51
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
52
|
Dezfuli G, Gillis RA, Tatge JE, Duncan KR, Dretchen KL, Jackson PG, Verbalis JG, Sahibzada N. Subdiaphragmatic Vagotomy With Pyloroplasty Ameliorates the Obesity Caused by Genetic Deletion of the Melanocortin 4 Receptor in the Mouse. Front Neurosci 2018; 12:104. [PMID: 29545738 PMCID: PMC5838008 DOI: 10.3389/fnins.2018.00104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Objectives: We tested the hypothesis that abolishing vagal nerve activity will reverse the obesity phenotype of melanocortin 4 receptor knockout mice (Mc4r−/−). Subjects/Methods: In two separate studies, we examined the efficacy of bilateral subdiaphragmatic vagotomy (SDV) with pyloroplasty in the prevention and treatment of obesity in Mc4r−/− mice. Results: In the first study, SDV prevented >20% increase in body weight (BW) associated with this genotype. This was correlated with a transient reduction in overall food intake (FI) in the preventative arm of the study. Initially, SDV mice had reduced weekly FI; however, FI normalized to that of controls and baseline FI within the 8-week study period. In the second study, the severe obesity that is characteristic of the adult Mc4r−/− genotype was significantly improved by SDV with a magnitude of 30% loss in excess BW over a 4-week period. Consistent with the first preventative study, within the treatment arm, SDV mice also demonstrated a transient reduction in FI relative to control and baseline levels that normalized over subsequent weeks. In addition to the accompanying loss in weight, mice subjected to SDV showed a decrease in respiratory exchange ratio (RER), and an increase in locomotor activity (LA). Analysis of the white fat-pad deposits of these mice showed that they were significantly less than the control groups. Conclusions: Altogether, our data demonstrates that SDV both prevents gain in BW and causes weight loss in severely obese Mc4r−/− mice. Moreover, it suggests that an important aspect of weight reduction for this type of monogenic obesity involves loss of signaling in vagal motor neurons.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Jaclyn E Tatge
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kimbell R Duncan
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kenneth L Dretchen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick G Jackson
- Department of Surgery, Georgetown University Medical Center, Washington, DC, United States
| | - Joseph G Verbalis
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
53
|
Saxton SN, Ryding KE, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Role of Sympathetic Nerves and Adipocyte Catecholamine Uptake in the Vasorelaxant Function of Perivascular Adipose Tissue. Arterioscler Thromb Vasc Biol 2018; 38:880-891. [PMID: 29496660 DOI: 10.1161/atvbaha.118.310777] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on resistance arteries which is vital in regulating arterial tone. Activation of β3-adrenoceptors by sympathetic nerve-derived NA (noradrenaline) may be implicated in this effect and may stimulate the release of the vasodilator adiponectin from adipocytes. Understanding the mechanisms responsible is vital for determining how PVAT may modify vascular resistance in vivo. APPROACH AND RESULTS Electrical field stimulation profiles of healthy C57BL/6J mouse mesenteric resistance arteries were characterized using wire myography. During electrical field stimulation, PVAT elicits a reproducible anticontractile effect, which is endothelium independent. To demonstrate the release of an anticontractile factor, the solution surrounding stimulated exogenous PVAT was transferred to a PVAT-denuded vessel. Post-transfer contractility was significantly reduced confirming that stimulated PVAT releases a transferable anticontractile factor. Sympathetic denervation of PVAT using tetrodotoxin or 6-hydroxydopamine completely abolished the anticontractile effect. β3-adrenoceptor antagonist SR59203A reduced the anticontractile effect, although the PVAT remained overall anticontractile. When the antagonist was used in combination with an OCT3 (organic cation transporter 3) inhibitor, corticosterone, the anticontractile effect was completely abolished. Application of an adiponectin receptor-1 blocking peptide significantly reduced the anticontractile effect in +PVAT arteries. When used in combination with the β3-adrenoceptor antagonist, there was no further reduction. In adiponectin knockout mice, the anticontractile effect is absent. CONCLUSIONS The roles of PVAT are 2-fold. First, sympathetic stimulation in PVAT triggers the release of adiponectin via β3-adrenoceptor activation. Second, PVAT acts as a reservoir for NA, preventing it from reaching the vessel and causing contraction.
