51
|
Stewart NJ, Nakano H, Sugai S, Tomohiro M, Kase Y, Uchio Y, Yamaguchi T, Matsuo Y, Naganuma T, Takeda N, Nishimura I, Hirata H, Hashimoto T, Matsumoto S. Hyperpolarized 13 C Magnetic Resonance Imaging of Fumarate Metabolism by Parahydrogen-induced Polarization: A Proof-of-Concept in vivo Study. Chemphyschem 2021; 22:915-923. [PMID: 33590933 PMCID: PMC8251594 DOI: 10.1002/cphc.202001038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hitomi Nakano
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Shuto Sugai
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yuki Kase
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yoshiki Uchio
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Toru Yamaguchi
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Yujirou Matsuo
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Tatsuya Naganuma
- R&D DepartmentJapan REDOX Ltd.4-29-49-805 Chiyo, Hakata-kuFukuoka812-0044Japan
| | - Norihiko Takeda
- Division of Cardiology and MetabolismCenter for Molecular MedicineJichi Medical University3311-1 Yakushiji, Shimotsuke-shiTochigi329-0498Japan
| | - Ikuya Nishimura
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hiroshi Hirata
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of ChemistryGraduate School of ScienceChiba University1-33 Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Shingo Matsumoto
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| |
Collapse
|
52
|
Glutaminolysis dynamics during astrocytoma progression correlates with tumor aggressiveness. Cancer Metab 2021; 9:18. [PMID: 33910646 PMCID: PMC8082835 DOI: 10.1186/s40170-021-00255-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. Methods In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. Results We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII–AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. Conclusions In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1mut AGII and AGIII progression towards secondary GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00255-8.
Collapse
|
53
|
Tang S, Meng MV, Slater JB, Gordon JW, Vigneron DB, Stohr BA, Larson PEZ, Wang ZJ. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience. Cancer 2021; 127:2693-2704. [PMID: 33844280 DOI: 10.1002/cncr.33554] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal treatment selection for localized renal tumors is challenging because of their variable biologic behavior and limitations in the preoperative assessment of tumor aggressiveness. The authors investigated the emerging hyperpolarized (HP) 13 C magnetic resonance imaging (MRI) technique to noninvasively assess tumor lactate production, which is strongly associated with tumor aggressiveness. METHODS Eleven patients with renal tumors underwent HP 13 C pyruvate MRI before surgical resection. Tumor 13 C pyruvate and 13 C lactate images were acquired dynamically. Five patients underwent 2 scans on the same day to assess the intrapatient reproducibility of HP 13 C pyruvate MRI. Tumor metabolic data were compared with histopathology findings. RESULTS Eight patients had tumors with a sufficient metabolite signal-to-noise ratio for analysis; an insufficient tumor signal-to-noise ratio was noted in 2 patients, likely caused by poor tumor perfusion and, in 1 patient, because of technical errors. Of the 8 patients, 3 had high-grade clear cell renal cell carcinoma (ccRCC), 3 had low-grade ccRCC, and 2 had chromophobe RCC. There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs. Both chromophobe RCCs had relatively high lactate-to-pyruvate ratios. Good reproducibility was noted across the 5 patients who underwent 2 HP 13 C pyruvate MRI scans on the same day. CONCLUSIONS The current results demonstrate the feasibility of HP 13 C pyruvate MRI for investigating the metabolic phenotype of localized renal tumors. The initial data indicate good reproducibility of metabolite measurements. In addition, the metabolic data indicate a trend toward differentiating low-grade and high-grade ccRCCs, the most common subtype of renal cancer. LAY SUMMARY Renal tumors are frequently discovered incidentally because of the increased use of medical imaging, but it is challenging to identify which aggressive tumors should be treated. A new metabolic imaging technique was applied to noninvasively predict renal tumor aggressiveness. The imaging results were compared with tumor samples taken during surgery and showed a trend toward differentiating between low-grade and high-grade clear cell renal cell carcinomas, which are the most common type of renal cancers.
Collapse
Affiliation(s)
- Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Maxwell V Meng
- Department of Urology, University of California-San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Bradley A Stohr
- Department of Pathology, University of California-San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California
| |
Collapse
|
54
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
55
|
Oshima N, Ishida R, Kishimoto S, Beebe K, Brender JR, Yamamoto K, Urban D, Rai G, Johnson MS, Benavides G, Squadrito GL, Crooks D, Jackson J, Joshi A, Mott BT, Shrimp JH, Moses MA, Lee MJ, Yuno A, Lee TD, Hu X, Anderson T, Kusewitt D, Hathaway HH, Jadhav A, Picard D, Trepel JB, Mitchell JB, Stott GM, Moore W, Simeonov A, Sklar LA, Norenberg JP, Linehan WM, Maloney DJ, Dang CV, Waterson AG, Hall M, Darley-Usmar VM, Krishna MC, Neckers LM. Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid In Vivo Metabolic Rewiring and Vulnerability to Combination Therapy. Cell Rep 2021; 30:1798-1810.e4. [PMID: 32049011 PMCID: PMC7039685 DOI: 10.1016/j.celrep.2020.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.
Collapse
Affiliation(s)
- Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ryo Ishida
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel Urban
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ganesha Rai
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Giuseppe L Squadrito
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dan Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Joseph Jackson
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Abhinav Joshi
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Bryan T Mott
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Jonathan H Shrimp
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tobie D Lee
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Hu
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Tamara Anderson
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Donna Kusewitt
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Helen H Hathaway
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ajit Jadhav
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Didier Picard
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gordon M Stott
- Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD 24060, USA
| | - William Moore
- Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD 24060, USA
| | - Anton Simeonov
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Larry A Sklar
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David J Maloney
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chi V Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alex G Waterson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew Hall
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
56
|
Woitek R, Gallagher FA. The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer 2021; 124:1187-1198. [PMID: 33504974 PMCID: PMC8007617 DOI: 10.1038/s41416-020-01224-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer and includes the Warburg effect, which is exhibited by many tumours. This can be exploited by positron emission tomography (PET) as part of routine clinical cancer imaging. However, an emerging and alternative method to detect altered metabolism is carbon-13 magnetic resonance imaging (MRI) following injection of hyperpolarised [1-13C]pyruvate. The technique increases the signal-to-noise ratio for the detection of hyperpolarised 13C-labelled metabolites by several orders of magnitude and facilitates the dynamic, noninvasive imaging of the exchange of 13C-pyruvate to 13C-lactate over time. The method has produced promising preclinical results in the area of oncology and is currently being explored in human imaging studies. The first translational studies have demonstrated the safety and feasibility of the technique in patients with prostate, renal, breast and pancreatic cancer, as well as revealing a successful response to treatment in breast and prostate cancer patients at an earlier stage than multiparametric MRI. This review will focus on the strengths of the technique and its applications in the area of oncological body MRI including noninvasive characterisation of disease aggressiveness, mapping of tumour heterogeneity, and early response assessment. A comparison of hyperpolarised 13C-MRI with state-of-the-art multiparametric MRI is likely to reveal the unique additional information and applications offered by the technique.
Collapse
Affiliation(s)
- Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| |
Collapse
|
57
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
58
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
59
|
Sun J, Bok RA, DeLos Santos J, Upadhyay D, DeLos Santos R, Agarwal S, Van Criekinge M, Vigneron DB, Aggarwal R, Peehl DM, Kurhanewicz J, Sriram R. Resistance to Androgen Deprivation Leads to Altered Metabolism in Human and Murine Prostate Cancer Cell and Tumor Models. Metabolites 2021; 11:metabo11030139. [PMID: 33652703 PMCID: PMC7996870 DOI: 10.3390/metabo11030139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, no clinical methods reliably predict the development of castration-resistant prostate cancer (CRPC) that occurs almost universally in men undergoing androgen deprivation therapy. Hyperpolarized (HP) 13C magnetic resonance imaging (MRI) could potentially detect the incipient emergence of CRPC based on early metabolic changes. To characterize metabolic shifts occurring upon the transition from androgen-dependent to castration-resistant prostate cancer (PCa), the metabolism of [U-13C]glucose and [U-13C]glutamine was analyzed by nuclear magnetic resonance spectroscopy. Comparison of steady-state metabolite concentrations and fractional enrichment in androgen-dependent LNCaP cells and transgenic adenocarcinoma of the murine prostate (TRAMP) murine tumors versus castration-resistant PC-3 cells and treatment-driven CRPC TRAMP tumors demonstrated that CRPC was associated with upregulation of glycolysis, tricarboxylic acid metabolism of pyruvate; and glutamine, glutaminolysis, and glutathione synthesis. These findings were supported by 13C isotopomer modeling showing increased flux through pyruvate dehydrogenase (PDH) and anaplerosis; enzymatic assays showing increased lactate dehydrogenase, PDH and glutaminase activity; and oxygen consumption measurements demonstrating increased dependence on anaplerotic fuel sources for mitochondrial respiration in CRPC. Consistent with ex vivo metabolomic studies, HP [1-13C]pyruvate distinguished androgen-dependent PCa from CRPC in cell and tumor models based on significantly increased HP [1-13C]lactate.
