51
|
Yasuda J, Gomi T, Kotemori A, Yokoyama Y, Yoshizaki T, Hida A, Tada Y, Katsumata Y, Kawano Y. Breakfast before resistance exercise lessens urinary markers of muscle protein breakdown in young men: A crossover trial. Nutrition 2020; 83:111088. [PMID: 33418493 DOI: 10.1016/j.nut.2020.111088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Skipping breakfast prolongs the fasting state initiated after the last meal consumed the previous day and can have negative effects on muscle protein balance. The aim of this crossover trial was to examine the effects of skipping breakfast before a single bout of resistance exercise (RE) on muscle protein breakdown (MPB), as assessed using the urinary 3-methylhistidine/creatinine ratio (3-MH/Cr). METHODS Thirteen healthy young men, who habitually consumed breakfast (21.8 ± 1.1 y of age), were assigned to eating breakfast (EB) and skipping breakfast (SB) conditions. Participants consumed meat-free diets throughout the 5-d experiment. On day 5, individuals in the EB group consumed breakfast (497 kcal) 2.5 h before RE (75% repetition maximum), whereas those in the SB group consumed the same meal after dinner. RESULTS In the two-way analysis of variance, significant interactions were observed with blood insulin and free fatty acid levels, and the 3-MH/Cr ratio (P < 0.05). We confirmed a significantly greater decrease in the insulin level pre-RE (P < 0.001; d = 3.281), and increases in the free fatty acid level pre-RE (P < 0.001; d = 1.437) and post-RE (P = 0.013; d = 0.811) and the 3-MH/Cr ratio 6 (P < 0.001; d = 0.878) and 8 h (P < 0.001; d = 0.634) post-RE in the SB condition than in the EB condition. CONCLUSION Eating breakfast before RE can be beneficial for MPB suppression. The importance of breakfast consumption in terms of positive muscle protein balance is emphasized on sports fields.
Collapse
Affiliation(s)
- Jun Yasuda
- Japan Institute of Sports Sciences, Tokyo, Japan; Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Tatsunosuke Gomi
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan; Physical Education and Medicine Research Center UNNAN, Shimane, Japan
| | - Ayaka Kotemori
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan; Department of Food and Life Science, Azabu University, Kanagawa, Japan
| | - Yuri Yokoyama
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan; Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takahiro Yoshizaki
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan; Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Azumi Hida
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuki Tada
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoichi Katsumata
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yukari Kawano
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
52
|
Moore DR, Philp A. Editorial: Nutritional Strategies to Promote Muscle Mass and Function Across the Health Span. Front Nutr 2020; 7:569270. [PMID: 33134307 PMCID: PMC7561707 DOI: 10.3389/fnut.2020.569270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Andrew Philp
- Health Ageing Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
53
|
Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett 2020; 498:178-187. [PMID: 33130315 DOI: 10.1016/j.canlet.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.
Collapse
|
54
|
Hinde KL, O'Leary TJ, Greeves JP, Wardle SL. Measuring Protein Turnover in the Field: Implications for Military Research. Adv Nutr 2020; 12:887-896. [PMID: 33079983 PMCID: PMC8166569 DOI: 10.1093/advances/nmaa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9-24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.
Collapse
Affiliation(s)
- Katrina L Hinde
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
55
|
Counts BR, Hardee JP, Fix DK, Vanderveen BN, Montalvo RN, Carson JA. Cachexia Disrupts Diurnal Regulation of Activity, Feeding, and Muscle Mechanistic Target of Rapamycin Complex 1 in Mice. Med Sci Sports Exerc 2020; 52:577-587. [PMID: 32058469 DOI: 10.1249/mss.0000000000002166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cancer cachexia is characterized by severe skeletal muscle mass loss, which is driven by decreased muscle protein synthesis and increased protein degradation. Daily physical activity and feeding behaviors exhibit diurnal fluctuations in mice that can impact the systemic environment and skeletal muscle signaling. PURPOSE We investigated the effect of cancer cachexia on the diurnal regulation of feeding, physical activity, and skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) signaling in tumor-bearing mice. We also examined the impact of increased physical activity on diurnal behaviors and skeletal muscle mTROC1 signaling in the cancer environment. METHODS Physical activity and feeding behaviors were measured for four consecutive days before sacrifice in male C57BL/6 (B6; n = 24) and Apc (MIN; n = 22) mice at 7:00 AM and 7:00 PM under ad libitum condition. A subset of B6 (n = 16) and MIN (n = 19) mice were given wheel access for 2 wk before diurnal behavior measurements. Gastrocnemius muscle protein expression was examined. RESULTS The MIN mice demonstrated altered diurnal fluctuations in feeding and activity compared with the B6. Interestingly, cachexia did not alter MIN total food intake, but dramatically reduced cage physical activity. As a measurement of mTORC1 activity, 4E-BP1 phosphorylation increased after the dark cycle in B6 and precachectic MIN mice, whereas rpS6 phosphorylation was only increased after the dark cycle in MIN mice. MIN 4E-BP1 phosphorylation at the end of the light cycle was significantly correlated with cachexia progression and reduced physical activity. Voluntary wheel running increased light cycle MIN 4E-BP1 phosphorylation and attenuated muscle mass loss. CONCLUSIONS The cancer environment can alter diurnal feeding and physical activity behaviors in tumor-bearing mice, which are linked to the progression of cachexia and muscle wasting. Furthermore, suppressed physical activity during cachexia is associated with decreased skeletal muscle mTORC1 signaling.
Collapse
Affiliation(s)
- Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis TN
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Dennis K Fix
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Brandon N Vanderveen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Ryan N Montalvo
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis TN
| |
Collapse
|
56
|
Hilkens L, De Bock J, Kretzers J, Kardinaal AFM, Floris-Vollenbroek EG, Scholtens PAMJ, Horstman AMH, van Loon LJC, van Dijk JW. Whey protein supplementation does not accelerate recovery from a single bout of eccentric exercise. J Sports Sci 2020; 39:322-331. [PMID: 33012216 DOI: 10.1080/02640414.2020.1820184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The current double blind, randomized, placebo-controlled trial with two parallel groups aimed to assess the impact of whey protein supplementation on recovery of muscle function and muscle soreness following eccentric exercise. During a 9-day period, forty recreationally active males received twice daily supplementation with either whey protein (PRO; 60 g/day) or an iso-energetic amount of carbohydrate (CON). Muscle function and soreness were assessed before, and 0, 3, 24, 48, and 72 h after performing 100 drop jumps. Recovery of isometric maximal voluntary contraction (MVC) did not significantly differ between groups (timextreatment, P = 0.56). In contrast, the recovery of isokinetic MVC at 90°·s-1 was faster in CON as opposed to PRO (timextreatment interaction, P = 0.044). Recovery of isokinetic MVC at 180°·s-1 was also faster in CON as opposed to PRO (timextreatment interaction, P = 0.011). Recovery of countermovement jump performance did not differ between groups (timextreatment interaction, P = 0.52). Muscle soreness, CK and CRP showed a transient increase over time (P < 0.001), with no differences between groups. In conclusion, whey protein supplementation does not accelerate recovery of muscle function or attenuate muscle soreness and inflammation during 3 days of recovery from a single bout of eccentric exercise.
Collapse
Affiliation(s)
- Luuk Hilkens
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Jolien De Bock
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Joris Kretzers
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | | | | | | | | | - Luc J C van Loon
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands.,Department of Human Biology, NUTRIM, Maastricht University Medical Centre+ , Maastricht, The Netherlands
| | - Jan-Willem van Dijk
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| |
Collapse
|
57
|
Rolnick N, Schoenfeld BJ. Blood Flow Restriction Training and the Physique Athlete: A Practical Research-Based Guide to Maximizing Muscle Size. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
The Effects of Intermittent Fasting Combined with Resistance Training on Lean Body Mass: A Systematic Review of Human Studies. Nutrients 2020; 12:nu12082349. [PMID: 32781538 PMCID: PMC7468742 DOI: 10.3390/nu12082349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Diets utilising intermittent fasting (IF) as a strategic method to manipulate body composition have recently grown in popularity, however, dietary practices involving fasting have also been followed for centuries for religious reasons (i.e., Ramadan). Regardless of the reasons for engaging in IF, the impacts on lean body mass (LBM) may be detrimental. Previous research has demonstrated that resistance training promotes LBM accrual, however, whether this still occurs during IF is unclear. Therefore, the objective of this review is to systematically analyse human studies investigating the effects of variations of IF combined with resistance training on changes in LBM in previously sedentary or trained (non-elite) individuals. Changes in body weight and fat mass, and protocol adherence were assessed as a secondary objective. This review followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. MEDLINE, CINAHL, PubMed and SportDiscus databases were searched for articles investigating IF, combined with resistance training that reported measures of body composition. Eight studies met the eligibility criteria. LBM was generally maintained, while one study reported a significant increase in LBM. Body fat mass or percentage was significantly reduced in five of eight studies. Results suggest that IF paired with resistance training generally maintains LBM, and can also promote fat loss. Future research should examine longer-term effects of various forms of IF combined with resistance training compared to traditional forms of energy restriction. Prospero registration CRD42018103867.
