51
|
Pyrina I, Chung KJ, Michailidou Z, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front Cell Dev Biol 2020; 8:644. [PMID: 32760729 PMCID: PMC7372115 DOI: 10.3389/fcell.2020.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.
Collapse
Affiliation(s)
- Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Zoi Michailidou
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
52
|
Abstract
Early in the HIV epidemic, lipodystrophy, characterized by subcutaneous fat loss (lipoatrophy), with or without central fat accumulation (lipohypertrophy), was recognized as a frequent condition among people living with HIV (PLWH) receiving combination antiretroviral therapy. The subsequent identification of thymidine analogue nucleoside reverse transcriptase inhibitors as the cause of lipoatrophy led to the development of newer antiretroviral agents; however, studies have demonstrated continued abnormalities in fat and/or lipid storage in PLWH treated with newer drugs (including integrase inhibitor-based regimens), with fat gain due to restoration to health in antiretroviral therapy-naive PLWH, which is compounded by the rising rates of obesity. The mechanisms of fat alterations in PLWH are complex, multifactorial and not fully understood, although they are known to result in part from the direct effects of HIV proteins and antiretroviral agents on adipocyte health, genetic factors, increased microbial translocation, changes in the adaptive immune milieu after infection, increased tissue inflammation and accelerated fibrosis. Management includes classical lifestyle alterations with a role for pharmacological therapies and surgery in some patients. Continued fat alterations in PLWH will have an important effect on lifespan, healthspan and quality of life as patients age worldwide, highlighting the need to investigate the critical uncertainties regarding pathophysiology, risk factors and management.
Collapse
|
53
|
Development of novel human in vitro vascularized adipose tissue model with functional macrophages. Cytotechnology 2020; 72:665-683. [PMID: 32524217 PMCID: PMC7547925 DOI: 10.1007/s10616-020-00407-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/04/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammation has been proven significant factor in development of type 2 diabetes. So far, most of the adipose tissue related research has been performed in animals, mainly rodent models. The relevance of translation of animal results to humans is questionable. However, in vitro model with relevant human cell source, such as human adipose tissue stromal cells (hASC), can be developed and should be utilized for human adipose tissue research. We developed in vitro models of human adipose tissue utilizing hASC, endothelial cells and monocytes/macrophages. By isolating endothelial cells and macrophages from same adipose tissue as hASC, we were able to provide method for constructing personalized models of adipose tissue. With these models, we studied the effect of macrophages on adipogenesis and protein secretion, with and without vasculature. The models were analyzed for immunocytochemical markers, cell number, triglyceride accumulation and protein secretion. We found that lipid accumulation was greater in adipocytes in the presence of macrophages. Interferon gamma increased this difference between adipocyte culture and Adipocyte-Macrophage co-culture. Protein secretion was affected more by macrophages when vasculature was not present compared to the mild effect when vasculature was present. The vascularized adipose model with macrophages is valuable tool for human adipose tissue research, especially for the personalized medicine approaches; for choosing the right treatments and for studying rare medical conditions.
Collapse
|
54
|
Li X, Frazier JA, Spahiu E, McPherson M, Miller RA. Muscle-dependent regulation of adipose tissue function in long-lived growth hormone-mutant mice. Aging (Albany NY) 2020; 12:8766-8789. [PMID: 32464603 PMCID: PMC7288969 DOI: 10.18632/aging.103380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 01/24/2023]
Abstract
Altered adipose tissue may contribute to the longevity of Snell dwarf and growth hormone receptor (GHR) knock-out mice. We report here that white (WAT) and brown (BAT) fat have elevated UCP1 in both kinds of mice, and that adipocytes in WAT depots turn beige/brown. These imply increased thermogenesis and are expected to lead to improved glucose control. Both kinds of long-lived mice show lower levels of inflammatory M1 macrophages and higher levels of anti-inflammatory M2 macrophages in BAT and WAT, with correspondingly lower levels of TNFα, IL-6, and MCP1. Experiments with mice with tissue-specific disruption of GHR showed that these adipocyte and macrophage changes were not due to hepatic IGF1 production nor to direct GH effects on adipocytes, but instead reflect GH effects on muscle. Muscles deprived of GH signals, either globally (GKO) or in muscle only (MKO), produce higher levels of circulating irisin and its precursor FNDC5. The data thus suggest that the changes in adipose tissue differentiation and inflammatory status seen in long-lived mutant mice reflect interruption of GH-dependent irisin inhibition, with consequential effects on metabolism and thermogenesis.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Jacquelyn A. Frazier
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edward Spahiu
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Madaline McPherson
- College of Literature, Sciences, and The Arts, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA,University of Michigan Geriatrics Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
55
|
Gallagher L, Cregan S, Biniecka M, Cunningham C, Veale DJ, Kane DJ, Fearon U, Mullan RH. Insulin-Resistant Pathways Are Associated With Disease Activity in Rheumatoid Arthritis and Are Subject to Disease Modification Through Metabolic Reprogramming: A Potential Novel Therapeutic Approach. Arthritis Rheumatol 2020; 72:896-902. [PMID: 31840936 DOI: 10.1002/art.41190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate a role for insulin-resistant pathways in inflammation and therapeutic targeting for disease modification in rheumatoid arthritis (RA). METHODS RA disease activity and cardiovascular risk factors, including insulin resistance and body mass index (BMI), were assessed in an Irish RA cohort. Glucose transporter 1 (GLUT-1) and GLUT-4 activity in RA and osteoarthritis (OA) synovial tissue was examined using immunohistochemistry. Spontaneous release of proinflammatory mediators from ex vivo RA synovial explants and primary synovial fibroblast (SF) cell culture supernatants was quantified by enzyme-linked immunosorbent assay. Phosphorylated AMP-activated protein kinase (p-AMPK) and GLUT-1 protein expression was analyzed by Western blotting. Cellular glycolytic and oxidative phosphorylation was assessed using extracellular flux analysis. RESULTS Insulin resistance was independently associated with both BMI (unstandardized coefficient B 0.113 [95% confidence interval (95% CI) 0.059-0.167]; P < 0.001) (n = 61) and swollen joint count in 28 joints (SJC28) (B 0.114 [95% CI 0.032-0.197]; P = 0.008) (n = 61). Increased GLUT-1 expression in RA synovium (n = 26) versus OA synovium (n = 16) was demonstrated (P = 0.0003), with increased expression in the lining, sublining, and vascular regions. In contrast, decreased GLUT-4 expression in the RA lining layer (n = 21) versus the OA lining layer (n = 8) was observed (P = 0.0358). Decreased GLUT-1 protein expression was observed in parallel with increased p-AMPK protein expression in SFs in the presence of metformin (n = 4). Metformin increased glycolytic activity and decreased oxidative phosphorylation in RASFs (n = 7) (P < 0.05 for both). Metformin or aminoimidazole carboxamide ribonucleotide presence decreased spontaneous production of interleukin-6 (IL-6), IL-8, and monocyte chemotactic protein 1 in RA synovial explants and SFs (n = 5-7). CONCLUSION Insulin resistance is significantly associated with BMI and synovitis in RA, suggesting distinct interplay between glucose availability and inflammation in RA. Furthermore, the effect of metformin on proinflammatory mechanisms suggests a role for AMPK-modifying compounds in the treatment of RA.