Collapse
Affiliation(s)
- Jinny Sun
- Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA 94143, USA;
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Justin DeLos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Deepti Upadhyay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Romelyn DeLos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - Rahul Aggarwal
- Divisions of Hematology & Oncology, University of California, San Francisco, CA 94143, USA;
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
- Correspondence: (J.K.); (R.S.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (R.A.B.); (J.D.S.); (D.U.); (R.D.S.); (S.A.); (M.V.C.); (D.B.V.); (D.M.P.)
- Correspondence: (J.K.); (R.S.)
| |
Collapse
|
60
|
Kazemi MH, Najafi A, Karami J, Ghazizadeh F, Yousefi H, Falak R, Safari E. Immune and metabolic checkpoints blockade: Dual wielding against tumors. Int Immunopharmacol 2021; 94:107461. [PMID: 33592403 DOI: 10.1016/j.intimp.2021.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in cancer immunotherapy have raised hopes for treating cancers that are resistant to conventional therapies. Among the various immunotherapy methods, the immune checkpoint (IC) blockers were more promising and have paved their way to the clinic. Tumor cells induce the expression of ICs on the immune cells and derive them to a hyporesponsive exhausted phenotype. IC blockers could hinder immune exhaustion in the tumor microenvironment and reinvigorate immune cells for an efficient antitumor response. Despite the primary success of IC blockers in the clinic, the growing numbers of refractory cases require an in-depth study of the cellular and molecular mechanisms underlying IC expression and function. Immunometabolism is recently found to be a key factor in the regulation of immune responses. Activated or exhausted immune cells exploit different metabolic pathways. Tumor cells can suppress antitumor responses via immunometabolism alteration. Therefore, it is expected that concurrent targeting of ICs and immunometabolism pathways can cause immune cells to restore their antitumor activity. In this review, we dissected the reciprocal interactions of immune cell metabolism with expression and signaling of ICs in the tumor microenvironment. Recent findings on dual targeting of ICs and metabolic checkpoints have also been discussed.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| | - Foad Ghazizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
61
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15 N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:2406-2413. [PMID: 33063407 PMCID: PMC7855180 DOI: 10.1002/anie.202011698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 02/03/2023]
Abstract
Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
62
|
Clemmensen A, Hansen AE, Holst P, Schøier C, Bisgaard S, Johannesen HH, Ardenkjær-Larsen JH, Kristensen AT, Kjaer A. [ 68Ga]Ga-NODAGA-E[(cRGDyK)] 2 PET and hyperpolarized [1- 13C] pyruvate MRSI (hyperPET) in canine cancer patients: simultaneous imaging of angiogenesis and the Warburg effect. Eur J Nucl Med Mol Imaging 2021; 48:395-405. [PMID: 32621132 PMCID: PMC7835292 DOI: 10.1007/s00259-020-04881-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Cancer has a multitude of phenotypic expressions and identifying these are important for correct diagnosis and treatment selection. Clinical molecular imaging such as positron emission tomography can access several of these hallmarks of cancer non-invasively. Recently, hyperpolarized magnetic resonance spectroscopy with [1-13C] pyruvate has shown great potential to probe metabolic pathways. Here, we investigate simultaneous dual modality clinical molecular imaging of angiogenesis and deregulated energy metabolism in canine cancer patients. METHODS Canine cancer patients (n = 11) underwent simultaneous [68Ga]Ga-NODAGA-E[(cRGDyK)]2 (RGD) PET and hyperpolarized [1-13C]pyruvate-MRSI (hyperPET). Standardized uptake values and [1-13C]lactate to total 13C ratio were quantified and compared generally and voxel-wise. RESULTS Ten out of 11 patients showed clear tumor uptake of [68Ga]Ga-NODAGA-RGD at both 20 and 60 min after injection, with an average SUVmean of 1.36 ± 0.23 g/mL and 1.13 ± 0.21 g/mL, respectively. A similar pattern was seen for SUVmax values, which were 2.74 ± 0.41 g/mL and 2.37 ± 0.45 g/mL. The [1-13C]lactate generation followed patterns previously reported. We found no obvious pattern or consistent correlation between the two modalities. Voxel-wise tumor values of RGD uptake and lactate generation analysis revealed a tendency for each canine cancer patient to cluster in separated groups. CONCLUSION We demonstrated combined imaging of [68Ga]Ga-NODAGA-RGD-PET for angiogenesis and hyperpolarized [1-13C]pyruvate-MRSI for probing energy metabolism. The results suggest that [68Ga]Ga-NODAGA-RGD-PET and [1-13C]pyruvate-MRSI may provide complementary information, indicating that hyperPET imaging of angiogenesis and energy metabolism is able to aid in cancer phenotyping, leading to improved therapy planning.
Collapse
Affiliation(s)
- Andreas Clemmensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen Denmark, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen Denmark, Copenhagen, Denmark
| | - Pernille Holst
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christina Schøier
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sissel Bisgaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen Denmark, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen Denmark, Copenhagen, Denmark
| | | | - Annemarie T Kristensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen Denmark, Copenhagen, Denmark.
| |
Collapse
|
63
|
In Vivo Optical Metabolic Imaging of Long-Chain Fatty Acid Uptake in Orthotopic Models of Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13010148. [PMID: 33466329 PMCID: PMC7794847 DOI: 10.3390/cancers13010148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary A dysregulated metabolism is a hallmark of cancer. Once understood, tumor metabolic reprogramming can lead to targetable vulnerabilities, spurring the development of novel treatment strategies. Beyond the common observation that tumors rely heavily on glucose, building evidence indicates that a subset of tumors use lipids to maintain their proliferative or metastatic phenotype. This study developed an intra-vital microscopy method to quantify lipid uptake in breast cancer murine models using a fluorescently labeled palmitate molecule, Bodipy FL c16. This work highlights optical imaging’s ability to both measure metabolic endpoints non-destructively and repeatedly, as well as inform small animal metabolic phenotyping beyond in vivo optical imaging of breast cancer alone. Abstract Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30–80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution.
Collapse
|
64
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15
N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Oleg G. Salnikov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Mohammad S. H. Kabir
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Juri G. Gelovani
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- College of Medicine and Health Sciences United Arab Emirates University Al Ain United Arab Emirates
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) 14 Leninskiy Prospekt 119991 Moscow Russia
| |
Collapse
|
65
|
Xu Z, Niedzielski JS, Sun C, Walker CM, Michel KA, Einstein SA, Martinez GV, Bankson JA. Correction and optimization of symmetric echo-planar spectroscopic imaging for hyperpolarized [1- 13C]-pyruvate. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106859. [PMID: 33160268 PMCID: PMC7722237 DOI: 10.1016/j.jmr.2020.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Symmetric echo-planar spectroscopic imaging (EPSI) supports higher spectral bandwidth and improves signal-to-noise efficiency compared to flyback EPSI with the same readout bandwidth, but suffers from artifacts that are associated with non-uniform temporal sampling in k-t space. Our goal is to eliminate these artifacts and enhance observation of hyperpolarized [1-13C] pyruvate and its metabolites using symmetric EPSI. We used symmetric EPSI to efficiently acquire radially encoded spectroscopic imaging projections with a spectral under-sampling scheme that was optimized for HP pyruvate and its metabolites. A simple approach called selective correction of off-resonance effects (SCORE) was developed and applied to eliminate spectral artifacts. Simulations were used to assess the relative SNR performance of this technique, and a phantom study was carried out at 3 T to evaluate this method and compare it with alternative strategies. SCORE correction eliminated spectral artifacts due to chemical shift and non-uniform sampling in time. It is also compatible with established methods to eliminate artifacts caused by eddy currents. SCORE corrected symmetric EPSI supported maximal EPSI spectral bandwidth and improved SNR efficiency. Symmetric EPSI with SCORE correction offers a straightforward, efficient, and effective framework for assessment of hyperpolarized [1-13C] pyruvate and its metabolites.