Collapse
Affiliation(s)
- Sophie N Saxton
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Katie E Ryding
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Robert G Aldous
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Sarah B Withers
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Jacqueline Ohanian
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Anthony M Heagerty
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.).
| |
Collapse
|
54
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
55
|
López M. Central leptin and autonomic regulation: A melanocortin business. Mol Metab 2018; 8:211-213. [PMID: 29429634 PMCID: PMC5985046 DOI: 10.1016/j.molmet.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
56
|
Abstract
Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de La Recherche Scientifique (CNRS), University of Strasbourg, France.
| |
Collapse
|
57
|
Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front Physiol 2017; 8:665. [PMID: 28966594 PMCID: PMC5606212 DOI: 10.3389/fphys.2017.00665] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS) dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Daniela Guarino
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Institute of Clinical Physiology of CNRPisa, Italy.,Scuola Superiore Sant'AnnaPisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | | | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
58
|
Sipe LM, Yang C, Ephrem J, Garren E, Hirsh J, Deppmann CD. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr Diabetes 2017; 7:e260. [PMID: 28394360 PMCID: PMC5436093 DOI: 10.1038/nutd.2017.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
The sympathetic nervous system (SNS) regulates energy homeostasis in part by governing fatty acid liberation from adipose tissue. We first examined whether SNS activity toward discrete adipose depots changes in response to a weight loss diet in mice. We found that SNS activity toward each adipose depot is unique in timing, pattern of activation, and habituation with the most dramatic contrast between visceral and subcutaneous adipose depots. Sympathetic drive toward visceral epididymal adipose is more than doubled early in weight loss and then suppressed later in the diet when weight loss plateaued. Coincident with the decline in SNS activity toward visceral adipose is an increase in activity toward subcutaneous depots indicating a switch in lipolytic sources. In response to calorie restriction, SNS activity toward retroperitoneal and brown adipose depots is unaffected. Finally, pharmacological blockage of sympathetic activity on adipose tissue using the β3-adrenergic receptor antagonist, SR59230a, suppressed loss of visceral adipose mass in response to diet. These findings indicate that SNS activity toward discrete adipose depots is dynamic and potentially hierarchical. This pattern of sympathetic activation is required for energy liberation and loss of adipose tissue in response to calorie-restricted diet.
Collapse
Affiliation(s)
- L M Sipe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C Yang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Ephrem
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - E Garren
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
59
|
Ayala-Lopez N, Watts SW. New actions of an old friend: perivascular adipose tissue's adrenergic mechanisms. Br J Pharmacol 2016; 174:3454-3465. [PMID: 27813085 DOI: 10.1111/bph.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
The revolutionary discovery in 1991 by Soltis and Cassis that perivascular adipose tissue (PVAT) has an anti-contractile effect changed how we think about the vasculature. Most experiments on vascular pharmacology begin by removing the fat surrounding vessels. Thus, PVAT was thought to have a minor role in vascular function and its presence was just for structural support. The need to rethink PVAT's role was precipitated by observations that obesity carries a high cardiovascular risk and PVAT dysfunction is associated with obesity. PVAT is a vascular-adipose organ that has intimate connections with the nervous and immune system. A complex world of physiology resides in PVAT, including the presence of an 'adrenergic system' that is able to release, take up and metabolize noradrenaline. Adipocytes, stromal vascular cells and nerves within PVAT contain components that make up this adrenergic system. Some of the great strides in PVAT research came from studying adipose tissue as a whole. Adipose tissue has many roles and participates in regulating energy balance, energy stores, inflammation and thermoregulation. However, PVAT is dissimilar from non-PVAT adipose tissues. PVAT is intimately connected with the vasculature, which is what makes its role in body homeostasis unique. The adrenergic system within PVAT may be an integral link connecting the effects of obesity with the vascular dysfunction observed in obesity-associated hypertension, a condition in which the sympathetic nervous system has a significant role. This review will explore what is known about the adrenergic system in adipose tissue and PVAT, plus the translational importance of these findings. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
60
|
Nguyen NLT, Barr CL, Ryu V, Cao Q, Xue B, Bartness TJ. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am J Physiol Regul Integr Comp Physiol 2016; 312:R132-R145. [PMID: 27881398 DOI: 10.1152/ajpregu.00344.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Accepted: 11/05/2016] [Indexed: 11/22/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16-24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30-40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation.
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Georgia State University, Atlanta, Georgia.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia; and
| | - Candace L Barr
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, Georgia.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia; and
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia; and
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia; .,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia; and.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, Georgia.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia; and.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
61
|
Steinbusch LKM, Picard A, Bonnet MS, Basco D, Labouèbe G, Thorens B. Sex-Specific Control of Fat Mass and Counterregulation by Hypothalamic Glucokinase. Diabetes 2016; 65:2920-31. [PMID: 27422385 DOI: 10.2337/db15-1514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/13/2022]
Abstract
Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic β-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice). Compared with control littermates, Sf1Gck(-/-) mice displayed increased white fat mass and adipocyte size, reduced lean mass, impaired hypoglycemia-induced glucagon secretion, and a lack of parasympathetic and sympathetic nerve activation by neuroglucopenia. However, these phenotypes were observed only in female mice. To determine whether Gck was required for glucose sensing by Sf1 neurons, we performed whole-cell patch clamp analysis of brain slices from control and Sf1Gck(-/-) mice. Absence of Gck expression did not prevent the glucose responsiveness of glucose-excited or glucose-inhibited Sf1 neurons in either sex. Thus Gck in the VMN plays a sex-specific role in the glucose-dependent control of autonomic nervous activity; this is, however, unrelated to the control of the firing activity of classical glucose-responsive neurons.