Collapse
Affiliation(s)
- Lorna Gallagher
- Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Sian Cregan
- Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | - Monika Biniecka
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | | | - Douglas J Veale
- St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - David J Kane
- Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| | | | - Ronan H Mullan
- Trinity College Dublin and Tallaght Hospital, Dublin, Ireland
| |
Collapse
|
56
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
57
|
Radwan E, Bakr MH, Taha S, Sayed SA, Farrag AA, Ali M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Mol Cell Cardiol 2020; 143:15-25. [PMID: 32311415 DOI: 10.1016/j.yjmcc.2020.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Metabolic (Met) syndrome is characterized by hypertension, insulin resistance and dyslipidaemia with high risk of cardiovascular disease. Endoplasmic reticulum (ER) stress is a key contributor in the pathogenesis of Met syndrome. The current study investigates the effect of Tauroursodeoxycholate (TUDCA), an ER stress inhibitor, on Met syndrome-induced cardiovascular complications and the possible underlying signalling mechanisms. Met syndrome was induced in rats, which were then treated with TUDCA. Body weight, blood pressure, glucose tolerance and insulin tolerance tests were performed. ER stress, survival and oxidative stress markers were measured in heart and aorta tissue. The results showed that TUDCA improved metabolic parameters in rats with Met syndrome. Treatment mitigated the Met syndrome-induced cardiovascular complications through upregulating survival markers and downregulating ER and oxidative stress markers. These results highlight the protective effect of ER stress inhibition as a potential target in the management of cardiovascular complications associated with Met syndrome.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa H Bakr
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salma Taha
- Department of Cardiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sally A Sayed
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW The proportion of overweight and obese persons with HIV (PWH) has increased since the introduction of antiretroviral therapy (ART). We aim to summarize recent literature on risks of weight gain, discuss adipose tissue changes in HIV and obesity, and synthesize current understanding of how excess adiposity and HIV contribute to metabolic complications. RECENT FINDINGS Recent studies have implicated contemporary ART regimens, including use of integrase strand transfer inhibitors and tenofovir alafenamide, as a contributor to weight gain, though the mechanisms are unclear. Metabolic dysregulation is linked to ectopic fat and alterations in adipose immune cell populations that accompany HIV and obesity. These factors contribute to an increasing burden of metabolic diseases in the aging HIV population. Obesity compounds an increasing burden of metabolic disease among PWH, and understanding the role of fat partitioning and HIV- and ART-related adipose tissue dysfunction may guide prevention and treatment strategies.
Collapse
Affiliation(s)
- Samuel S Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA
| | - Curtis L Gabriel
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232-2582, USA.
| |
Collapse
|
59
|
Characterization of glucose uptake metabolism in visceral fat by 18 F-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS One 2020; 15:e0228602. [PMID: 32027706 PMCID: PMC7004347 DOI: 10.1371/journal.pone.0228602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The inflammatory activity of visceral adipose tissue (VAT) is elevated in metabolic syndrome (MS), and associated with vulnerability to atherosclerosis. Inflammation can be assessed by glucose uptake in atherosclerotic plaques. We investigated whether the glucose uptake of VAT, assessed by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), is associated with systemic inflammatory status, and related to the number of MS components. Methods 18F-FDG PET/CT was performed in a total of 203 participants: 59 without MS component; M(0), 92 with one or two MS components; M(1–2), and 52 with MS. Glucose uptake in VAT was evaluated using the mean standardized uptake value (SUVmean) and the maximum SUV (SUVmax). Glucose uptakes of immune-related organs such as the spleen and bone marrow (BM) were evaluated using the SUVmax. Results VAT SUVmax correlated with high-sensitivity C-reactive protein (hsCRP) and the SUVmax of spleen and BM, which reflect the status of systemic inflammation. Both hsCRP and the SUVmax of the spleen and BM were higher in the MS group than in the M(1–2) or M(0) groups. In VAT, SUVmax increased with increasing number of MS components, while SUVmean decreased. Conclusions The SUVmax and SUVmean of VAT assessed by 18F-FDG PET/CT reflected inflammation-driven unique glucose metabolism in the VAT of MS patients, distinct from that of atherosclerotic plaques.
Collapse
|
60
|
Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front Endocrinol (Lausanne) 2020; 11:58. [PMID: 32153503 PMCID: PMC7045050 DOI: 10.3389/fendo.2020.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studies investigating the potential link between adult pre-menopausal obesity [as measured by body mass index (BMI)] and triple-negative breast cancer have been inconsistent. Recent studies show that BMI is not an exact measure of metabolic health; individuals can be obese (BMI > 30 kg/m2) and metabolically healthy or lean (BMI < 25 kg/m2) and metabolically unhealthy. Consequently, there is a need to better understand the molecular signaling pathways that might be activated in individuals that are metabolically unhealthy and how these signaling pathways may drive biologically aggressive breast cancer. One key driver of both type-2 diabetes and cancer is insulin. Insulin is a potent hormone that activates many pathways that drive aggressive breast cancer biology. Here, we review (1) the controversial relationship between obesity and breast cancer, (2) the impact of insulin on organs, subcellular components, and cancer processes, (3) the potential link between insulin-signaling and cancer, and (4) consider time points during breast cancer prevention and treatment where insulin-signaling could be better controlled, with the ultimate goal of improving overall health, optimizing breast cancer prevention, and improving breast cancer survival.
Collapse
|
61
|
Fernø J, Strand K, Mellgren G, Stiglund N, Björkström NK. Natural Killer Cells as Sensors of Adipose Tissue Stress. Trends Endocrinol Metab 2020; 31:3-12. [PMID: 31597606 DOI: 10.1016/j.tem.2019.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
62
|
Nash Y, Frenkel D. Inflammation and insulin resistance in Alzheimer’s disease. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:389-405. [DOI: 10.1016/b978-0-12-815868-5.00025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
63
|
Kusumastuti SA, Nugrahaningsih DAA, Wahyuningsih MSH. Centella asiatica (L.) extract attenuates inflammation and improve insulin sensitivity in a coculture of lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes and RAW 264.7 macrophages. Drug Discov Ther 2019; 13:261-267. [DOI: 10.5582/ddt.2019.01052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Siska Andrina Kusumastuti
- Center of Pharmaceutical and Medicine Technology, Agency for the Assessment and Application of Technology (BPPT), Jakarta, Indonesia
| | | | | |
Collapse
|
64
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food Chem Toxicol 2019; 132:110672. [DOI: 10.1016/j.fct.2019.110672] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
|
65
|
Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, Liu QH, Yang X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front Pharmacol 2019; 10:999. [PMID: 31551792 PMCID: PMC6737894 DOI: 10.3389/fphar.2019.00999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is involved in regulating glucose uptake in striated muscle, liver, and adipose tissue. Neferine is a dibenzyl isoquinoline alkaloid derived from dietary lotus seeds and has multiple pharmacological effects. Therefore, this study investigated neferine’s role in glucose translocation to cell surface, glucose uptake, and GLUT4 expression. In our study, neferine upregulated GLUT4 expression, induced GLUT4 plasma membrane fusion, increased intracellular Ca2+, promoted glucose uptake, and alleviated insulin resistance in L6 cells. Furthermore, neferine significantly activated phosphorylation of AMP-activated protein kinase (AMPK) and protein kinase C (PKC). AMPK and PKC inhibitors blocked neferine-induced GLUT4 expression and increased intracellular Ca2+. While neferine-induced GLUT4 expression and intracellular Ca2+ were inhibited by G protein and PLC inhibitors, only intracellular Ca2+ was inhibited by inositol trisphosphate receptor (IP3R) inhibitors. Thus, neferine promoted GLUT4 expression via the G protein-PLC-PKC and AMPK pathways, inducing GLUT4 plasma membrane fusion and subsequent glucose uptake and increasing intracellular Ca2+ through the G protein-PLC-IP3-IP3R pathway. Treatment with 0 mM extracellular Ca2+ + Ca2+ chelator did not inhibit neferine-induced GLUT4 expression but blocked neferine-induced GLUT4 plasma membrane fusion and glucose uptake, suggesting the latter two are Ca2+-dependent. Therefore, we conclude that neferine is a potential treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guanjun Song
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
66
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants (Basel) 2019; 8:E279. [PMID: 31387271 PMCID: PMC6721099 DOI: 10.3390/antiox8080279] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare the phytochemicals from coffee and cocoa by-products and their relationship with the potential for reducing markers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro. We characterized the phytochemical profile of extracts from coffee husk, coffee silverskin, and cocoa shell and evaluated their in vitro biological activity in RAW264.7 macrophages and 3T3-L1 adipocytes. Pearson correlations and principal component regressions were performed to find the contribution of phytochemicals and underlying mechanisms of action. Coffee husk and silverskin extracts were mainly composed of caffeine and chlorogenic acid. Major components in cocoa shell included theobromine and protocatechuic acid. Both coffee and cocoa by-product extracts effectively reduced inflammatory markers in macrophages and adipocytes (NO, PGE2, TNF-α, MCP-1, and IL-6) and the production of reactive oxygen species (21.5-66.4%). Protocatechuic and chlorogenic acids, together with caffeine, were suggested as main contributors against inflammation and oxidative stress. Furthermore, extracts reduced lipid accumulation (4.1-49.1%) in adipocytes by regulating lipolysis and inducing adipocyte browning. Gallic and chlorogenic acids were associated with reduced adipogenesis, and caffeine with adipocyte browning. Extracts from coffee and cocoa by-products also modulated the phosphorylation of insulin receptor signaling pathway and stimulated GLUT-4 translocation (52.4-72.9%), increasing glucose uptake. The insulin-sensitizing potential of the extracts was mainly associated with protocatechuic acid. For the first time, we identified the phytochemicals from coffee and cocoa by-products and offered new insights into their associations with biomarkers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiaozhi Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310000, China
| | - Yolanda Aguilera
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martín-Cabrejas
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW We aim to provide an in-depth review of recent literature highlighting the role of inflammation involving the adipose tissue, liver, skeletal muscles, and gastrointestinal tract in the development of metabolic complications among persons living with HIV (PLWH). RECENT FINDINGS Recent studies in PLWH have demonstrated a significant association between circulating inflammatory markers and development of insulin resistance and metabolic complications. In adipose tissue, pro-inflammatory cytokine expression inhibits adipocyte insulin signaling, which alters lipid and glucose homeostasis. Increased lipolysis and lipogenesis elevate levels of circulating free fatty acids and promote ectopic fat deposition in liver and skeletal muscles. This leads to lipotoxicity characterized by a pro-inflammatory response with worsening insulin resistance. Finally, HIV is associated with gastrointestinal tract inflammation and changes in the gut microbiome resulting in reduced diversity, which is an additional risk factor for diabetes. Metabolic complications in PLWH are in part due to chronic, multisite tissue inflammation resulting in dysregulation of glucose and lipid trafficking, utilization, and storage.