Collapse
|
59
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Local Heat Therapy to Accelerate Recovery After Exercise-Induced Muscle Damage. Exerc Sport Sci Rev 2020; 48:163-169. [PMID: 32658042 DOI: 10.1249/jes.0000000000000230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prolonged impairment in muscle strength, power, and fatigue resistance after eccentric exercise has been ascribed to a plethora of mechanisms, including delayed muscle refueling and microvascular and mitochondrial dysfunction. This review explores the hypothesis that local heat therapy hastens functional recovery after strenuous eccentric exercise by facilitating glycogen resynthesis, reversing vascular derangements, augmenting mitochondrial function, and stimulating muscle protein synthesis.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | | | | | | |
Collapse
|
60
|
Yasuda J, Tomita T, Arimitsu T, Fujita S. Evenly Distributed Protein Intake over 3 Meals Augments Resistance Exercise-Induced Muscle Hypertrophy in Healthy Young Men. J Nutr 2020; 150:1845-1851. [PMID: 32321161 PMCID: PMC7330467 DOI: 10.1093/jn/nxaa101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although daily protein intake (PI) has been reported to be essential for regulating muscle mass, the distribution of daily PI in individuals is typically the lowest at breakfast and skewed toward dinner. Skewed protein intake patterns and inadequate PI at breakfast were reported to be negative factors for muscle maintenance. OBJECTIVES This study examined whether a protein-enriched meal at breakfast is more effective for muscle accretion compared with the typical skewed PI pattern. METHODS This 12-wk, parallel-group, randomized clinical trial included 26 men (means ± SEs; age: 20.8 ± 0.4 y; BMI: 21.8 ± 0.4 kg/m2). The "high breakfast" (HBR) group (n = 12) consumed a protein-enriched meal at breakfast providing a PI of 0.33 g/kg body weight (BW); their PI at lunch (0.46 g/kg BW) and dinner (0.48 g/kg BW) provided an adequate overall daily PI (1.30 g/kg BW/d). The "low breakfast" (LBR) group (n = 14) consumed 0.12 g protein/kg BW at breakfast; intakes at lunch (0.45 g/kg BW) and dinner (0.83 g/kg BW) yielded the same daily PI as in the HBR group. The participants performed supervised resistance training (RT) 3 times per week (75-80% 1-repetition maximum; 3 sets × 10 repetitions). DXA was used to measure the primary outcome variable, that is, total lean soft tissue mass (LTM). RESULTS The total LTM at baseline did not differ between the HBR (52.4 ± 1.3 kg) and LBR (53.4 ± 1.2 kg) groups. After the intervention, increases in total LTM were significant in both groups, with that in the HBR group (2.5 ± 0.3 kg) tending to be greater than that in the LBR group (1.8 ± 0.3 kg) (P = 0.06), with a large effect size (Cohen d = 0.795). CONCLUSIONS For RT-induced muscle hypertrophy in healthy young men, consuming a protein-enriched meal at breakfast and less protein at dinner while achieving an adequate overall PI is more effective than consuming more protein at dinner.This study was registered at University hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN000037583 (https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000042763).
Collapse
Affiliation(s)
- Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga, Japan
| | - Toshiki Tomita
- Faculty of Sport and Health Science, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga, Japan
| | - Takuma Arimitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga, Japan
| | | |
Collapse
|
61
|
Kang Y, Kim N, Choi YJ, Lee Y, Yun J, Park SJ, Park HS, Chung YS, Park YK. Leucine-Enriched Protein Supplementation Increases Lean Body Mass in Healthy Korean Adults Aged 50 Years and Older: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:E1816. [PMID: 32570811 PMCID: PMC7353448 DOI: 10.3390/nu12061816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early prevention of sarcopenia could be an important strategy for muscle retention, but most studies have focused on subjects aged 65 or older. Therefore, in this study we investigated the effects of leucine-enriched protein supplementation on muscle condition in a sample including late middle-aged adults. A 12-week intervention was performed for 120 healthy community-dwelling adults by providing either leucine-enriched protein supplement [leucine 3 g, protein mixture (casein 50% + whey 40% + soy 10%) 17 g, vitamin D 800IU (20 µg), calcium 300 mg, fat 1.1 g, carbohydrate 2.5 g] or isocaloric carbohydrate supplement twice per day. Appendicular skeletal muscle mass index (ASMI) and lean body mass (LBM) were measured by dual-energy X-ray absorptiometry. A total of 111 participants completed the study, with a dropout rate of 9.2%. LBM normalized by height and body weight (LBM/Wt) was significantly increased (p < 0.001) in the intervention group (0 wk: 633.9 ± 8.5 vs. 12 wk 636.9 ± 8.4 in the intervention group; 0 wk: 638.6 ± 8.3 vs. 12 wk: 632.9 ± 8.1 in the control group). In subgroup analyses, significant differences remained only in subjects between 50 and 64 years of age. We concluded that leucine-enriched protein supplementation can have beneficial effects by preventing muscle loss, mainly for late middle-aged adults.
Collapse
Affiliation(s)
- Yeji Kang
- Department of Medical Nutrition, Kyung Hee University, Yong-in 17104, Korea; (Y.K.); (N.K.)
| | - Namhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yong-in 17104, Korea; (Y.K.); (N.K.)
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Yunhwan Lee
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon 16499, Korea; (Y.L.); (J.Y.)
| | - Jihye Yun
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon 16499, Korea; (Y.L.); (J.Y.)
| | - Seok Jun Park
- Health & Nutrition R&D Group, Maeil Dairies Co., Ltd., Pyeongtaek-si 17714, Korea; (S.J.P.); (H.S.P.)
| | - Hyoung Su Park
- Health & Nutrition R&D Group, Maeil Dairies Co., Ltd., Pyeongtaek-si 17714, Korea; (S.J.P.); (H.S.P.)
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Kyung Hee University, Yong-in 17104, Korea; (Y.K.); (N.K.)
| |
Collapse
|
62
|
Hannaian SJ, Hodson N, Abou Sawan S, Mazzulla M, Kato H, Matsunaga K, Waskiw-Ford M, Duncan J, Kumbhare DA, Moore DR. Leucine-enriched amino acids maintain peripheral mTOR-Rheb localization independent of myofibrillar protein synthesis and mTORC1 signaling postexercise. J Appl Physiol (1985) 2020; 129:133-143. [PMID: 32525432 DOI: 10.1152/japplphysiol.00241.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Postexercise protein ingestion can elevate rates of myofibrillar protein synthesis (MyoPS), mTORC1 activity, and mTOR translocation/protein-protein interactions. However, it is unclear if leucine-enriched essential amino acids (LEAA) can similarly facilitate intracellular mTOR trafficking in humans after exercise. The purpose of this study was to determine the effect of postexercise LEAA (4 g total EAAs, 1.6 g leucine) on acute MyoPS and mTORC1 translocation and signaling. Recreationally active men performed lower-body resistance exercise (5 × 8-10 leg press and leg extension) to volitional failure. Following exercise participants consumed LEAA (n = 8) or an isocaloric carbohydrate drink (PLA; n = 10). MyoPS was measured over 1.5-4 h of recovery by oral pulse of l-[ring-2H5]-phenylalanine. Phosphorylation of proteins in the mTORC1 pathway were analyzed via immunoblotting and mTORC1-LAMP2/WGA/Rheb colocalization via immunofluorescence microscopy. There was no difference in MyoPS between groups (LEAA = 0.098 ± 0.01%/h; PL = 0.090 ± 0.01%/h; P > 0.05). Exercise increased (P < 0.05) rpS6Ser240/244(LEAA = 35.3-fold; PLA = 20.6-fold), mTORSer2448(LEAA = 1.8-fold; PLA = 1.2-fold) and 4EBP1Thr37/46(LEAA = 1.5-fold; PLA = 1.4-fold) phosphorylation irrespective of nutrition (P > 0.05). LAT1 and SNAT2 protein expression were not affected by exercise or nutrient ingestion. mTOR-LAMP2 colocalization was greater in LEAA preexercise and decreased following exercise and supplement ingestion (P < 0.05), yet was unchanged in PLA. mTOR-WGA (cell periphery marker) and mTOR-Rheb colocalization was greater in LEAA compared with PLA irrespective of time-point (P < 0.05). In conclusion, the postexercise consumption of 4 g of LEAA maintains mTOR in peripheral regions of muscle fibers, in closer proximity to its direct activator Rheb, during prolonged recovery independent of differences in MyoPS or mTORC1 signaling compared with PLA ingestion. This intracellular localization of mTOR may serve to "prime" the kinase for future anabolic stimuli.NEW & NOTEWORTHY This is the first study to investigate whether postexercise leucine-enriched amino acid (LEAA) ingestion elevates mTORC1 translocation and protein-protein interactions in human skeletal muscle. Here, we observed that although LEAA ingestion did not further elevate postexercise MyoPS or mTORC1 signaling compared with placebo, mTORC1 peripheral location and interaction with Rheb were maintained. This may serve to "prime" mTORC1 for subsequent anabolic stimuli.
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Hiroyuki Kato
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Keiko Matsunaga
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Marcus Waskiw-Ford
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Justin Duncan
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| |
Collapse
|
63
|
Louis J, Vercruyssen F, Dupuy O, Bernard T. Nutrition for Master Athletes: Is There a Need for Specific Recommendations? J Aging Phys Act 2020; 28:489-498. [PMID: 31743086 DOI: 10.1123/japa.2019-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022]
Abstract
Master athletes are often considered exemplars of successful aging, thanks to their capacity to maintain a high sports performance during their entire life. A high training capacity, regular participation in sporting competitions, and delayed alterations in body composition and physiological capacities have been listed among the main factors contributing to impressive master athletes' performances. However, there is a paucity of data on the metabolism and dietary habits of master athletes, and the question of whether they need to adapt their nutrition to the aging process remains open. Herein, the authors presented a contemporary overview of the metabolic challenges associated with aging, including the risk of low energy availability, anabolic resistance, and periods of metabolic crisis due to forced immobilization. After assembling scientific evidence to show that master athletes must adapt their dietary intake, the authors proposed a summary of nutritional recommendations for master athletes and suggested the next stage of research.