Collapse
Affiliation(s)
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion S Bonnet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
63
|
Abstract
Excess and ectopic fat accumulation in obesity is a major risk factor for developing hyperlipidemia, type 2 diabetes and cardiovascular disease. The activation of brown and/or beige adipocytes is a promising target for the treatment of metabolic disorders as the combustion of excess energy by these thermogenic adipocytes may help losing weight and improving plasma parameters including triglyceride, cholesterol and glucose levels. The regulation of heat production by thermogenic adipose tissues is based on a complex crosstalk between the autonomous nervous system, intracellular and secreted factors. This multifaceted alignment regulates thermogenic demands to environmental circumstances in dependence on available energy resources. This review summarizes the current knowledge how thermogenic tissues can be targeted to combat the burden of diseases with a special focus on lipid metabolism and diseases related to lipoprotein metabolism.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
64
|
Abstract
Increasing energy expenditure is an appealing therapeutic target for the prevention and reversal of metabolic conditions such as obesity or type 2 diabetes. However, not enough research has investigated how to exploit pre-existing neural pathways, both in the central nervous system (CNS) and peripheral nervous system (PNS), in order to meet these needs. Here, we review several research areas in this field, including centrally acting pathways known to drive the activation of sympathetic nerves that can increase lipolysis and browning in white adipose tissue (WAT) or increase thermogenesis in brown adipose tissue (BAT), as well as other central and peripheral pathways able to increase energy expenditure of these tissues. In addition, we describe new work investigating the family of transient receptor potential (TRP) channels on metabolically important sensory nerves, as well as the role of the vagus nerve in regulating energy balance.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- School of Biology and Ecology and Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Rm 301, Orono, ME, 04469, USA
| | - Kristy L Townsend
- School of Biology and Ecology and Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Rm 301, Orono, ME, 04469, USA.
| |
Collapse
|
65
|
Garcia E, Becker VGC, McCullough DJ, Stabley JN, Gittemeier EM, Opoku-Acheampong AB, Sieman DW, Behnke BJ. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity. J Appl Physiol (1985) 2016; 121:15-24. [PMID: 27125846 DOI: 10.1152/japplphysiol.00266.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes.
Collapse
Affiliation(s)
- Emmanuel Garcia
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Veronika G C Becker
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; Department of Sports Science, Leipzig University, Leipzig, Germany
| | - Danielle J McCullough
- Department of Anatomy & Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, Alabama
| | - John N Stabley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | | | - Dietmar W Sieman
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Bradley J Behnke
- Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas;
| |
Collapse
|
66
|
Ramseyer VD, Granneman JG. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte 2016; 5:119-29. [PMID: 27386156 DOI: 10.1080/21623945.2016.1145846] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.
Collapse
Affiliation(s)
- Vanesa D. Ramseyer
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
- John Dingell Vet Administration Medical Center, Detroit, MI, USA
| |
Collapse
|
67
|
Watts AG, Grill HJ. Tim Bartness (1953-2015). Am J Physiol Regul Integr Comp Physiol 2016; 310:R385-7. [PMID: 26843579 DOI: 10.1152/ajpregu.00036.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alan G Watts
- Department of Biological Sciences, University of Southern California, Los Angeles, California; and
| | - Harvey J Grill
- Department of Psychology, Univeristy of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
68
|
Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature. DIABETES & METABOLISM 2015; 41:437-45. [DOI: 10.1016/j.diabet.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 11/17/2022]
|
69
|
Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015; 50:276-91. [PMID: 26089260 DOI: 10.1007/s12020-015-0658-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase-SNS-BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| | - Johan Fernø
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, 5021, Bergen, Norway
| | - Francisco Gonzalez
- Department of Surgery, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Rosaura Leis
- Unit of Investigation in Nutrition, Growth and Human Development of Galicia, Pediatric Department (USC), Complexo Hospitalario Universitario de Santiago (IDIS/SERGAS), Santiago de Compostela, Spain
| | - Rubén Nogueiras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
70
|
|
71
|
Bartness TJ, Ryu V. Neural control of white, beige and brown adipocytes. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2015; 5:S35-9. [PMID: 27152173 DOI: 10.1038/ijosup.2015.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte 'browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called 'brite' or 'beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging.