Collapse
|
68
|
Keuper M. On the role of macrophages in the control of adipocyte energy metabolism. Endocr Connect 2019; 8:R105-R121. [PMID: 31085768 PMCID: PMC6590200 DOI: 10.1530/ec-19-0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
The crosstalk between macrophages (MΦ) and adipocytes within white adipose tissue (WAT) influences obesity-associated insulin resistance and other associated metabolic disorders, such as atherosclerosis, hypertension and type 2 diabetes. MΦ infiltration is increased in WAT during obesity, which is linked to decreased mitochondrial content and activity. The mechanistic interplay between MΦ and mitochondrial function of adipocytes is under intense investigation, as MΦ and inflammatory pathways exhibit a pivotal role in the reprogramming of WAT metabolism in physiological responses during cold, fasting and exercise. Thus, the underlying immunometabolic pathways may offer therapeutic targets to correct obesity and metabolic disease. Here, I review the current knowledge on the quantity and the quality of human adipose tissue macrophages (ATMΦ) and their impact on the bioenergetics of human adipocytes. The effects of ATMΦ and their secreted factors on mitochondrial function of white adipocytes are discussed, including recent research on MΦ as part of an immune signaling cascade involved in the 'browning' of WAT, which is defined as the conversion from white, energy-storing adipocytes into brown, energy-dissipating adipocytes.
Collapse
Affiliation(s)
- Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
69
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, de Mejia EG. Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Mol Nutr Food Res 2019; 63:e1801413. [PMID: 31018035 DOI: 10.1002/mnfr.201801413] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Indexed: 12/12/2022]
Abstract
SCOPE The aim is to assess the action of an aqueous extract from cocoa shell (CAE) and its main phenolic compounds to prevent the loss of obesity-induced mitochondrial function and insulin sensitivity, targeting inflammation between macrophages-adipocytes in vitro. METHODS AND RESULTS CAE (31-500 µg mL-1 ) inhibits 3T3-L1 adipocytes lipid accumulation and induces browning during differentiation. LPS-stimulated RAW264.7 macrophages show reduced inducible nitric oxide synthase and cyclooxygenase-2 expression and lowered pro-inflammatory cytokine production when treated with CAE and pure phenolics. Inflammatory crosstalk created by stimulating adipocytes with macrophage-conditioned media (CM) is arrested; CAE diminishes tumor necrosis factor-α (67%) and promotes adiponectin secretion (12.3-fold). Mitochondrial function, measured by reactive oxygen species production, mitochondrial content, and activity, is preserved in CM-treated adipocytes through up-regulating peroxisome proliferator-activated receptor gamma coactivator 1-α expression. Increases in insulin receptor (9-fold), phosphoinositide 3-kinase (3-fold), protein kinase B (4-fold) phosphorylation, and a decrease in insulin receptor substrate 1 serine phosphorylation induce increased glucose uptake (34%) and glucose transporter 4 translocation (14-fold) in CM-induced adipocytes. CONCLUSION CAE phenolics promote a beige phenotype in adipocytes. Macrophages-adipocytes inflammatory interaction is reduced preventing mitochondrial dysfunction and insulin resistance. For the first time, CAE shows a positive effect on adipogenesis and inflammation-related disorders.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA
| | - Qiaozhi Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA.,College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yolanda Aguilera
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Maria A Martín-Cabrejas
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
70
|
Horst E, Kvidera S, Dickson M, McCarthy C, Mayorga E, Al-Qaisi M, Ramirez H, Keating A, Baumgard L. Effects of continuous and increasing lipopolysaccharide infusion on basal and stimulated metabolism in lactating Holstein cows. J Dairy Sci 2019; 102:3584-3597. [DOI: 10.3168/jds.2018-15627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
|
71
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
72
|
Wanjalla CN, McDonnell WJ, Barnett L, Simmons JD, Furch BD, Lima MC, Woodward BO, Fan R, Fei Y, Baker PG, Ram R, Pilkinton MA, Mashayekhi M, Brown NJ, Mallal SA, Kalams SA, Koethe JR. Adipose Tissue in Persons With HIV Is Enriched for CD4 + T Effector Memory and T Effector Memory RA + Cells, Which Show Higher CD69 Expression and CD57, CX3CR1, GPR56 Co-expression With Increasing Glucose Intolerance. Front Immunol 2019; 10:408. [PMID: 30941121 PMCID: PMC6433850 DOI: 10.3389/fimmu.2019.00408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023] Open
Abstract
Chronic T cell activation and accelerated immune senescence are hallmarks of HIV infection, which may contribute to the increased risk of cardiometabolic diseases in people living with HIV (PLWH). T lymphocytes play a central role in modulating adipose tissue inflammation and, by extension, adipocyte energy storage and release. Here, we assessed the CD4+ and CD8+ T cell profiles in the subcutaneous adipose tissue (SAT) and blood of non-diabetic (n = 9; fasting blood glucose [FBG] < 100 mg/dL), pre-diabetic (n = 8; FBG = 100-125 mg/dL) and diabetic (n = 9; FBG ≥ 126 mg/dL) PLWH, in addition to non- and pre-diabetic, HIV-negative controls (n = 8). SAT was collected by liposuction and T cells were extracted by collagenase digestion. The proportion of naïve (TNai) CD45RO-CCR7+, effector memory (TEM) CD45RO+CCR7-, central memory (TCM) CD45RO+CCR7+, and effector memory revertant RA+(TEMRA) CD45RO-CCR7- CD4+ and CD8+ T cells were measured by flow cytometry. CD4+ and CD8+ TEM and TEMRA were significantly enriched in SAT of PLWH compared to blood. The proportions of SAT CD4+ and CD8+ memory subsets were similar across metabolic status categories in the PLWH, but CD4+ T cell expression of the CD69 early-activation and tissue residence marker, particularly on TEM cells, increased with progressive glucose intolerance. Use of t-distributed Stochastic Neighbor Embedding (t-SNE) identified a separate group of predominantly CD69lo TEM and TEMRA cells co-expressing CD57, CX3CR1, and GPR56, which were significantly greater in diabetics compared to non-diabetics. Expression of the CX3CR1 and GPR56 markers indicate these TEM and TEMRA cells may have anti-viral specificity. Compared to HIV-negative controls, SAT from PLWH had an increased CD8:CD4 ratio, but the distribution of CD4+ and CD8+ memory subsets was similar irrespective of HIV status. Finally, whole adipose tissue from PLWH had significantly higher expression of TLR2, TLR8, and multiple chemokines potentially relevant to immune cell homing compared to HIV-negative controls with similar glucose tolerance.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Louise Barnett
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Briana D. Furch
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Morgan C. Lima
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Beverly O. Woodward
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ye Fei
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paxton G. Baker
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University, Nashville, TN, United States
| | - Nancy J. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
73
|