Collapse
Affiliation(s)
- Zhan Xu
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua S Niedzielski
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Changyu Sun
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Walker
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Michel
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samuel A Einstein
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Gary V Martinez
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
66
|
Gordon JW, Autry AW, Tang S, Graham JY, Bok RA, Zhu X, Villanueva-Meyer JE, Li Y, Ohilger MA, Abraham MR, Xu D, Vigneron DB, Larson PEZ. A variable resolution approach for improved acquisition of hyperpolarized 13 C metabolic MRI. Magn Reson Med 2020; 84:2943-2952. [PMID: 32697867 PMCID: PMC7719570 DOI: 10.1002/mrm.28421] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To ameliorate tradeoffs between a fixed spatial resolution and signal-to-noise ratio (SNR) for hyperpolarized 13 C MRI. METHODS In MRI, SNR is proportional to voxel volume but retrospective downsampling or voxel averaging only improves SNR by the square root of voxel size. This can be exploited with a metabolite-selective imaging approach that independently encodes each compound, yielding high-resolution images for the injected substrate and coarser resolution images for downstream metabolites, while maintaining adequate SNR for each. To assess the efficacy of this approach, hyperpolarized [1-13 C]pyruvate data were acquired in healthy Sprague-Dawley rats (n = 4) and in two healthy human subjects. RESULTS Compared with a constant resolution acquisition, variable-resolution data sets showed improved detectability of metabolites in pre-clinical renal studies with a 3.5-fold, 8.7-fold, and 6.0-fold increase in SNR for lactate, alanine, and bicarbonate data, respectively. Variable-resolution data sets from healthy human subjects showed cardiac structure and neuro-vasculature in the higher resolution pyruvate images (6.0 × 6.0 mm2 for cardiac and 7.5 × 7.5 mm2 for brain) that would otherwise be missed due to partial-volume effects and illustrates the level of detail that can be achieved with hyperpolarized substrates in a clinical setting. CONCLUSION We developed a variable-resolution strategy for hyperpolarized 13 C MRI using metabolite-selective imaging and demonstrated that it mitigates tradeoffs between a fixed spatial resolution and SNR for hyperpolarized substrates, providing both high resolution pyruvate and coarse resolution metabolite data sets in a single exam. This technique shows promise to improve future studies by maximizing metabolite SNR while minimizing partial-volume effects from the injected substrate.
Collapse
Affiliation(s)
- Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Adam W. Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Jasmine Y. Graham
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xucheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael A. Ohilger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Maria Roselle Abraham
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
67
|
van Heijster FH, Heskamp S, Breukels V, Veltien A, Franssen GM, Jansen K(C, Boerman OC, Schalken JA, Scheenen TW, Heerschap A. Pyruvate-lactate exchange and glucose uptake in human prostate cancer cell models. A study in xenografts and suspensions by hyperpolarized [1- 13 C]pyruvate MRS and [ 18 F]FDG-PET. NMR IN BIOMEDICINE 2020; 33:e4362. [PMID: 32662543 PMCID: PMC7507209 DOI: 10.1002/nbm.4362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 05/04/2023]
Abstract
Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Frits H.A. van Heijster
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Vincent Breukels
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Gerben M. Franssen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Otto C. Boerman
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jack A. Schalken
- Department of UrologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Tom W.J. Scheenen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
68
|
Somai V, Wright AJ, Fala M, Hesse F, Brindle KM. A multi spin echo pulse sequence with optimized excitation pulses and a 3D cone readout for hyperpolarized 13 C imaging. Magn Reson Med 2020; 84:1895-1908. [PMID: 32173908 PMCID: PMC8638674 DOI: 10.1002/mrm.28248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Imaging tumor metabolism in vivo using hyperpolarized [1-13 C]pyruvate is a promising technique for detecting disease, monitoring disease progression, and assessing treatment response. However, the transient nature of the hyperpolarization and its depletion following excitation limits the available time for imaging. We describe here a single-shot multi spin echo sequence, which improves on previously reported sequences, with a shorter readout time, isotropic point spread function (PSF), and better signal-to-noise ratio. METHODS The sequence uses numerically optimized spectrally selective excitation pulses set to the resonant frequencies of pyruvate and lactate and a hyperbolic secant adiabatic refocusing pulse, all applied in the absence of slice selection gradients. The excitation pulses were designed to be resistant to the effects of B0 and B1 field inhomogeneity. The gradient readout uses a 3D cone trajectory composed of 13 cones, all fully refocused and distributed among 7 spin echoes. The maximal gradient amplitude and slew rate were set to 4 G/cm and 20 G/cm/ms, respectively, to demonstrate the feasibility of clinical translation. RESULTS The pulse sequence gave an isotropic PSF of 2.8 mm. The excitation profiles of the optimized pulses closely matched simulations and a 46.10 ± 0.04% gain in image SNR was observed compared to a conventional Shinnar-Le Roux excitation pulse. The sequence was demonstrated with dynamic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate in vivo. CONCLUSION The pulse sequence was capable of dynamic imaging of hyperpolarized 13 C labeled metabolites in vivo with relatively high spatial and temporal resolution and immunity to system imperfections.
Collapse
Affiliation(s)
- Vencel Somai
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Radiology, School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Maria Fala
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Friederike Hesse
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
69
|
Walker CM, Gordon JW, Xu Z, Michel KA, Li L, Larson PEZ, Vigneron DB, Bankson JA. Slice profile effects on quantitative analysis of hyperpolarized pyruvate. NMR IN BIOMEDICINE 2020; 33:e4373. [PMID: 32743881 PMCID: PMC7484340 DOI: 10.1002/nbm.4373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/01/2023]
Abstract
Magnetic resonance imaging of hyperpolarized pyruvate provides a new imaging biomarker for cancer metabolism, based on the dynamic in vivo conversion of hyperpolarized pyruvate to lactate. Methods for quantification of signal evolution need to be robust and reproducible across a range of experimental conditions. Pharmacokinetic analysis of dynamic spectroscopic imaging data from hyperpolarized pyruvate and its metabolites generally assumes that signal arises from ideal rectangular slice excitation profiles. In this study, we examined whether this assumption could lead to bias in kinetic analysis of hyperpolarized pyruvate and, if so, whether such a bias can be corrected. A Bloch-McConnell simulator was used to generate synthetic data using a known set of "ground truth" pharmacokinetic parameter values. Signal evolution was then analyzed using analysis software that either assumed a uniform slice profile, or incorporated information about the slice profile into the analysis. To correct for slice profile effects, the expected slice profile was subdivided into multiple sub-slices to account for variable excitation angles along the slice dimension. An ensemble of sub-slices was then used to fit the measured signal evolution. A mismatch between slice profiles used for data acquisition and those assumed during kinetic analysis was identified as a source of quantification bias. Results indicate that imperfect slice profiles preferentially increase detected lactate signal, leading to an overestimation of the apparent metabolic exchange rate. The slice profile-correction algorithm was tested in simulation, in phantom measurements, and applied to data acquired from a patient with prostate cancer. The results demonstrated that slice profile-induced biases can be minimized by accounting for the slice profile during pharmacokinetic analysis. This algorithm can be used to correct data from either single or multislice acquisitions.