Collapse
Affiliation(s)
- T J Bartness
- Department of Biology, Obesity Reversal Center, Georgia State University , Atlanta, GA, USA
| | - V Ryu
- Department of Biology, Obesity Reversal Center, Georgia State University , Atlanta, GA, USA
| |
Collapse
|
72
|
Sotorník R, Baillargeon JP, Gagnon-Auger M, Ménard J, Brassard P, Ardilouze JL. Regulation of blood flow in adipose tissue: involvement of the cholinergic system. Am J Physiol Endocrinol Metab 2015; 309:E55-62. [PMID: 25968573 DOI: 10.1152/ajpendo.00016.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/08/2015] [Indexed: 01/24/2023]
Abstract
Acetylcholine (Ach) has vasodilatory actions. However, data are conflicting about the role of Ach in regulating blood flow in subcutaneous adipose tissue (ATBF). This may be related to inaccurate ATBF recording or to the responder/nonresponder (R/NR) phenomenon. We showed previously that healthy individuals are R (ATBF increases postprandially by >50% of baseline BF) or NR (ATBF increases ≤50% postprandially). Our objective was to assess the role of the cholinergic system on ATBF in R and NR subjects. ATBF was manipulated by in situ microinfusion of vasoactive agents (VA) in AT and monitored by the (133)Xenon washout technique (both recognized methods) at the VA site and at the control site. We tested incrementally increasing doses of Ach (10(-5), 10(-3), and 10(-1) mol/l; n = 15) and Ach receptor antagonists (Ra) before and after oral administration of 75-g glucose using atropine (muscarinic Ra; 10(-4) mol/l, n = 13; 10(-5) mol/l, n = 22) and mecamylamine (nicotinic Ra; 10(-3) mol/l, n = 15; 10(-4) mol/l, n = 10). Compared with baseline [2.41 (1.36-2.83) ml·100 g(-1)·min(-1)], Ach increased ATBF dose dependently [3.32 (2.80-5.09), 6.46 (4.36-9.51), and 10.31 (7.98-11.52), P < 0.0001], with no difference between R and NR. Compared with control side, atropine (both concentrations) had no effect on fasting ATBF; only atropine 10(-4) mol/l decreased post-glucose ATBF [iAUC: 1.25 (0.32-2.91) vs. 1.98 (0.64-2.94); P = 0.04]. This effect was further apparent in R. Mecamylamine had no impact on fasting and postglucose ATBF in R and NR. Our results suggest that the cholinergic system is implicated in ATBF regulation, although it has no role in the blunting of ATBF response in NR.
Collapse
Affiliation(s)
- Richard Sotorník
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Jean-Patrice Baillargeon
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and Clinical Research Center, University Hospital Center of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maude Gagnon-Auger
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Julie Ménard
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and Clinical Research Center, University Hospital Center of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pascal Brassard
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and Clinical Research Center, University Hospital Center of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Luc Ardilouze
- Department of Medicine, Division of Endocrinology, University Hospital Center of Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada; and Clinical Research Center, University Hospital Center of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
73
|
Oriowo MA. Perivascular adipose tissue, vascular reactivity and hypertension. Med Princ Pract 2015; 24 Suppl 1:29-37. [PMID: 24503717 PMCID: PMC6489082 DOI: 10.1159/000356380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022] Open
Abstract
Most blood vessels are surrounded by a variable amount of adventitial adipose tissue, perivascular adipose tissue (PVAT), which was originally thought to provide mechanical support for the vessel. It is now known that PVAT secretes a number of bioactive substances including vascular endothelial growth factor, tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, insulin-like growth factor, interleukin-6, plasminogen activator substance, resistin and angiotensinogen. Several studies have shown that PVAT significantly modulated vascular smooth muscle contractions induced by a variety of agonists and electrical stimulation by releasing adipocyte-derived relaxing (ADRF) and contracting factors. The identity of ADRF is not yet known. However, several vasodilators have been suggested including adiponectin, angiotensin 1-7, hydrogen sulfide and methyl palmitate. The anticontractile effect of PVAT is mediated through the activation of potassium channels since it is abrogated by inhibiting potassium channels. Hypertension is characterized by a reduction in the size and amount of PVAT and this is associated with the attenuated anticontractile effect of PVAT in hypertension. However, since a reduction in size and amount of PVAT and the attenuated anticontractile effect of PVAT were already evident in prehypertensive rats with no evidence of impaired release of ADRF, there is the possibility that the anticontractile effect of PVAT was not directly related to an altered function of the adipocytes per se. Hypertension is characterized by low-grade inflammation and infiltration of macrophages. One of the adipokines secreted by macrophages is TNF-α. It has been shown that exogenously administered TNF-α enhanced agonist-induced contraction of a variety of vascular smooth muscle preparations and reduced endothelium-dependent relaxation. Other procontractile factors released by the PVAT include angiotensin II and superoxide. It is therefore possible that the loss could be due to an increased amount of these proinflammatory and procontractile factors. More studies are definitely required to confirm this.
Collapse
Affiliation(s)
- Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
74
|
Abstract
A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.