Summerfield M, Zhou Y, Zhou T, Wu C, Alpini G, Zhang KK, Xie L. A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS One 2018; 13:e0209053. [PMID: 30562363 PMCID: PMC6298692 DOI: 10.1371/journal.pone.0209053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have suggested that maternal high-fat (HF) diet caused inflammation changes in adipose tissue; however, it remains unclear if maternal diet intervention before pregnancy rescues such effects in offspring. To address this question, female mice were continued on a normal-fat (NF group), or a HF diet (HF group) or transitioned from a HF diet to a NF diet at 1 (H1N group), 5 (H5N group) or 9 weeks (H9N group) prior to pregnancy. Among the three intervention groups, the H9N offspring displayed less and steady body weight gain, and maintained glucose tolerance, whereas the H1N and H5N offspring showed exacerbate these phenotypes. The H1N and H5N, but not the H9N offspring, displayed adipocyte hypertrophy associated with increased expression of genes involved in fat deposition. The H1N and H5N, but not the H9N adipose tissue, displayed increased macrophage infiltration with enhanced expression of inflammatory cytokine genes. In addition, overactivation of the NF-κB and the JNK signaling were observed in the H1N adipose tissue. Overall, our study showed that a long-term but not a short- or medium-term diet intervention before pregnancy released offspring adipose tissue inflammation induced by maternal HF diet, which adds details in our understanding how the maternal environment either promotes or discourages onset of disease in offspring. Clinically, this study is of great value for providing evidence in the design of clinical trials to evaluate the urgently required intervention strategies to minimize the intergenerational cycle of obesity.
Collapse
Affiliation(s)
- Michelle Summerfield
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Yi Zhou
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gianfranco Alpini
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
- Research, Central Texas Veterans Health Care System, Temple, TX, United States of America
| | - Ke K. Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
74
|
Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. J Acquir Immune Defic Syndr 2018; 77:e14-e21. [PMID: 29040163 DOI: 10.1097/qai.0000000000001573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adverse viral and medication effects on adipose tissue contribute to the development of metabolic disease in HIV-infected persons, but T cells also have a central role modulating local inflammation and adipocyte function. We sought to characterize potentially proinflammatory T-cell populations in adipose tissue among persons on long-term antiretroviral therapy and assess whether adipose tissue CD8 T cells represent an expanded, oligoclonal population. METHODS We recruited 10 HIV-infected, non-diabetic, overweight or obese adults on efavirenz, tenofovir, and emtricitabine for >4 years with consistent viral suppression. We collected fasting blood and subcutaneous abdominal adipose tissue to measure the percentage of CD4 and CD8 T cells expressing activation, exhaustion, late differentiation/senescence, and memory surface markers. We performed T-cell receptor (TCR) sequencing on sorted CD8 cells. We compared the proportion of each T-cell subset and the TCR repertoire diversity, in blood versus adipose tissue. RESULTS Adipose tissue had a higher percentage of CD3CD8 T cells compared with blood (61.0% vs. 51.7%, P < 0.01) and was enriched for both activated CD8HLA-DR T cells (5.5% vs. 0.9%, P < 0.01) and late-differentiated CD8CD57 T cells (37.4% vs. 22.7%, P < 0.01). Adipose tissue CD8 T cells displayed distinct TCRβ V and J gene usage, and the Shannon Entropy index, a measure of overall TCRβ repertoire diversity, was lower compared with blood (4.39 vs. 4.46; P = 0.05). CONCLUSIONS Adipose tissue is enriched for activated and late-differentiated CD8 T cells with distinct TCR usage. These cells may contribute to tissue inflammation and impaired adipocyte fitness in HIV-infected persons.
Collapse
|
75
|
Wanjalla CN, McDonnell WJ, Koethe JR. Adipose Tissue T Cells in HIV/SIV Infection. Front Immunol 2018; 9:2730. [PMID: 30559739 PMCID: PMC6286992 DOI: 10.3389/fimmu.2018.02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue comprises one of the largest organs in the body and performs diverse functions including energy storage and release, regulation of appetite and other neuroendocrine signaling, and modulation of immuity, among others. Adipocytes reside in a complex compartment where antigen, antigen presenting cells, innate immune cells, and adaptive immune cells interact locally and exert systemic effects on inflammation, circulating immune cell profiles, and metabolic homeostasis. T lymphocytes are a major component of the adipose tissue milieu which are altered in disease states such as obesity and human immunodeficiency virus (HIV) infection. While obesity, HIV infection, and simian immunodeficiency virus (SIV; a non-human primate virus similar to HIV) infection are accompanied by enrichment of CD8+ T cells in the adipose tissue, major phenotypic differences in CD4+ T cells and other immune cell populations distinguish HIV/SIV infection from obesity. Furthermore, DNA and RNA species of HIV and SIV can be detected in the stromal vascular fraction of visceral and subcutaneous adipose tissue, and replication-competent HIV resides in local CD4+ T cells. Here, we review studies of adipose tissue CD4+ and CD8+ T cell populations in HIV and SIV, and contrast the findings with those reported in obesity.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
76
|
Visceral fat and insulin resistance - what we know? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:19-27. [PMID: 30398218 DOI: 10.5507/bp.2018.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
One of the most significant challenges of current medicine is the increasing prevalence of obesity worldwide that is accompanied by a wide range of chronic health complications and increased mortality. White adipose tissue actively contributes to metabolic regulation by production of a variety of hormones and cytokines, commonly referred to as adipokines. The spectrum and quantity of adipokines produced by the adipose tissue of obese patients is directly or indirectly involved in much obesity-related pathology (type 2 diabetes mellitus, cardiovascular disease, inflammatory response). One of the underlying mechanisms linking obesity, diabetes, and cardiovascular complications is subclinical inflammation, primarily arising in visceral adipose tissue. Adipocyte size, number and polarization of lymphocytes and infiltrated macrophages are closely related to metabolic and obesity-related diseases. The storage capacity of hypertrophic adipocytes in obese patients is limited. This results in chronic energy overload and leads to increased apoptosis of adipocytes that in turn stimulates the infiltration of visceral adipose tissue by immune cells, in particular macrophages. These cells produce many proinflammatory factors; while the overall production of anti-inflammatory cytokines and adipokines is decreased. The constant release of proinflammatory factors into the circulation then contributes to a subclinical systemic inflammation, which is directly linked to the metabolic and cardiovascular complications of obesity.
