51
|
Olajide OJ, Gbadamosi IT, Yawson EO, Arogundade T, Lewu FS, Ogunrinola KY, Adigun OO, Bamisi O, Lambe E, Arietarhire LO, Oluyomi OO, Idowu OK, Kareem R, Asogwa NT, Adeniyi PA. Hippocampal Degeneration and Behavioral Impairment During Alzheimer-Like Pathogenesis Involves Glutamate Excitotoxicity. J Mol Neurosci 2021; 71:1205-1220. [PMID: 33420680 DOI: 10.1007/s12031-020-01747-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
The hallmarks of Alzheimer's disease (AD) pathology include senile plaques accumulation and neurofibrillary tangles, which is thought to underlie synaptic failure. Recent evidence however supports that synaptic failure in AD may instead be instigated by enhanced N-methyl-D-aspartate (NMDA) activity, via a reciprocal relationship between soluble amyloid-β (Aβ) accumulation and increased glutamate agonist. While previous studies have shown Aβ-mediated alterations to the glutamatergic system during AD, the underlying etiology of excitotoxic glutamate-induced changes has not been explored. Here, we investigated the acute effects of stereotaxic dentate gyrus (DG) glutamate injection on behavior and molecular expression of specific proteins and neurochemicals modulating hippocampal functions. Dependence of glutamate-mediated effects on NMDA receptor (NMDAR) hyperactivation was tested using NMDARs antagonist memantine. DG of Wistar rats (12-weeks-old) were bilaterally microinjected with glutamate (500 mM) with or without daily intraperitoneal (i.p.) memantine injection (20 mg/kg) for 14 days, while controls received either intrahippocampal/i.p. PBS or i.p. memantine. Behavioral characterization in open field and Y-maze revealed that glutamate evoked anxiogenic responses and perturbed spatial memory were inhibited by memantine. In glutamate-treated rats, increased NO expression was accompanied by marked reduction in profiles of glutathione-s-transferase and glutathione peroxidase. Similarly, glutamate-mediated increase in acetylcholinesterase expression corroborated downregulation of synaptophysin and PSD-95, coupled with initiation of reactive astrogliosis (GFAP). While neurofilament immunolocalization/immunoexpression was unperturbed, we found glutamate-mediated reduction in neurogenic markers Ki67 and PCNA immunoexpression, with a decrease in NR2B protein expression, whereas mGluR1 remains unchanged. In addition, increased expression of apoptotic regulatory proteins p53 and Bax was seen in glutamate infused rats, corroborating chromatolytic degeneration of granule neurons in the DG. Interestingly, memantine abrogated most of the degenerative changes associated with glutamate excitotoxicity in this study. Taken together, our findings causally link acute glutamate dyshomeostasis in the DG with development of AD-related behavioral impairment and molecular neurodegeneration.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria. .,Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Canada.
| | - Ismail Tayo Gbadamosi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria
| | - Emmanuel Olusola Yawson
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Tolulope Arogundade
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Adeleke University, Ede, Nigeria
| | - Folashade Susan Lewu
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde Yomi Ogunrinola
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, School of Post-Basic Nursing, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Oluwaseun Olaniyi Adigun
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olawande Bamisi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Ekiti State University, Ado Ekiti, Nigeria
| | - Ezra Lambe
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Leviticus Ogbenevurinrin Arietarhire
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olushola Oladapo Oluyomi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olumayowa Kolawole Idowu
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rukayat Kareem
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Nnaemeka Tobechukwu Asogwa
- Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Philip Adeyemi Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
52
|
Ghai R, Nagarajan K, Arora M, Grover P, Ali N, Kapoor G. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:676-690. [PMID: 32679025 DOI: 10.2174/1871527319666200717091513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer's disease. The paper's objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer's disease. Currently, several strategies are being investigated for the treatment of Alzheimer's disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.
Collapse
Affiliation(s)
- Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Meenakshi Arora
- University of Pittsburgh, 3459, Fifth Ave, Pennsylvania 15213, United States
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Nazakat Ali
- Dabur Research Foundation, Plot-22, Site-4, Industrial area, Sahibabad, Ghaziabad, UP-201010, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| |
Collapse
|
53
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
54
|
Parodi-Rullán R, Sone JY, Fossati S. Endothelial Mitochondrial Dysfunction in Cerebral Amyloid Angiopathy and Alzheimer's Disease. J Alzheimers Dis 2020; 72:1019-1039. [PMID: 31306129 DOI: 10.3233/jad-190357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Cerebrovascular dysfunction is one of the earliest events in the pathogenesis of AD, as well as in vascular and mixed dementias. Cerebral amyloid angiopathy (CAA), the deposition of amyloid around cerebral vessels, is observed in up to 90% of AD patients and in approximately 50% of elderly individuals over 80 years of age. CAA is a strong contributor to vascular dysfunction in AD. CAA-laden brain vessels are characterized by dysfunctional hemodynamics and leaky blood-brain barrier (BBB), contributing to clearance failure and further accumulation of amyloid-β (Aβ) in the cerebrovasculature and brain parenchyma. Mitochondrial dysfunction is increasingly recognized as an important early initiator of the pathogenesis of AD and CAA. The objective of this review is to discuss the effects of Aβ on cerebral microvascular cell function, focusing on its impact on endothelial mitochondria. After introducing CAA and its etiology and genetic risk factors, we describe the pathological relationship between cerebrovascular amyloidosis and brain microvascular endothelial cell dysfunction, critically analyzing its roles in disease progression, hypoperfusion, and BBB integrity. Then, we focus on discussing the effect of Aβ challenge on endothelial mitochondrial dysfunction pathways, and their contribution to the progression of neurovascular dysfunction in AD and dementia. Finally, we report potential pharmacological and non-pharmacological mitochondria-targeted therapeutic strategies which may help prevent or delay cerebrovascular failure.
Collapse
Affiliation(s)
- Rebecca Parodi-Rullán
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Je Yeong Sone
- Department of Psychiatry, Center for Brain Health, NYU School of Medicine, New York, NY, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
55
|
Binvignat O, Olloquequi J. Excitotoxicity as a Target Against Neurodegenerative Processes. Curr Pharm Des 2020; 26:1251-1262. [PMID: 31931694 DOI: 10.2174/1381612826666200113162641] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Huntington's disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.
