into six groups each with six animals. Group 1 (normal control) and group 2 (negative control) were given normal saline for eight weeks. Groups 3 and 4 were given 100 μg/kg per day per os of thyroxine so as to induce hyperthyroidism. Groups 5 and 6 received 0.01% (w/v) Propylthiouracil (PTU) for 8 weeks so as to induce hypothyroidism. After thyroid hormonal levels were confirmed using radioimmunoassay and immunoradiometric assays, ulcer induction was done using 40 mg/kg intragastric single dose of Indomethacin in groups 2, 3 and 5. Stomachs were extracted after day 3 and 7 of ulcer induction for histological examination. Histochemistry was carried out using Periodic Acid Shiff and Alcian Blue. The number of acidic and neutral goblet cells were determined by counting numbers per field. Mucin expression (%) was determined using Quick Photo Industrial software version 3.1. Results The numbers of neutral goblet cells (cells/field) increased significantly (P < 0.05) in the ulcer+thyroxine (14.67 ± 0.33), thyroxine (17.04 ± 1.71) and ulcer+PTU (12.89 ± 1.06) groups compared to the normal control (10.78 ± 1.07) at day 3. For the acidic goblet cells, differences between treatment groups were more pronounced at day 7 between the ulcer+thyroxine (22.56 ± 1.26) and thyroxine (22.89 ± 0.80). We further showed that percentage expression of both neutral and acidic mucins was significantly higher in the ulcer+thyroxine (9.23 ± 0.17 and 6.57 ± 0.35 respectively) and thyroxine groups (9.66 ± 0.21 and 6.33 ± 0.38 respectively) as compared to the normal control group (4.08 ± 0.20 and 4.38 ± 0.11 respectively) at day 3 after ulcer induction. Conclusion This study confirms the role played by thyroid hormones in healing of indomethacin induced gastric ulcers. The study further demonstrates increased numbers of both neutral and acidic goblet cells and the increase in expression of both neutral and acidic mucins during healing of indomethacin induced ulcers. Electronic supplementary material The online version of this article (10.1186/s13044-018-0050-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jackline Namulema
- 1Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, P.O BOX 71, Ishaka, Bushenyi Uganda
| | - Miriam Nansunga
- 1Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, P.O BOX 71, Ishaka, Bushenyi Uganda.,4Department of Physiology, Faculty of Biomedical Sciences, St Augustine International University, P.O BOX 88, Kampala, Uganda
| | - Charles Drago Kato
- 2Department of Immunology and Microbiology, Faculty of Biomedical Sciences, Kampala International University, P.O BOX 71, Ishaka, Bushenyi Uganda.,5School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Muhammudu Kalange
- 1Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, P.O BOX 71, Ishaka, Bushenyi Uganda
| | - Samuel Babafemi Olaleye
- 3Laboratory for Gastrointestinal Secretion and Inflammation Research, Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
66
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
67
|
Mohácsik P, Erdélyi F, Baranyi M, Botz B, Szabó G, Tóth M, Haltrich I, Helyes Z, Sperlágh B, Tóth Z, Sinkó R, Lechan RM, Bianco AC, Fekete C, Gereben B. A Transgenic Mouse Model for Detection of Tissue-Specific Thyroid Hormone Action. Endocrinology 2018; 159:1159-1171. [PMID: 29253128 PMCID: PMC6283413 DOI: 10.1210/en.2017-00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Thyroid hormone (TH) is present in the systemic circulation and thus should affect all cells similarly in the body. However, tissues have a complex machinery that allows tissue-specific optimization of local TH action that calls for the assessment of TH action in a tissue-specific manner. Here, we report the creation of a TH action indicator (THAI) mouse model to study tissue-specific TH action. The model uses a firefly luciferase reporter readout in the context of an intact transcriptional apparatus and all elements of TH metabolism and transport and signaling. The THAI mouse allows the assessment of the changes of TH signaling in tissue samples or in live animals using bioluminescence, both in hypothyroidism and hyperthyroidism. Beyond pharmacologically manipulated TH levels, the THAI mouse is sufficiently sensitive to detect deiodinase-mediated changes of TH action in the interscapular brown adipose tissue (BAT) that preserves thermal homeostasis during cold stress. The model revealed that in contrast to the cold-induced changes of TH action in the BAT, the TH action in this tissue, at room temperature, is independent of noradrenergic signaling. Our data demonstrate that the THAI mouse can also be used to test TH receptor isoform-specific TH action. Thus, THAI mouse constitutes a unique model to study tissue-specific TH action within a physiological/pathophysiological context and test the performance of thyromimetics. In conclusion, THAI mouse provides an in vivo model to assess a high degree of tissue specificity of TH signaling, allowing alteration of tissue function in health and disease, independently of changes in circulating levels of TH.