Collapse
Affiliation(s)
- A Stefanidis
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - N M Wiedmann
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - E S Adler
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - B J Oldfield
- Department of Physiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
75
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
76
|
Meng X, Zheng R, Zhang Y, Qiao M, Liu L, Jing P, Wang L, Liu J, Gao Y. An activated sympathetic nervous system affects white adipocyte differentiation and lipolysis in a rat model of Parkinson's disease. J Neurosci Res 2014; 93:350-60. [PMID: 25257318 DOI: 10.1002/jnr.23488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Weight loss is an important nonmotor symptom associated with Parkinson's disease (PD). However, the cellular factors responsible for PD-induced weight loss remain unclear. Because the sympathetic nervous system plays an important role in lipid metabolism and fat cell differentiation, this study investigates whether PD-induced changes to this system are associated with weight loss in a rat model of PD. Body weight and food intake were measured in control and PD-model rats. After 10 weeks, retroperitoneal white adipose tissues (RWAT) were removed and weighed. Markers of the sympathetic nervous system were measured in the brainstem dorsal medulla and RWAT. Free fat acids (FFA), triglycerides (TG), adipocyte differentiation-related genes, and lipolysis-related molecules in the RWAT and serum were analyzed. Differences in body weight and food intake were insignificant in PD-model rats and control rats; however, relative RWAT weight and adipocyte surface area were significantly reduced in the PD group. Changes in markers of the sympathetic nervous system were observed in the brainstem dorsal medulla and RWAT of PD rats. Decreased mRNA expression levels of genes involved in adipocyte differentiation, decreased TG levels in RWAT, increased FFA in RWAT, and increased lipolysis-related molecules in RWAT and serum FFA were observed in PD rats. This study demonstrates that degenerated dopaminergic neurons in the nigrostriatal system correlate with increases in sympathetic nervous system function, resulting in lipolysis and inhibition of fat cell differentiation. These factors ultimately result in the decrease of RWAT in PD-model rats.
Collapse
Affiliation(s)
- XiangZhi Meng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab 2014; 3:595-607. [PMID: 25161883 PMCID: PMC4142400 DOI: 10.1016/j.molmet.2014.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/15/2022] Open
Abstract
The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Charlotte C Ronveaux
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
78
|
Ryu V, Bartness TJ. Short and long sympathetic-sensory feedback loops in white fat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R886-900. [PMID: 24717676 PMCID: PMC4159734 DOI: 10.1152/ajpregu.00060.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
79
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
80
|
Xiong XQ, Chen WW, Zhu GQ. Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol (Oxf) 2014; 210:468-78. [PMID: 24118791 DOI: 10.1111/apha.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 10/09/2013] [Indexed: 01/09/2023]
Abstract
Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.
Collapse
Affiliation(s)
- X.-Q. Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - W.-W. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| |
Collapse
|
81
|
Bulloch JM, Daly CJ. Autonomic nerves and perivascular fat: interactive mechanisms. Pharmacol Ther 2014; 143:61-73. [PMID: 24560685 DOI: 10.1016/j.pharmthera.2014.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/31/2022]
Abstract
The evidence describing the autonomic innervation of body fat is reviewed with a particular focus on the role of the sympathetic neurotransmitters. In compiling the evidence, a strong case emerges for the interaction between autonomic nerves and perivascular adipose tissue (PVAT). Adipocytes have been shown to express receptors for neurotransmitters released from nearby sympathetic varicosities such as adrenoceptors (ARs), purinoceptors and receptors for neuropeptide Y (NPY). Noradrenaline can modulate both lipolysis (via α2- and β3-ARs) and lipogenesis (via α1- and β3-ARs). ATP can inhibit lipolysis (via P1 purinoceptors) or stimulate lipolysis (via P2y purinoceptors). NPY, which can be produced by adipocytes and sympathetic nerves, inhibits lipolysis. Thus the sympathetic triad of transmitters can influence adipocyte free fatty acid (FFA) content. Substance P (SP) released from sensory nerves has also been shown to promote lipolysis. Therefore, we propose a mechanism whereby sympathetic neurotransmission can simultaneously activate smooth muscle cells in the tunica media to cause vasoconstriction and alter FFA content and release from adjacent adipocytes in PVAT. The released FFA can influence endothelial function. Adipocytes also release a range of vasoactive substances, both relaxing and contractile factors, including adiponectin and reactive oxygen species. The action of adipokines (such as adiponectin) and reactive oxygen species (ROS) on cells of the vascular adventitia and nerves has yet to be fully elucidated. We hypothesise a strong link between PVAT and autonomic fibres and suggest that this poorly understood relationship is extremely important for normal vascular function and warrants a detailed study.