Collapse
Affiliation(s)
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| |
Collapse
|
56
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|
57
|
Dave DD, Jha BK. Mathematical Modeling of Calcium Oscillatory Patterns in a Neuron. Interdiscip Sci 2020; 13:12-24. [PMID: 33170431 DOI: 10.1007/s12539-020-00401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/01/2022]
Abstract
Calcium oscillations are an imperative mode of signaling phenomenon. These oscillations are due to the active interactions taking place between some of the parameters like voltage gated calcium channels (VGCC), sodium calcium exchanger (NCX), calcium binding buffers, endoplasmic reticulum (ER) and mitochondria. The present paper focuses on the problem of higher level of calcium concentration in neurons which may further result into Alzheimer's Disease (AD). For this, a three-dimensional mathematical model having a system of differential equations depicting the changes in cytosolic calcium (in presence of buffers, VGCC and NCX), ER calcium and mitochondrial calcium, is formulated. A three-dimensional neuronal structure is targeted as the domain which is further discussed and solved using finite element technique in Comsol Multiphysics 5.4. Apposite boundary conditions matching well with the in-situ conditions are assumed. The obtained results clearly show the significance of the lower amount of the buffer and higher calcium mediated activities of VGCC, NCX, ER and mitochondria on calcium profile. These changes may lead to AD. To transit from AD condition to normal, exogenous buffers are added to check their significance. The results thus show that the replenishment of buffer may balance the amount of cell calcium and hence can affect positively on Alzheimer's affected cells.
Collapse
Affiliation(s)
- Devanshi D Dave
- Department of Mathematics, School of Technology, PDPU, Gandhinagar, 382007, Gujarat, India.
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, PDPU, Gandhinagar, 382007, Gujarat, India
| |
Collapse
|
58
|
Ghoweri AO, Ouillette L, Frazier HN, Anderson KL, Lin RL, Gant JC, Parent R, Moore S, Murphy GG, Thibault O. Electrophysiological and Imaging Calcium Biomarkers of Aging in Male and Female 5×FAD Mice. J Alzheimers Dis 2020; 78:1419-1438. [PMID: 33164928 PMCID: PMC7836067 DOI: 10.3233/jad-200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer's disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular events (e.g., oxidation, amyloid-β production, and neuroinflammation). Further, neuronal calcium dysregulation is not always present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker. OBJECTIVE Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and female 5×FAD mice on a C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 imaging. We focused on three ages that coincide with the course of amyloid deposition: 1.5, 4, and 10 months old. METHODS Outcome variables included measures of the afterhyperpolarization, short-term synaptic plasticity, and calcium kinetics during synaptic activation. Quantitative analyses of spatial learning and memory were also conducted using the Morris water maze. Main effects of sex, age, and genotype were identified on measures of electrophysiology and calcium imaging. RESULTS Measures of resting Oregon-green Bapta-1 fluorescence showed significant reductions in the 5×FAD group compared to controls. Deficits in spatial memory, along with increases in Aβ load, were detectable at older ages, allowing us to test for temporal associations with the onset of calcium dysregulation. CONCLUSION Our results provide evidence that reduced, rather than elevated, neuronal calcium is identified in this 5×FAD model and suggests that this surprising result may be a novel biomarker of AD.
Collapse
Affiliation(s)
- Adam O Ghoweri
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lara Ouillette
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hilaree N Frazier
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Katie L Anderson
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ruei-Lung Lin
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - John C Gant
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Rachel Parent
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Moore
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey G Murphy
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Thibault
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
59
|
Oh SJ, Lee HJ, Jeong YJ, Nam KR, Kang KJ, Han SJ, Lee KC, Lee YJ, Choi JY. Evaluation of the neuroprotective effect of taurine in Alzheimer's disease using functional molecular imaging. Sci Rep 2020; 10:15551. [PMID: 32968166 PMCID: PMC7511343 DOI: 10.1038/s41598-020-72755-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, but therapeutic treatment options are limited. Taurine has been reported to have neuroprotective properties against dementia, including AD. The present study aimed to investigate the treatment effect of taurine in AD mice by functional molecular imaging. To elucidate glutamate alterations by taurine, taurine was administered to 5xFAD transgenic mice from 2 months of age, known to apear amyloid deposition. Then, we performed glutamate positron emission tomography (PET) imaging studies for three groups (wild-type, AD, and taurine-treated AD, n = 5 in each group). As a result, brain uptake in the taurine-treated AD group was 31-40% higher than that in the AD group (cortex: 40%, p < 0.05; striatum: 32%, p < 0.01; hippocampus: 36%, p < 0.01; thalamus: 31%, p > 0.05) and 3-14% lower than that in the WT group (cortex: 10%, p > 0.05; striatum: 15%, p > 0.05; hippocampus: 14%, p > 0.05; thalamus: 3%, p > 0.05). However, we did not observe differences in Aβ pathology between the taurine-treated AD and AD groups in immunohistochemistry experiments. Our results reveal that although taurine treatment did not completely recover the glutamate system, it significantly increased metabolic glutamate receptor type 5 brain uptake. Therefore, taurine has therapeutic potential against AD.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ye Ji Jeong
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Korea.