Collapse
Affiliation(s)
- Petra Mohácsik
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai PhD School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Centre for Neuroscience, Pécs, Hungary
- Molecular Pharmacology Research Team, János Szentágothai Research Centre, Pécs, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mónika Tóth
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Irén Haltrich
- Second Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Centre for Neuroscience, Pécs, Hungary
- Molecular Pharmacology Research Team, János Szentágothai Research Centre, Pécs, Hungary
- Hungarian Academy of Sciences–University of Pécs, Hungarian Brain Research Program, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsa Tóth
- Second Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Richárd Sinkó
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai PhD School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
- Correspondence: Csaba Fekete, MD, PhD, or Balázs Gereben, DVM, PhD, Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest, Hungary H-1083. E-mail: ; or
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
68
|
Ingenbleek Y. The Retinol Circulating Complex Releases Hormonal Ligands During Acute Stress Disorders. Front Endocrinol (Lausanne) 2018; 9:487. [PMID: 30233492 PMCID: PMC6131608 DOI: 10.3389/fendo.2018.00487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Intensive care workers actively participate in very hot debates aiming at defining the true metabolic, hormonal and nutritional requirements of critically ill patients, the contributory roles played by thyroid and retinoid ligands being largely underestimated. The present article makes up for redressing the balance on behalf of these last hormonal compounds. The retinol circulating complex is transported in the bloodstream in the form of a trimolecular edifice made up of transthyretin (TTR), retinol-binding protein (RBP) and its retinol ligand. TTR reflects the size of the lean body mass (LBM) and is one of the 3 carrier-proteins of thyroid hormones whereas RBP is the sole conveyor of retinol in human plasma. In acute inflammatory disorders, both TTR and RBP analytes experience abrupt cytokine-induced suppressed hepatic synthesis whose amplitude is dependent on the duration and severity of the inflammatory burden. The steep drop in TTR and RBP plasma values releases thyroxine and retinol ligands in their physiologically active forms, creating free pools estimated to be 10-20 times larger than those described in healthy subjects. The peak endocrine influence is reached on day 4 and the freed ligands undergo instant cellular overconsumption and urinary leakage of unmetabolized fractions. As a result of these transient hyperthyroid and hyperretinoid states, helpful stimulatory and/or inhibitory processes are set in motion, operating as second frontlines fine-tuning the impulses primarily initiated by cytokines. The data explain why preexisting protein malnutrition, as assessed by subnormal LBM and TTR values, impairs the development of appropriate recovery processes in critically ill patients. These findings have survival implications, emphasizing the need for more adapted therapeutic strategies in intensive care units.
Collapse
|
69
|
Little AG. Local Regulation of Thyroid Hormone Signaling. VITAMINS AND HORMONES 2018; 106:1-17. [DOI: 10.1016/bs.vh.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
|
71
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
73
|
Mondal S, Mugesh G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol 2017; 458:91-104. [PMID: 28408161 DOI: 10.1016/j.mce.2017.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (THs) play key roles in modulating the overall metabolism of the body, protein synthesis, fat metabolism, neuronal and bone growth, and cardiovascular as well as renal functions. In this review, we discuss on the thyroid hormone synthesis and activation, thyroid hormone receptors (TRs) and mechanism of action, applications of thyroid hormone analogues, particularly the compounds that are selective ligands for TRβ receptors, or enzyme inhibitors for the treatment of thyroidal disorders with a specific focus on thyroid peroxidase and iodothyronine deiodinases. We also discuss on the development of small-molecule deiodinase mimetics and their mechanism of deiodination, as these compounds have the potential to regulate the thyroid hormone levels.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
74
|
Delitala AP, Delitala G, Sioni P, Fanciulli G. Thyroid hormone analogs for the treatment of dyslipidemia: past, present, and future. Curr Med Res Opin 2017; 33:1985-1993. [PMID: 28498022 DOI: 10.1080/03007995.2017.1330259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Treatment of dyslipidemia is a major burden for public health. Thyroid hormone regulates lipid metabolism by binding the thyroid hormone receptor (TR), but the use of thyroid hormone to treat dyslipidemia is not indicated due to its deleterious effects on heart, bone, and muscle. Thyroid hormone analogs have been conceived to selectively activate TR in the liver, thus reducing potential side-effects. METHODS The authors searched the PubMed database to review TR and the action of thyromimetics in vitro and in animal models. Then, all double-blind, placebo controlled trials that analyzed the use of thyroid hormone analog for the treatment of dyslipidemia in humans were included. Finally, the ongoing research on the use of TR agonists was searched, searching the US National Institutes of Health Registry and the WHO International Clinical Trial Registry Platform (ICTRP). RESULTS Thyromimetics were tested in humans for the treatment of dyslipidemia, as a single therapeutic agent or as an add-on therapy to the traditional lipid-lowering drugs. In most trials, thyromimetics lowered total cholesterol, low-density lipoprotein cholesterol, and triglycerides, but their use has been associated with adverse side-effects, both in pre-clinical studies and in humans. CONCLUSIONS The use of thyromimetics for the treatment of dyslipidemia is not presently recommended. Future possible clinical applications might include their use to promote weight reduction. Thyromimetics might also represent an interesting alternative, both for the treatment of non-alcoholic steatohepatitis, and type 2 diabetes due to their positive effects on insulin sensitivity. Finally, additional experimental and clinical studies are needed for a better comprehension of the effect(s) of a long-term therapy.