Collapse
Affiliation(s)
- Janette M Bulloch
- School of Science, University of the West of Scotland, Hamilton ML3 0JB, Scotland.
| | - Craig J Daly
- School of Life Sciences, University of Glasgow, Glasgow G128QQ, Scotland.
| |
Collapse
|
82
|
Nguyen NLT, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2014; 306:R375-86. [PMID: 24452544 DOI: 10.1152/ajpregu.00552.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia
| | | | | | | |
Collapse
|
83
|
|
84
|
Perez-Leighton CE, Billington CJ, Kotz CM. Orexin modulation of adipose tissue. Biochim Biophys Acta Mol Basis Dis 2013; 1842:440-5. [PMID: 23791983 DOI: 10.1016/j.bbadis.2013.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
The orexins are neuropeptides with critical functions in the central nervous system. These neuropeptides have important roles in energy balance and obesity, and therefore on the accumulation of adipose tissue. Rodents lacking orexins, typically through genetic knockouts, experience increased weight gain and accumulation of adipose tissue. Evidence indicates that the lack of the orexins increase adiposity as a result of decreased energy expenditure, principally through a reduction of physical activity. Different lines of evidence suggest that other mechanisms are likely also in play, and neural influences on both white and brown adipose tissues remain to be fully and functionally defined. In addition, the orexin peptides and their receptors are expressed in adipose tissue, with little available information as to their significance. This review summarizes our current understanding of how the orexin peptides affect adipose tissue. We provide a brief introduction to the physiology of orexins and their effects on white and brown adipose tissues in the context of energy balance. We conclude this review by integrating this information in the context of the known physiology of the orexins. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Claudio E Perez-Leighton
- Veterans Health Care System, GRECC, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, 8370071, Chile.
| | - Charles J Billington
- Veterans Health Care System, Endocrinology, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA
| | - Catherine M Kotz
- Veterans Health Care System, GRECC, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Department of Food Science and Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Neuroscience, USA
| |
Collapse
|
85
|
Murphy KT, Schwartz GJ, Nguyen NLT, Mendez JM, Ryu V, Bartness TJ. Leptin-sensitive sensory nerves innervate white fat. Am J Physiol Endocrinol Metab 2013; 304:E1338-47. [PMID: 23612999 PMCID: PMC3680695 DOI: 10.1152/ajpendo.00021.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue.
Collapse
Affiliation(s)
- Keegan T Murphy
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| | | | | | | | | | | |
Collapse
|
86
|
Turovsky EA, Turovskaya MV, Dolgacheva LP, Zinchenko VP, Dynnik VV. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+→NO→cGMP→cADP-ribose→Ca2+ positive feedback loop--modulatory effects of norepinephrine and atrial natriuretic peptide. PLoS One 2013; 8:e63483. [PMID: 23696827 PMCID: PMC3656004 DOI: 10.1371/journal.pone.0063483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/03/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigated possible mechanisms of autoregulation of Ca(2+) signalling pathways in adipocytes responsible for Ca(2+) and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). METHODS Fluorescent microscopy was used to detect changes in Ca(2+) and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+)-channels in Ca(2+) signalling pathways. RESULTS ACh activating M3-muscarinic receptors and Gβγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+) and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+) oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca(2+)→NO→cGMP→cADPR→Ca(2+), which determines periodic or steady operation of a short PFL based on Ca(2+)-induced Ca(2+) release via RyR by generating cADPR, a coagonist of Ca(2+) at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+)-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+)-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. CONCLUSIONS This study presents a kinetic model of Ca(2+)-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya V. Turovskaya
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ludmila P. Dolgacheva
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P. Zinchenko
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V. Dynnik
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Department of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- * E-mail:
| |
Collapse
|
87
|
Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag 2013; 9:105-16. [PMID: 23576873 PMCID: PMC3616689 DOI: 10.2147/vhrm.s33760] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.
Collapse
Affiliation(s)
- Theodora Szasz
- Department of Physiology, Georgia Regents University, Augusta, GA, USA.