| |
Collapse
|
60
|
Ren JM, Zhang SL, Wang XL, Guan ZZ, Qi XL. Expression levels of the α7 nicotinic acetylcholine receptor in the brains of patients with Alzheimer's disease and their effect on synaptic proteins in SH-SY5Y cells. Mol Med Rep 2020; 22:2063-2075. [PMID: 32582986 PMCID: PMC7411404 DOI: 10.3892/mmr.2020.11253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative, and abnormal aggregation of the neurotoxic β amyloid (Aβ) peptide is an early event in AD. The present study aimed to determine the correlation between the nicotinic acetylcholine receptor α7 subunit (α7 nAChR) and Aβ in the brains of patients with AD, and to investigate whether the increased expression levels of the α7 nAChR could alter the neurotoxicity of Aβ. The expression levels of α7 nAChR and Aβ in the brains of patients with AD and healthy brains were analyzed using immunofluorescence. Moreover, SH‑SY5Y cells were used to stably overexpress or silence α7 nAChR expression levels, prior to the treatment with or without 1 µmol/l Aβ1‑42 oligomer (AβO). The mRNA and protein expression levels of α7 nAChR, synaptophysin (SYP), postsynaptic density of 95 kDa (PSD‑95) and synaptosomal‑associated protein of 25 kDa (SNAP‑25) were subsequently analyzed using reverse transcription‑quantitative PCR and western blotting. In addition, the concentration of acetylcholine (ACh) and the activity of acetylcholinesterase (AChE) were analyzed using spectrophotometry, while the cell apoptotic rate was determined using flow cytometry. The expression of Aβ in the brains of patients with AD was found to be significantly increased, whereas the expression of α7 nAChR was significantly decreased compared with the healthy control group. In vitro, the expression levels of α7 nAChR were significantly increased or decreased following the overexpression or silencing of the gene, respectively. Consistent with these observations, the mRNA and protein expression levels of SYP, PSD‑95 and SNAP‑25 were also significantly increased following the overexpression of α7 nAChR and decreased following the genetic silencing of the receptor. In untransfected or negative control cells, the expression levels of these factors and the apoptotic rate were significantly reduced following the exposure to AβO, which was found to be attenuated by α7 nAChR overexpression, but potentiated by α7 nAChR RNA silencing. However, no significant differences were observed in either the ACh concentration or AChE activity following transfection. Collectively, these findings suggested that α7 nAChR may protect the brains of patients with AD against Aβ, as α7 nAChR overexpression increased the expression levels of SYP, SNAP‑25 and PSD‑95, and attenuated the inhibitory effect of Aβ on the expression of these synaptic proteins and cell apoptosis. Overall, this indicated that α7 nAChR may serve an important neuroprotective role in AD.
Collapse
Affiliation(s)
- Jia-Mou Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shu-Li Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Chinese People's Liberation Army, Secret Service Center Sanatorium of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
61
|
Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium 2020; 91:102268. [PMID: 32827867 DOI: 10.1016/j.ceca.2020.102268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
62
|
Nguyen LD, Fischer TT, Abreu D, Arroyo A, Urano F, Ehrlich BE. Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc Natl Acad Sci U S A 2020; 117:17389-17398. [PMID: 32632005 PMCID: PMC7382278 DOI: 10.1073/pnas.2007136117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Wolfram syndrome is a rare multisystem disease characterized by childhood-onset diabetes mellitus and progressive neurodegeneration. Most cases are attributed to pathogenic variants in a single gene, Wolfram syndrome 1 (WFS1). There currently is no disease-modifying treatment for Wolfram syndrome, as the molecular consequences of the loss of WFS1 remain elusive. Because diabetes mellitus is the first diagnosed symptom of Wolfram syndrome, we aimed to further examine the functions of WFS1 in pancreatic β cells in the context of hyperglycemia. Knockout (KO) of WFS1 in rat insulinoma (INS1) cells impaired calcium homeostasis and protein kinase B/Akt signaling and, subsequently, decreased cell viability and glucose-stimulated insulin secretion. Targeting calcium homeostasis with reexpression of WFS1, overexpression of WFS1's interacting partner neuronal calcium sensor-1 (NCS1), or treatment with calpain inhibitor and ibudilast reversed deficits observed in WFS1-KO cells. Collectively, our findings provide insight into the disease mechanism of Wolfram syndrome and highlight new targets and drug candidates to facilitate the development of a treatment for this disorder and similar diseases.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, CT 06520
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT 06520
- Institute of Pharmacology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110
| | - Alfredo Arroyo
- Department of Pharmacology, Yale University, New Haven, CT 06520
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT 06520;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| |
Collapse
|
63
|
Fischer TT, Ehrlich BE. Wolfram Syndrome: a Monogenic Model to Study Diabetes Mellitus and Neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2020; 17:115-123. [PMID: 32864536 DOI: 10.1016/j.cophys.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Wolfram syndrome (WS) is a rare, progressive disorder characterized by childhood-onset diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, and neurodegeneration. Currently, there is no effective treatment for WS, and patients typically die between 30 and 40 years of age. WS is primarily caused by autosomal recessive mutations in the Wolfram syndrome 1 (WFS1) gene (OMIM 222300), which encodes for wolframin (WFS1). This disorder is therefore a valuable monogenic model for prevalent diseases, particularly diabetes mellitus and neurodegeneration. Whereas reduced survival and secretion are known cellular impairments causing WS, the underlying molecular pathways and the physiological function of WFS1 remain incompletely described. Here, we characterize WFS1 as a regulator of intracellular calcium homeostasis, review our current understanding of the disease mechanism of WS, and discuss candidate treatment approaches. These insights will facilitate identification of new therapeutic strategies not only for WS but also for diabetes mellitus and neurodegeneration.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Institute of Pharmacology, University of Heidelberg, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Department of Molecular Physiology, Yale University, New Haven, CT-06520, USA
| |
Collapse
|
64
|
Ataei S, Abaspanah S, Haddadi R, Mohammadi M, Nili-Ahmadabadi A. Therapeutic Potential of Dihydropyridine Calcium Channel Blockers on Oxidative Injury Caused by Organophosphates in Cortex and Cerebellum: An In Vivo Study. Indian J Clin Biochem 2020; 35:339-346. [PMID: 32647412 DOI: 10.1007/s12291-019-00830-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/04/2019] [Indexed: 12/16/2022]
Abstract
This study was designed to investigate the effects of amlodipine (AM), a dihydropyridine calcium channel blocker, on the oxidative damage induced by diazinon (DZN) in the rat cortex and cerebellum. Forty-two rats were randomly divided into six groups. The rats were treated intraperitoneally with normal saline (group 1), AM (9 mg/kg; group 2), DZN (32 mg/kg; group 3) and different doses of AM (3, 6, and 9 mg/kg; groups 4, 5, and 6, respectively) with DZN. After 14 days, the cerebellum and cortex tissues were removed for biochemical and histological experiments. DZN significantly decreased acetylcholinesterase activity (AChE; 57%, p < 0.001 and 39.1%, p < 0.05), depleted total antioxidant capacity (TAC; 46.2%, p < 0.01 and 44.7%, p < 0.05), and increased lactate dehydrogenase activity (LDH; 96%, p < 0.001 and 202%, p < 0.001), nitric oxide (NO; 130%, p < 0.001 and 74.4%, p < 0.001), and lipid peroxidation levels (LPO; 35.6%, p < 0.001 and 128.7%, p < 0.001), in the cerebellum and cortex tissues, respectively. In addition, DZN induced structural alterations in the cerebellum and cortex. Following AM administration, a remarkable improvement was observed in LDH activity and some of the oxidative markers, such as NO and LPO; however, no significant changes were found in AChE activity when the DZN group was compared with the AM-treated groups. This study suggests that AM may prevent DZN-induced neurotoxicity via improvement of the oxidative/antioxidant balance in the cerebellum and cortex tissues.