Collapse
|
64
|
Hanson ED, Betik AC, Timpani CA, Tarle J, Zhang X, Hayes A. Testosterone suppression does not exacerbate disuse atrophy and impairs muscle recovery that is not rescued by high protein. J Appl Physiol (1985) 2020; 129:5-16. [PMID: 32463734 DOI: 10.1152/japplphysiol.00752.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Androgen deprivation therapy (ADT) decreases muscle mass, force, and physical activity levels, but it is unclear whether disuse atrophy and testosterone suppression are additive. Additionally, conflicting reports exist on load-mediated hypertrophy during ADT and if protein supplementation offsets these deficits. This study sought to determine the role of testosterone suppression and a high-protein diet on 1) immobilization-induced atrophy and 2) muscle regrowth during reloading. Eight-week-old male Fischer 344 rats underwent sham surgery (Sham), castration surgery (ORX), or ORX and a high-casein diet supplemented with branched-chain amino acids (BCAA) (ORX+CAS/AA) followed by 10 days of unilateral immobilization (IMM) and 0, 6, or 14 days of reloading. With IMM, body mass gains were ~8% greater than ORX and ORX+CAS/AA that increased to 15% during reloading (both P < 0.01). IMM reduced muscle mass by 11-34% (all P < 0.01) and extensor digitorum longus and soleus (SOL) force by 21% and 49% (both P < 0.01), respectively, with no group differences. During reloading, castration reduced gastrocnemius mass (~12%) at 6 days and SOL mass (~20%) and SOL force recovery (~46%) at 14 days relative to Sham (all P < 0.05). Specific force reduced castration deficits, indicating that muscle atrophy was a key contributor. IMM decreased SOL cross-sectional area by 30.3% (P < 0.001), with a trend for reduced regrowth in ORX and ORX+CAS/AA following reloading (P = 0.083). Castration did not exacerbate disuse atrophy but may impair recovery of muscle function, with no benefit from a CAS/AA diet during reloading. Examining functional outcomes in addition to muscle mass during dietary interventions provides novel insights into muscle regrowth during ADT.NEW & NOTEWORTHY Low testosterone levels during skeletal muscle disuse did not worsen declines in muscle mass and function, although hypogonadism may attenuate recovery during subsequent reloading. Diets high in casein did not improve outcomes during immobilization or reloading. Practical strategies are needed that do not compromise caloric intake yet provide effective protein doses to augment these adverse effects.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina.,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Andrew C Betik
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - John Tarle
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Xinmei Zhang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Baranauskas M, Jablonskienė V, Abaravičius JA, Stukas R. Actual Nutrition and Dietary Supplementation in Lithuanian Elite Athletes. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E247. [PMID: 32443812 PMCID: PMC7279379 DOI: 10.3390/medicina56050247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
Background and objectives: Health is partly determined by the state of one's nutrition; it stimulates the body's functional and metabolic adaptations to physical strain and helps one prevent sports injuries and get in shape in terms of body composition. This study aims to investigate the actual nutrition and dietary supplements taken by elite Lithuanian athletes and to identify the relationship between the dietary intake, dietary supplementation and body composition of elite athletes. Materials and Methods: The research subjects were 76.7% of Lithuanian elite athletes (N = 247). The actual diet was investigated using the 24 h recall dietary survey method. Dietary supplementation was studied applying the questionnaire method. Measurements of body composition were performed using the BIA (bioelectrical impedance analysis) tetra-polar electrodes and measuring resistivity with 8-12 tangent electrodes at different frequencies of signal: 5, 50 and 250 kHz. Results: Results indicate that among the athletes, 62% use too few carbohydrates and 77% use too much fat. Although the 3.5% increase in lean body mass (95% CI: -0.107, 7.070) helps gain an increased protein intake with food (p = 0.057), 38% of athletes consume too little protein with food. The athletes mostly use carbohydrates (86%), vitamins (81%), protein supplements (70%), and multivitamins (62%). We did not determine the impact (p > 0.05) of individual or complex supplement use on the lean body mass (%) or fat mass (%) values of athletes. Conclusions: Athletes consume insufficient carbohydrates, vitamin D, calcium, polyunsaturated fatty acids, omega-3 and omega-6 fatty acids and too much fat, saturated fatty acids, cholesterol, and they use proteins irrationally. Sport nutritionists should also focus on the risk of malnutrition for female athletes. Nutritional supplements partially offset macronutrient and micronutrient deficiency. Nevertheless, the effect of food supplements on the body composition of athletes is too small compared to the normal diet. Athletes ought to prioritize the formation of eating habits and only then use supplements.
Collapse
Affiliation(s)
- Marius Baranauskas
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.J.); (J.A.A.)
| | - Valerija Jablonskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.J.); (J.A.A.)
| | - Jonas Algis Abaravičius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.J.); (J.A.A.)
| | - Rimantas Stukas
- Department of Public Health, Institute of Health Sciences of the Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| |
Collapse
|
66
|
Stead CA, Hesketh SJ, Bennett S, Sutherland H, Jarvis JC, Lisboa PJ, Burniston JG. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes 2020; 8:proteomes8020010. [PMID: 32403418 PMCID: PMC7356555 DOI: 10.3390/proteomes8020010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography–tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05).
Collapse
Affiliation(s)
- Connor A. Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Samuel Bennett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Paulo J. Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
- Correspondence: ; Tel.: +44-(0)-151-904-6265
| |
Collapse
|
67
|
D'Hulst G, Soro-Arnaiz I, Masschelein E, Veys K, Fitzgerald G, Smeuninx B, Kim S, Deldicque L, Blaauw B, Carmeliet P, Breen L, Koivunen P, Zhao SM, De Bock K. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat Commun 2020; 11:174. [PMID: 31924757 PMCID: PMC6954236 DOI: 10.1038/s41467-019-13889-6] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
mTORC1 is an important regulator of muscle mass but how it is modulated by oxygen and nutrients is not completely understood. We show that loss of the prolyl hydroxylase domain isoform 1 oxygen sensor in mice (PHD1KO) reduces muscle mass. PHD1KO muscles show impaired mTORC1 activation in response to leucine whereas mTORC1 activation by growth factors or eccentric contractions was preserved. The ability of PHD1 to promote mTORC1 activity is independent of its hydroxylation activity but is caused by decreased protein content of the leucyl tRNA synthetase (LRS) leucine sensor. Mechanistically, PHD1 interacts with and stabilizes LRS. This interaction is promoted during oxygen and amino acid depletion and protects LRS from degradation. Finally, elderly subjects have lower PHD1 levels and LRS activity in muscle from aged versus young human subjects. In conclusion, PHD1 ensures an optimal mTORC1 response to leucine after episodes of metabolic scarcity. mTORC1 is an important regulator of muscle mass. Here, the authors show that the PHD1 controls muscle mass in a hydroxylation-independent manner. PHD1 prevents the degradation of leucine sensor LRS during oxygen and amino acid depletion to ensure effective mTORC1 activation in response to leucine.
Collapse
Affiliation(s)
- Gommaar D'Hulst
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Evi Masschelein
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Koen Veys
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gillian Fitzgerald
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, South Korea
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Bert Blaauw
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Shi-Min Zhao
- Obstetrics and Gynaecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, P. R. China.,Institute of Biomedical Science, Fudan University, Shanghai, P. R. China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Katrien De Bock
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
68
|
Hodson N, West DWD, Philp A, Burd NA, Moore DR. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol 2019; 317:C1061-C1078. [PMID: 31461340 DOI: 10.1152/ajpcell.00209.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle mass, a strong predictor of longevity and health in humans, is determined by the balance of two cellular processes, muscle protein synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly sensitive to changes in mechanical load and/or nutritional status; therefore, much research has focused on understanding the molecular mechanisms that underpin this cellular process. Furthermore, older individuals display an attenuated MPS response to anabolic stimuli, termed anabolic resistance, which has a negative impact on muscle mass and function, as well as quality of life. Therefore, an understanding of which, if any, molecular mechanisms contribute to anabolic resistance of MPS is of vital importance in formulation of therapeutic interventions for such populations. This review summarizes the current knowledge of the mechanisms that underpin MPS, which are broadly divided into mechanistic target of rapamycin complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogenesis-related, and describes the evidence that shows how they are regulated by anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This review also summarizes evidence regarding which of these mechanisms may be implicated in age-related skeletal muscle anabolic resistance and provides recommendations for future avenues of research that can expand our knowledge of this area.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
69
|
Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J Nutr 2019; 149:1149-1158. [PMID: 31095313 PMCID: PMC7443767 DOI: 10.1093/jn/nxz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | | | | | - Christopher S Fry
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Kyosuke Nakayama
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX,Address correspondence to BBR (e-mail: )
| |
Collapse
|
70
|
Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel) 2019; 7:E154. [PMID: 31247944 PMCID: PMC6680710 DOI: 10.3390/sports7070154] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10-20%) should be consumed with a target weight gain of ~0.25-0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6-2.2 g/kg/day) should be consumed with optimal amounts 0.40-0.55 g/kg per meal and distributed evenly throughout the day (3-6 meals) including within 1-2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5-1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3-5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3-5 g/day), caffeine (5-6 mg/kg), beta-alanine (3-5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Collapse
Affiliation(s)
- Juma Iraki
- Iraki Nutrition AS, 2008 Fjerdingby, Norway.
| | | | | | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of Technology, Auckland 0632, New Zealand
| |
Collapse
|
71
|
Burd NA, McKenna CF, Salvador AF, Paulussen KJ, Moore DR. Dietary Protein Quantity, Quality, and Exercise Are Key to Healthy Living: A Muscle-Centric Perspective Across the Lifespan. Front Nutr 2019; 6:83. [PMID: 31245378 PMCID: PMC6563776 DOI: 10.3389/fnut.2019.00083] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
A healthy eating pattern, regardless of age, should consist of ingesting high quality protein preferably in adequate amounts across all meals throughout the day. Of particular relevance to overall health is the growth, development, and maintenance of skeletal muscle tissue. Skeletal muscle not only contributes to physical strength and performance, but also contributes to efficient macronutrient utilization and storage. Achieving an optimal amount of muscle mass begins early in life with transitions to "steady-state" maintenance as an adult, and then safeguarding against ultimate decline of muscle mass with age, all of which are influenced by physical activity and dietary (e.g., protein) factors. Current protein recommendations, as defined by recommended dietary allowances (RDA) for the US population or the population reference intakes (PRI) in Europe, are set to cover basic needs; however, it is thought that a higher protein intake might be necessary for optimizing muscle mass, especially for adults and individuals with an active lifestyle. It is necessary to balance the accurate assessment of protein quality (e.g., digestible indispensable amino acid score; DIAAS) with methods that provide a physiological correlate (e.g., established measures of protein synthesis, substrate oxidation, lean mass retention, or accrual, etc.) in order to accurately define protein requirements for these physiological outcomes. Moreover, current recommendations need to shift from single nutrient guidelines to whole food based guidelines in order to practically acknowledge food matrix interactions and other required nutrients for potentially optimizing the health effects of food. The aim of this paper is to discuss protein quality and amount that should be consumed with consideration to the presence of non-protein constituents within a food matrix and potential interactions with physical activity to maximize muscle mass throughout life.