| | | | | |
Collapse
|
88
|
Davis RT, Stabley JN, Dominguez JM, Ramsey MW, McCullough DJ, Lesniewski LA, Delp MD, Behnke BJ. Differential effects of aging and exercise on intra-abdominal adipose arteriolar function and blood flow regulation. J Appl Physiol (1985) 2013; 114:808-15. [PMID: 23349454 DOI: 10.1152/japplphysiol.01358.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adipose tissue (AT), which typically comprises an increased percentage of body mass with advancing age, receives a large proportion of resting cardiac output. During exercise, an old age-associated inability to increase vascular resistance within the intra-abdominal AT may compromise the ability of the cardiovascular system to redistribute blood flow to the active musculature, contributing to the decline in exercise capacity observed in this population. We tested the hypotheses that 1) there would be an elevated perfusion of AT during exercise with old age that was associated with diminished vasoconstrictor responses of adipose-resistance arteries, and 2) chronic exercise training would mitigate the age-associated alterations in AT blood flow and vascular function. Young (6 mo; n = 40) and old (24 mo; n = 28) male Fischer 344 rats were divided into young sedentary (YSed), old sedentary (OSed), young exercise trained (YET), or old exercise trained (OET) groups, where training consisted of 10-12 wk of treadmill exercise. In vivo blood flow at rest and during exercise and in vitro α-adrenergic and myogenic vasoconstrictor responses in resistance arteries from AT were measured in all groups. In response to exercise, there was a directionally opposite change in AT blood flow in the OSed group (≈ 150% increase) and YSed (≈ 55% decrease) vs. resting values. Both α-adrenergic and myogenic vasoconstriction were diminished in OSed vs. YSed AT-resistance arteries. Exercise training resulted in a similar AT hyperemic response between age groups during exercise (YET, 9.9 ± 0.5 ml · min(-1) · 100(-1) g; OET, 8.1 ± 0.9 ml · min(-1) · 100(-1) g) and was associated with enhanced myogenic and α-adrenergic vasoconstriction of AT-resistance arteries from the OET group relative to OSed. These results indicate that there is an inability to increase vascular resistance in AT during exercise with old age, due, in part, to a diminished vasoconstriction of AT arteries. Furthermore, the results indicate that exercise training can augment vasoconstriction of AT arteries and mitigate age-related alterations in the regulation of AT blood flow during exercise.
Collapse
Affiliation(s)
- Robert T Davis
- Department of Applied Physiology and Kinesiology and Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Simonds SE, Cowley MA. Hypertension in obesity: is leptin the culprit? Trends Neurosci 2013; 36:121-32. [PMID: 23333346 DOI: 10.1016/j.tins.2013.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023]
Abstract
The number of obese or overweight humans continues to increase worldwide. Hypertension is a serious disease that often develops in obesity, but it is not clear how obesity increases the risk of hypertension. However, both obesity and hypertension increase the risk of cardiovascular diseases (CVD). In this review, we examine how obesity may increase the risk of developing hypertension. Specifically, we discuss how the adipose-derived hormone leptin influences the sympathetic nervous system (SNS), through actions in the brain to elevate energy expenditure (EE) while also contributing to hypertension in obesity.
Collapse
Affiliation(s)
- Stephanie E Simonds
- Monash Obesity & Diabetes Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
90
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
91
|
Sotornik R, Brassard P, Martin E, Yale P, Carpentier AC, Ardilouze JL. Update on adipose tissue blood flow regulation. Am J Physiol Endocrinol Metab 2012; 302:E1157-70. [PMID: 22318953 DOI: 10.1152/ajpendo.00351.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
According to Fick's principle, any metabolic or hormonal exchange through a given tissue depends on the product of the blood flow to that tissue and the arteriovenous difference. The proper function of adipose tissue relies on adequate adipose tissue blood flow (ATBF), which determines the influx and efflux of metabolites as well as regulatory endocrine signals. Adequate functioning of adipose tissue in intermediary metabolism requires finely tuned perfusion. Because metabolic and vascular processes are so tightly interconnected, any disruption in one will necessarily impact the other. Although altered ATBF is one consequence of expanding fat tissue, it may also aggravate the negative impacts of obesity on the body's metabolic milieu. This review attempts to summarize the current state of knowledge on adipose tissue vascular bed behavior under physiological conditions and the various factors that contribute to its regulation as well as the possible participation of altered ATBF in the pathophysiology of metabolic syndrome.
Collapse
Affiliation(s)
- Richard Sotornik
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Centre Hospitalier, Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
92
|
Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 2012; 92:157-91. [PMID: 22298655 DOI: 10.1152/physrev.00012.2011] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.