Collapse
|
77
|
Hu L, He F, Huang M, Peng M, Zhou Z, Liu F, Dai YS. NFATc3 deficiency reduces the classical activation of adipose tissue macrophages. J Mol Endocrinol 2018; 61:79-89. [PMID: 30307161 DOI: 10.1530/jme-18-0070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factors of activated T cells (NFAT) c3 have a prominent role in the regulation of proinflammatory factors in immune cells. The classically activated M1 macrophages are key players in the initiation and maintenance of adipose tissue (AT) inflammation. The role of NFATc3 in obesity and AT inflammation is unknown. We set out to determine how deficiency of NFATc3 effected macrophage polarization, inflammation and insulin resistance in visceral AT of high-fat diet (HFD)-fed mice. Nfatc3−/− and WT mice were fed a HFD for 8–17 weeks. Epididymal white AT (eWAT) F4/80(+) cells were characterized by fluorescence-activated cell sorting and quantitative RT-PCR. Results showed that Nfatc3−/− mice developed HFD-induced obesity similar to WT mice, but insulin sensitivity and glucose tolerance were improved, and liver fat accumulation was reduced in Nfatc3−/− mice compared to WT control mice. Moreover, M1 macrophage content and proinflammatory factors were reduced, whereas the alternatively activated M2 macrophage content was increased in eWAT of HFD-fed Nfatc3−/− mice compared to that of WT mice. In addition, eWAT insulin signaling was improved in HFD-fed Nfatc3−/− mice. Importantly, after bone-marrow-derived macrophages had been isolated from Nfatc3−/− mice and cultured in vitro, treatment of these cells with interferon-γ and lipopolysaccharide resulted in reduction of M1 inflammatory markers, suggesting that NFATc3 promoted M1 polarization by a cell-autonomous mechanism. The results demonstrated that NFATc3 played an important role in M1 macrophage polarization, AT inflammation and insulin resistance in response to obesity through transcriptional activation of proinflammatory genes.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Melfeng Huang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Melhua Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
78
|
Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal 2018; 29:257-274. [PMID: 28891325 PMCID: PMC6012980 DOI: 10.1089/ars.2017.7299] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hypertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging. CRITICAL ISSUES Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. FUTURE DIRECTIONS A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease. Antioxid. Redox Signal. 29, 257-274.
Collapse
Affiliation(s)
- Tomasz J. Guzik
- BHF Centre for Research Excellence, Institute of Cardiovascular and Medical Research (ICAMS), University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Laboratory of Translational Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
79
|
Moutia M, Habti N, Badou A. In Vitro and In Vivo Immunomodulator Activities of Allium sativum L. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4984659. [PMID: 30008785 PMCID: PMC6020507 DOI: 10.1155/2018/4984659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Allium Sativum L. (garlic), which is a species of the onion family, Alliaceae, is one of the most used plants in traditional medicine worldwide. More than 200 chemicals with diverse properties have been found in garlic extracts. Several garlic compounds were suggested to be efficient in improving various pathologies including certain types of cancer. This paper is an overview of data about garlic biological activities in vitro and/or in vivo on immune cells, on the development of certain inflammatory diseases, and on different types of carcinomas and sarcomas. Garlic and its compounds were found to have notable antioxidant properties. Garlic therapeutic potential has also been studied in several inflammatory diseases such as allergic-airway inflammation, inflammatory bowel disease, arthritic rheumatism, and atherosclerosis. Furthermore, garlic was found to be able to maintain the immune system homeostasis and to exhibit beneficial effects on immune cells especially through regulation of proliferation and cytokine gene expression. Finally, we will show how major garlic components such as sulfur compounds and polyphenols might be responsible for the garlic biological activities revealed in different situations. If identified, specific compounds present in garlic could potentially be used in therapy.
Collapse
Affiliation(s)
- Mouna Moutia
- Laboratory of Hematology and Cellular and Genetic Engineering, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Experimental Medicine and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Norddine Habti
- Laboratory of Hematology and Cellular and Genetic Engineering, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Experimental Medicine and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, 19 Rue Tarik Ibnou Ziad, B.P. 9154 Casablanca, Morocco
| |
Collapse
|
80
|
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2018; 113:1009-1023. [PMID: 28838042 PMCID: PMC5852626 DOI: 10.1093/cvr/cvx108] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFα, mechanistically, immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2 macrophages, effector and memory T cells, IL-10 producing FoxP3+ T regulatory cells, natural killer and NKT cells and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodelling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin, resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, reciprocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.
Collapse
Affiliation(s)
- Tomasz J Guzik
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Dominik S Skiba
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Rhian M Touyz
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David G Harrison
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
81
|
Njuguna B, Kiplagat J, Bloomfield GS, Pastakia SD, Vedanthan R, Koethe JR. Prevalence, Risk Factors, and Pathophysiology of Dysglycemia among People Living with HIV in Sub-Saharan Africa. J Diabetes Res 2018; 2018:6916497. [PMID: 30009182 PMCID: PMC5989168 DOI: 10.1155/2018/6916497] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To review available literature on the prevalence, risk factors, pathophysiology, and clinical outcomes of dysglycemia among people living with HIV (PLHIV) in sub-Saharan Africa (SSA). METHODS Database search on PUBMED for eligible studies describing the prevalence, risk factors, pathophysiology, or clinical outcomes of dysglycemia in SSA PLHIV. RESULTS Prevalence of diabetes mellitus (DM) and pre-DM among SSA PLHIV ranged from 1% to 26% and 19% to 47%, respectively, in 15 identified studies. Older age and an elevated body mass index (BMI) were common risk factors for dysglycemia. Risk factors potentially more specific to PLHIV in SSA included exposure to older-generation thymidine analogues or protease inhibitors, malnutrition at ART initiation, a failure to gain fat mass on treatment, and elevated serum lipids. There is evidence of higher nephropathy and neuropathy rates among PLHIV in SSA with comorbid DM compared to HIV-negative individuals with DM. CONCLUSION There is a need for longitudinal studies to enhance understanding of the risk factors for dysglycemia among PLHIV in SSA, further research into optimal therapies to reduce pre-DM progression to DM among SSA PLHIV, and studies of the burden and phenotype of diabetic complications and other health outcomes among PLHIV with comorbid DM in SSA.
Collapse
Affiliation(s)
- Benson Njuguna
- Moi Teaching and Referral Hospital, P.O. Box 4606-30100, Eldoret, Kenya
| | - Jepchirchir Kiplagat
- Academic Model Providing Access to Healthcare (AMPATH), P.O. Box 4606-30100, Eldoret, Kenya
| | - Gerald S. Bloomfield
- Duke Clinical Research Institute, Duke Global Health Institute, Duke University, 2400 Pratt Street, Durham, NC 27710, USA
| | - Sonak D. Pastakia
- Purdue University College of Pharmacy, P.O. Box 5760 Eldoret 30100, Kenya
| | - Rajesh Vedanthan
- Zena and Michael A. Wiener Cardiovascular Institute, Department of Medicine and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, P.O. Box 1030, New York, NY 10029, USA
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, A2200-MCN 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
82
|
Zhang XY, Liu Y, He T, Yang TT, Wu J, Cianflone K, Lu HL. Anaphylatoxin C5a induces inflammation and reduces insulin sensitivity by activating TLR4/NF-kB/PI3K signaling pathway in 3T3-L1 adipocytes. Biomed Pharmacother 2018; 103:955-964. [PMID: 29710512 DOI: 10.1016/j.biopha.2018.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Obesity closely correlates with metaflammation and characterizes with systemic-chronic-low inflammation. This study aims to evaluate effects of C5a on the inflammatory response and insulin resistance in 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were induced to the mature 3T3-L1 adipocytes. Then, 3T3-L1 were intervened with anaphylatoxin C5a, lipopolysaccharide (LPS) and C5a + LPS, respectively. Levels of Omentin, Chemerin, Vaspin and Apelin 12 in supernatants of medium were examined using ELISA. C5L2, C5a receptor (C5aR), I kappa B (IkB), IkB kinase (IKK), insulin receptor substrate 1 (IRS-1), IRS-2, PI3 K, p-PI3 K and β-actin were examined using RT-PCR and western blot assay, respectively. C5L2-C5aR colocalization was identified using immunofluorescence double label. NF-kB expression or activity was evaluated using electrophoretic mobility shift assay (EMSA), dual luciferase assay and immunofluorescence assay, respectively. The glucose uptake and insulin sensitivity were also evaluated. Results showed that C5a intervention significantly enhanced inflammatory molecule levels in supernatants of 3T3-L1 adipocytes. IKK inflammatory signaling pathway participated in C5a induced inflammation of 3T3-L1 adipocytes. C5a triggered the colocalization of C5L2 and C5aR and activated the NF-kB inflammatory signaling pathway. C5a intervention in 3T3-L1 adipocytes decreased the glucose uptake and resulted in reduction of insulin sensitivity. Insulin signaling pathway participated in C5a caused insulin sensitivity reduction. C5a intervention triggered the phosphorylation of PI3 K. In conclusion anaphylatoxin C5a induced inflammatory response by activating TLR4/NF-kB signaling pathway and generating C5L2-C5aR dimer, and caused insulin sensitivity reduction by activating PI3 K signaling pathway.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Yang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Katherine Cianflone
- K. Cianflone. Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V4G5, Canada
| | - Hui-Ling Lu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
83
|
Willebrand R, Kleinewietfeld M. The role of salt for immune cell function and disease. Immunology 2018; 154:346-353. [PMID: 29465812 DOI: 10.1111/imm.12915] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
The immune system evolved to protect organisms from invading pathogens. A network of pro- and anti-inflammatory cell types equipped with special effector molecules guarantees efficient elimination of intruders like viruses and bacteria. However, imbalances can lead to an excessive response of effector cells incurring autoimmune or allergic diseases. An interplay of genetic and environmental factors contributes to autoimmune diseases and recent studies provided evidence for an impact of dietary habits on the immune status and related disorders. Western societies underwent a change in lifestyle associated with changes in food consumption. Salt (sodium chloride) is one component prevalent in processed food frequently consumed in western countries. Here we summarize recent advances in understanding the mechanisms behind the effects of sodium chloride on immune cells like regulatory T cells (Tregs) and T helper (TH ) 17 cells and its implication as a risk factor for several diseases.