Collapse
Affiliation(s)
- Sara Ataei
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Susan Abaspanah
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, P.O. Box: 8678-3-65178 Hamadan, Iran
| | - Rasool Haddadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, P.O. Box: 8678-3-65178 Hamadan, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, P.O. Box: 8678-3-65178 Hamadan, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, P.O. Box: 8678-3-65178 Hamadan, Iran
| |
Collapse
|
65
|
Larramona-Arcas R, González-Arias C, Perea G, Gutiérrez A, Vitorica J, García-Barrera T, Gómez-Ariza JL, Pascua-Maestro R, Ganfornina MD, Kara E, Hudry E, Martinez-Vicente M, Vila M, Galea E, Masgrau R. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener 2020; 15:35. [PMID: 32517777 PMCID: PMC7285605 DOI: 10.1186/s13024-020-00382-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) gene exists in three isoforms in humans: APOE2, APOE3 and APOE4. APOE4 causes structural and functional alterations in normal brains, and is the strongest genetic risk factor of the sporadic form of Alzheimer's disease (LOAD). Research on APOE4 has mainly focused on the neuronal damage caused by defective cholesterol transport and exacerbated amyloid-β and Tau pathology. The impact of APOE4 on non-neuronal cell functions has been overlooked. Astrocytes, the main producers of ApoE in the healthy brain, are building blocks of neural circuits, and Ca2+ signaling is the basis of their excitability. Because APOE4 modifies membrane-lipid composition, and lipids regulate Ca2+ channels, we determined whether APOE4 dysregulates Ca2+signaling in astrocytes. METHODS Ca2+ signals were recorded in astrocytes in hippocampal slices from APOE3 and APOE4 gene targeted replacement male and female mice using Ca2+ imaging. Mechanistic analyses were performed in immortalized astrocytes. Ca2+ fluxes were examined with pharmacological tools and Ca2+ probes. APOE3 and APOE4 expression was manipulated with GFP-APOE vectors and APOE siRNA. Lipidomics of lysosomal and whole-membranes were also performed. RESULTS We found potentiation of ATP-elicited Ca2+responses in APOE4 versus APOE3 astrocytes in male, but not female, mice. The immortalized astrocytes modeled the male response, and showed that Ca2+ hyperactivity associated with APOE4 is caused by dysregulation of Ca2+ handling in lysosomal-enriched acidic stores, and is reversed by the expression of APOE3, but not of APOE4, pointing to loss of function due to APOE4 malfunction. Moreover, immortalized APOE4 astrocytes are refractory to control of Ca2+ fluxes by extracellular lipids, and present distinct lipid composition in lysosomal and plasma membranes. CONCLUSIONS Immortalized APOE4 versus APOE3 astrocytes present: increased Ca2+ excitability due to lysosome dysregulation, altered membrane lipidomes and intracellular cholesterol distribution, and impaired modulation of Ca2+ responses upon changes in extracellular lipids. Ca2+ hyperactivity associated with APOE4 is found in astrocytes from male, but not female, targeted replacement mice. The study suggests that, independently of Aβ and Tau pathologies, altered astrocyte excitability might contribute to neural-circuit hyperactivity depending on APOE allele, sex and lipids, and supports lysosome-targeted therapies to rescue APOE4 phenotypes in LOAD.
Collapse
Affiliation(s)
- Raquel Larramona-Arcas
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| | - Candela González-Arias
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Gertrudis Perea
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomedica de Málaga (IBIMA), Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Tamara García-Barrera
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - José Luis Gómez-Ariza
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - Raquel Pascua-Maestro
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - María Dolores Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - Eleanna Kara
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
- Present Address: Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Eloise Hudry
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Marta Martinez-Vicente
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Miquel Vila
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Elena Galea
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Roser Masgrau
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| |
Collapse
|
66
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
67
|
Magi S, Piccirillo S, Preziuso A, Amoroso S, Lariccia V. Mitochondrial localization of NCXs: Balancing calcium and energy homeostasis. Cell Calcium 2020; 86:102162. [DOI: 10.1016/j.ceca.2020.102162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
68
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
69
|
Astaxanthin Protects PC12 Cells against Homocysteine- and Glutamate-Induced Neurotoxicity. Molecules 2020; 25:molecules25010214. [PMID: 31948056 PMCID: PMC6982875 DOI: 10.3390/molecules25010214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Memory impairment has been shown to be associated with glutamate (Glu) excitotoxicity, homocysteine (Hcy) accumulation, and oxidative stress. We hypothesize that Glu and Hcy could damage neuronal cells, while astaxanthin (ATX) could be beneficial to alleviate the adverse effects. Using PC12 cell model, we showed that Glu and Hcy provoked a huge amount of reactive oxygen species (ROS) production, causing mitochondrial damage at EC50 20 and 10 mm, respectively. The mechanisms of action include: (1) increasing calcium influx; (2) producing ROS; (3) initiating lipid peroxidation; (4) causing imbalance of the Bcl-2/Bax homeostasis; and (5) activating cascade of caspases involving caspases 12 and 3. Conclusively, the damages caused by Glu and Hcy to PC12 cells can be alleviated by the potent antioxidant ATX.