Collapse
Affiliation(s)
| | - Giuseppe Delitala
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Paolo Sioni
- a Azienda Ospedaliero-Universitaria di Sassari , Sassari , Italy
| | - Giuseppe Fanciulli
- a Azienda Ospedaliero-Universitaria di Sassari , Sassari , Italy
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| |
Collapse
|
75
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
76
|
Morgenstern R, Whyatt RM, Insel BJ, Calafat AM, Liu X, Rauh VA, Herbstman J, Bradwin G, Factor-Litvak P. Phthalates and thyroid function in preschool age children: Sex specific associations. ENVIRONMENT INTERNATIONAL 2017; 106:11-18. [PMID: 28554096 PMCID: PMC5533628 DOI: 10.1016/j.envint.2017.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/14/2017] [Accepted: 05/09/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Research relating either prenatal or concurrent measures of phthalate exposure to thyroid function in preschool children is inconclusive. METHODS In a study of inner-city mothers and their children, metabolites of di-n-butyl phthalate, butylbenzyl phthalate, di-isobutyl phthalate, di(2-ethylhexyl) phthalate, and diethyl phthalate were measured in a spot urine sample collected from women in late pregnancy and from their children at age 3years. We measured children's serum free thyroxine (FT4) and thyroid stimulating hormone (TSH) at age 3. Linear regression models were used to investigate the associations between phthalate metabolites, measured in maternal urine during late pregnancy and measured in child urine at age 3 and thyroid function measured at age 3. RESULTS Mean concentrations (ranges) were 1.42ng/dL (1.02-2.24) for FT4, and 2.62uIU/mL (0.61-11.67) for TSH. In the children at age 3, among girls, FT4 decreased with increasing loge mono-n-butyl phthalate [estimated b=-0.06; 95% CI: (-0.09, -0.02)], loge mono-isobutyl phthalate [b=-0.05; 95% CI: (-0.09, -0.01)], loge monoethyl phthalate [b=-0.04; 95% CI: (-0.07, -0.01)], and loge mono(2-ethyl-5-hydroxyhexyl) phthalate [b=-0.04; 95% CI: (-0.07, -0.003)] and loge mono(2-ethyl-5-oxy-hexyl) phthalate [b=-0.04; 95% CI: (-0.07, -0.004)]. In contrast, among boys, we observed no associations between FT4 and child phthalate metabolites at age 3. On the other hand, in late gestation, FT4 increased with increasing loge mono-(2-ethylhexyl) phthalate [estimated b=0.04; 95% CI: (0.02, 0.06)] and no sex difference was observed. We found no associations between phthalate biomarkers measured in either the child or prenatal samples and TSH at age 3. CONCLUSIONS The data show inverse and sex specific associations between specific phthalate metabolites measured in children at age 3 and thyroid function in preschool children. These results may provide evidence for the hypothesis that reductions in thyroid hormones mediate associations between early life phthalate exposure and child cognitive outcomes.
Collapse
Affiliation(s)
- Rachelle Morgenstern
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robin M Whyatt
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gary Bradwin
- Department of Laboratory Medicine, Harvard Medical School and Children's Hospital, Boston, MA, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
77
|
Kalikiri MK, Mamidala MP, Rao AN, Rajesh V. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients. Autism Res 2017; 10:1919-1928. [DOI: 10.1002/aur.1838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/20/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Mahesh Kumar Kalikiri
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| | - Madhu Poornima Mamidala
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| | - Ananth N. Rao
- Metabolic Diseases and Research Unit, Apollo Hospitals; Bangalore India
| | - Vidya Rajesh
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| |
Collapse
|
78
|
Davis PJ, Leonard JL, Lin HY, Leinung M, Mousa SA. Molecular Basis of Nongenomic Actions of Thyroid Hormone. VITAMINS AND HORMONES 2017; 106:67-96. [PMID: 29407448 DOI: 10.1016/bs.vh.2017.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nongenomic actions of thyroid hormone are initiated by the hormone at receptors in the plasma membrane, in cytoplasm, or in mitochondria and do not require the interaction of nuclear thyroid hormone receptors (TRs) with their primary ligand, 3,5,3'-triiodo-l-thyronine (T3). Receptors involved in nongenomic actions may or may not have structural homologies with TRs. Certain nongenomic actions that originate at the plasma membrane may modify the state and function of intranuclear TRs. Reviewed here are nongenomic effects of the hormone-T3 or, in some cases, l-thyroxine (T4)-that are initiated at (a) truncated TRα isoforms, e.g., p30 TRα1, (b) cytoplasmic proteins, or (c) plasma membrane integrin αvβ3. p30 TRα1 is not transcriptionally competent, binds T3 at the cell surface, and consequently expresses a number of important functions in bone cells. Nongenomic hormonal control of mitochondrial respiration involves a TRα isoform, and another truncated TRα isoform nongenomically regulates the state of cellular actin. Cytoplasmic hormone-binding proteins involved in nongenomic actions of thyroid hormone include ketimine reductase, pyruvate kinase, and TRβ that shuttle among intracellular compartments. Functions of the receptor for T4 on integrin αvβ3 include stimulation of proliferation of cancer and endothelial cells (angiogenesis) and regulation of transcription of cancer cell survival pathway genes. T4 serves as a prohormone for T3 in genomic actions of thyroid hormone, but T4 is a hormone at αvβ3 and more important to cancer cell function than is T3. Thus, characterization of nongenomic actions of the hormone has served to broaden our understanding of the cellular roles of T3 and T4.