Collapse
Affiliation(s)
- Ralf Willebrand
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
84
|
Abstract
Propose Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is characteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Methods Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action of these compounds in human or animal cell lines as well as animal models. Results Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes. Conclusion The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibition of clonal expansion, and cell-cycle arrest.
Collapse
|
85
|
Li SF, Zhu CS, Wang YM, Xie XX, Xiao LL, Zhang ZC, Tang QQ, Li X. Downregulation of β1,4-galactosyltransferase 5 improves insulin resistance by promoting adipocyte commitment and reducing inflammation. Cell Death Dis 2018; 9:196. [PMID: 29415997 PMCID: PMC5833706 DOI: 10.1038/s41419-017-0239-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/01/2022]
Abstract
Protein glycosylation is an important post-translational modification. Aberrant glycosylation has been implicated in many diseases because of associated changes in protein distribution and biological function. We showed that the expression of β1, 4-galactosyltransferase 5 (B4GalT5) was positively correlated with diabetes and obesity. In vivo, B4GalT5 knockdown in subcutaneous adipose tissue alleviated insulin resistance and adipose tissue inflammation, and increased adipogenesis in high-fat diet (HFD)-fed mice and ob/ob mice. Downregulation of B4GalT5 in preadipocyte cells induced commitment to the adipocyte lineage in the absence of bone morphogenetic protein (BMP) 2/4 treatment, which is typically essential for adipogenic commitment. RNAi silencing experiments showed B4GalT5 knockdown activated Smad and p38 MPAK signaling pathways through both type 1A and 2 BMP receptors. Remarkably, B4GalT5 knockdown decreased BMPRIA glycosylation but increased BMPRIA stability and cellular location, thus leading to redistribution of BMPRIA and activation of the BMP signaling pathway. Meanwhile, downregulation of B4GalT5 decreased the infiltration of macrophages and the markers of M1 macrophages in subcutaneous adipose tissue of HFD mice and ob/ob mice. In bone marrow-derived macrophages (BMDMs) and RAW264.7cells, B4GalT5 knockdown also repressed the markers of M1 by reducing NFκB and JNK signaling. These results demonstrated B4GalT5 downregulation improved insulin resistance by promoting adipogenic commitment and decreasing M1 macrophage infiltration.
Collapse
Affiliation(s)
- Shu-Fen Li
- Key Laboratory of Metabolic Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.,State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cui-Song Zhu
- Key Laboratory of Metabolic Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yu-Meng Wang
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Xin-Xin Xie
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Liu-Ling Xiao
- Key Laboratory of Metabolic Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zhi-Chun Zhang
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolic Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi Li
- Key Laboratory of Metabolic Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China. .,Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China.
| |
Collapse
|
86
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
87
|
Lopez-Vazquez A, Garcia-Banuelos JJ, Gonzalez-Garibay AS, Urzua-Lozano PE, Del Toro-Arreola S, Bueno-Topete MR, Sanchez-Enriquez S, Munoz-Valle JF, Jave-Suarez LF, Armendariz-Borunda J, Bastidas-Ramirez BE. IRS-1 pY612 and Akt-1/PKB pT308 Phosphorylation and Antiinflammatory Effect of Diindolylmethane in Adipocytes Cocultured with Macrophages. Med Chem 2017; 13:727-733. [PMID: 28934926 PMCID: PMC5744426 DOI: 10.2174/1573406413666170922095011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Alfonso Lopez-Vazquez
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Jesus J Garcia-Banuelos
- Instituto de Biologia Molecular en Medicina y Terapia Genica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, puerta 7, 3er. piso, Calle Sierra Mojada # 950, Col. Independencia, Guadalajara, Jalisco, C.P. 44340. Mexico
| | - Angelica S Gonzalez-Garibay
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Pedro E Urzua-Lozano
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Miriam R Bueno-Topete
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Sergio Sanchez-Enriquez
- Laboratorio de Bioquimica, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Jose F Munoz-Valle
- Instituto de Investigacion en Ciencias Biomedicas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Luis F Jave-Suarez
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco. Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Genica, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Blanca E Bastidas-Ramirez
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, puerta 7, 2do. piso., Calle Sierra Mojada # 950, Col. Independencia, Guadalajara, Jalisco, C.P. 44340. Mexico
| |
Collapse
|
88
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
89
|
Mysore R, Ortega FJ, Latorre J, Ahonen M, Savolainen-Peltonen H, Fischer-Posovszky P, Wabitsch M, Olkkonen VM, Fernández-Real JM, Haridas PAN. MicroRNA-221-3p Regulates Angiopoietin-Like 8 (ANGPTL8) Expression in Adipocytes. J Clin Endocrinol Metab 2017; 102:4001-4012. [PMID: 28938482 DOI: 10.1210/jc.2017-00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/25/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT Angiopoietin-like 8 (ANGPTL8) has been identified as a key regulator of lipid metabolism. DESIGN We addressed the correlation between ANGPTL8 messenger RNA (mRNA) with hallmark insulin-regulated and lipogenic genes in human adipose tissue (AT). The regulation of ANGPTL8 expression in adipocytes was studied after inflammatory challenge, and the role of microRNA (miRNA)-221-3p therein was investigated. RESULTS ANGPTL8 gene expression in subcutaneous AT (SAT) and visceral AT (VAT) was highly correlated with SLC2A4/GLUT4, ADIPOQ, fatty acyl synthase, and diacylglycerol O-acyltransferase 1. ANGPTL8 mRNA in human adipocytes was suppressed by the inflammatory impact of conditioned medium of lipopolysaccharide-stimulated macrophages, which markedly induced miR-221-3p. MiR-221-3p was shown to target the ANGPTL8 mRNA, and to reduce adipocyte ANGPTL8 protein expression. Analysis of SAT biopsies from 69 subjects ranging from lean to morbidly obese and of VAT of 19 female subjects biopsied during gynecologic surgery demonstrated a trend of negative correlation between ANGPTL8 and miR-221-3p. Significant negative correlation of ANGPTL8 and miR-221-3p was identified in presurgery SAT samples from 22 morbidly obese subjects undergoing bariatric surgery, but vanished after ∼2-year surgery-induced weight loss, which also resulted in a marked reduction of miR-221-3p. ANGPTL8 correlated negatively with the AT inflammatory gene phospholipase A2 G7, whereas miR-221-3p showed a significant positive correlation with this marker. Of note, no correlation was found between AT ANGPTL8 mRNA expression and plasma ANGPTL8. CONCLUSIONS The inflammation-induced miR-221-3p regulates ANGPTL8 expression in adipocytes. This miRNA impact may become especially prominent under pathologic conditions such as morbid obesity, putatively contributing to the impaired AT lipid metabolism in metabolic disease.