Collapse
|
70
|
Sterea AM, El Hiani Y. The Role of Mitochondrial Calcium Signaling in the Pathophysiology of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:747-770. [PMID: 31646533 DOI: 10.1007/978-3-030-12457-1_30] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pioneering work of Richard Altman on the presence of mitochondria in cells set in motion a field of research dedicated to uncovering the secrets of the mitochondria. Despite limitations in studying the structure and function of the mitochondria, advances in our understanding of this organelle prompted the development of potential treatments for various diseases, from neurodegenerative conditions to muscular dystrophy and cancer. As the powerhouses of the cell, the mitochondria represent the essence of cellular life and as such, a selective advantage for cancer cells. Much of the function of the mitochondria relies on Ca2+ homeostasis and the presence of effective Ca2+ signaling to maintain the balance between mitochondrial function and dysfunction and subsequently, cell survival. Ca2+ regulates the mitochondrial respiration rate which in turn increases ATP synthesis, but too much Ca2+ can also trigger the mitochondrial apoptosis pathway; however, cancer cells have evolved mechanisms to modulate mitochondrial Ca2+ influx and efflux in order to sustain their metabolic demand and ensure their survival. Therefore, targeting the mitochondrial Ca2+ signaling involved in the bioenergetic and apoptotic pathways could serve as potential approaches to treat cancer patients. This chapter will review the role of Ca2+ signaling in mediating the function of the mitochondria and its involvement in health and disease with special focus on the pathophysiology of cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
71
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
72
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Tao QQ, Chen YC, Wu ZY. The role of CD2AP in the Pathogenesis of Alzheimer's Disease. Aging Dis 2019; 10:901-907. [PMID: 31440393 PMCID: PMC6675523 DOI: 10.14336/ad.2018.1025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Chao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
75
|
González JF, Alcántara AR, Doadrio AL, Sánchez-Montero JM. Developments with multi-target drugs for Alzheimer's disease: an overview of the current discovery approaches. Expert Opin Drug Discov 2019; 14:879-891. [PMID: 31165654 DOI: 10.1080/17460441.2019.1623201] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. Areas covered: The authors highlight the strategic value of privileged scaffolds in a multi-target lead compound generation against AD, exploring the concept of multi-target design, with a special emphasis on hybrid compounds. Hence, the most promising building blocks for designing and synthesizing hybrid anti-AD drugs are shown, while also presenting the more advanced hybrid compounds. Expert opinion: The available therapeutic arsenal for AD, designed under the traditional paradigm of 'one-drug/one target/one-disease', is based on the inhibition of brain acetylcholinesterase (AChE) to increase acetylcholine (ACh) levels. However, this classical approach has not been sufficiently effective when used to treat any multifactor-depending pathology (cancer, diabetes or AD). The multi-target drug concept has been quickly adopted by medicinal chemists. The basic research developments reported in recent years are a solid foundation that will pave the way for the construction of future AD therapeutics.
Collapse
Affiliation(s)
- Juan F González
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Andrés R Alcántara
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Antonio L Doadrio
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Jose María Sánchez-Montero
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
76
|
Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 2019; 76:1473-1488. [PMID: 30599069 PMCID: PMC11105246 DOI: 10.1007/s00018-018-3002-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Beyond this function, glutamate also plays a key role in intermediary metabolism in all organs and tissues, linking carbohydrate and amino acid metabolism via the tricarboxylic acid cycle. Under both physiological and pathological conditions, we have recently found that the ability of glutamate to fuel cell metabolism selectively relies on the activity of two main transporters: the sodium-calcium exchanger (NCX) and the sodium-dependent excitatory amino-acid transporters (EAATs). In ischemic settings, when glutamate is administered at the onset of the reoxygenation phase, the coordinate activity of EAAT and NCX allows glutamate to improve cell viability by stimulating ATP production. So far, this phenomenon has been observed in both cardiac and neuronal models. In this review, we focus on the most recent findings exploring the unusual activity of glutamate as a potential survival factor in different settings.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
77
|
Semick SA, Bharadwaj RA, Collado-Torres L, Tao R, Shin JH, Deep-Soboslay A, Weiss JR, Weinberger DR, Hyde TM, Kleinman JE, Jaffe AE, Mattay VS. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer's disease. Acta Neuropathol 2019; 137:557-569. [PMID: 30712078 DOI: 10.1007/s00401-019-01966-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Late-onset Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10-16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer's disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer's disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.
Collapse
|
78
|
Zhou H, Neville KR, Goldstein N, Kabu S, Kausar N, Ye R, Nguyen TT, Gelwan N, Hyman BT, Gomperts SN. Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle. eLife 2019; 8:39777. [PMID: 30843520 PMCID: PMC6435325 DOI: 10.7554/elife.39777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium is a critical second messenger in neurons that contributes to learning and memory, but how the coordination of action potentials of neuronal ensembles with the hippocampal local field potential (LFP) is reflected in dynamic calcium activity remains unclear. Here, we recorded hippocampal calcium activity with endoscopic imaging of the genetically encoded fluorophore GCaMP6 with concomitant LFP in freely behaving mice. Dynamic calcium activity was greater in exploratory behavior and REM sleep than in quiet wakefulness and slow wave sleep, behavioral states that differ with respect to theta and septal cholinergic activity, and modulated at sharp wave ripples (SWRs). Chemogenetic activation of septal cholinergic neurons expressing the excitatory hM3Dq DREADD increased calcium activity and reduced SWRs. Furthermore, inhibition of muscarinic acetylcholine receptors (mAChRs) reduced calcium activity while increasing SWRs. These results demonstrate that hippocampal dynamic calcium activity depends on behavioral and theta state as well as endogenous mAChR activation.
Collapse
Affiliation(s)
- Heng Zhou
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Kevin R Neville
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Nitsan Goldstein
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Shushi Kabu
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Naila Kausar
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Rong Ye
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Thuan Tinh Nguyen
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Noah Gelwan
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Bradley T Hyman
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Stephen N Gomperts
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| |
Collapse
|
79
|
Maj M, Wagner L, Tretter V. 20 Years of Secretagogin: Exocytosis and Beyond. Front Mol Neurosci 2019; 12:29. [PMID: 30853888 PMCID: PMC6396707 DOI: 10.3389/fnmol.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Calcium is one of the most important signaling factors in mammalian cells. Specific temporal and spatial calcium signals underlie fundamental processes such as cell growth, development, circadian rhythms, neurotransmission, hormonal actions and apoptosis. In order to translate calcium signals into cellular processes a vast number of proteins bind this ion with affinities from the nanomolar to millimolar range. Using classical biochemical methods an impressing number of calcium binding proteins (CBPs) have been discovered since the late 1960s, some of which are expressed ubiquitously, others are more restricted to specific cell types. In the nervous system expression patterns of different CBPs have been used to discern different neuronal cell populations, especially before advanced methods like single-cell transcriptomics and activity recording were available to define neuronal identity. However, understanding CBPs and their interacting proteins is still of central interest. The post-genomic era has coined the term “calciomics,” to describe a whole new research field, that engages in the identification and characterization of CBPs and their interactome. Secretagogin is a CBP, that was discovered 20 years ago in the pancreas. Consecutively it was found also in other organs including the nervous system, with characteristic expression patterns mostly forming cell clusters. Its regional expression and subcellular location together with the identification of protein interaction partners implicated, that secretagogin has a central role in hormone secretion. Meanwhile, with the help of modern proteomics a large number of actual and putative interacting proteins has been identified, that allow to anticipate a much more complex role of secretagogin in developing and adult neuronal cells. Here, we review recent findings that appear like puzzle stones of a greater picture.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Ludwig Wagner
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien, Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia and General Intensive Care, Clinical Department of Anesthesia, Medizinische Universität Wien, Vienna, Austria
| |
Collapse
|
80
|
Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER, Huang X. Identification and Analysis of Alzheimer's Candidate Genes by an Amplitude Deviation Algorithm. ACTA ACUST UNITED AC 2019; 9. [PMID: 31080696 PMCID: PMC6505709 DOI: 10.4172/2161-0460.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Alzheimer’s disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. Methods: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. Results: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. Conclusions: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.