Collapse
Affiliation(s)
- Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Kevin J.M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
72
|
Kim M, Yoo HJ, Ko J, Lee JH. Metabolically unhealthy overweight individuals have high lysophosphatide levels, phospholipase activity, and oxidative stress. Clin Nutr 2019; 39:1137-1145. [PMID: 31053511 DOI: 10.1016/j.clnu.2019.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND & AIMS Metabolically unhealthy overweight (MUO) individuals and metabolically healthy overweight (MHO) individuals differ in biomarkers of atherogenesis. Metabolomic approaches enable studies of the metabolic variables underlying these differences. METHODS We determined the metabolomes in plasma samples from 34 MUO and 34 MHO individuals matched for sex, age, and body mass index (BMI) to identify potential metabolic markers or pathways associated with atherogenic traits. RESULTS This analysis revealed that the MUO group had significantly higher levels of glycolic acid, 6 lysophosphatidylethanolamines (lysoPEs), and 12 lysophosphatidylcholines (lysoPCs). Although the two groups had similar total body fat percentages and lean body masses, MUO individuals had larger visceral fat areas (VFAs). They also had greater circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and higher levels of oxidized low-density lipoprotein (ox-LDL) and urinary 8-epi-prostaglandin F2α (8-epi-PGF2α), reflecting higher risks for oxidative and lipid-related tissue damage. The following measures were positively correlated: VFA and ox-LDL; ox-LDL and Lp-PLA2 activity; and lysoPC, lysoPE, and 8-epi-PGF2α levels. Chronic plasma lysoPC increases were associated with atherogenic traits, higher levels of mean ox-LDL, 8-epi-PGF2α, Lp-PLA2, and visceral fat accumulation in MUO compared to MHO individuals. CONCLUSIONS This panel of plasma metabolites distinguishes MUO from MHO individuals and will enable future research on fat dysregulation and obesity.
Collapse
Affiliation(s)
- Minjoo Kim
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon, Republic of Korea
| | - Hye Jin Yoo
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juyeon Ko
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea; National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Ho Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea; National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea; Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
73
|
Specific Collagen Peptides in Combination with Resistance Training Improve Body Composition and Regional Muscle Strength in Premenopausal Women: A Randomized Controlled Trial. Nutrients 2019; 11:nu11040892. [PMID: 31010031 PMCID: PMC6521629 DOI: 10.3390/nu11040892] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
The aim was to investigate the effects of resistance exercise combined with supplementation of specific collagen peptides (SCP) on body composition and muscle strength in premenopausal women. In a double-blind, placebo-controlled, randomized trial 77 premenopausal women completed a 12-week resistance training (3 day/week) and ingested 15 g of SCP or placebo on a daily basis. Changes in body composition were determined by bioelectrical impedance analysis (BIA) and muscular strength by isometric strength testing. The treatment group (TG) significantly increased (p < 0.001) their percentage of fat-free mass. Although the control group (CG) also showed a significant (p < 0.01) gain in fat-free mass from pre- to post-training, the increase in the TG was significantly higher in an RMANOVA analysis (p < 0.05). Regarding the change in percentage body fat, a significant decline was observed in both TG (p < 0.001) and CG (p < 0.01), with a significantly higher reduction in the TG (p < 0.05). Subjects receiving 15 g of collagen peptides daily also showed a significantly higher gain in hand-grip strength compared to those performing resistance training only (p < 0.05). In both groups, the gain in leg strength (TG = p < 0.001; CG = p < 0.01) was significant after 12 weeks with a more pronounced effect in the treatment group. In conclusion, resistance training in combination with supplementation of SCP induced a significantly higher increase in fat-free mass and hand-grip strength than resistance training and placebo supplementation. In addition, there was a significantly higher loss in fat mass and a more pronounced increase in leg strength in the treatment group compared to the control group.
Collapse
|
74
|
Sánchez-Oliver AJ, Grimaldi-Puyana M, Domínguez R. Evaluation and Behavior of Spanish Bodybuilders: Doping and Sports Supplements. Biomolecules 2019; 9:biom9040122. [PMID: 30925786 PMCID: PMC6523090 DOI: 10.3390/biom9040122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/04/2023] Open
Abstract
The use of doping agents has these days become a public health problem, as it also affects young and non-competitive amateurs in different sports. To prepare for competition, bodybuilders perform aggressive dietary protocols, so, bodybuilders frequently consume nutritional supplements (NS) and banned substances in large dosages. Thus, the aim of this study is to analyze the prevalence of banned substances consumption and NS intake in competitive level bodybuilders. A total of 48 bodybuilders (44 males and 4 females) completed a validated online questionnaire on NS consumption. The quantitative data was presented as a mean (M) ± standard deviation (SD), as well as having minimum and maximum values. The categorical variables were expressed using frequencies and percentages. 83.3% of the participants declared that they had consumed or would consume banned substances, the most consumed being anabolic steroids (72.9%). One hundred percent of those sampled use NS. Whey protein (96%), branched-chain amino acids (BCAA) (94%), creatine (85%) and vitamin complexes (83%) were the most consumed, however, there is a low consumption of certain NS which could also increase athletic performance.
Collapse
Affiliation(s)
| | - Moisés Grimaldi-Puyana
- Department of Physical Education and Sports, Faculty of Educational Sciences, University of Seville, 41013 Seville, Spain.
| | - Raúl Domínguez
- Faculty of Health Sciences of Universidad Isabel I, Universidad Isabel I, 09004 Burgos, Spain.
| |
Collapse
|
75
|
Snijders T, Trommelen J, Kouw IWK, Holwerda AM, Verdijk LB, van Loon LJC. The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Front Nutr 2019; 6:17. [PMID: 30895177 PMCID: PMC6415027 DOI: 10.3389/fnut.2019.00017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review provides an update on recent research assessing the effect of pre-sleep protein ingestion on muscle protein synthesis rates during overnight sleep and the skeletal muscle adaptive response to exercise training. Protein ingested prior to sleep is effectively digested and absorbed during overnight sleep, thereby increasing overnight muscle protein synthesis rates. Protein consumption prior to sleep does not appear to reduce appetite during breakfast the following day and does not change resting energy expenditure. When applied over a prolonged period of resistance-type exercise training, pre-sleep protein supplementation has a beneficial effect on the increase in muscle mass and strength. Protein ingestion before sleep is hypothesized to represent an effective nutritional strategy to preserve muscle mass in the elderly, especially when combined with physical activity or muscle contraction by means of neuromuscular electrical stimulation. In conclusion, protein ingestion prior to sleep is an effective interventional strategy to increase muscle protein synthesis rates during overnight sleep and can be applied to support the skeletal muscle adaptive response to resistance-type exercise training.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
| |
Collapse
|
76
|
Hodson N, Philp A. The Importance of mTOR Trafficking for Human Skeletal Muscle Translational Control. Exerc Sport Sci Rev 2019; 47:46-53. [PMID: 30334852 PMCID: PMC6310455 DOI: 10.1249/jes.0000000000000173] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review will critique cell, rodent, and human models of mTOR regulation to discuss why mTOR trafficking may represent a novel and physiologically relevant model of regulation in skeletal muscle. The mechanistic target of rapamycin (mTOR) is a central regulator of muscle protein synthesis, and its activation has long been attributed to its translocation to the lysosome. Here, we present a novel model of mTOR activation in skeletal muscle where the translocation of mTOR and the lysosome toward the cell membrane is a key process in mTOR activation.
Collapse
Affiliation(s)
- Nathan Hodson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
77
|
Bowden Davies KA, Pickles S, Sprung VS, Kemp GJ, Alam U, Moore DR, Tahrani AA, Cuthbertson DJ. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab 2019; 10:2042018819888824. [PMID: 31803464 PMCID: PMC6878603 DOI: 10.1177/2042018819888824] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although the health benefits of regular physical activity and exercise are well established and have been incorporated into national public health recommendations, there is a relative lack of understanding pertaining to the harmful effects of physical inactivity. Experimental paradigms including complete immobilization and bed rest are not physiologically representative of sedentary living. A useful 'real-world' approach to contextualize the physiology of societal downward shifts in physical activity patterns is that of short-term daily step reduction. RESULTS Step-reduction studies have largely focused on musculoskeletal and metabolic health parameters, providing relevant disease models for metabolic syndrome, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), sarcopenia and osteopenia/osteoporosis. In untrained individuals, even a short-term reduction in physical activity has a significant impact on skeletal muscle protein and carbohydrate metabolism, causing anabolic resistance and peripheral insulin resistance, respectively. From a metabolic perspective, short-term inactivity-induced peripheral insulin resistance in skeletal muscle and adipose tissue, with consequent liver triglyceride accumulation, leads to hepatic insulin resistance and a characteristic dyslipidaemia. Concomitantly, various inactivity-related factors contribute to a decline in function; a reduction in cardiorespiratory fitness, muscle mass and muscle strength. CONCLUSIONS Physical inactivity maybe particularly deleterious in certain patient populations, such as those at high risk of T2D or in the elderly, considering concomitant sarcopenia or osteoporosis. The effects of short-term physical inactivity (with step reduction) are reversible on resumption of habitual physical activity in younger people, but less so in older adults. Nutritional interventions and resistance training offer potential strategies to prevent these deleterious metabolic and musculoskeletal effects. IMPACT Individuals at high risk of/with cardiometabolic disease and older adults may be more prone to these acute periods of inactivity due to acute illness or hospitalization. Understanding the risks is paramount to implementing countermeasures.
Collapse
Affiliation(s)
| | - Samuel Pickles
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Victoria S. Sprung
- Research Institute for Sport and Exercise
Science, Liverpool John Moores University, Liverpool, UK
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Graham J. Kemp
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Liverpool Magnetic Resonance Imaging Centre
(LiMRIC), University of Liverpool, Liverpool, UK
| | - Uazman Alam
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
- Pain Research Institute, University of
Liverpool, Liverpool, UK
- Division of Endocrinology, Diabetes and
Gastroenterology, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Royal
Liverpool and Broadgreen University NHS Hospitals Trust, Liverpool, UK
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education,
University of Toronto, Toronto, ON, Canada
| | - Abd A. Tahrani
- Institute of Metabolism and Systems Research,
College of Medical and Dental Sciences, University of Birmingham,
Birmingham, UK
- Centre of Endocrinology, Diabetes and
Metabolism (CEDAM), Birmingham Health Partners, Birmingham UK
- Department of Diabetes and Endocrinology,
University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel J. Cuthbertson
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
78
|
Apweiler E, Wallace D, Stansfield S, Allerton DM, Brown MA, Stevenson EJ, Clifford T. Pre-Bed Casein Protein Supplementation Does Not Enhance Acute Functional Recovery in Physically Active Males and Females When Exercise is Performed in the Morning. Sports (Basel) 2018; 7:sports7010005. [PMID: 30597848 PMCID: PMC6359469 DOI: 10.3390/sports7010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/17/2023] Open
Abstract
This study examined whether consuming casein protein (CP) pre-sleep could accelerate acute recovery following muscle-damaging exercise. Thirty-nine active males and females performed 100 drop jumps in the morning, consumed their habitual diet during the day, and then within 30 min pre-bed consumed either ~40 g of CP (n = 19) or ~40 g of a carbohydrate-only control (CON) (n = 20). Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), pressure-pain threshold (PPT), subjective muscle soreness and the brief assessment of mood adapted (BAM+) were measured pre, 24 and 48 h following the drop jumps. MIVC decreased in CP and CON post-exercise, peaking at 24 h post (CP: -8.5 ± 3.5 vs. CON: -13.0 ± 2.9%, respectively); however, no between-group differences were observed (p = 0.486; ηp² =0.02). There were also no group differences in the recovery of CMJ height, PPT and BAM+ (p > 0.05). Subjective muscle soreness increased post-exercise, but no group differences were present at 24 h (CP: 92 ± 31 mm vs. CON: 90 ± 46 mm) or 48 h (CP: 90 ± 44 mm vs. CON: 80 ± 58 mm) (p > 0.05). These data suggest that pre-bed supplementation with ~40 g of CP is no more beneficial than CON for accelerating the recovery following muscle-damaging exercise.