Collapse
Affiliation(s)
- Raghavendra Mysore
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), ES-17190 Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CB06/03) and Instituto de Salud Carlos III, ES-28029 Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), ES-17190 Girona, Spain
| | - Maria Ahonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Hanna Savolainen-Peltonen
- University of Helsinki and Helsinki University Hospital, Obstetrics and Gynecology, FI-00029 HUS, Helsinki, Finland
- Folkhälsan Research Center, Biomedicum 1, FI-00290 Helsinki, Finland
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland
| | - José M Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), ES-17190 Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CB06/03) and Instituto de Salud Carlos III, ES-28029 Madrid, Spain
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| |
Collapse
|
90
|
Hotamisligil GS. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017; 47:406-420. [PMID: 28930657 DOI: 10.1016/j.immuni.2017.08.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Highly ordered interactions between immune and metabolic responses are evolutionarily conserved and paramount for tissue and organismal health. Disruption of these interactions underlies the emergence of many pathologies, particularly chronic non-communicable diseases such as obesity and diabetes. Here, we examine decades of research identifying the complex immunometabolic signaling networks and the cellular and molecular events that occur in the setting of altered nutrient and energy exposures and offer a historical perspective. Furthermore, we describe recent advances such as the discovery that a broad complement of immune cells play a role in immunometabolism and the emerging evidence that nutrients and metabolites modulate inflammatory pathways. Lastly, we discuss how this work may eventually lead to tangible therapeutic advancements to promote health.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Broad Institute of Harvard and MIT, Boston, MA 02115, USA.
| |
Collapse
|
91
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
92
|
Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Sougiannis AT, Pritchett C, Fan D, Carson JA, Murphy EA. miR155 deficiency aggravates high-fat diet-induced adipose tissue fibrosis in male mice. Physiol Rep 2017; 5:e13412. [PMID: 28947593 PMCID: PMC5617927 DOI: 10.14814/phy2.13412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs are emerging as regulators of inflammatory and metabolic processes. There is evidence to suggest that miRNA155 (miR155) may be linked to inflammation and processes associated with adipogenesis. We examined the impact of global miRNA-155 deletion (miR155-/-) on the development of high-fat diet (HFD)-induced obesity. We hypothesized that loss of miR155 would decrease adipose tissue inflammation and improve the metabolic profile following HFD feedings. Beginning at 4-5 weeks of age, male miR155-/- and wild-type (WT) mice (n = 13-14) on a C57BL/6 background were fed either a HFD or low-fat diet for 20 weeks. Body weight was monitored throughout the study. Baseline and terminal body composition was assessed by DEXA analysis. Adipose tissue mRNA expression (RT-qPCR) of macrophage markers (F4/80, CD11c, and CD206) and inflammatory mediators (MCP-1 and TNF-α) as well as adiponectin were measured along with activation of NFκB-p65 and JNK and PPAR-γ Adipose tissue fibrosis was assessed by picrosirius red staining and western blot analysis of Collagen I, III, and VI. Glucose metabolism and insulin resistance were assessed by Homeostatic Model Assessment - Insulin Resistance (HOMA-IR), and a glucose tolerance test. Compared to WT HFD mice, miR155-/- HFD mice displayed similar body weights, yet reduced visceral adipose tissue accumulation. However, miR155-/- HFD displayed exacerbated adipose tissue fibrosis and decreased PPAR-γ protein content. The loss of miR155 did not affect adipose tissue inflammation or glucose metabolism. In conclusion, miR155 deletion did not attenuate the development of the obese phenotype, but adipose tissue fibrosis was exacerbated, possibly through changes to adipogenic processes.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Meredith S Carson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Alexander T Sougiannis
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Cara Pritchett
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
93
|
Camastra S, Vitali A, Anselmino M, Gastaldelli A, Bellini R, Berta R, Severi I, Baldi S, Astiarraga B, Barbatelli G, Cinti S, Ferrannini E. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep 2017; 7:9007. [PMID: 28827671 PMCID: PMC5566429 DOI: 10.1038/s41598-017-08444-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Obesity is characterized by insulin-resistance (IR), enhanced lipolysis, and ectopic, inflamed fat. We related the histology of subcutaneous (SAT), visceral fat (VAT), and skeletal muscle to the metabolic abnormalities, and tested their mutual changes after bariatric surgery in type 2 diabetic (T2D) and weight-matched non-diabetic (ND) patients. We measured IR (insulin clamp), lipolysis (2H5-glycerol infusion), ß-cell glucose-sensitivity (ß-GS, mathematical modeling), and VAT, SAT, and rectus abdominis histology (light and electron microscopy). Presurgery, SAT and VAT showed signs of fibrosis/necrosis, small mitochondria, free interstitial lipids, thickened capillary basement membrane. Compared to ND, T2D had impaired ß-GS, intracapillary neutrophils and higher intramyocellular fat, adipocyte area in VAT, crown-like structures (CLS) in VAT and SAT with rare structures (cyst-like) ~10-fold larger than CLS. Fat expansion was associated with enhanced lipolysis and IR. VAT histology and intramyocellular fat were related to impaired ß-GS. Postsurgery, IR and lipolysis improved in all, ß-GS improved in T2D. Muscle fat infiltration was reduced, adipocytes were smaller and richer in mitochondria, and CLS density in SAT was reduced. In conclusion, IR improves proportionally to weight loss but remains subnormal, whilst SAT and muscle changes disappear. In T2D postsurgery, some VAT pathology persists and beta-cell dysfunction improves but is not normalized.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Alessandra Vitali
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | | | | | | | - Rossana Berta
- Bariatric Surgery Unit, Santa Chiara Hospital, Pisa, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | - Simona Baldi
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Brenno Astiarraga
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine-Center of Obesity, University of Ancona, Ancona, Italy
| | | |
Collapse
|
94
|
Abstract
: The well treated HIV population remains at risk for insulin resistance and chronic immune activation. We tested the effects of acute hyperinsulinemia on inflammation in HIV. Twenty HIV-infected and 10 non-HIV-infected individuals well matched for BMI underwent oral glucose tolerance testing to stimulate insulin secretion and assess for changes in circulating soluble CD163, soluble CD14, and monocyte chemoattract protein 1. Soluble CD14 decreased significantly after stimulation of hyperinsulinemia and no significant changes in soluble CD163 or monocyte chemoattract protein 1 were demonstrated in HIV-infected and non-HIV-infected groups.
Collapse
|
95
|
Hemeoxygenase-1 as a Novel Driver in Ritonavir-Induced Insulin Resistance in HIV-1-Infected Patients. J Acquir Immune Defic Syndr 2017; 75:e13-e20. [PMID: 27798431 DOI: 10.1097/qai.0000000000001223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hemeoxygenase-1 (HO-1) has recently been identified as a major driver of metaflammation and obesity-related insulin resistance (IR). Drug-induced IR increases cardiovascular risk within the HIV-1-infected population receiving antiretroviral therapy (ART). We therefore investigated a possible role of HO-1 in ART-induced IR. METHODS Effects of HIV-1 protease inhibitor ritonavir and integrase inhibitor raltegravir (RAL) on expression levels of HO-1 and proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNFα), chemokine (C-C motif) ligand 5 (CCL5), and monocyte chemotactic protein 1 (MCP-1), were studied in monocyte and hepatocyte cell lines. Plasma levels of HO-1 and inflammatory markers were measured in insulin-resistant and insulin-sensitive HIV-1-infected patients under ART and seronegative controls. RESULTS We show that, in contrast to RAL, ritonavir treatment significantly increases mRNA expression levels of HO-1, IL-8, TNFα, CCL5, and MCP-1 in vitro in a dose-dependent manner. HO-1 plasma levels were significantly higher in insulin-resistant compared to insulin-sensitive patients on ritonavir-boosted ART (lopinavir/ritonavir group: 3.90 ± 1.15 vs 2.56 ± 1.07 ng/mL, P < 0.005 and darunavir/ritonavir group: 3.16 ± 1.37 vs 2.28 ± 1.23 U/mL, P < 0.05) and were correlated with expression levels of TNFα in individuals on ritonavir-boosted ART (lopinavir/ritonavir group: r = 0.108, P < 0.05 and darunavir/ritonavir group: r = 0.221, P < 0.05) but not in HIV-1-infected individuals receiving RAL or in seronegative controls. IMPLICATIONS HIV-1-infected patients on stable ART are often faced with non-AIDS-related metabolic comorbidities, increasing their individual cardiovascular risk. Here, we provide insight into a novel mechanism of ritonavir-induced IR involving proinflammatory properties of HO-1. Our initial observations might also provide prognostic value in the future to identify patients at risk for the development type 2 diabetes mellitus.