Collapse
|
93
|
Gimble JM, Nuttall ME. The relationship between adipose tissue and bone metabolism. Clin Biochem 2012; 45:874-9. [PMID: 22429519 DOI: 10.1016/j.clinbiochem.2012.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The authors have set out to evaluate the literature relevant to the dynamic regulation of adipogenesis and osteogenesis. DESIGN AND METHODS A detailed search of the past and recent literature was conducted on Pubmed using a combination of keywords including: adipogenesis, bone marrow, hematopoiesis, mesenchymal stromal/stem cell, and osteogenesis. RESULTS Throughout one's lifespan, the bone marrow microenvironment provides a unique niche for mesenchymal stromal/stem cells (BMSCs) and hematopoietic stem cells (HSCs). The marrow changes as a function of biological age and pathophysiology. Historically, clinical biochemistry has observed these changes from an HSC and hematological perspective. Nevertheless, these changes also reflect the balance between BMSC adipogenic and osteogenic processes which can display an inverse or reciprocal relationship. Multiple hormonal factors and nuclear hormone receptor ligands and drugs are responsible for BMSC lineage selection. Data from a number of laboratories now implicates endocrine feedback loops between extramedullary adipose depots and the central nervous system. CONCLUSIONS This concise review provides a perspective on the mechanisms regulating BMSC differentiation in the context of biological aging, obesity, and osteoporosis.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
94
|
van der Spek R, Kreier F, Fliers E, Kalsbeek A. Circadian rhythms in white adipose tissue. PROGRESS IN BRAIN RESEARCH 2012; 199:183-201. [DOI: 10.1016/b978-0-444-59427-3.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
95
|
Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord 2011; 12:235-43. [PMID: 21713385 PMCID: PMC3253350 DOI: 10.1007/s11154-011-9190-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| |
Collapse
|
96
|
Swarbrick MM. Putting out fat's fire with the cholinergic antiinflammatory pathway. Endocrinology 2011; 152:748-50. [PMID: 21339381 DOI: 10.1210/en.2011-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Michael M Swarbrick
- Diabetes and Obesity Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
97
|
Sato T, Chida D, Iwata T, Usui M, Hatori K, Abe T, Takeda S, Yoda T. Non-neuronal regulation and repertoire of cholinergic receptors in organs. Biomol Concepts 2010; 1:357-66. [PMID: 25962009 DOI: 10.1515/bmc.2010.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many studies on the cholinergic pathway have indicated that cholinergic receptors, which are widely expressed in various cells, play an important role in all body organs. In this review, we present the concept that cholinergic responses are regulated through a neuronal or non-neuronal mechanism. The neuronal mechanism is a system in which acetylcholine binds to cholinergic receptors on target cells through the nerves. In the non-neuronal mechanism, acetylcholine, produced by neighboring cells in an autocrine/paracrine manner, binds to cholinergic receptors on target cells. Both mechanisms subsequently lead to physiological and pathophysiological responses. We also investigated the subunits/subtypes of cholinergic receptors on target cells, physiological and pathophysiological responses of the organs via cholinergic receptors, and extracellular factors that alter the subtypes/subunits of cholinergic receptors. Collectively, this concept will elucidate how cholinergic responses occur and will help us conduct further experiments to develop new therapeutic agents.
Collapse
|
98
|
Adipose tissue and reproduction in women. Fertil Steril 2010; 94:795-825. [DOI: 10.1016/j.fertnstert.2009.03.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 12/20/2022]
|
99
|
Inskip J, Plunet W, Ramer L, Ramsey JB, Yung A, Kozlowski P, Ramer M, Krassioukov A. Cardiometabolic risk factors in experimental spinal cord injury. J Neurotrauma 2010; 27:275-85. [PMID: 19772460 DOI: 10.1089/neu.2009.1064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiometabolic risk factors are sorely underreported after spinal cord injury (SCI), despite the high prevalence of metabolic disorders and cardiovascular mortality in this population. Body-composition analysis and serum-lipid profiling are two assessments that are beginning to be more widely used to document metabolic changes after clinical SCI. Individuals with SCI have been reported to carry increased visceral fat and to exhibit altered serum-lipid levels. However, little is known about the development of these cardiometabolic risk factors in animal models. Using a combination of magnetic resonance imaging (MRI) and adipose tissue dissection, we show that visceral and subcutaneous adipose tissue were both increased at 1 month, but not at 1 week, after complete T3 SCI in rats. Additionally, at 1 month post injury, T3 SCI rats exhibited nonfasting serum hypertriglyceridemia, a result obtained using both standard clinical methods and a home cholesterol monitoring device (CardioChek). Interestingly, at 1 month post injury, rats with complete T10 SCI did not show an increase in either visceral adiposity or serum triglyceride levels. The fact that complete high-thoracic SCI disrupts lipid metabolism and perturbs fat storage in the subacute period, while low-thoracic SCI does not, suggests that differences in descending sympathetic control of adipose tissue might play a role in these changes. These results provide the first evidence of cardiometabolic risk factors in experimental animals with SCI, and are a starting point for investigations of the etiology of obesity and metabolic dysfunctions that often accompany SCI.
Collapse
Affiliation(s)
- Jessica Inskip
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318:34-43. [PMID: 19747957 PMCID: PMC2826518 DOI: 10.1016/j.mce.2009.08.031] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/14/2022]
Abstract
Circulating factors are typically invoked to explain bidirectional communication between the CNS and white adipose tissue (WAT). Thus, initiation of lipolysis has been relegated primarily to adrenal medullary secreted catecholamines and the inhibition of lipolysis primarily to pancreatic insulin, whereas signals of body fat levels to the brain have been ascribed to adipokines such as leptin. By contrast, evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue. Using retrograde transneuronal viral tract tracers, the SNS outflow from brain to WAT has been defined. Functionally, sympathetic denervation of WAT blocks lipolysis to a variety of lipolytic stimuli. Using anterograde transneuronal viral tract tracers, the sensory input from WAT to brain has been defined. Functionally, these WAT sensory nerves respond electrophysiologically to increases in WAT SNS drive suggesting a possible neural negative feedback loop to regulate lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|