Collapse
Affiliation(s)
- Eva Apweiler
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands.
| | - David Wallace
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands.
| | - Sarah Stansfield
- School of Biomedical Sciences, Newcastle University, Newcastle NE2 4HH, UK.
| | - Dean M Allerton
- School of Biomedical Sciences, Newcastle University, Newcastle NE2 4HH, UK.
| | - Meghan A Brown
- School of Sport and Exercise, University of Gloucestershire, Gloucester GL2 9HW, UK.
| | - Emma J Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK.
| | - Tom Clifford
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK.
| |
Collapse
|
79
|
Liao CD, Lee PH, Hsiao DJ, Huang SW, Tsauo JY, Chen HC, Liou TH. Effects of Protein Supplementation Combined with Exercise Intervention on Frailty Indices, Body Composition, and Physical Function in Frail Older Adults. Nutrients 2018; 10:E1916. [PMID: 30518122 PMCID: PMC6315527 DOI: 10.3390/nu10121916] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Aging poses a high risk of lean mass loss, which can be effectively improved through resistance exercise training (RET), or multicomponent exercise training (MET) as well as nutrition supplementation, such as protein supplementation (PS). This study investigated the effects of PS plus exercise training on frail older individuals. A comprehensive search of online databases was performed to identify randomized controlled trials (RCTs) that reported the efficacy of PS combined with RET or MET in frail older individuals. The included RCTs were analyzed through a meta-analysis and risk-of-bias assessment. We finally included 22 RCTs in the meta-analysis, with a mean (range/total) Physiotherapy Evidence Database score of 6.7 (4⁻9/10). PS plus exercise training significantly improved the frailty status (odds ratio = 2.77; p = 0.006), lean mass (standard mean difference (SMD) = 0.52; p < 0.00001), leg strength (SMD = 0.37; p < 0.00001), and walking speed (SMD = 0.32; p = 0.002). Subgroup analyses revealed that PS plus MET exert significant effects on frailty indices, whereas PS plus RET further improves lean mass. Our findings suggest that PS plus RET as well as MET is effective in improving frailty status, lean mass, muscle strength, and physical mobility in frail older individuals.
Collapse
Affiliation(s)
- Chun-De Liao
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
| | - Pi-Hsia Lee
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 10675, Taiwan.
| | - Dun-Jen Hsiao
- School and Graduate Institute of Nutrition Science, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan.
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33371, Taiwan.
| | - Jau-Yih Tsauo
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan.
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan.
- Obesity Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 23561, Taiwan.
| |
Collapse
|
80
|
Hong AR, Kim SW. Effects of Resistance Exercise on Bone Health. Endocrinol Metab (Seoul) 2018; 33:435-444. [PMID: 30513557 PMCID: PMC6279907 DOI: 10.3803/enm.2018.33.4.435] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
The prevalence of chronic diseases including osteoporosis and sarcopenia increases as the population ages. Osteoporosis and sarcopenia are commonly associated with genetics, mechanical factors, and hormonal factors and primarily associated with aging. Many older populations, particularly those with frailty, are likely to have concurrent osteoporosis and sarcopenia, further increasing their risk of disease-related complications. Because bones and muscles are closely interconnected by anatomy, metabolic profile, and chemical components, a diagnosis should be considered for both sarcopenia and osteoporosis, which may be treated with optimal therapeutic interventions eliciting pleiotropic effects on both bones and muscles. Exercise training has been recommended as a promising therapeutic strategy to encounter the loss of bone and muscle mass due to osteosarcopenia. To stimulate the osteogenic effects for bone mass accretion, bone tissues must be exposed to mechanical load exceeding those experienced during daily living activities. Of the several exercise training programs, resistance exercise (RE) is known to be highly beneficial for the preservation of bone and muscle mass. This review summarizes the mechanisms of RE for the preservation of bone and muscle mass and supports the clinical evidences for the use of RE as a therapeutic option in osteosarcopenia.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
81
|
Oikawa SY, McGlory C, D'Souza LK, Morgan AK, Saddler NI, Baker SK, Parise G, Phillips SM. A randomized controlled trial of the impact of protein supplementation on leg lean mass and integrated muscle protein synthesis during inactivity and energy restriction in older persons. Am J Clin Nutr 2018; 108:1060-1068. [PMID: 30289425 DOI: 10.1093/ajcn/nqy193] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Background In older persons, muscle loss is accelerated during physical inactivity and hypoenergetic states, both of which are features of hospitalization. Protein supplementation may represent a strategy to offset the loss of muscle during inactivity, and enhance recovery on resumption of activity. Objective We aimed to determine if protein supplementation, with proteins of substantially different quality, would alleviate the loss of lean mass by augmenting muscle protein synthesis (MPS) while inactive during a hypoenergetic state. Design Participants (16 men, mean ± SD age: 69 ± 3 y; 15 women, mean ± SD age: 68 ± 4 y) consumed a diet containing 1.6 g protein · kg-1 · d-1, with 55% ± 9% of protein from foods and 45% ± 9% from supplements, namely, whey protein (WP) or collagen peptides (CP): 30 g each, consumed 2 times/d. Participants were in energy balance (EB) for 1 wk, then began a period of energy restriction (ER; -500 kcal/d) for 1 wk, followed by ER with step reduction (ER + SR; <750 steps/d) for 2 wk, before a return to habitual activity in recovery (RC) for 1 wk. Results There were significant reductions in leg lean mass (LLM) from EB to ER, and from ER to ER + SR in both groups (P < 0.001) with no differences between WP and CP or when comparing the change from phase to phase. During RC, LLM increased from ER + SR, but in the WP group only. Rates of integrated muscle protein synthesis decreased during ER and ER + SR in both groups (P < 0.01), but increased during RC only in the WP group (P = 0.05). Conclusions Protein supplementation did not confer a benefit in protecting LLM, but only supplemental WP augmented LLM and muscle protein synthesis during recovery from inactivity and a hypoenergetic state. This trial was registered at http://www.clinicaltrials.gov as NCT03285737.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Lisa K D'Souza
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Adrienne K Morgan
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Nelson I Saddler
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Steven K Baker
- Department of Neurology, Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
82
|
Mazzulla M, Volterman KA, Packer JE, Wooding DJ, Brooks JC, Kato H, Moore DR. Whole-body net protein balance plateaus in response to increasing protein intakes during post-exercise recovery in adults and adolescents. Nutr Metab (Lond) 2018; 15:62. [PMID: 30258470 PMCID: PMC6154919 DOI: 10.1186/s12986-018-0301-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 01/27/2023] Open
Abstract
Background Muscle protein synthesis and muscle net balance plateau after moderate protein ingestion in adults. However, it has been suggested that there is no practical limit to the anabolic response of whole-body net balance to dietary protein. Moreover, limited research has addressed the anabolic response to dietary protein in adolescents. The present study determined whether whole-body net balance plateaued in response to increasing protein intakes during post-exercise recovery and whether there were age- and/or sex-related dimorphisms in the anabolic response. Methods Thirteen adults [7 males (M), 6 females (F)] and 14 adolescents [7 males (AM), 7 females (AF) within ~ 0.4 y from peak height velocity] performed ~ 1 h variable intensity exercise (i.e., Loughborough Intermittent Shuttle Test) prior to ingesting hourly mixed meals that provided a variable amount of protein (0.02-0.25 g·kg- 1·h- 1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled noninvasively with oral L-[1-13C]phenylalanine. Breath and urine samples were taken at plateau to determine phenylalanine oxidation and flux (estimate of protein breakdown), respectively. Whole-body net balance was determined by the difference between protein synthesis (flux - oxidation) and protein breakdown. Total amino acid oxidation was estimated from the ratio of urinary urea/creatinine. Results Mixed model biphasic linear regression explained a greater proportion of net balance variance than linear regression (all, r 2 ≥ 0.56; P < 0.01), indicating an anabolic plateau. Net balance was maximized at ~ 0.15, 0.12, 0.12, and 0.11 g protein·kg- 1·h- 1 in M, F, AM, and AF, respectively. When collapsed across age, the y-intercept (net balance at very low protein intake) was greater (overlapping CI did not contain zero) in adolescents vs. adults. Urea/creatinine excretion increased linearly (all, r ≥ 0.76; P < 0.01) across the range of protein intakes. At plateau, net balance was greater (P < 0.05) in AM vs. M. Conclusions Our data suggest there is a practical limit to the anabolic response to protein ingestion within a mixed meal and that higher intakes lead to deamination and oxidation of excess amino acids. Consistent with a need to support lean mass growth, adolescents appear to have greater anabolic sensitivity and a greater capacity to assimilate dietary amino acids than adults.