Collapse
|
96
|
Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci Rep 2017; 7:3000. [PMID: 28592801 PMCID: PMC5462798 DOI: 10.1038/s41598-017-02660-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/18/2017] [Indexed: 12/03/2022] Open
Abstract
Adipose tissue contains a variety of immune cells, which vary in abundance and phenotype with obesity. The contribution of immune cell-derived factors to inflammatory, fibrotic and metabolic alterations in adipose tissue is not well established in human obesity. Human primary adipose tissue cells, including pre-adipocytes, endothelial cells and mature adipocytes, were used to investigate deregulation of cell- and pathway-specific gene profiles. Among factors known to alter adipose tissue biology, we focus on inflammatory (IL-1β and IL-17) and pro-fibrotic (TGF-β1) factors. rIL-1β and rIL-17 induced concordant pro-inflammatory transcriptional programs in pre-adipocytes and endothelial cells, with a markedly more potent effect of IL-1β than IL-17. None of these cytokines had significant effect on fibrogenesis-related gene expression, contrasting with rTGF-β1-induced up-regulation of extracellular matrix components and pro-fibrotic factors. In mature adipocytes, all three factors promoted down-regulation of genes functionally involved in lipid storage and release. IL-1β and IL-17 impacted adipocyte metabolic genes in relation with their respective pro-inflammatory capacity, while the effect of TGF-β1 occurred in face of an anti-inflammatory signature. These data revealed that IL-1β and IL-17 had virtually no effect on pro-fibrotic alterations but promote inflammation and metabolic dysfunction in human adipose tissue, with a prominent role for IL-1β.
Collapse
|
97
|
Adipocyte-Macrophage Cross-Talk in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:327-343. [DOI: 10.1007/978-3-319-48382-5_14] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
98
|
Zou R, Xue J, Huang Q, Dai Z, Xu Y. Involvement of receptor-interacting protein 140 in palmitate-stimulated macrophage infiltration of pancreatic beta cells. Exp Ther Med 2017; 14:483-494. [PMID: 28672957 PMCID: PMC5488400 DOI: 10.3892/etm.2017.4544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Receptor-interacting protein 140 (RIP140) in macrophages stimulates the nuclear factor-κB subunit RelA to activate tumor necrosis factor (TNF)-α and interleukin (IL)-6 transcription. However, under lipotoxic conditions, the involvement of RIP140 in the infiltration of beta cells by macrophages remains unknown. In the present study, murine RAW264.7 macrophages were transfected with a RIP140 overexpression plasmid or siRNA prior to macrophage activation with 500 µM palmitate. Palmitate-free conditioned media was then collected and added to murine insulinoma MIN6 cells. Significant decreases were observed in cell viability (P<0.01), glucose-stimulated insulin secretion (P<0.01) and levels of peroxisome proliferator-activated receptor-γ coactivator-1α (P<0.05), phosphoenolpyruvate carboxykinase and proliferating cell nuclear antigen mRNA (P<0.01) in MIN6 cells. In addition, conditioned media from palmitate-treated and RIP140-upregulated macrophages significantly increased the levels of uncoupling protein-2 (P<0.01), inducible nitric oxide synthase 1 (P<0.01) and pancreatic and duodenal homeobox 1 (P<0.05) mRNA and levels of activated Jun N-terminal kinase (JNK) (P<0.01) and extracellular signal-regulated kinase (ERK) 1/2 (P<0.01). In turn, the conditioned media was found to be significantly enriched in TNF-α and IL-6 (both P<0.05). These results were the opposite of those obtained from MIN6 cells treated with conditioned media from palmitate-treated and RIP140-knockdown macrophages. MIN6 cells were transfected with RIP140 overexpression plasmid or siRNA prior to treatment with 500 µM palmitate and supernatant was collected for use in macrophage chemotaxis assays. In the palmitate-activated and RIP140-overexpressing MIN6 cells, TNF-α and IL-6 secretion increased significantly (both P<0.05) and macrophage chemotaxis towards MIN6 cells was enhanced. By contrast, downregulating RIP140 in MIN6 cells had the opposite effect. These data suggest that RIP140 in macrophages mediates the transcription of inflammatory cytokines when concentration of palmitate is high. Macrophage RIP140 may also impair beta cell function by activating the JNK and ERK1/2 signaling pathways and promoting specific gene transcription. Furthermore, expression of RIP140 in pancreatic beta cells may stimulate macrophage chemotaxis, thus triggering local low-grade inflammation.
Collapse
Affiliation(s)
- Runmei Zou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Junli Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qi Huang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
99
|
Kurahashi K, Inoue S, Yoshida S, Ikeda Y, Morimoto K, Uemoto R, Ishikawa K, Kondo T, Yuasa T, Endo I, Miyake M, Oyadomari S, Matsumoto T, Abe M, Sakaue H, Aihara KI. The Role of Heparin Cofactor Ⅱ in the Regulation of Insulin Sensitivity and Maintenance of Glucose Homeostasis in Humans and Mice. J Atheroscler Thromb 2017; 24:1215-1230. [PMID: 28502917 PMCID: PMC5742367 DOI: 10.5551/jat.37739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Accelerated thrombin action is associated with insulin resistance. It is known that upon activation by binding to dermatan sulfate proteoglycans, heparin cofactor II (HCII) inactivates thrombin in tissues. Because HCII may be involved in glucose metabolism, we investigated the relationship between plasma HCII activity and insulin resistance. Methods and Results: In a clinical study, statistical analysis was performed to examine the relationships between plasma HCII activity, glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), and homeostasis model assessment-insulin resistance (HOMA-IR) in elderly Japanese individuals with lifestyle-related diseases. Multiple regression analysis showed significant inverse relationships between plasma HCII activity and HbA1c (p = 0.014), FPG (p = 0.007), and HOMA-IR (p = 0.041) in elderly Japanese subjects. In an animal study, HCII+/+ mice and HCII+/− mice were fed with a normal diet or high-fat diet (HFD) until 25 weeks of age. HFD-fed HCII+/− mice exhibited larger adipocyte size, higher FPG level, hyperinsulinemia, compared to HFD-fed HCII+/+ mice. In addition, HFD-fed HCII+/− mice exhibited augmented expression of monocyte chemoattractant protein-1 and tumor necrosis factor, and impaired phosphorylation of the serine/threonine kinase Akt and AMP-activated protein kinase in adipose tissue compared to HFD-fed HCII+/+ mice. The expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was also enhanced in the hepatic tissues of HFD-fed HCII+/− mice. Conclusions: The present studies provide evidence to support the idea that HCII plays an important role in the maintenance of glucose homeostasis by regulating insulin sensitivity in both humans and mice. Stimulators of HCII production may serve as novel therapeutic tools for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Seika Inoue
- Department of Nutrition and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences
| | - Kana Morimoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Ryoko Uemoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Kazue Ishikawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Tomoyuki Yuasa
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
100
|
Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35:200-221. [PMID: 27702700 DOI: 10.1016/j.arr.2016.09.008] [Citation(s) in RCA: 519] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway.
Collapse
|