Collapse
Affiliation(s)
- Christopher M. Walker
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Keith A. Michel
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - James A. Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
70
|
Lim H, Martínez-Santiesteban F, Jensen MD, Chen A, Wong E, Scholl TJ. Monitoring Early Changes in Tumor Metabolism in Response to Therapy Using Hyperpolarized 13C MRSI in a Preclinical Model of Glioma. ACTA ACUST UNITED AC 2020; 6:290-300. [PMID: 32879899 PMCID: PMC7442089 DOI: 10.18383/j.tom.2020.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study shows the use of hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) to assess therapeutic efficacy in a preclinical tumor model. 13C-labeled pyruvate was used to monitor early changes in tumor metabolism based on the Warburg effect. High-grade malignant tumors exhibit increased glycolytic activity and lactate production to promote proliferation. A rodent glioma model was used to explore altered lactate production after therapy as an early imaging biomarker for therapeutic response. Rodents were surgically implanted with C6 glioma cells and separated into 4 groups, namely, no therapy, radiotherapy, chemotherapy and combined therapy. Animals were imaged serially at 6 different time points with magnetic resonance imaging at 3 T using hyperpolarized [1-13C]pyruvate MRSI and conventional 1H imaging. Using hyperpolarized [1-13C]pyruvate MRSI, alterations in tumor metabolism were detected as changes in the conversion of lactate to pyruvate (measured as Lac/Pyr ratio) and compared with the conventional method of detecting therapeutic response using the Response Evaluation Criteria in Solid Tumors. Moreover, each therapy group expressed different characteristic changes in tumor metabolism. The group that received no therapy showed a gradual increase of Lac/Pyr ratio within the tumor. The radiotherapy group showed large variations in tumor Lac/Pyr ratio. The chemo- and combined-therapy groups showed a statistically significant reduction in tumor Lac/Pyr ratio; however, only combined therapy was capable of suppressing tumor growth, which resulted in low endpoint mortality rate. Hyperpolarized 13C MRSI detected a prompt reduction in Lac/Pyr ratio as early as 2 days post combined chemo- and radiotherapies.
Collapse
Affiliation(s)
- Heeseung Lim
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | - Michael D Jensen
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Albert Chen
- General Electric Healthcare, Toronto, ON, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Western University, London, ON, Canada.,Departments of Physics and Astronomy; Oncology; and Robarts Research Institute, Western University, London, ON, Canada, and.,Departments of Physics and Astronomy; Oncology; and Robarts Research Institute, Western University, London, ON, Canada, and
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, ON, Canada.,Departments of Physics and Astronomy; Oncology; and Robarts Research Institute, Western University, London, ON, Canada, and.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
71
|
Walker SM, Fernandez M, Turkbey B. Advances in Prostate Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2020; 28:407-414. [PMID: 32624158 DOI: 10.1016/j.mric.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostate magnetic resonance (MR) imaging is a widely used imaging technique to detect intraprostatic lesions and guide prostate biopsies, with continuous technical advances for better accuracy in prostate cancer diagnosis. Current evaluation of prostate multiparametric MR imaging mainly depends on qualitative evaluation, which is prone to inter-reader variation. Recent advances in prostate MR imaging, such as quantitative T2 mapping and abbreviated MR imaging protocols (eg, biparametric MR imaging), are designed to simplify prostate MR imaging acquisition and interpretation.
Collapse
Affiliation(s)
- Stephanie M Walker
- Molecular Imaging Program, NCI, NIH, 10 Center Drive, Building 10, Room B3B85, Bethesda, MD 20814, USA
| | - Martina Fernandez
- Molecular Imaging Program, NCI, NIH, 10 Center Drive, Building 10, Room B3B85, Bethesda, MD 20814, USA; Department of Radiology, Hospital Alemán, Buenos Aires, Argentina
| | - Baris Turkbey
- Molecular Imaging Program, NCI, NIH, 10 Center Drive, Building 10, Room B3B85, Bethesda, MD 20814, USA.
| |
Collapse
|
72
|
Burrage MK, Ferreira VM. The use of cardiovascular magnetic resonance as an early non-invasive biomarker for cardiotoxicity in cardio-oncology. Cardiovasc Diagn Ther 2020; 10:610-624. [PMID: 32695641 DOI: 10.21037/cdt-20-165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contemporary cancer therapy has resulted in significant survival gains for patients. However, many current and emerging cancer therapies have an associated risk of cardiotoxicity, either acutely or later in life. Regular cardiac screening and surveillance is recommended for patients undergoing treatment for cancer, with emphasis on the early detection of cardiotoxicity before irreversible complications develop. Cardiovascular magnetic resonance imaging is able to accurately assess cardiac structure, function, and perform advanced myocardial tissue characterisation, including perfusion, features which may facilitate the diagnosis and management of cardiotoxicity in cancer survivors. This review outlines the current standards for the diagnosis and screening of cardiotoxicity, with particular focus on current and future applications of cardiovascular magnetic resonance imaging.
Collapse
Affiliation(s)
- Matthew K Burrage
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vanessa M Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
73
|
Lee CY, Lau JYC, Geraghty BJ, Chen AP, Gu YP, Cunningham CH. Correlation of hyperpolarized 13 C-MRI data with tissue extract measurements. NMR IN BIOMEDICINE 2020; 33:e4269. [PMID: 32133713 DOI: 10.1002/nbm.4269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/26/2023]
Abstract
Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = - 0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.
Collapse
Affiliation(s)
- Casey Y Lee
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Yi-Ping Gu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
75
|
Nivajärvi R, Olsson V, Hyppönen V, Bowen S, Leinonen HM, Lesch HP, Ardenkjaer-Larsen JH, Gröhn OHJ, Ylä-Herttuala S, Kettunen MI. Detection of lentiviral suicide gene therapy in C6 rat glioma using hyperpolarised [1- 13 C]pyruvate. NMR IN BIOMEDICINE 2020; 33:e4250. [PMID: 31909530 DOI: 10.1002/nbm.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Hyperpolarised [1-13 C]pyruvate MRI has shown promise in monitoring therapeutic efficacy in a number of cancers including glioma. In this study, we assessed the pyruvate response to the lentiviral suicide gene therapy of herpes simplex virus-1 thymidine kinase with the prodrug ganciclovir (HSV-TK/GCV) in C6 rat glioma and compared it with traditional MR therapy markers. Female Wistar rats were inoculated with 106 C6 glioma cells. Treated animals received intratumoural lentiviral HSV-TK gene transfers on days 7 and 8 followed by 2-week GCV therapy starting on day 10. Animals were repeatedly imaged during therapy using volumetric MRI, diffusion and relaxation mapping, as well as metabolic [1-13 C]pyruvate MRS imaging. Survival (measured as time before animals reached a humane endpoint and were euthanised) was assessed up to day 30 posttherapy. HSV-TK/GCV gene therapy lengthened the median survival time from 12 to 25 days. This was accompanied by an apparent tumour growth arrest, but no changes in diffusion or relaxation parameters in treated animals. The metabolic response was more evident in the case-by-case analysis than in the group-level analysis. Treated animals also showed a 37 ± 15% decrease (P < 0.05, n = 5) in lactate-to-pyruvate ratio between therapy weeks, whereas a 44 ± 18% increase (P < 0.05, n = 6) was observed in control animals. Hyperpolarised [1-13 C]pyruvate MRI can offer complementary metabolic information to traditional MR methods to give a more comprehensive picture of the slowly developing gene therapy response. This may benefit the detection of the successful therapy response in patients.
Collapse
Affiliation(s)
- Riikka Nivajärvi
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Venla Olsson
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Viivi Hyppönen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sean Bowen
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Hanna M Leinonen
- FinVector Oy, Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Hanna P Lesch
- FinVector Oy, Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Olli H J Gröhn
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
76
|
Elevated Tumor Lactate and Efflux in High-grade Prostate Cancer demonstrated by Hyperpolarized 13C Magnetic Resonance Spectroscopy of Prostate Tissue Slice Cultures. Cancers (Basel) 2020; 12:cancers12030537. [PMID: 32110965 PMCID: PMC7139946 DOI: 10.3390/cancers12030537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Non-invasive assessment of the biological aggressiveness of prostate cancer (PCa) is needed for men with localized disease. Hyperpolarized (HP) 13C magnetic resonance (MR) spectroscopy is a powerful approach to image metabolism, specifically the conversion of HP [1-13C]pyruvate to [1-13C]lactate, catalyzed by lactate dehydrogenase (LDH). Significant increase in tumor lactate was measured in high-grade PCa relative to benign and low-grade cancer, suggesting that HP 13C MR could distinguish low-risk (Gleason score ≤3 + 4) from high-risk (Gleason score ≥4 + 3) PCa. To test this and the ability of HP 13C MR to detect these metabolic changes, we cultured prostate tissues in an MR-compatible bioreactor under continuous perfusion. 31P spectra demonstrated good viability and dynamic HP 13C-pyruvate MR demonstrated that high-grade PCa had significantly increased lactate efflux compared to low-grade PCa and benign prostate tissue. These metabolic differences are attributed to significantly increased LDHA expression and LDH activity, as well as significantly increased monocarboxylate transporter 4 (MCT4) expression in high- versus low- grade PCa. Moreover, lactate efflux, LDH activity, and MCT4 expression were not different between low-grade PCa and benign prostate tissues, indicating that these metabolic alterations are specific for high-grade disease. These distinctive metabolic alterations can be used to differentiate high-grade PCa from low-grade PCa and benign prostate tissues using clinically translatable HP [1-13C]pyruvate MR.