Collapse
Affiliation(s)
- Michael Mazzulla
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Kimberly A Volterman
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Jeff E Packer
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Denise J Wooding
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Jahmal C Brooks
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Hiroyuki Kato
- 2Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Japan
| | - Daniel R Moore
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| |
Collapse
|
83
|
Effects of Whey Protein Supplementation Associated With Resistance Training on Muscular Strength, Hypertrophy, and Muscle Quality in Preconditioned Older Women. Int J Sport Nutr Exerc Metab 2018; 28:528-535. [PMID: 29252039 DOI: 10.1123/ijsnem.2017-0253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to investigate the effect of whey protein (WP) supplementation on muscular strength, hypertrophy, and muscular quality in older women preconditioned to resistance training (RT). In a randomized, double-blind, and placebo (PLA)-controlled design, 31 older women (67.4 ± 4.0 years, 62.0 ± 6.9 kg, 155.9 ± 5.7 cm, and 25.5 ± 2.4 kg/m2) received either 35 g of WP (n = 15) or 35 g of PLA (n = 16) over a 12-week study period while performing an RT program three times a week. Dietary intake, one-repetition maximum test, and skeletal muscle mass by dual-energy X-ray absorptiometry were assessed before and after the intervention period. Both groups showed significant (p < .05) improvements in skeletal muscle mass and total strength, and the WP group realized greater increases (p < .05) in these measures compared with PLA (skeletal muscle mass: WP = +4.8% vs. PLA = +2.3%; strength: WP = +8.7% vs. PLA = +4.9%). Muscular quality increased (p < .05) in both groups (WP = +2.9% vs. PLA = +1.5%) without statistical differences (p > .05) noted between conditions. We conclude that WP supplementation in combination with RT induces higher increases in both strength and hypertrophy in older women preconditioned to RT.
Collapse
|
84
|
Nutritionally non-essential amino acids are dispensable for whole-body protein synthesis after exercise in endurance athletes with an adequate essential amino acid intake. Amino Acids 2018; 50:1679-1684. [PMID: 30145710 DOI: 10.1007/s00726-018-2639-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
The increased protein requirement of endurance athletes may be related to the need to replace exercise-induced oxidative losses, especially of the branched-chain amino acids (BCAA). However, it is unknown if non-essential amino acids (NEAA) influence the requirement for essential amino acids (EAA) during post-exercise recovery. Seven endurance-trained males ran 20 km prior to consuming [13C]phenylalanine, sufficient energy, and: (1) deficient protein (BASE); (2) BASE supplemented with sufficient BCAA (BCAAsup); (3) an equivalent EAA intake as BCAA (LowEAA), and; (4) sufficient EAA intake (HighEAA). [13C]Phenylalanine oxidation (the reciprocal of protein synthesis) for BCAAsup and HighEAA (0.54 ± 0.15, 0.49 ± 0.11 µmol kg-1 h-1; Mean ± SD) were significantly lower than BASE (0.74 ± 0.14 µmol kg-1 h-1; P < 0.01 for both) and LowEAA (0.70 ± 0.11 µmol kg-1 h-1; P < 0.05 and 0.01, respectively). Our results suggest that exogenous NEAA are dispensable for whole-body protein synthesis during recovery from endurance exercise provided sufficient EAA are consumed. Endurance athletes who may be at risk of not meeting their elevated protein requirements should prioritize the intake of EAA-enriched foods and/or supplements.
Collapse
|
85
|
Blunted satellite cell response is associated with dysregulated IGF-1 expression after exercise with age. Eur J Appl Physiol 2018; 118:2225-2231. [PMID: 30062517 DOI: 10.1007/s00421-018-3954-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like growth factor-1 (IGF-1) regulates protein synthesis and cell cycle kinetics. Given that aging is associated with anabolic resistance, we sought to determine if the attenuated exercise-induced satellite cell (SC) expression in older muscle is associated with a blunted IGF-1 response. METHODS SC expression (Pax7+ cells) and protein (Western blot) and mRNA (RT-PCR) expression of IGF-1 splice variants and ubiquitous (IGFBP4) and muscle-specific (IGFBP3 and -5) IGF-1 binding proteins were measured in skeletal muscle of young (Y: 22 ± 2, n = 7) and older (O: 70 ± 2, n = 7) adults up to 48 h after an acute bout of resistance exercise. RESULTS SC expression was greater in Y compared to O (age; P < 0.01) and increased (interaction; P < 0.05) by 24 h after exercise in Y only. IGF-1Ea and IGF-1Eb mRNA tended to be greater in O (age; P < 0.06-0.09). IGF-1Eb mRNA increased at 48 h (time; P < 0.05), whereas IGF-1Ec mRNA increased (interaction; P < 0.05) at 24 and 48 h in O only. IGF binding protein (IGFBP)4 mRNA was greater (age; P < 0.01) in O with the increase at 24 h and 48 h (time; P < 0.01) primarily driven by changes in O (interaction; P < 0.01). Despite IGFBP3 mRNA being greater in O (age; P < 0.01) and increasing at 48 h (time; P < 0.01), there was no effect of age or exercise on IGFBP3 protein expression. In contrast, IGFBP5 mRNA was greater (age; P < 0.01) despite IGFBP5 protein expression being lower (age; P < 0.01) in O compared to Y. CONCLUSIONS The greater muscle-specific expression of IGF-1 family members with a blunted post-exercise SC expression may be a compensatory attempt to rescue age-related anabolic resistance.
Collapse
|
86
|
Fernandes AL, Hayashi AP, Jambassi-Filho JC, de Capitani MD, de Santana DA, Gualano B, Roschel H. Different protein and derivatives supplementation strategies combined with resistance training in pre-frail and frail elderly: Rationale and protocol for the "Pro-Elderly" Study. Nutr Health 2018; 23:251-260. [PMID: 29214924 DOI: 10.1177/0260106017737465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Frailty is a multifactorial geriatric syndrome characterized by progressive decline in health and associated with decreased muscle mass, strength, and functional capacity. Resistance training (RT) combined with protein or amino acids supplementation has been shown to be promising for mitigating age-related impairments. AIM To investigate the chronic effects of different strategies of protein and derivatives supplementation in association with RT on selected health-related parameters in pre-frail and frail elderly. METHODS This is a series of double-blind, randomized, placebo-controlled, parallel-group clinical trials. Volunteers will be divided into nine groups, comprising four different sub-studies evaluating the effects of: isolated leucine supplementation (study 1); protein source (whey vs. soy - study 2); combination of whey protein and creatine (study 3); and sexual dimorphism on the response to protein intake and RT (males vs. females - study 4). Muscle cross-sectional area, fiber cross-sectional area, body composition, lower-limb maximal dynamic and isometric strength, functionality, lipid profile, biochemical parameters, renal function, quality of life, and nutritional status will be assessed before and after a 16-week intervention period. Data will be tested for normality and a mixed-model for repeated measures will be conducted to assess within- and between-group effects of the intervention on the dependent variables. Confidence intervals (95%), effect sizes, and relative changes will also be determined, with significance set at p < 0.05.
Collapse
Affiliation(s)
- Alan Lins Fernandes
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Ana Paula Hayashi
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - José Claudio Jambassi-Filho
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Mariana Dutilh de Capitani
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Davi Alves de Santana
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Bruno Gualano
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Hamilton Roschel
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| |
Collapse
|
87
|
Franzke B, Neubauer O, Cameron-Smith D, Wagner KH. Dietary Protein, Muscle and Physical Function in the Very Old. Nutrients 2018; 10:E935. [PMID: 30037048 PMCID: PMC6073115 DOI: 10.3390/nu10070935] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
There is an ongoing debate as to the optimal protein intake in older adults. An increasing body of experimental studies on skeletal muscle protein metabolism as well as epidemiological data suggest that protein requirements with ageing might be greater than many current dietary recommendations. Importantly, none of the intervention studies in this context specifically investigated very old individuals. Data on the fastest growing age group of the oldest old (aged 85 years and older) is very limited. In this review, we examine the current evidence on protein intake for preserving muscle mass, strength and function in older individuals, with emphasis on data in the very old. Available observational data suggest beneficial effects of a higher protein intake with physical function in the oldest old. Whilst, studies estimating protein requirements in old and very old individuals based on whole-body measurements, show no differences between these sub-populations of elderly. However, small sample sizes preclude drawing firm conclusions. Experimental studies that compared muscle protein synthetic (MPS) responses to protein ingestion in young and old adults suggest that a higher relative protein intake is required to maximally stimulate skeletal muscle MPS in the aged. Although, data on MPS responses to protein ingestion in the oldest old are currently lacking. Collectively, the data reviewed for this article support the concept that there is a close interaction of physical activity, diet, function and ageing. An attractive hypothesis is that regular physical activity may preserve and even enhance the responsiveness of ageing skeletal muscle to protein intake, until very advanced age. More research involving study participants particularly aged ≥85 years is warranted to better investigate and determine protein requirements in this specific growing population group.