Collapse
Affiliation(s)
- Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Hualan Yang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Shipeng Wang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Meixia Chen
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hannah S Chen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristy A Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
81
|
Selective inhibition of mitochondrial sodium-calcium exchanger protects striatal neurons from α-synuclein plus rotenone induced toxicity. Cell Death Dis 2019; 10:80. [PMID: 30692508 PMCID: PMC6349907 DOI: 10.1038/s41419-018-1290-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Progressive accumulation of α-synuclein (α-syn) and exposure to environmental toxins are risk factors that may both concur to Parkinson’s disease (PD) pathogenesis. Electrophysiological recordings of field postsynaptic potentials (fEPSPs) and Ca2+ measures in striatal brain slices and differentiated SH-SY5Y cells showed that co-application of α-syn and the neurotoxic pesticide rotenone (Rot) induced Ca2+ dysregulation and alteration of both synaptic transmission and cell function. Interestingly, the presence of the mitochondrial NCX inhibitor CGP-37157 prevented these alterations. The specific involvement of the mitochondrial NCX was confirmed by the inability of the plasma membrane inhibitor SN-6 to counteract such phenomenon. Of note, using a siRNA approach, we found that NCX1 was the isoform specifically involved. These findings suggested that NCX1, operating on the mitochondrial membrane, may have a critical role in the maintenance of ionic Ca2+ homeostasis in PD and that its inhibition most likely exerts a protective effect in the toxicity induced by α-syn and Rot.
Collapse
|
82
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
83
|
Janas T, Sapoń K, Stowell MHB, Janas T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies. Int J Mol Sci 2019; 20:ijms20020299. [PMID: 30642129 PMCID: PMC6359565 DOI: 10.3390/ijms20020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isolated and its binding to Aβ42-containing membranes was demonstrated using the gel filtration method. Since membranes can act as a catalytic surface for Aβ42 aggregation, these RNA aptamers may inhibit the formation of toxic amyloid aggregates that can permeabilize cellular membranes or disrupt membrane receptors. Strategies are proposed for using functional exosomes, loaded with RNA aptamers specific to membrane Aβ42, to reduce the oxidative stress in Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Karolina Sapoń
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
- Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Tadeusz Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
84
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
85
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
86
|
Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson's disease. Physiol Res 2018; 68:17-24. [PMID: 30433804 DOI: 10.33549/physiolres.933895] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD), which is the second most common neurodegenerative disorder after Alzheimer's disease, is firstly defined after James Parkinson's report. It carries motor symptoms such as resting tremor, bradykinesia and rigidity of skeletal muscle and freezing of gait. Furthermore, non-motor symptoms such as cognitive and behavioral problems, besides sensory impairments are seen in the patients. However, they may also suffer from sleep disorders or autonomic dysfunction. Although there are some medications in order to symptomatic management, but unfortunately, scientist could not have found exact approaches to cure this disease. Hence, producing a model which can express the most pathophysiologic and behavioral aspects of the disease is a desire. In this paper, we aimed to describe the different models of Parkinson's disease in brief.
Collapse
Affiliation(s)
- S Salari
- Psychosocial Injuries Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | | |
Collapse
|
87
|
Abstract
Brain is the most complex structure of the human body. The processes going inside the brain and the mechanisms behind it have been unrevealed up to certain extent only. Out of the various physiological phenomena carried out by the brain, calcium signalling can be considered as one of the most important. Calcium being a second messenger plays an important role in transformation of various information. In view of above, an attempt has been made here to study calcium signalling in presence of buffers, i.e. one kind of proteins and endoplasmic reticulum (ER), which is also known as store house of the cell. Being the store house of the cell, it has very high amount of calcium, whereas buffers decrease the level of free calcium ions by binding calcium ions to it. A two-dimensional mathematical model has been developed to see the impact of these parameters on cytosolic calcium concentration. This mathematical model is solved analytically using Laplace transforms and similarity transforms. The simulations are carried out using MATLAB. It is observed that the impact of buffer and ER is significant on calcium signalling. The obtained results are interpreted with the Alzheimeric condition of the nerve cells.