Collapse
|
77
|
Tang S, Bok R, Qin H, Reed G, VanCriekinge M, Delos Santos R, Overall W, Santos J, Gordon J, Wang ZJ, Vigneron DB, Larson PEZ. A metabolite-specific 3D stack-of-spiral bSSFP sequence for improved lactate imaging in hyperpolarized [1- 13 C]pyruvate studies on a 3T clinical scanner. Magn Reson Med 2020; 84:1113-1125. [PMID: 32086845 DOI: 10.1002/mrm.28204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE The balanced steady-state free precession sequence has been previously explored to improve the efficient use of nonrecoverable hyperpolarized 13C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP ("MS-3DSSFP") sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-13 C]pyruvate studies on a clinical 3T scanner. METHODS Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal 13C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13 C], pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite-specific gradient echo ("MS-GRE") sequences for lactate imaging. RESULTS Simulations, phantom, and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model, and human kidneys. CONCLUSIONS Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-13 C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate.
Collapse
Affiliation(s)
- Shuyu Tang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hecong Qin
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - William Overall
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen Jane Wang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
78
|
Mammoli D, Gordon J, Autry A, Larson PEZ, Li Y, Chen HY, Chung B, Shin P, Van Criekinge M, Carvajal L, Slater JB, Bok R, Crane J, Xu D, Chang S, Vigneron DB. Kinetic Modeling of Hyperpolarized Carbon-13 Pyruvate Metabolism in the Human Brain. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:320-327. [PMID: 31283497 PMCID: PMC6939147 DOI: 10.1109/tmi.2019.2926437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Kinetic modeling of the in vivo pyruvate-to-lactate conversion is crucial to investigating aberrant cancer metabolism that demonstrates Warburg effect modifications. Non-invasive detection of alterations to metabolic flux might offer prognostic value and improve the monitoring of response to treatment. In this clinical research project, hyperpolarized [1-13C] pyruvate was intravenously injected in a total of 10 brain tumor patients to measure its rate of conversion to lactate ( kPL ) and bicarbonate ( kPB ) via echo-planar imaging. Our aim was to investigate new methods to provide kPL and kPB maps with whole-brain coverage. The approach was data-driven and addressed two main issues: selecting the optimal model for fitting our data and determining an appropriate goodness-of-fit metric. The statistical analysis suggested that an input-less model had the best agreement with the data. It was also found that selecting voxels based on post-fitting error criteria provided improved precision and wider spatial coverage compared to using signal-to-noise cutoffs alone.
Collapse
|
79
|
Kreis F, Wright AJ, Hesse F, Fala M, Hu DE, Brindle KM. Measuring Tumor Glycolytic Flux in Vivo by Using Fast Deuterium MRI. Radiology 2020; 294:289-296. [PMID: 31821119 DOI: 10.1148/radiol.2019191242] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Tumor cells frequently show high rates of aerobic glycolysis, which provides the glycolytic intermediates needed for the increased biosynthetic demands of rapid cell growth and proliferation. Existing clinical methods (fluorodeoxyglucose PET and carbon 13 MRI and spectroscopy) do not allow quantitative images of glycolytic flux. Purpose To evaluate the use of deuterium (hydrogen 2 [2H]) MR spectroscopic imaging for quantitative mapping of tumor glycolytic flux and to assess response to chemotherapy. Materials and Methods A fast three-dimensional 2H MR spectroscopic imaging pulse sequence, with a time resolution of 10 minutes, was used to image glycolytic flux in a murine tumor model after bolus injection of D-[6,6'-2H2]glucose before and 48 hours after treatment with a chemotherapeutic agent. Tumor lactate labeling, expressed as the lactate-to-water and lactate-to-glucose signal ratios, was also assessed in localized 2H MR spectra. Statistical significance was tested with a one-sided paired t test. Results 2H MR spectroscopic imaging showed heterogeneity in glycolytic flux across the tumor and an early decrease in flux following treatment with a chemotherapeutic drug. Spectroscopy measurements on five animals showed a decrease in the lactate-to-water signal ratio, from 0.33 ± 0.10 to 0.089 ± 0.039 (P = .005), and in the lactate-to-glucose ratio, from 0.27 ± 0.12 to 0.12 ± 0.06 (P = .04), following drug treatment. Conclusion Rapidly acquired deuterium (hydrogen 2) MR spectroscopic images can provide quantitative and spatially resolved measurements of glycolytic flux in tumors that can be used to assess treatment response. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Ouwerkerk in this issue.
Collapse
Affiliation(s)
- Felix Kreis
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Alan J Wright
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Friederike Hesse
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Maria Fala
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - De-En Hu
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Kevin M Brindle
- From the Cancer Research UK Cambridge Institute (F.K., A.J.W., F.H., M.F., E.H., K.M.B.) and Department of Biochemistry (K.M.B.), University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| |
Collapse
|
80
|
Gallagher FA, Woitek R, McLean MA, Gill AB, Manzano Garcia R, Provenzano E, Riemer F, Kaggie J, Chhabra A, Ursprung S, Grist JT, Daniels CJ, Zaccagna F, Laurent MC, Locke M, Hilborne S, Frary A, Torheim T, Boursnell C, Schiller A, Patterson I, Slough R, Carmo B, Kane J, Biggs H, Harrison E, Deen SS, Patterson A, Lanz T, Kingsbury Z, Ross M, Basu B, Baird R, Lomas DJ, Sala E, Wason J, Rueda OM, Chin SF, Wilkinson IB, Graves MJ, Abraham JE, Gilbert FJ, Caldas C, Brindle KM. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci U S A 2020; 117:2092-2098. [PMID: 31964840 PMCID: PMC6995024 DOI: 10.1073/pnas.1913841117] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.
Collapse
Affiliation(s)
- Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Raquel Manzano Garcia
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Elena Provenzano
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Anita Chhabra
- Pharmacy Department, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Charlie J Daniels
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Matthew Locke
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Sarah Hilborne
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Amy Frary
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Turid Torheim
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Chris Boursnell
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Amy Schiller
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Ilse Patterson
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Rhys Slough
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Carmo
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Justine Kane
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Heather Biggs
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emma Harrison
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Andrew Patterson
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Titus Lanz
- RAPID Biomedical GmbH, 97222 Rimpar, Germany
| | - Zoya Kingsbury
- Medical Genomics Research, Illumina, Great Abington, Cambridge CB21 6DF, United Kingdom
| | - Mark Ross
- Medical Genomics Research, Illumina, Great Abington, Cambridge CB21 6DF, United Kingdom
| | - Bristi Basu
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Richard Baird
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - David J Lomas
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - James Wason
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Institute of Health and Society, Newcastle University, Newcastle-upon-Tyne NE2 4AX, United Kingdom
| | - Oscar M Rueda
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ian B Wilkinson
- Department of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jean E Abraham
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
81
|
Yao X, Zha Z, Ploessl K, Choi SR, Zhao R, Alexoff D, Zhu L, Kung HF. Synthesis and evaluation of novel radioiodinated PSMA targeting ligands for potential radiotherapy of prostate cancer. Bioorg Med Chem 2020; 28:115319. [PMID: 32001090 DOI: 10.1016/j.bmc.2020.115319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Radioligand therapy (RLT) using prostate-specific membrane antigen (PSMA) targeting ligands is an attractive option for the treatment of Prostate cancer (PCa) and its metastases. We report herein a series of radioiodinated glutamate-urea-lysine-phenylalanine derivatives as new PSMA ligands in which l-tyrosine and l-glutamic acid moieties were added to increase hydrophilicity concomitant with improvement of in vivo targeting properties. Compounds 8, 15, 19a/19b and 23a/23b were synthesized and radiolabeled with 125I by iododestannylation. All iodinated compounds displayed high binding affinities toward PSMA (IC50 = 1-13 nM). In vitro cell uptake studies demonstrated that compounds containing an l-tyrosine linker moiety (8, 15 and 19a/19b) showed higher internalization than MIP-1095 and 23a/23b, both without the l-tyrosine linker moiety. Biodistribution studies in mice bearing PC3-PIP and PC3 xenografts showed that [125I]8 and [125I]15 with higher lipophilicity exhibited higher nonspecific accumulations in the liver and intestinal tract, whereas [125I]19a/19b and [125I]23a/23b containing additional glutamic acid moieties showed higher accumulations in the kidney and implanted PC3-PIP (PSMA+) tumors. [125I]23b displayed a promising biodistribution profile with favorable tumor retention, fast clearance from the kidney, and 2-3-fold lower uptake in the liver and blood than that observed for [125I]MIP-1095. [125/131I]23b may serve as an optimal PSMA ligand for radiotherapy treatment of prostate cancer over-expressing PSMA.