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
| | - Oliver Neubauer
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
- School of Biomedical Sciences, Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
88
|
Kato H, Suzuki K, Bannai M, Moore DR. Branched-Chain Amino Acids Are the Primary Limiting Amino Acids in the Diets of Endurance-Trained Men after a Bout of Prolonged Exercise. J Nutr 2018; 148:925-931. [PMID: 29746639 DOI: 10.1093/jn/nxy048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background The indicator amino acid oxidation (IAAO) method estimates the protein intake required to maximize whole-body protein synthesis and identify the daily protein requirement in a variety of populations. However, it is unclear whether the greater requirements for endurance athletes previously determined by the IAAO reflect an increased demand for all or only some amino acids. Objective The aim of this study was to determine the primary rate-limiting amino acids in endurance-trained athletes after prolonged exercise, by measuring the oxidation of ingested [1-13C]phenylalanine in response to variable amino acid intake. Methods Five endurance-trained men (means ± SDs: age, 26 ± 7 y; body weight, 66.9 ± 9.5 kg; maximal oxygen consumption, 63.3 ± 4.3 mL · kg-1 · min-1) performed 5 trials that involved 2 d of controlled diet (1.4 g protein · kg-1 · d-1) and running (10 km on day 1 and 5 km on day 2) prior to performing an acute bout of endurance exercise (20-km treadmill run) on day 3. During recovery on day 3, participants consumed test diets as 8 isocaloric hourly meals providing sufficient energy and carbohydrate but a variable amino acid intake. The test diets, consumed in random order, were deficient (BASE: 0.8 g · kg-1 · d-1) and sufficient (SUF; 1.75 g · kg-1 · d-1) amino acid diets modeled after egg protein, and BASE supplemented with branched-chain amino acids (BCAA diet; 1.03 g · kg-1 · d-1), essential amino acids (EAA diet; 1.23 g · kg-1 · d-1), or nonessential amino acids (NEAA diet; 1.75 g · kg-1 · d-1). Whole-body phenylalanine flux (Q), 13CO2 excretion (F13CO2), and phenylalanine oxidation (OX) were determined according to standard IAAO methodology. Results There was no effect of amino acid intake on Q (P = 0.43). F13CO2 was significantly (all P < 0.01) lower than BASE for the BCAA (∼32%), EAA (∼31%), and SUF (∼36%) diet treatments. F13CO2 for the NEAA diet was ∼18% lower than for BASE (P < 0.05) but ∼28% greater than for SUF (P < 0.05). OX was similarly decreased (∼24-41%) in all conditions compared with BASE (all P < 0.05). Conclusion Our results suggest that the BCAAs may be the primary rate-liming amino acids in the greater daily protein requirement of endurance trained men. This trial was registered at clinicaltrials.gov as NCT02628249.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
89
|
Knuiman P, Hopman MTE, Verbruggen C, Mensink M. Protein and the Adaptive Response With Endurance Training: Wishful Thinking or a Competitive Edge? Front Physiol 2018; 9:598. [PMID: 29875696 PMCID: PMC5974122 DOI: 10.3389/fphys.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The significance of carbohydrates for endurance training has been well established, whereas the role of protein and the adaptive response with endurance training is unclear. Therefore, the aim of this perspective is to discuss the current evidence on the role of dietary protein and the adaptive response with endurance training. On a metabolic level, a single bout of endurance training stimulates the oxidation of several amino acids. Although the amount of amino acids as part of total energy expenditure during exercise is relatively low compared to other substrates (e.g., carbohydrates and fat), it may depress the rates of skeletal muscle protein synthesis, and thereby have a negative effect on training adaptation. A low supply of amino acids relative to that of carbohydrates may also have negative effects on the synthesis of capillaries, synthesis and turn-over of mitochondrial proteins and proteins involved in oxygen transport including hamoglobin and myoglobin. Thus far, the scientific evidence demonstrating the significance of dietary protein is mainly derived from research with resistance exercise training regimes. This is not surprising since the general paradigm states that endurance training has insignificant effects on skeletal muscle growth. This could have resulted in an underappreciation of the role of dietary protein for the endurance athlete. To conclude, evidence of the role of protein on endurance training adaptations and performance remains scarce and is mainly derived from acute exercise studies. Therefore, future human intervention studies must unravel whether dietary protein is truly capable of augmenting endurance training adaptations and ultimately performance.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands.,Department of Physiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Conor Verbruggen
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
90
|
Naufahu J, Elliott B, Markiv A, Dunning-Foreman P, McGrady M, Howard D, Watt P, Mackenzie RWA. High-Intensity Exercise Decreases IP6K1 Muscle Content and Improves Insulin Sensitivity (SI2*) in Glucose-Intolerant Individuals. J Clin Endocrinol Metab 2018; 103:1479-1490. [PMID: 29300979 DOI: 10.1210/jc.2017-02019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Insulin resistance (IR) in skeletal muscle contributes to whole body hyperglycemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type. OBJECTIVE Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulinemic individuals. Muscle IP6K1 was also compared after two different exercise trials. DESIGN Nine prediabetic [hemoglobin A1c; 6.1% (0.2%)] patients were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold), and a high-intensity exercise trial (6 30-second sprints). Muscle biopsies were drawn before and after each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test was performed immediately after the second muscle sample. RESULTS Fasting muscle IP6K1 content did not correlate with insulin sensitivity (SI2*) (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and messenger RNA expression (P = 0.001). There was no effect on protein IP6K1 content after continuous exercise. Akt308 phosphorylation of was significantly greater after high-intensity exercise. Intermittent exercise reduced hepatic glucose production after the same trial. The same intervention also increased SI2*, and this effect was significantly greater compared with the effect of continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes. CONCLUSIONS The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body increases in SI2*. In addition, high-intensity exercise reduces hepatic glucose production in insulin-resistant individuals.
Collapse
Affiliation(s)
- Jane Naufahu
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Bradley Elliott
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Anatoliy Markiv
- Biosciences Education, King's College London, London, United Kingdom
| | - Petra Dunning-Foreman
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Maggie McGrady
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - David Howard
- Department of Oncology, Charing Cross Hospital, Imperial NHS Trust Hospitals, London, United Kingdom
| | - Peter Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | | |
Collapse
|
91
|
Martins CEC, Lima VBDS, Schoenfeld BJ, Tirapegui J. Effects of leucine supplementation and resistance training on myopathy of diabetic rats. Physiol Rep 2018; 5:e13273. [PMID: 28536139 PMCID: PMC5449559 DOI: 10.14814/phy2.13273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Leucine supplementation and resistance training positively influence the protein translation process and the cell signaling mTOR (mammalian target of rapamycin) pathway that regulates muscle protein balance and muscle remodeling, and thus may be therapeutic to diabetic myopathy. However, the effect of a combined intervention has not been well studied. Forty male Wistar rats were divided into five groups, control (C), diabetic control (D), diabetic + trained (DT), diabetic + L-leucine (DL), diabetic + L-leucine + trained (DLT). The supplementation of 5% leucine in chow, and resistance training were conducted for 8 weeks postweaning of rats. The extensor digitorum longus was used to assess signaling proteins involved in muscle protein synthesis, and the gastrocnemius and soleus were used for determination of muscle weight. Blood samples were collected for biochemical assays. Strength and ambulation tests were employed to evaluate motor performance. Results showed that both leucine supplementation and resistance training elevated the activity of mTOR-p70S6K in diabetic rats (P < 0.05). Moreover, though leucine supplementation in combination with resistance training demonstrated synergistic effects on p70S6K (P < 0.05), both treatments were capable of recovering motor performance (P < 0.05). In conclusion, 5% leucine supplementation combined with resistance training has the potential to attenuate muscle loss and motor performance decrements in diabetic rats, at least in part through increased protein synthesis.
Collapse
Affiliation(s)
- Carlos Eduardo C Martins
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa B de S Lima
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julio Tirapegui
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
92
|
Mitchell L, Slater G, Hackett D, Johnson N, O'connor H. Physiological implications of preparing for a natural male bodybuilding competition. Eur J Sport Sci 2018; 18:619-629. [PMID: 29490578 DOI: 10.1080/17461391.2018.1444095] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to describe the body composition and physiological changes which take place during the in-season and recovery periods of a group of natural bodybuilders. Natural male bodybuilders (n = 9) were assessed 16 (PRE16), 8 (PRE8), and 1 (PRE1) week(s) before, and 4 (POST4) weeks after a bodybuilding competition. Assessments included body composition, resting metabolic rate (RMR), serum hormones, and 7-day weighed food and training diaries. Change in parameters was assessed using repeated-measures analysis of variance. Dietary protein intake remained high throughout the study period (2.8-3.1 g kg-1 d-1). Fat mass (FM) was significantly reduced from PRE16 to PRE1 (8.8 ± 3.1 vs. 5.3 ± 2.4 kg, P < .01). There was a small decrease in lean mass (LM) from PRE8 to PRE1 (71.8 ± 9.1 vs. 70.9 ± 9.1 kg, P < .05). No changes in RMR were observed (P > .05). Large reductions in total and free testosterone (16.4 ± 4.4 vs. 10.1 ± 3.6 nmol L-1, P < .05; 229.3 ± 72.4 vs. 116.8 ± 76.9 pmol L-1, P < .05), and insulin-like growth factor-1 (IGF-1) (27.0 ± 7.7 vs. 19.9 ± 7.6 nmol L-1, P < .05) occurred between PRE16 and PRE1. LM and IGF-1 increased from PRE1 to POST4 (70.9 ± 9.1 vs. 72.5 ± 8.5 kg, P < .05; 19.9 ± 7.6 vs. 25.4 ± 9.3 nmol L-1, P < .05). Despite substantial reductions in FM, participants maintained almost all of their LM. The reduction in anabolic hormone concentration is likely attributable to the prolonged negative energy balance, despite a high dietary protein intake.
Collapse
Affiliation(s)
- Lachlan Mitchell
- a Discipline of Exercise and Sport Science , University of Sydney , Lidcombe , Australia
| | - Gary Slater
- b Discipline of Nutrition and Dietetics , University of Sunshine Coast , Sippy Downs , Australia
| | - Daniel Hackett
- a Discipline of Exercise and Sport Science , University of Sydney , Lidcombe , Australia
| | - Nathan Johnson
- a Discipline of Exercise and Sport Science , University of Sydney , Lidcombe , Australia
| | - Helen O'connor
- a Discipline of Exercise and Sport Science , University of Sydney , Lidcombe , Australia
| |
Collapse
|
93
|
Domínguez R, Jesús-Sánchez-Oliver A, Cuenca E, Jodra P, Fernandes da Silva S, Mata-Ordóñez F. Nutritional needs in the professional practice of swimming: a review. J Exerc Nutrition Biochem 2017; 21:1-10. [PMID: 29370667 PMCID: PMC5772075 DOI: 10.20463/jenb.2017.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Swimming requires developing a high aerobic and anaerobic capacity for strength and technical efficiency. The purpose of this study was to establish the nutritional requirements and dietary strategies that can optimize swimming performance. [Methods] Several related studies retrieved from the databases, Dialnet, Elsevier, Medline, Pubmed, and Web of Science, through keyword search strategies were reviewed. [Results] The recommended carbohydrate intake ranges between 6-10-12 g/kg/d, protein 2 g/kg/d, and fat should surpass 20-25% of the daily intake. [Conclusion] Performance can be optimized with a hydration plan, as well as adequate periodization of supplements, such as caffeine, creatine, sodium bicarbonate, B-alanine, beetroot juice, Vitamin D, bovine colostrum, and HMB.