Collapse
Affiliation(s)
- Paul J Davis
- Albany Medical College, Albany, NY, United States; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.
| | - Jack L Leonard
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
79
|
Abdi H, Kazemian E, Gharibzadeh S, Amouzegar A, Mehran L, Tohidi M, Rashvandi Z, Azizi F. Association between Thyroid Function and Body Mass Index: A 10-Year Follow-Up. ANNALS OF NUTRITION AND METABOLISM 2017; 70:338-345. [PMID: 28618407 DOI: 10.1159/000477497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS We aimed to evaluate the association between change in thyroid function tests within the euthyroid range and body mass index (BMI) in persons with normal weight at baseline. METHODS This study investigated 1,100 normal-weight euthyroid persons in a population-based cohort study, Tehran Thyroid Study. BMI was calculated and serum concentrations of thyrotropin (TSH) and free T4 (FT4) were assayed at baseline and after 10 years of follow-up. We evaluated the relationship between thyroid and obesity based on 2 definitions for outcome: (1) a binary outcome as BMI <25 or ≥25 kg/m2, and (2) a multinomial outcome as normal BMI, overweight, and obese. RESULTS A total of 569 women and 531 men, aged 36.3 ± 13.5 years, were included. Modified Poisson regression analysis for binary outcome, after adjustment for age, sex, smoking, and anti-thyroid peroxidase antibody status, revealed a negative association between delta serum FT4 and follow-up BMI (relative risk 0.55 [95% CI 0.37-0.80]) without any significant association between change in serum TSH and follow-up BMI. However, in multinomial logistic regression analysis, we found no relationship between delta serum FT4 or TSH and follow-up BMI categories, for either overweight or obese vs. normal-weight participants. CONCLUSIONS In normal-weight euthyroid individuals, changes in serum concentrations of FT4, but not TSH, may contribute to change in body weight.
Collapse
Affiliation(s)
- Hengameh Abdi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
81
|
Jimenez R, Privalsky ML. A resistance to thyroid hormone syndrome mutant operates through the target gene repertoire of the wild-type thyroid hormone receptor. Mol Cell Endocrinol 2017; 447:87-97. [PMID: 28257829 DOI: 10.1016/j.mce.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormone receptors (TRs) play crucial roles in vertebrates. Wild-type (WT) TRs function primarily as hormone-regulated transcription factors. A human endocrine disease, Resistance to Thyroid Hormone (RTH)-Syndrome, is caused by inheritance of mutant TRs impaired in the proper regulation of target gene expression. To better understand the molecular basis of RTH we compared the target genes regulated by an RTH-TRβ1 mutant (R429Q) to those regulated by WT-TRβ1. With only a few potential exceptions, the vast majority of genes we were able to identify as regulated by the WT-TRβ1, positively or negatively, were also regulated by the RTH-TRβ1 mutant. We conclude that the actions of R429Q-TRβ1 in RTH-Syndrome most likely reflect the reduced hormone affinity observed for this mutant rather than an alteration in target gene repertoire. Our results highlight the importance of target gene specificity in defining the disease phenotype and improve our understanding of how clinical treatments impact RTH-Syndrome.
Collapse
Affiliation(s)
- Robyn Jimenez
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| |
Collapse
|
82
|
Hatsukano T, Kurisu J, Fukumitsu K, Fujishima K, Kengaku M. Thyroid Hormone Induces PGC-1α during Dendritic Outgrowth in Mouse Cerebellar Purkinje Cells. Front Cell Neurosci 2017; 11:133. [PMID: 28536504 PMCID: PMC5422430 DOI: 10.3389/fncel.2017.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Thyroid hormone 3,3′,5-Triiodo-L-thyronine (T3) is essential for proper brain development. Perinatal loss of T3 causes severe growth defects in neurons and glia, including strong inhibition of dendrite formation in Purkinje cells in the cerebellar cortex. Here we show that T3 promotes dendritic outgrowth of Purkinje cells through induction of peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), a master regulator of mitochondrial biogenesis. PGC-1α expression in Purkinje cells is upregulated during dendritic outgrowth in normal mice, while it is significantly retarded in hypothyroid mice or in cultures depleted of T3. In cultured Purkinje cells, PGC-1α knockdown or molecular perturbation of PGC-1α signaling inhibits enhanced dendritic outgrowth and mitochondrial generation and activation caused by T3 treatment. In contrast, PGC-1α overexpression promotes dendrite extension even in the absence of T3. PGC-1α knockdown also downregulates dendrite formation in Purkinje cells in vivo. Our findings suggest that the growth-promoting activity of T3 is partly mediated by PGC-1α signaling in developing Purkinje cells.