Collapse
Affiliation(s)
- Xinyue Yao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Five Eleven Pharma Inc., Philadelphia, PA 19104, USA.
| |
Collapse
|
82
|
Hyperpolarized MRI of Human Prostate Cancer Reveals Increased Lactate with Tumor Grade Driven by Monocarboxylate Transporter 1. Cell Metab 2020; 31:105-114.e3. [PMID: 31564440 PMCID: PMC6949382 DOI: 10.1016/j.cmet.2019.08.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 01/17/2023]
Abstract
Metabolic imaging using hyperpolarized magnetic resonance can increase the sensitivity of MRI, though its ability to inform on relevant changes to biochemistry in humans remains unclear. In this work, we image pyruvate metabolism in patients, assessing the reproducibility of delivery and conversion in the setting of primary prostate cancer. We show that the time to max of pyruvate does not vary significantly within patients undergoing two separate injections or across patients. Furthermore, we show that lactate increases with Gleason grade. RNA sequencing data demonstrate a significant increase in the predominant pyruvate uptake transporter, monocarboxylate transporter 1. Increased protein expression was also observed in regions of high lactate signal, implicating it as the driver of lactate signal in vivo. Targeted DNA sequencing for actionable mutations revealed the highest lactate occurred in patients with PTEN loss. This work identifies a potential link between actionable genomic alterations and metabolic information derived from hyperpolarized pyruvate MRI.
Collapse
|
83
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
84
|
Chung BT, Chen HY, Gordon J, Mammoli D, Sriram R, Autry AW, Le Page LM, Chaumeil MM, Shin P, Slater J, Tan CT, Suszczynski C, Chang S, Li Y, Bok RA, Ronen SM, Larson PEZ, Kurhanewicz J, Vigneron DB. First hyperpolarized [2- 13C]pyruvate MR studies of human brain metabolism. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106617. [PMID: 31648132 PMCID: PMC6880930 DOI: 10.1016/j.jmr.2019.106617] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 05/04/2023]
Abstract
We developed methods for the preparation of hyperpolarized (HP) sterile [2-13C]pyruvate to test its feasibility in first-ever human NMR studies following FDA-IND & IRB approval. Spectral results using this MR stable-isotope imaging approach demonstrated the feasibility of investigating human cerebral energy metabolism by measuring the dynamic conversion of HP [2-13C]pyruvate to [2-13C]lactate and [5-13C]glutamate in the brain of four healthy volunteers. Metabolite kinetics, signal-to-noise (SNR) and area-under-curve (AUC) ratios, and calculated [2-13C]pyruvate to [2-13C]lactate conversion rates (kPL) were measured and showed similar but not identical inter-subject values. The kPL measurements were equivalent with prior human HP [1-13C]pyruvate measurements.
Collapse
Affiliation(s)
- Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA.
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94158, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94158, USA
| | - Peter Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - James Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Chou T Tan
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Chris Suszczynski
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Susan Chang
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
85
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. “Direct”
13
C Hyperpolarization of
13
C‐Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Miranda N. Limbach
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Thomas R. Gebhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Clark W. Eriksson
- Department of Biomedical Engineering University of Virginia Charlottesville VA USA
| | - Shannon L. Eriksson
- Department of Chemistry Duke University Durham NC USA
- School of Medicine Duke University Durham NC USA
| | | | | | - Warren S. Warren
- Department of Chemistry Duke University Durham NC USA
- James B. Duke Professor, Physics Chemistry, Radiology, and Biomedical Engineering; Director Center for Molecular and Biomolecular Imaging Duke University Durham NC USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Karmanos Cancer Institute (KCI) Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) Moscow 119991 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
86
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. "Direct" 13 C Hyperpolarization of 13 C-Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 59:418-423. [PMID: 31661580 DOI: 10.1002/anie.201910506] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Herein, we demonstrate "direct" 13 C hyperpolarization of 13 C-acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir-IMes; [IrCl(COD)(IMes)], (IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1-13 C-acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE-SHEATH) resulted in positive enhancements of up to ≈100-fold in the 13 C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of "direct" transfer of spin order from parahydrogen to 13 C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13 C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE-SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.
Collapse
Affiliation(s)
- Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Thomas R Gebhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Clark W Eriksson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC, USA.,School of Medicine, Duke University, Durham, NC, USA
| | | | | | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC, USA.,James B. Duke Professor, Physics, Chemistry, Radiology, and Biomedical Engineering; Director, Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences (RAS), Moscow, 119991, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA.,Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
87
|
Buckenmaier K, Scheffler K, Plaumann M, Fehling P, Bernarding J, Rudolph M, Back C, Koelle D, Kleiner R, Hövener J, Pravdivtsev AN. Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields. Chemphyschem 2019; 20:2823-2829. [PMID: 31536665 PMCID: PMC6900040 DOI: 10.1002/cphc.201900757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/17/2019] [Indexed: 11/26/2022]
Abstract
The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by signal amplification by reversible exchange (SABRE) and detected at ULF with a superconducting quantum interference device (SQUID)-based NMR system.
Collapse
Affiliation(s)
- Kai Buckenmaier
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Klaus Scheffler
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenHoppe-Seyler-Str. 372076TübingenGermany
| | - Markus Plaumann
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Paul Fehling
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Johannes Bernarding
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Matthias Rudolph
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Christoph Back
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Dieter Koelle
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Reinhold Kleiner
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| |
Collapse
|
88
|
Chen HY, Aggarwal R, Bok RA, Ohliger MA, Zhu Z, Lee P, Gordon JW, van Criekinge M, Carvajal L, Slater JB, Larson PEZ, Small EJ, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study. Prostate Cancer Prostatic Dis 2019; 23:269-276. [PMID: 31685983 PMCID: PMC7196510 DOI: 10.1038/s41391-019-0180-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 11/27/2022]
Abstract
Background Hyperpolarized (HP) 13C-pyruvate MRI is a stable-isotope molecular imaging modality that provides real-time assessment of the rate of metabolism through glycolytic pathways in human prostate cancer. Heretofore this imaging modality has been successfully utilized in prostate cancer only in localized disease. This pilot clinical study investigated the feasibility and imaging performance of HP 13C-pyruvate MR metabolic imaging in prostate cancer patients with metastases to the bone and/or viscera. Methods Six patients who had metastatic castration-resistant prostate cancer were recruited. Carbon-13 MR examination were conducted on a clinical 3T MRI following injection of 250 mM hyperpolarized 13C-pyruvate, where pyruvate-to-lactate conversion rate (kPL) was calculated. Paired metastatic tumor biopsy was performed with histopathological and RNA-seq analyses. Results We observed a high rate of glycolytic metabolism in prostate cancer metastases, with a mean kPL value of 0.020 ± 0.006 (s−1) and 0.026 ± 0.000 (s−1) in bone (N = 4) and liver (N = 2) metastases, respectively. Overall, high kPL showed concordance with biopsy-confirmed high-grade prostate cancer including neuroendocrine differentiation in one case. Interval decrease of kPL from 0.026 at baseline to 0.015 (s−1) was observed in a liver metastasis 2 months after the initiation of taxane plus platinum chemotherapy. RNA-seq found higher levels of the lactate dehydrogenase isoform A (Ldha,15.7 ± 0.7) expression relative to the dominant isoform of pyruvate dehydrogenase (Pdha1, 12.8 ± 0.9). Conclusions HP 13C-pyruvate MRI can detect real-time glycolytic metabolism within prostate cancer metastases, and can measure changes in quantitative kPL values following treatment response at early time points. This first feasibility study supports future clinical studies of HP 13C-pyruvate MRI in the setting of advanced prostate cancer.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zi Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Philip Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eric J Small
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
89
|
Chukanov NV, Kidd BM, Kovtunova LM, Bukhtiyarov VI, Shchepin RV, Chekmenev EY, Goodson BM, Kovtunov KV, Koptyug IV. A versatile synthetic route to the preparation of 15 N heterocycles. J Labelled Comp Radiopharm 2019; 62:892-902. [PMID: 30537260 PMCID: PMC6559877 DOI: 10.1002/jlcr.3699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022]
Abstract
A robust medium-scale (approximately 3 g) synthetic method for 15 N labeling of pyridine (15 N-Py) is reported based on the Zincke reaction. 15 N enrichment in excess of 81% was achieved with approximately 33% yield. 15 N-Py serves as a standard substrate in a wide range of studies employing a hyperpolarization technique for efficient polarization transfer from parahydrogen to heteronuclei; this technique, called SABRE (signal amplification by reversible exchange), employs a simultaneous chemical exchange of parahydrogen and a to-be-hyperpolarized substrate (e.g., pyridine) on metal centers. In studies aimed at the development of hyperpolarized contrast agents for in vivo molecular imaging, pyridine is often employed either as a model substrate (for hyperpolarization technique development, quality assurance, and phantom imaging studies) or as a co-substrate to facilitate more efficient hyperpolarization of a wide range of emerging contrast agents (e.g., nicotinamide). Here, the produced 15 N-Py was used for the feasibility study of spontaneous 15 N hyperpolarization at high magnetic (HF) fields (7 T and 9.4 T) of an NMR spectrometer and an MRI scanner. SABRE hyperpolarization enabled acquisition of 2D MRI imaging of catalyst-bound 15 N-pyridine with 75 × 75 mm2 field of view (FOV), 32 × 32 matrix size, demonstrating the feasibility of 15 N HF-SABRE molecular imaging with 2.4 × 2.4 mm2 spatial resolution.