Collapse
Affiliation(s)
- Devanshi D. Dave
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
88
|
Tabata Y, Imaizumi Y, Sugawara M, Andoh-Noda T, Banno S, Chai M, Sone T, Yamazaki K, Ito M, Tsukahara K, Saya H, Hattori N, Kohyama J, Okano H. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Reports 2018; 11:1171-1184. [PMID: 30344006 PMCID: PMC6234903 DOI: 10.1016/j.stemcr.2018.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a progressive neurological disease caused by selective degeneration of dopaminergic (DA) neurons in the substantia nigra. Although most cases of PD are sporadic cases, familial PD provides a versatile research model for basic mechanistic insights into the pathogenesis of PD. In this study, we generated DA neurons from PARK2 patient-specific, isogenic PARK2 null and PARK6 patient-specific induced pluripotent stem cells and found that these neurons exhibited more apoptosis and greater susceptibility to rotenone-induced mitochondrial stress. From phenotypic screening with an FDA-approved drug library, one voltage-gated calcium channel antagonist, benidipine, was found to suppress rotenone-induced apoptosis. Furthermore, we demonstrated the dysregulation of calcium homeostasis and increased susceptibility to rotenone-induced stress in PD, which is prevented by T-type calcium channel knockdown or antagonists. These findings suggest that calcium homeostasis in DA neurons might be a useful target for developing new drugs for PD patients. Patient-derived DA neurons recapitulate several PD-related disease phenotypes Establishment of a system for drug screening against PD using patient-derived cells Calcium channel antagonists suppress rotenone-induced apoptosis in PARK2 DA neurons The involvement of dysregulated T-type calcium channels in the progression of PD
Collapse
Affiliation(s)
- Yoshikuni Tabata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yoichi Imaizumi
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Michiko Sugawara
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Masashi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Kappei Tsukahara
- Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
89
|
Oh JH, Choi JS, Nam TJ. Fucosterol from an Edible Brown Alga Ecklonia stolonifera Prevents Soluble Amyloid Beta-Induced Cognitive Dysfunction in Aging Rats. Mar Drugs 2018; 16:E368. [PMID: 30301140 PMCID: PMC6213915 DOI: 10.3390/md16100368] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Fucosterol from edible brown seaweeds has various biological activities, including anti-inflammatory, anti-adipogenic, antiphotoaging, anti-acetylcholinesterase, and anti-beta-secretase 1 activities. However, little is known about its effects on soluble amyloid beta peptide (sAβ)-induced endoplasmic reticulum (ER) stress and cognitive impairment. Fucosterol was isolated from the edible brown seaweed Ecklonia stolonifera, and its neuroprotective effects were analyzed in primary hippocampal neurons and in aging rats. Fucosterol attenuated sAβ1-42-induced decrease in the viability of hippocampal neurons and downregulated sAβ1-42-induced increase in glucose-regulated protein 78 (GRP78) expression in hippocampal neurons via activation of tyrosine receptor kinase B-mediated ERK1/2 signaling. Fucosterol co-infusion attenuated sAβ1-42-induced cognitive impairment in aging rats via downregulation of GRP78 expression and upregulation of mature brain-derived neurotrophic factor expression in the dentate gyrus. Fucosterol might be beneficial for the management of cognitive dysfunction via suppression of aging-induced ER stress.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
90
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
91
|
Abstract
Under the widespread umbrella of dementia, Alzheimer’s disease is the most common form of dementia. Most of the aged people are suffering from Alzheimer’s disease around the world. The reasons for the same are not known in detail and thus various experimental and computational attempts need to be carried out. Calcium, being a second messenger has an immense role in transformation of information. This transformation takes place in the form of signaling in which several parameters play an active role. In present work, an attempt has been made to describe the effect of calcium signaling in nerve cells for Alzheimer’s disease. Here, parameters like advection diffusion and buffering are taken into consideration to visualize the effects of the same on cytosolic calcium concentration. This physiological process is modeled two dimensionally and solved analytically. Laplace and similarity transforms are employed to obtain the desired results. The results are simulated and graphically plotted using MATLAB. The known fact that the higher concentration of calcium has adverse effects on the cell which may result into progression of AD is considered as a lantern in enlightening the physiology of Alzheimer’s disease.
Collapse
Affiliation(s)
- DEVANSHI D. DAVE
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
| | - BRAJESH KUMAR JHA
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
92
|
Zhang S, Chai R, Yang YY, Guo SQ, Wang S, Guo T, Xu SF, Zhang YH, Wang ZY, Guo C. Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice. Oncotarget 2018; 8:43617-43634. [PMID: 28467789 PMCID: PMC5546429 DOI: 10.18632/oncotarget.17116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
The coincidences between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are so compelling that it is attractive to speculate that diabetic conditions might aggravate AD pathologies by calcium dysfunction, although the understanding of the molecular mechanisms involved remains elusive. The present work was undertaken to investigate whether calcium dyshomeostasis is associated with the exacerbated Alzheimer-like cognitive dysfunction observed in diabetic conditions in APP/PS1-ob/ob mice, which were generated by crossing ob/ob mice with APP/PS1 mice. We confirmed that the diabetic condition can aggravate not only Aβ deposition but also tau phosphorylation, synaptic loss, neuronal death, and inflammation, exacerbating cognitive impairment in AD mice. More importantly, we found that the diabetic condition dramatically elevated calcium levels in APP/PS1 mice, thereby stimulating the phosphorylation of the calcium-dependent kinases. Our findings suggest that controlling over-elevation of intracellular calcium may provide novel insights for approaching AD in diabetic patients and delaying AD progression.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui Chai
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ying-Ying Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shi-Qi Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tian Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shuang-Feng Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Hui Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
93
|
Gao X, Wu S, Dong Y, Huang Y, Chen Y, Qiao Y, Dou Z, Wang B. Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats. Int J Neurosci 2018; 128:797-804. [PMID: 29264962 DOI: 10.1080/00207454.2017.1420069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study investigated the effect of rimonabant, a cannabinoid receptor type 1 antagonist, on calcium/calmodulin- dependent protein kinase II and cannabinoid receptor type 1 in chronic intermittent hypoxia. MATERIALS AND METHODS Healthy male rats were divided into control group, intermittent hypoxia group for 4 or 6 weeks, hypoxic intervention group that received rimonabant (1 mg/kg/d) before exposure to hypoxia for 4 or 6 weeks (n = 10/group). Morphological changes and expressions of the two indexes in the cerebral hippocampus cells were determined by haematoxylin-eosin staining and immunohistochemistry, respectively. RESULTS In the intermittent hypoxia group at 4 weeks, the hippocampal cells were damaged with sparse cytoplasm and unclear boundaries, which are even worse at 6 weeks. In contrast, the hippocampal cells of the hypoxic intervention group were neatly arranged at 4 weeks. At 6 weeks, cells were larger with scarce cytoplasm and nuclear changes indicative of cell death. Calcium/calmodulin-dependent protein kinase II and cannabinoid receptor type 1 expression in the cerebral hippocampus was elevated in the intermittent hypoxia group at 4 weeks with even greater at 6 weeks. Cannabinoid receptor type 1 expression was reduced in the hypoxic intervention group compared to the intermittent hypoxia group. Correlation analysis revealed significant positive correlation of them in the intermittent hypoxia group. CONCLUSIONS Chronic intermittent hypoxia induced structural damage in the hippocampus and increased cannabinoid receptor type 1 and calcium/calmodulin-dependent protein kinase II expression, which may mediate cognitive impairment associated with chronic intermittent hypoxia. Rimonabant had a protective effect against chronic intermittent hypoxia.