Collapse
Affiliation(s)
- Tetsu Hatsukano
- Kengaku Group, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto UniversityKyoto, Japan.,Kengaku Group, Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | - Junko Kurisu
- Kengaku Group, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto UniversityKyoto, Japan
| | - Kansai Fukumitsu
- Kengaku Group, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto UniversityKyoto, Japan.,Kengaku Group, Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | - Kazuto Fujishima
- Kengaku Group, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto UniversityKyoto, Japan
| | - Mineko Kengaku
- Kengaku Group, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto UniversityKyoto, Japan.,Kengaku Group, Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| |
Collapse
|
83
|
Pellock SJ, Redinbo MR. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. J Biol Chem 2017; 292:8569-8576. [PMID: 28389557 DOI: 10.1074/jbc.r116.767434] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The intestinal milieu is astonishingly complex and home to a constantly changing mixture of small and large molecules, along with an abundance of bacteria, viral particles, and eukaryotic cells. Such complexity makes it difficult to develop testable molecular hypotheses regarding host-microbe interactions. Fortunately, mammals and their associated gastrointestinal (GI) microbes contain complementary systems that are ideally suited for mechanistic studies. Mammalian systems inactivate endobiotic and xenobiotic compounds by linking them to a glucuronic acid sugar for GI excretion. In the GI tract, the microbiota express β-glucuronidase enzymes that remove the glucuronic acid as a carbon source, effectively reversing the actions of mammalian inactivation. Thus, by probing the actions of microbial β-glucuronidases, and by understanding which substrate glucuronides they process, molecular insights into mammalian-microbial symbioses may be revealed amid the complexity of the intestinal tract. Here, we focus on glucuronides in the gut and the microbial proteins that process them.
Collapse
Affiliation(s)
- Samuel J Pellock
- From the Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Matthew R Redinbo
- From the Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
84
|
Yu J, Fu Y, Shi Z. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:321-336. [PMID: 27620185 DOI: 10.1007/s10695-016-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
85
|
van Gucht ALM, Moran C, Meima ME, Visser WE, Chatterjee K, Visser TJ, Peeters RP. Resistance to Thyroid Hormone due to Heterozygous Mutations in Thyroid Hormone Receptor Alpha. Curr Top Dev Biol 2017; 125:337-355. [PMID: 28527577 DOI: 10.1016/bs.ctdb.2017.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Thyroid hormone (TH) acts via nuclear thyroid hormone receptors (TRs). TR isoforms (TRα1, TRα2, TRβ1, TRβ2) are encoded by distinct genes (THRA and THRB) and show differing tissue distributions. Patients with mutations in THRB, exhibiting resistance within the hypothalamic-pituitary-thyroid axis with elevated TH and nonsuppressed thyroid-stimulating hormone (TSH) levels, were first described decades ago. In 2012, the first patients with mutations in THRA were identified. Scope of this review: This review describes the clinical and biochemical characteristics of patients with resistance to thyroid hormone alpha (RTHα) due to heterozygous mutations in THRA. The genetic basis and molecular pathogenesis of the disorder together with effects of levothyroxine treatment are discussed. CONCLUSIONS The severity of the clinical phenotype of RTHα patients seems to be associated with the location and type of mutation in THRA. The most frequent abnormalities observed include anemia, constipation, and growth and developmental delay. In addition, serum (F)T3 levels can be high-normal to high, (F)T4 and rT3 levels normal to low, while TSH is normal or mildly raised. Despite heterogeneous consequences of mutations in THRA, RTHα should be suspected in subjects with even mild clinical features of hypothyroidism together with high/high-normal (F)T3, low/low-normal (F)T4, and normal TSH.
Collapse
Affiliation(s)
| | - Carla Moran
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Marcel E Meima
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Theo J Visser
- Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Robin P Peeters
- Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
86
|
Opazo MC, Haensgen H, Bohmwald K, Venegas LF, Boudin H, Elorza AA, Simon F, Fardella C, Bueno SM, Kalergis AM, Riedel CA. Imprinting of maternal thyroid hormones in the offspring. Int Rev Immunol 2017; 36:240-255. [DOI: 10.1080/08830185.2016.1277216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- María Cecilia Opazo
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Henny Haensgen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Venegas
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | - Alvaro A. Elorza
- Centro de Investigaciones Biomedicas, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Faculta de Medicina, Universidad Andres Bello
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Carlos Fardella
- Millenium Institute on Immunology and immunotherapy, Departamento de Endocrinología, Faculta de Medicina, Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR1064, Nantes, France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR1064, Nantes, France
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
87
|
Lee D, Martinez B, Crocker DE, Ortiz RM. Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals ( Mirounga angustirostris). Physiol Rep 2017; 5:5/4/e13114. [PMID: 28242816 PMCID: PMC5328766 DOI: 10.14814/phy2.13114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022] Open
Abstract
Fasting typically suppresses thyroid hormone (TH)‐mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate‐activated protein kinase (AMPK). Adult male elephant seals (Mirounga angustirostris) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH‐mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH‐associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals (n = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH‐mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4‐fold and the TH receptor (THrβ‐1) decreased 30‐fold suggesting that cellular uptake of T4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up‐regulation of SIRT1 mRNA expression (2.6‐fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC‐1α. These coordinated changes likely contribute to the up‐regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals.