Collapse
Affiliation(s)
- Nikita V. Chukanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Bryce M. Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Larisa M. Kovtunova
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia
| | | | - Roman V. Shchepin
- Department of Biomedical Engineering and Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eduard Y. Chekmenev
- Department of Biomedical Engineering and Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Russian Academy of Sciences, Moscow, 119991, Russia
- Ibio, Department of Chemistry, Wayne State University, Karmanos Cancer Center, Detroit, MI 48083, USA
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
90
|
Korenchan DE, Bok R, Sriram R, Liu K, Santos RD, Qin H, Lobach I, Korn N, Wilson DM, Kurhanewicz J, Flavell RR. Hyperpolarized in vivo pH imaging reveals grade-dependent acidification in prostate cancer. Oncotarget 2019; 10:6096-6110. [PMID: 31692908 PMCID: PMC6817439 DOI: 10.18632/oncotarget.27225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023] Open
Abstract
There is an unmet clinical need for new and robust imaging biomarkers to distinguish indolent from aggressive prostate cancer. Hallmarks of aggressive tumors such as a decrease in extracellular pH (pHe) can potentially be used to identify aggressive phenotypes. In this study, we employ an optimized, high signal-to-noise ratio hyperpolarized (HP) 13C pHe imaging method to discriminate between indolent and aggressive disease in a murine model of prostate cancer. Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice underwent a multiparametric MR imaging exam, including HP [13C] bicarbonate MRI for pHe, with 1H apparent diffusion coefficient (ADC) mapping and HP [1-13C] pyruvate MRI to study lactate metabolism. Tumor tissue was excised for histological staining and qRT-PCR to quantify mRNA expression for relevant glycolytic enzymes and transporters. We observed good separation in pHe between low- and high-grade tumor regions, with high-grade tumors demonstrating a lower pHe. The pHe also correlated strongly with monocarboxylate transporter Mct4 gene expression across all tumors, suggesting that lactate export via MCT4 is associated with acidification in this model. Our results implicate extracellular acidification as an indicator of indolent-to-aggressive transition in prostate cancer and suggest feasibility of HP pHe imaging to detect high-grade, clinically significant disease in men as part of a multiparametric MRI examination.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Kristina Liu
- Department of Physical Chemistry, Technical University of Munich, Munich, Germany
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| |
Collapse
|
91
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
92
|
von Morze C, Merritt ME. Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology. NMR IN BIOMEDICINE 2019; 32:e3937. [PMID: 29870085 PMCID: PMC6281789 DOI: 10.1002/nbm.3937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 05/07/2023]
Abstract
Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
93
|
Lee JE, Diederich CJ, Bok R, Sriram R, Santos RD, Noworolski SM, Salgaonkar VA, Adams MS, Vigneron DB, Kurhanewicz J. Assessing high-intensity focused ultrasound treatment of prostate cancer with hyperpolarized 13 C dual-agent imaging of metabolism and perfusion. NMR IN BIOMEDICINE 2019; 32:e3962. [PMID: 30022550 PMCID: PMC6338537 DOI: 10.1002/nbm.3962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 05/05/2023]
Abstract
The goal of the study was to establish early hyperpolarized (HP) 13 C MRI metabolic and perfusion changes that predict effective high-intensity focused ultrasound (HIFU) ablation and lead to improved adjuvant treatment of partially treated regions. To accomplish this a combined HP dual-agent (13 C pyruvate and 13 C urea) 13 C MRI/multiparametric 1 H MRI approach was used to measure prostate cancer metabolism and perfusion 3-4 h, 1 d, and 5 d after exposure to ablative and sub-lethal doses of HIFU within adenocarcinoma of mouse prostate tumors using a focused ultrasound applicator designed for murine studies. Pathologic and immunohistochemical analysis of the ablated tumor demonstrated fragmented, non-viable cells and vasculature consistent with coagulative necrosis, and a mixture of destroyed tissue and highly proliferative, poorly differentiated tumor cells in tumor tissues exposed to sub-lethal heat doses in the ablative margin. In ablated regions, the intensity of HP 13 C lactate or HP 13 C urea and dynamic contrast-enhanced (DCE) MRI area under the curve images were reduced to the level of background noise by 3-4 h after treatment with no recovery by the 5 d time point in either case. In the tissues that received sub-lethal heat dose, there was a significant 60% ± 12.4% drop in HP 13 C lactate production and a significant 30 ± 13.7% drop in urea perfusion 3-4 h after treatment, followed by recovery to baseline by 5 d after treatment. DCE MRI Ktrans showed a similar trend to HP 13 C urea, demonstrating a complete loss of perfusion with no recovery in the ablated region, while having a 40%-50% decrease 3-4 h after treatment followed by recovery to baseline values by 5 d in the margin region. The utility of the HP 13 C MR measures of perfusion and metabolism in optimizing focal HIFU, either alone or in combination with adjuvant therapy, deserves further testing in future studies.
Collapse
Affiliation(s)
- Jessie E. Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
| | - Chris J. Diederich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
- Department of Radiation Oncology, University of California, San Francisco
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Susan M. Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
| | | | - Matthew S. Adams
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
- Department of Radiation Oncology, University of California, San Francisco
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- University of California, Berkeley, and University of California, San Francisco Joint Graduate Program in Bioengineering
| |
Collapse
|
94
|
Zacharias NM, Baran N, Shanmugavelandy SS, Lee J, Lujan JV, Dutta P, Millward SW, Cai T, Wood CG, Piwnica-Worms D, Konopleva M, Bhattacharya PK. Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:1937-1946. [PMID: 31387889 DOI: 10.1158/1535-7163.mct-18-0985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/17/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic disease characterized by glutamine-dependent metabolism. A novel glutaminase (GLS) inhibitor, CB-839, is currently under evaluation for treatment of hematopoietic malignancies and solid tumors. Our purpose was to measure cellular changes in AML associated with CB-839 treatment and to test the ability of hyperpolarized pyruvate for interrogating these changes to OCI-AML3 cells. Our results show that treatment with CB-839 interfered with the citric acid cycle, reduced the NADH/NAD+ ratio and ATP levels, reduced cell proliferation and viability, and reduced the basal and maximal respiratory capacities [oxygen consumption rate (OCR)]. We observed a reduction of the conversion of hyperpolarized pyruvate to lactate in cell lines and in a mouse AML model after CB-839 treatment. Our in vitro and in vivo results support the hypothesis that, in AML, glutamine is utilized to generate reducing equivalents (NADH, FADH2) through the citric acid cycle and that reduction in redox state by GLS inhibition decreases the rate of pyruvate to lactate conversion catalyzed by lactate dehydrogenase. We propose hyperpolarized pyruvate/lactate measurement as a method for direct monitoring of metabolic changes occurring in AML patients receiving CB-839. With further optimization, this method may provide a noninvasive imaging tool to assess the early efficacy of therapeutic intervention with GLS inhibitors.