Collapse
Affiliation(s)
- Xiaoling Gao
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Shujie Wu
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yanting Dong
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yaqiong Huang
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yan Chen
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Yan Qiao
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Zhanjun Dou
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| | - Bei Wang
- a Department of Respiratory , The Second Hospital of Shanxi Medical University , Taiyuan , China
| |
Collapse
|
94
|
Murata T, Yamaguchi M, Kohno S, Takahashi C, Kakimoto M, Sugimura Y, Kamihara M, Hikita K, Kaneda N. Regucalcin confers resistance to amyloid-β toxicity in neuronally differentiated PC12 cells. FEBS Open Bio 2018; 8:349-360. [PMID: 29511612 PMCID: PMC5832982 DOI: 10.1002/2211-5463.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023] Open
Abstract
Amyloid‐β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+‐binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ‐induced cytotoxicity in neuronally differentiated PC12 cells. Overexpression of RGN reduced Aβ‐induced apoptosis by reducing mitochondrial dysfunction and caspase activation. It also attenuated Aβ‐induced reactive oxygen species production and oxidative damage and decreased Aβ‐induced nitric oxide (NO) overproduction, upregulation of inducible NO synthase by nuclear factor‐κB, and nitrosative damage. Interestingly, the genetic disruption of RGN increased the susceptibility of neuronally differentiated PC12 cells to Aβ toxicity. Thus, RGN possesses antioxidant activity against Aβ‐induced oxidative and nitrosative stress and may play protective roles against Aβ‐induced neurotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| | - Masayoshi Yamaguchi
- Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California, Los Angeles (UCLA) CA USA
| | - Susumu Kohno
- Division of Oncology and Molecular Biology Cancer Research Institute Kanazawa University Ishikawa Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology Cancer Research Institute Kanazawa University Ishikawa Japan
| | - Mitsumi Kakimoto
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| | - Yukiko Sugimura
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| | - Mako Kamihara
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| | - Kiyomi Hikita
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| | - Norio Kaneda
- Laboratory of Analytical Neurobiology Faculty of Pharmacy Meijo University Nagoya Japan
| |
Collapse
|
95
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|
96
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
97
|
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci 2017; 24:46-54. [PMID: 28588356 DOI: 10.1159/000464422] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
Dementia is a chronic or progressive syndrome, characterized by impaired cognitive capacity beyond what could be considered a consequence of normal aging. It affects the memory, thinking process, orientation, comprehension, calculation, learning ability, language, and judgment; although awareness is usually unaffected. Alzheimer's disease (AD) is the most common form of dementia; symptoms include memory loss, difficulty solving problems, disorientation in time and space, among others. The disease was first described in 1906 at a conference in Tubingen, Germany by Alois Alzheimer. One hundred and ten years since its first documentation, many aspects of the pathophysiology of AD have been discovered and understood, however gaps of knowledge continue to exist. This literature review summarizes the main underlying neurobiological mechanisms in AD, including the theory with emphasis on amyloid peptide, cholinergic hypothesis, glutamatergic neurotransmission, the role of tau protein, and the involvement of oxidative stress and calcium.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| | | | - Cecilia Monge-Bonilla
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| |
Collapse
|
98
|
Shin KY, Kim KY, Suh YH. Dehydroevodiamine·HCl enhances cognitive function in memory-impaired rat models. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:55-64. [PMID: 28066141 PMCID: PMC5214911 DOI: 10.4196/kjpp.2017.21.1.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
Progressive memory impairment such as that associated with depression, stroke, and Alzheimer's disease (AD) can interfere with daily life. In particular, AD, which is a progressive neurodegenerative disorder, prominently features a memory and learning impairment that is related to changes in acetylcholine and abnormal β-amyloid (Aβ) deposition in the brain. In the present study, we investigated the effects of dehydroevodiamine·HCl (DHED) on cognitive improvement and the related mechanism in memory-impaired rat models, namely, a scopolamine-induced amnesia model and a Aβ1-42-infused model. The cognitive effects of DHED were measured using a water maze test and a passive avoidance test in the memory-impaired rat models. The results demonstrate that DHED (10 mg/kg, p.o.) and Donepezil (1 mg/kg, p.o.) ameliorated the spatial memory impairment in the scopolamine-induced amnestic rats. Moreover, DHED significantly improved learning and memory in the Aβ1-42-infused rat model. Furthermore, the mechanism of these behavioral effects of DHED was investigated using a cell viability assay, reactive oxygen species (ROS) measurement, and intracellular calcium measurement in primary cortical neurons. DHED reduced neurotoxicity and the production of Aβ-induced ROS in primary cortical neurons. In addition, similar to the effect of MK801, DHED decreased intracellular calcium levels in primary cortical neurons. Our results suggest that DHED has strong protective effects against cognitive impairments through its antioxidant activity and inhibition of neurotoxicity and intracellular calcium. Thus, DHED may be an important therapeutic agent for memory-impaired symptoms.
Collapse
Affiliation(s)
- Ki Young Shin
- Department of Microbiology, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute (NRI), Gachon University, Incheon 21565, Korea
| |
Collapse
|
99
|
Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is Triclosan a neurotoxic agent? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:104-117. [PMID: 28339349 DOI: 10.1080/10937404.2017.1281181] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antibacterial agent that has been used in many products since 1960s. Given its broad usage as an antiseptic TCS is present ubiquitously in the environment. Trace levels of TCS continue to be detected in many organisms, and it has been shown to be particularly toxic to aquatic species. The mechanisms underlying TCS-mediated toxicity include hormone dyshomeostasis, induction of oxidative stress, apoptosis and inflammation. Although TCS has been considered to be non-toxic to mammals, the adverse effects of continuous, long-term and low concentration exposure remain unknown. Epidemiological studies revealed that levels of TCS in human tissues, urine, plasma and breast milk correlate with the usage of this antimicrobial. This led to concerns regarding TCS safety and potential toxicity in humans, with special emphasis on early development. The Food and Drug Administration (FDA) recently issued a directive banning the use of TCS in consumer soaps, justifying the move attributed to data gaps on its effectiveness and safety, indicating the need for more studies addressing this chemical-mediated effects on various tissues including the central nervous system (CNS). The aim of this review was to (1) summarize the current findings on the neurotoxic effects of TCS and given the paucity of data, to (2) broaden the discussion to other effects of TCS, which might plausibly be related to neuronal functions.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Shaojun Li
- b Department of Toxicology, School of Public Health , Guangxi Medical University , Guangxi , China
| | - Maliya B Rodriguez
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Michael Aschner
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| |
Collapse
|
100
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|