Collapse
Affiliation(s)
- Debby Lee
- Department of Cellular and Molecular Biology, University of California, Merced, California
| | - Bridget Martinez
- Department of Cellular and Molecular Biology, University of California, Merced, California
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Rudy M Ortiz
- Department of Cellular and Molecular Biology, University of California, Merced, California
| |
Collapse
|
88
|
Wu Z, Martinez ME, St. Germain DL, Hernandez A. Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology 2017; 158:419-430. [PMID: 27911598 PMCID: PMC5413080 DOI: 10.1210/en.2016-1680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023]
Abstract
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - M. Elena Martinez
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Donald L. St. Germain
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Arturo Hernandez
- Center for Molecular Medicine, and
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| |
Collapse
|
89
|
Flamini MI, Uzair ID, Pennacchio GE, Neira FJ, Mondaca JM, Cuello-Carrión FD, Jahn GA, Simoncini T, Sanchez AM. Thyroid Hormone Controls Breast Cancer Cell Movement via Integrin αV/β3/SRC/FAK/PI3-Kinases. Discov Oncol 2017; 8:16-27. [PMID: 28050799 DOI: 10.1007/s12672-016-0280-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022] Open
Abstract
Thyroid hormones (TH) play a fundamental role in diverse processes, including cellular movement. Cell migration requires the integration of events that induce changes in cell structure towards the direction of migration. These actions are driven by actin remodeling and stabilized by the development of adhesion sites to extracellular matrix via transmembrane receptors linked to the actin cytoskeleton. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that promotes cell migration and invasion through the control of focal adhesion turnover. In this work, we demonstrate that the thyroid hormone triiodothyronine (T3) regulates actin remodeling and cell movement in breast cancer T-47D cells through the recruitment of FAK. T3 controls FAK phosphorylation and translocation at sites where focal adhesion complexes are assembled. This process is triggered via rapid signaling to integrin αV/β3, Src, phosphatidylinositol 3-OH kinase (PI3K), and FAK. In addition, we established a cellular model with different concentration of T3 levels: normal, absence, and excess in T-47D breast cancer cells. We found that the expression of Src, FAK, and PI3K remained at normal levels in the excess of T3 model, while it was significantly reduced in the absence model. In conclusion, these results suggest a novel role for T3 as an important modulator of cell migration, providing a starting point for the development of new therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Marina Inés Flamini
- Laboratorio de Biología Tumoral. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Ivonne Denise Uzair
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Gisela Erika Pennacchio
- Laboratorio de Reproducción y Lactancia. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Flavia Judith Neira
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina
| | - Fernando Dario Cuello-Carrión
- Laboratorio de Oncología. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Graciela Alma Jahn
- Laboratorio de Reproducción y Lactancia. Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Angel Matías Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular. Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ruiz Leal s/n. Parque Gral. San Martin CC855, 5500, Mendoza, Argentina.
| |
Collapse
|
90
|
van Mullem AA, van Gucht ALM, Visser WE, Meima ME, Peeters RP, Visser TJ. Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Mol Cell Endocrinol 2016; 437:252-260. [PMID: 27492966 DOI: 10.1016/j.mce.2016.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is necessary for the genomic action of T3 mediated by its nuclear T3 receptor. MCT8 and MCT10 have been identified as important TH transporters. Mutations in MCT8 result in severe psychomotor retardation. In addition to TH transport into the cell, MCT8 and MCT10 also facilitate TH efflux from cells. Therefore, the aim of this study was to examine if MCT8 and MCT10 increase the availability of T3 for its nuclear receptor rather than generate a rapid equilibrium between cellular and serum T3. T3 action was investigated in JEG3 cells co-transfected with TRβ1 and a T3 response element-driven luciferase construct, and T3 metabolism was analyzed in cells transfected with type 3 deiodinase (D3). In addition, cells were transfected with MCT8 or MCT10 and/or the cytoplasmic T3-binding protein mu-crystallin (CRYM). Luciferase signal was markedly stimulated by incubating cells for 24 h with 1 nM T3, but this response was not augmented by MCT8 or MCT10 expression. Limiting the time of T3 exposure to 1-6 h and co-transfection with CRYM allowed for a modest increase in luciferase response to T3. In contrast, T3 metabolism by D3 was potently stimulated by MCT8 or MCT10 expression, but it was not affected by expression of CRYM. These results suggest that MCT8 and MCT10 by virtue of their bidirectional T3 transport have less effect on steady-state nuclear T3 levels than on T3 levels at the cell periphery where D3 is located. CRYM alters the dynamics of cellular TH transport but its exact function in the cellular distribution of TH remains to be determined.
Collapse
Affiliation(s)
- Alies A van Mullem
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja L M van Gucht
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
91
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
92
|
Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS One 2016; 11:e0164407. [PMID: 27732649 PMCID: PMC5061422 DOI: 10.1371/journal.pone.0164407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions.