Collapse
Affiliation(s)
- Niki M Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram S Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juliana Velez Lujan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven W Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
95
|
Zacharias N, Lee J, Ramachandran S, Shanmugavelandy S, McHenry J, Dutta P, Millward S, Gammon S, Efstathiou E, Troncoso P, Frigo DE, Piwnica-Worms D, Logothetis CJ, Maity SN, Titus MA, Bhattacharya P. Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo. Mol Imaging Biol 2019; 21:86-94. [PMID: 29748904 DOI: 10.1007/s11307-018-1199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Androgen receptor (AR) signaling affects prostate cancer (PCa) growth, metabolism, and progression. Often, PCa progresses from androgen-sensitive to castration-resistant prostate cancer (CRPC) following androgen-deprivation therapy. Clinicopathologic and genomic characterizations of CRPC tumors lead to subdividing CRPC into two subtypes: (1) AR-dependent CRPC containing dysregulation of AR signaling alterations in AR such as amplification, point mutations, and/or generation of splice variants in the AR gene; and (2) an aggressive variant PCa (AVPC) subtype that is phenotypically similar to small cell prostate cancer and is defined by chemotherapy sensitivity, gain of neuroendocrine or pro-neural marker expression, loss of AR expression, and combined alterations of PTEN, TP53, and RB1 tumor suppressors. Previously, we reported patient-derived xenograft (PDX) animal models that contain characteristics of these CRPC subtypes. In this study, we have employed the PDX models to test metabolic alterations in the CRPC subtypes. PROCEDURES Mass spectrometry and nuclear magnetic resonance analysis along with in vivo hyperpolarized 1-[13C]pyruvate spectroscopy experiments were performed on prostate PDX animal models. RESULTS Using hyperpolarized 1-[13C]pyruvate conversion to 1-[13C]lactate in vivo as well as lactate measurements ex vivo, we have found increased lactate production in AR-dependent CRPC PDX models even under low-hormone levels (castrated mouse) compared to AR-negative AVPC PDX models. CONCLUSIONS Our analysis underscores the potential of hyperpolarized metabolic imaging in determining the underlying biology and in vivo phenotyping of CRPC.
Collapse
Affiliation(s)
- Niki Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sriram Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - James McHenry
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Seth Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Clinical Therapeutics, University of Athens, Athens, Greece
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA.
| |
Collapse
|
96
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 58:10271-10275. [PMID: 31115970 PMCID: PMC7004201 DOI: 10.1002/anie.201905483] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/10/2022]
Abstract
Hyperpolarisation methods that premagnetise agents such as pyruvate are currently receiving significant attention because they produce sensitivity gains that allow disease tracking and interrogation of cellular metabolism by magnetic resonance. Here, we communicate how signal amplification by reversible exchange (SABRE) can provide strong 13 C pyruvate signal enhancements in seconds through the formation of the novel polarisation transfer catalyst [Ir(H)2 (η2 -pyruvate)(DMSO)(IMes)]. By harnessing SABRE, strong signals for [1-13 C]- and [2-13 C]pyruvate in addition to a long-lived singlet state in the [1,2-13 C2 ] form are readily created; the latter can be observed five minutes after the initial hyperpolarisation step. We also demonstrate how this development may help with future studies of chemical reactivity.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangalore560012India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| |
Collapse
|
97
|
Spatiotemporal pH Heterogeneity as a Promoter of Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2019; 11:cancers11071026. [PMID: 31330859 PMCID: PMC6678451 DOI: 10.3390/cancers11071026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of pH in solid tumors is a hallmark of cancer. In recent years, the role of altered pH heterogeneity in space, between benign and aggressive tissues, between individual cancer cells, and between subcellular compartments, has been steadily elucidated. Changes in temporal pH-related processes on both fast and slow time scales, including altered kinetics of bicarbonate-CO2 exchange and its effects on pH buffering and gradual, progressive changes driven by changes in metabolism, are further implicated in phenotypic changes observed in cancers. These discoveries have been driven by advances in imaging technologies. This review provides an overview of intra- and extracellular pH alterations in time and space reflected in cancer cells, as well as the available technology to study pH spatiotemporal heterogeneity.
Collapse
|
98
|
Shchepin RV, Birchall JR, Chukanov NV, Kovtunov KV, Koptyug IV, Theis T, Warren WS, Gelovani JG, Goodson BM, Shokouhi S, Rosen MS, Yen YF, Pham W, Chekmenev EY. Hyperpolarizing Concentrated Metronidazole 15 NO 2 Group over Six Chemical Bonds with More than 15 % Polarization and a 20 Minute Lifetime. Chemistry 2019; 25:8829-8836. [PMID: 30964568 PMCID: PMC6658333 DOI: 10.1002/chem.201901192] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/04/2019] [Indexed: 12/17/2022]
Abstract
The NMR hyperpolarization of uniformly 15 N-labeled [15 N3 ]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15 NO2 group is hyperpolarized through spin relays created by 15 N spins in [15 N3 ]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 μT, a high level of nuclear spin polarization (P15N ) of around 16 % is achieved on all three 15 N sites. This product of 15 N polarization and concentration of 15 N spins is around six-fold better than any previous value determined for 15 N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1 ≈10 min). A novel synthesis of uniformly 15 N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.
Collapse
Affiliation(s)
- Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Nikita V Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Sepideh Shokouhi
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Matthew S Rosen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Yi-Fen Yen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Wellington Pham
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
99
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905483] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| |
Collapse
|
100
|
Feuerecker B, Michalik M, Hundshammer C, Schwaiger M, Bruchertseifer F, Morgenstern A, Seidl C. Assessment of 213Bi-anti-EGFR MAb treatment efficacy in malignant cancer cells with [1- 13C]pyruvate and [ 18F]FDG. Sci Rep 2019; 9:8294. [PMID: 31165773 PMCID: PMC6549183 DOI: 10.1038/s41598-019-44484-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/13/2019] [Indexed: 12/02/2022] Open
Abstract
Evaluation of response to therapy is among the key objectives of oncology. A new method to evaluate this response includes magnetic resonance spectroscopy (MRS) with hyperpolarized 13C-labelled metabolites, which holds promise to provide new insights in terms of both therapeutic efficacy and tumor cell metabolism. Human EJ28Luc urothelial carcinoma and LN18 glioma cells were treated with lethal activity concentrations of a 213Bi-anti-EGFR immunoconjugate. Treatment efficacy was controlled via analysis of DNA double-strand breaks (immunofluorescence γH2AX staining) and clonogenic survival of cells. To investigate changes in metabolism of treated cells vs controls we analyzed conversion of hyperpolarized [1-13C]pyruvate to [1-13C]lactate via MRS as well as viability of cells, lactate formation and lactate dehydrogenase activity in the cellular supernatants and [18F]FDG uptake in treated cells vs controls, respectively. Treatment of malignant cancer cells with 213Bi-anti-EGFR-MAb induced intense DNA double-strand breaks, resulting in cell death as monitored via clonogenic survival. Moreover, treatment of EJ28Luc bladder cancer cells resulted in decreased cell viability, [18F]FDG-uptake and an increased lactate export. In both EJ28Luc and LN18 carcinoma cells treatment with 213Bi-anti-EGFR-MAb triggered a significant increase in lactate/pyruvate ratios, as measured with hyperpolarized [1-13C]pyruvate. Treatment with 213Bi-anti-EGFR-MAb resulted in an effective induction of cell death in EJ28Luc and LN18 cells. Lactate/pyruvate ratios of hyperpolarized [1-13C]pyruvate proved to detect early treatment response effects, holding promise for future clinical applications in early therapy monitoring.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Michalik
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany
| | - Christian Hundshammer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany.,Munich School of Bioengineering, Technical University of Munich, Garching, Germany
| | - Markus Schwaiger
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Christof Seidl
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany.,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Obstetrics and Gynecology, Munich, Germany
| |
Collapse
|