Collapse
|
94
|
Aksoy D, Erman A, Balcı N, Şentürk ÜK. Effect of protein intake on muscle strength and hypertrophy during whole-body vibration training. ISOKINET EXERC SCI 2017. [DOI: 10.3233/ies-171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Duygu Aksoy
- School of Physical Education and Sports, Namık Kemal University, Tekirdağ, Turkey
| | - Alparslan Erman
- Faculty of Sport Sciences, Akdeniz University, Antalya, Turkey
| | - Nilüfer Balcı
- Department of Physical Therapy and Rehabilitation, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Ümit Kemal Şentürk
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
95
|
Liao CD, Tsauo JY, Wu YT, Cheng CP, Chen HC, Huang YC, Chen HC, Liou TH. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:1078-1091. [PMID: 28814401 DOI: 10.3945/ajcn.116.143594] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 07/12/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Overweight and obese older people face a high risk of muscle loss and impaired physical function, which may contribute to sarcopenic obesity. Resistance exercise training (RET) has a beneficial effect on muscle protein synthesis and can be augmented by protein supplementation (PS). However, whether body weight affects the augmentation of muscular and functional performance in response to PS in older people undergoing RET remains unclear.Objective: This study was conducted to identify the effects of PS on the body composition and physical function of older people undergoing RET.Design: We performed a comprehensive search of online databases to identify randomized controlled trials (RCTs) reporting the efficacy of PS for lean mass gain, strength gain, and physical mobility improvements in older people undergoing RET.Results: We included 17 RCTs; the overall mean ± SD age and body mass index (BMI; in kg/m2) in these RCTs were 73.4 ± 8.1 y and 29.7 ± 5.5, respectively. The participants had substantially greater lean mass and leg strength gains when PS and RET were used than with RET alone, with the standard mean differences (SMDs) being 0.58 (95% CI: 0.32, 0.84) and 0.69 (95% CI: 0.39, 0.98), respectively. The subgroup of studies with a mean BMI ≥30 exhibited substantially greater lean mass (SMD: 0.53; 95% CI: 0.19, 0.87) and leg strength (SMD: 0.88; 95% CI: 0.42, 1.34) gains in response to PS. The subgroup of studies with a mean BMI <30 also exhibited relevant gains in response to PS.Conclusions: Compared with RET alone, PS combined with RET may have a stronger effect in preventing aging-related muscle mass attenuation and leg strength loss in older people, which was found in studies with a mean BMI ≥30 and in studies with a mean BMI <30. Clinicians could use nutrition supplement and exercise strategies, especially PS plus RET, to effectively improve the physical activity and health status of all older patients.
Collapse
Affiliation(s)
- Chun-De Liao
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation and
| | - Jau-Yih Tsauo
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Tzu Wu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Pao Cheng
- Department of Dietetics, National Taiwan University Hospital, Taipei, Taiwan; and
| | - Hui-Chuen Chen
- Department of Dietetics, National Taiwan University Hospital, Taipei, Taiwan; and
| | - Yi-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hung-Chou Chen
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation and.,Center for Evidence-Based Health Care, Shuang Ho Hospital
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation and .,Graduate Institute of Injury Prevention and Control, and.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
96
|
Hector AJ, McGlory C, Damas F, Mazara N, Baker SK, Phillips SM. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J 2017; 32:265-275. [PMID: 28899879 DOI: 10.1096/fj.201700158rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit. Adult men (body mass index, 28.6 ± 0.6 kg/m2; age 22 ± 1 yr) underwent 10 d of 40%-reduced energy intake while performing unilateral resistance exercise and consuming lower protein (1.2 g/kg/d, n = 12) or higher protein (2.4 g/kg/d, n = 12). Pre- and postintervention testing included dual-energy X-ray absorptiometry, primed constant infusion of ring-[13C6]phenylalanine, and 15[N]phenylalanine to measure acute postabsorptive MPS and MPB; D2O to measure integrated MPS; and gene and protein expression. There was a decrease in acute MPS after ER (higher protein, 0.059 ± 0.006 to 0.051 ± 0.009%/h; lower protein, 0.061 ± 0.005 to 0.045 ± 0.006%/h; P < 0.05) that was attenuated with resistance exercise (higher protein, 0.067 ± 0.01%/h; lower protein, 0.061 ± 0.006%/h), and integrated MPS followed a similar pattern. There was no change in MPB (energy balance, 0.080 ± 0.01%/hr; ER rested legs, 0.078 ± 0.008%/hr; ER exercised legs, 0.079 ± 0.006%/hr). We conclude that a reduction in MPS is the main mechanism that underpins LBM loss early in ER in adult men.-Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., Phillips, S. M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise.
Collapse
Affiliation(s)
- Amy J Hector
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Felipe Damas
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Nicole Mazara
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Steven K Baker
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
97
|
Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc Nutr Soc 2017; 77:20-31. [DOI: 10.1017/s002966511700194x] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The age-related loss of skeletal muscle mass and function is caused, at least in part, by a reduced muscle protein synthetic response to protein ingestion. The magnitude and duration of the postprandial muscle protein synthetic response to ingested protein is dependent on the quantity and quality of the protein consumed. This review characterises the anabolic properties of animal-derived and plant-based dietary protein sources in older adults. While approximately 60 % of dietary protein consumed worldwide is derived from plant sources, plant-based proteins generally exhibit lower digestibility, lower leucine content and deficiencies in certain essential amino acids such as lysine and methionine, which compromise the availability of a complete amino acid profile required for muscle protein synthesis. Based on currently available scientific evidence, animal-derived proteins may be considered more anabolic than plant-based protein sources. However, the production and consumption of animal-derived protein sources is associated with higher greenhouse gas emissions, while plant-based protein sources may be considered more environmentally sustainable. Theoretically, the lower anabolic capacity of plant-based proteins can be compensated for by ingesting a greater dose of protein or by combining various plant-based proteins to provide a more favourable amino acid profile. In addition, leucine co-ingestion can further augment the postprandial muscle protein synthetic response. Finally, prior exercise or n-3 fatty acid supplementation have been shown to sensitise skeletal muscle to the anabolic properties of dietary protein. Applying one or more of these strategies may support the maintenance of muscle mass with ageing when diets rich in plant-based protein are consumed.
Collapse
|
98
|
West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017; 9:E735. [PMID: 28696380 PMCID: PMC5537849 DOI: 10.3390/nu9070735] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.
Collapse
Affiliation(s)
- Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Daniel R Moore
- Kinesiology and Physical Education University of Toronto 100 Devonshire Place, Toronto, ON M5S 2C9, Canada.
| |
Collapse
|
99
|
Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci Rep 2017; 7:5028. [PMID: 28694500 PMCID: PMC5504043 DOI: 10.1038/s41598-017-05483-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central mediator of protein synthesis in skeletal muscle. We utilized immunofluorescence approaches to study mTOR cellular distribution and protein-protein co-localisation in human skeletal muscle in the basal state as well as immediately, 1 and 3 h after an acute bout of resistance exercise in a fed (FED; 20 g Protein/40 g carbohydrate/1 g fat) or energy-free control (CON) state. mTOR and the lysosomal protein LAMP2 were highly co-localised in basal samples. Resistance exercise resulted in rapid translocation of mTOR/LAMP2 towards the cell membrane. Concurrently, resistance exercise led to the dissociation of TSC2 from Rheb and increased in the co-localisation of mTOR and Rheb post exercise in both FED and CON. In addition, mTOR co-localised with Eukaryotic translation initiation factor 3 subunit F (eIF3F) at the cell membrane post-exercise in both groups, with the response significantly greater at 1 h of recovery in the FED compared to CON. Collectively our data demonstrate that cellular trafficking of mTOR occurs in human muscle in response to an anabolic stimulus, events that appear to be primarily influenced by muscle contraction. The translocation and association of mTOR with positive regulators (i.e. Rheb and eIF3F) is consistent with an enhanced mRNA translational capacity after resistance exercise.
Collapse
|
100
|
Orsatti FL, Maestá N, de Oliveira EP, Nahas Neto J, Burini RC, Nunes PRP, Souza AP, Martins FM, Nahas EP. Adding Soy Protein to Milk Enhances the Effect of Resistance Training on Muscle Strength in Postmenopausal Women. J Diet Suppl 2017; 15:140-152. [PMID: 28604135 DOI: 10.1080/19390211.2017.1330794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Resistance training (RT) and high-quality protein ingestion improves muscle mass (MM) and strength (MS). However, no study has evaluated the effect of ingesting milk plus soy protein (SOY) on MM and MS in postmenopausal women (PW). Thus, the aim of this study was to evaluate the effects of adding SOY to milk on MM and MS after 16 weeks of RT. Thirty-two PW were randomized and allocated into two groups: placebo and RT (PL+RT, n = 16) and SOY and RT (SOY+RT, n = 16). The SOY+RT received 25 g of SOY while the PL+RT received 25 g of maltodextrin (placebo). All supplements were given in the form of a chocolate-flavored powder added to 200 mL of milk. The RT protocol consisted of eight total body exercises at 70% of one repetition maximum (1RM), three sets of 8-12 repetitions, 2-3 times/week. No differences were found in the baseline measures between groups (age, menopause status, anthropometric and nutrition patterns), except for protein intake, which was higher in the SOY+RT. Both groups increased the MM (bioimpedance) showing no difference between groups (PL+RT = 1.5 kg; SOY+RT = 1.1 kg). For MS, the SOY+RT showed a larger (p < .05) increase in 1RM of bench press (PL+RT = 6.7 kg; SOY+RT = 12.5 kg), knee extension (PL+RT = 3.7 kg; SOY+RT = 6.7 kg), total load (PL+RT = 15.1 kg; SOY+RT = 24.2 kg), and the total load exercises/MM (PL+RT = 0.3 kg; SOY+RT = 0.9 kg). These results suggest that adding SOY to milk combined with 16 weeks of RT resulted in more significant increases in MS in PW.
Collapse
Affiliation(s)
- Fábio L Orsatti
- a Exercise Biology Research Group (BioEx) , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil.,b Department of Sport Sciences , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil
| | - Nailza Maestá
- c Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University , Sao Paulo , Brazil.,d Nutrition and Exercise Metabolism Center from the Department of Public Health , Botucatu Medical School, Sao Paulo State University , Sao Paulo , Brazil
| | - Erick P de Oliveira
- a Exercise Biology Research Group (BioEx) , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil.,e School of Medicine , Federal University of Uberlandia , Uberlandia , Minas Gerais , Brazil
| | - Jorge Nahas Neto
- c Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University , Sao Paulo , Brazil
| | - Roberto C Burini
- d Nutrition and Exercise Metabolism Center from the Department of Public Health , Botucatu Medical School, Sao Paulo State University , Sao Paulo , Brazil
| | - Paulo R P Nunes
- a Exercise Biology Research Group (BioEx) , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil
| | - Aletéia P Souza
- a Exercise Biology Research Group (BioEx) , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil
| | - Fernanda M Martins
- a Exercise Biology Research Group (BioEx) , Health Science Institute, Federal University of Triangulo Mineiro (UFTM) , Uberaba , Minas Gerais , Brazil
| | - Eliana P Nahas
- c Department of Gynecology and Obstetrics , Botucatu Medical School, Sao Paulo State University , Sao Paulo , Brazil
| |
Collapse
|