Collapse
|
93
|
Topaloglu O, Baser H, Cuhaci FN, Sungu N, Yalcin A, Ersoy R, Cakir B. Malignancy is associated with microcalcification and higher AP/T ratio in ultrasonography, but not with Hashimoto's thyroiditis in histopathology in patients with thyroid nodules evaluated as Bethesda Category III (AUS/FLUS) in cytology. Endocrine 2016; 54:156-168. [PMID: 27172917 DOI: 10.1007/s12020-016-0982-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
The predictors of malignancy are important for the decision of appropriate management in nodules with atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS). Our aim was to determine the ultrasonographical, clinical, and biochemical predictors of malignancy in these patients. A total of 427 patients with cytologically Bethesda Category III (AUS/FLUS) thyroid nodules were included in this retrospective study. We divided the nodules into two subgroups according to the histopathology as benign and malignant, and compared the preoperative ultrasonographical, clinical, and biochemical findings. In overall, 427 patients with 449 AUS/FLUS nodules who had undergone surgery, the rate of malignancy was 23.4 % (105/449). When evaluated separately, the rate of malignancy was 25.8 % in nodules with AUS (82/318) and 17.6 % in nodules with FLUS (23/131) (p = 0.061). The vast majority of malignant specimens in histopathology consisted of papillary thyroid carcinoma (PTC) (n = 91, 86.7 %). Preoperative ultrasonographic features of 105 malignant nodules in histopathology were compared with the 344 benign nodules in histopathology. Anteroposterior/Transverse (AP/T) ratio was significantly higher in malignant group compared to benign group (p = 0.013). In multiple logistic analysis, we found that higher AP/T ratio and microcalcification were independently associated with malignancy (p < 0.05). The malignancy-associated cut-off value of AP/T ratio at maximum sensitivity and specificity was ≥0.81. We did not find any correlation between malignancy and Hashimoto's thyroiditis in histopathology in multivariate analysis (p > 0.05). In Bethesda Category III nodules with higher AP/T ratio and microcalcification, surgery might be considered as a first therapeutic option instead of repeat fine-needle aspiration biopsy or observation.
Collapse
Affiliation(s)
- Oya Topaloglu
- Department of Endocrinology and Metabolism, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey.
| | - Husniye Baser
- Department of Endocrinology and Metabolism, Ataturk Education and Research Hospital, Ankara, Turkey
| | - Fatma Neslihan Cuhaci
- Department of Endocrinology and Metabolism, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey
| | - Nuran Sungu
- Department of Pathology, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey
| | - Abdussamed Yalcin
- Department of General Surgery, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey
| | - Reyhan Ersoy
- Department of Endocrinology and Metabolism, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey
| | - Bekir Cakir
- Department of Endocrinology and Metabolism, Ankara Yildirim Beyazit University School of Medicine, Ankara, Turkey
| |
Collapse
|
94
|
|
95
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
96
|
Stavreva DA, Varticovski L, Levkova L, George AA, Davis L, Pegoraro G, Blazer V, Iwanowicz L, Hager GL. Novel cell-based assay for detection of thyroid receptor beta-interacting environmental contaminants. Toxicology 2016; 368-369:69-79. [PMID: 27528272 PMCID: PMC5069182 DOI: 10.1016/j.tox.2016.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/02/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022]
Abstract
Even though the presence of endocrine disrupting chemicals (EDCs) with thyroid hormone (TH)-like activities in the environment is a major health concern, the methods for their efficient detection and monitoring are still limited. Here we describe a novel cell assay, based on the translocation of a green fluorescent protein (GFP)-tagged chimeric molecule of glucocorticoid receptor (GR) and the thyroid receptor beta (TRβ) from the cytoplasm to the nucleus in the presence of TR ligands. Unlike the constitutively nuclear TRβ, this GFP-GR-TRβ chimera is cytoplasmic in the absence of hormone while translocating to the nucleus in a time- and concentration-dependent manner upon stimulation with triiodothyronine (T3) and thyroid hormone analogue, TRIAC, while the reverse triiodothyronine (3,3',5'-triiodothyronine, or rT3) was inactive. Moreover, GFP-GR-TRβ chimera does not show any cross-reactivity with the GR-activating hormones, thus providing a clean system for the screening of TR beta-interacting EDCs. Using this assay, we demonstrated that Bisphenol A (BPA) and 3,3',5,5'-Tetrabromobisphenol (TBBPA) induced GFP-GR-TRβ translocation at micro molar concentrations. We screened over 100 concentrated water samples from different geographic locations in the United States and detected a low, but reproducible contamination in 53% of the samples. This system provides a novel high-throughput approach for screening for endocrine disrupting chemicals (EDCs) interacting with TR beta.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States.
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States
| | - Ludmila Levkova
- Department of Physics and Astronomy, Physics and Astronomy, University of Utah, Salt Lake City, UT, United States
| | - Anuja A George
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States
| | - Luke Davis
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States
| | - Vicki Blazer
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Luke Iwanowicz
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055, United States.
| |
Collapse
|
97
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
98
|
Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol 2016; 56:73-97. [PMID: 26673411 DOI: 10.1530/jme-15-0246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.
Collapse
Affiliation(s)
- Inna Astapova
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
99
|
van Gucht ALM, Meima ME, Zwaveling-Soonawala N, Visser WE, Fliers E, Wennink JMB, Henny C, Visser TJ, Peeters RP, van Trotsenburg ASP. Resistance to Thyroid Hormone Alpha in an 18-Month-Old Girl: Clinical, Therapeutic, and Molecular Characteristics. Thyroid 2016; 26:338-46. [PMID: 26782358 DOI: 10.1089/thy.2015.0463] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Recently, the first patients with resistance to thyroid hormone alpha (RTHα) due to inactivating mutations in the thyroid hormone receptor alpha (TRα) were identified. These patients are characterized by growth retardation, variable motor and cognitive defects, macrocephaly, and abnormal thyroid function tests. The objective was to characterize a young girl (18 months old) with a mutation in both TRα1 and TRα2, and to study the effects of early levothyroxine (LT4) treatment. METHODS The patient was assessed clinically and biochemically before and during 12 months of LT4 treatment. In addition, the consequences of the mutation for TRα1/2 receptor function were studied in vitro. RESULTS At 18 months of age, the patient presented with axial hypotonia, delayed motor development, severe growth retardation, and abnormally elevated triiodothyronine (T3)/thyroxine (T4) ratios. RTHα was suspected, and concomitantly a c.632A>G/p.D211G missense mutation was identified, affecting both the TRα1 and TRα2 proteins. This mutation was also found in the girl's father. LT4 treatment was started, resulting in a marked improvement of her hypotonia, motor skills, and growth. Functionally, the missense mutation led to decreased transcriptional activity of TRα1, which could be overcome by higher T3 levels in vitro. The mutant TRα1 showed a moderate dominant negative activity on wild type (WT) TRα1. In contrast, WT TRα2 and mutant TRα2 had negligible transcriptional activity and showed no dominant-negative effect over TRα1. CONCLUSIONS This report describes the phenotype of a young RTHα patient with a mild TRα mutation before and during early LT4 treatment. Treatment had beneficial effects on her muscle tone, motor development, and growth.
Collapse
Affiliation(s)
- Anja L M van Gucht
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Marcel E Meima
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- 3 Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center , Amsterdam, The Netherlands
| | - W Edward Visser
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Eric Fliers
- 4 Department of Endocrinology and Metabolism, Amsterdam University Medical Center , Amsterdam, The Netherlands
| | - Johanna M B Wennink
- 5 Department of Pediatrics, St. Lucas Andreas Hospital , Amsterdam, The Netherlands
| | - Civile Henny
- 6 Practice of Pediatric Physiotherapy, Sport Medical Center , Amsterdam, The Netherlands
| | - Theo J Visser
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Robin P Peeters
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - A S Paul van Trotsenburg
- 3 Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
100
|
Calvino C, Império GE, Wilieman M, Costa-E-Sousa RH, Souza LL, Trevenzoli IH, Pazos-Moura CC. Hypothyroidism Induces Hypophagia Associated with Alterations in Protein Expression of Neuropeptide Y and Proopiomelanocortin in the Arcuate Nucleus, Independently of Hypothalamic Nuclei-Specific Changes in Leptin Signaling. Thyroid 2016; 26:134-43. [PMID: 26538454 DOI: 10.1089/thy.2015.0384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thyroid hormone and leptin are essential regulators of energy homeostasis. Both hormones stimulate energy expenditure but have opposite effects on appetite. The mechanisms behind food intake regulation in thyroid dysfunctions are poorly understood. It has been shown that hypothyroid rats exhibited impaired leptin anorexigenic effect and signaling in total hypothalamus, even though they were hypophagic. It was hypothesized that hypothyroidism modulates the expression of neuropeptides: orexigenic neuropeptide Y (NPY) and anorexigenic proopiomelanocortin (POMC), independently of inducing nuclei-specific changes in hypothalamic leptin signaling. METHODS Adult male rats were rendered hypothyroid by administration of 0.03% methimazole in the drinking water for 21 days. Protein content of NPY, POMC, and leptin signaling (the signal transducer and activator of transcription 3 [STAT3] pathway) were evaluated by Western blot, and mRNA levels by real time reverse transcription polymerase chain reaction in arcuate (ARC), ventromedial (VMN), and paraventricular (PVN) hypothalamic nuclei isolated from euthyroid (eu) and hypothyroid (hypo) rats. Leptin anorexigenic effect was tested by recording food intake for two hours after intracerebroventricular (i.c.v.) administration of leptin. Statistical differences were considered significant at p ≤ 0.05. RESULTS Hypothyroidism was confirmed by decreased serum triiodothyronine, thyroxine, and increased thyrotropin, in addition to increased levels of pro-TRH mRNA in PVN and Dio2 mRNA in the ARC of hypo rats. Hypothyroidism decreased body weight and food intake associated with decreased protein content of NPY and increased content of POMC in the ARC. Conversely, hypothyroidism induced central resistance to the acute anorexigenic effect of leptin, since while euthyroid rats displayed reduced food intake after leptin i.c.v. injection, hypothyroid rats showed no response. Hypothyroid rats exhibited decreased leptin receptor (ObRb) protein content in ARC and VMN but not in PVN nucleus. ObRb protein changes were concomitant with decreased phosphorylated STAT3 in the ARC, and decreased total STAT3 in VMN and PVN. However, hypothyroidism did not affect mRNA levels of Lepr or Stat3 in the hypothalamic nuclei. CONCLUSIONS Experimental hypothyroidism induced a negative energy balance accompanied by decreased NPY and increased POMC protein content in the ARC, resulting in predominance of anorexigenic pathways, despite central leptin resistance and impairment of the leptin signaling cascade in a nuclei-specific manner.
Collapse
Affiliation(s)
- Camila Calvino
- 1 Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Güínever Eustáquio Império
- 2 Laboratory of Translational Endocrinology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Marianna Wilieman
- 1 Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | | | - Luana Lopes Souza
- 1 Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- 1 Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | | |
Collapse
|