51
|
A study of endothelial and platelet microvesicles across different hypertension phenotypes. J Hum Hypertens 2021; 36:561-569. [PMID: 33837293 DOI: 10.1038/s41371-021-00531-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Rather than being mere biomarkers reflecting generalized vascular injury, endothelial- (EMVs) and platelet-derived (PMVs) microvesicles have emerged as potent regulators of intercellular communication with significant biologic effects in vascular homeostasis and several pathophysiological responses including inflammation and thrombosis. So far, studies in hypertension are scarce, whereas no studies exist in masked hypertension (MH). We measured EMVs and PMVs in untreated, newly diagnosed hypertensives (HTs) and MHs compared to normotensive controls (NTs), and associated them with various cardiovascular risk factors. Sustained hypertension (SHT) and MH were defined according to standard blood pressure (BP) criteria. All HTs were free of cardiovascular disease and medications. Microvesicles' quantitation and detection were performed by flow cytometry by using cell-specific antibodies and corresponding isotypes (anti-CD105 and anti-CD144 for EMVs, anti-CD42a for PMVs, and Annexin V-fluorescein isothiocyanate for all microvesicles). In this study, we included 59 HTs (44 SHTs and 15 MHs) and 27 NTs. HTs had significantly elevated EMVs (p = 0.004), but not PMVs compared to NTs. MHs had significantly elevated EMVs compared to NTs (p = 0.012) but not compared to SHTs. Furthermore, EMVs significantly correlated with ambulatory (r = 0.214-0.284), central BP (r = 0.247-0.262), and total vascular resistance (r = 0.327-0.361). EMVs are increased not only in SHTs but also in MHs, a hypertension phenotype with a cardiovascular risk close to SHT. EMVs have emerged as active contributors to thromboinflammation and vascular damage and may explain, in part, the adverse cardiovascular profile of SHTs and MHs.
Collapse
|
52
|
Giannella A, Ceolotto G, Radu CM, Cattelan A, Iori E, Benetti A, Fabris F, Simioni P, Avogaro A, Vigili de Kreutzenberg S. PAR-4/Ca 2+-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes. Cardiovasc Diabetol 2021; 20:77. [PMID: 33812377 PMCID: PMC8019350 DOI: 10.1186/s12933-021-01267-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01267-w.
Collapse
Affiliation(s)
- Alessandra Giannella
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Giulio Ceolotto
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Claudia Maria Radu
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Arianna Cattelan
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Elisabetta Iori
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Andrea Benetti
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Fabrizio Fabris
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Paolo Simioni
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Angelo Avogaro
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | | |
Collapse
|
53
|
Gaspar RS, Ferreira PM, Mitchell JL, Pula G, Gibbins JM. Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function. Free Radic Biol Med 2021; 165:395-400. [PMID: 33548451 PMCID: PMC7985666 DOI: 10.1016/j.freeradbiomed.2021.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelets release platelet-derived extracellular vesicles (PDEVs) upon activation - in a process that is regulated by generation of reactive oxygen species (ROS). Platelet NADPH oxidase-1 (Nox-1) contributes to ROS generation and thrombus formation downstream of the collagen receptor GPVI. OBJECTIVES We aimed to investigate whether PDEVs contain Nox-1 and whether this is relevant for PDEV-induced platelet activation. METHODS PDEVs were isolated through serial centrifugation after platelet activation with thrombin receptor agonist TRAP-6 (activated PDEVs) or in the absence of agonist (resting PDEVs). The physical properties of PDEVs were analyzed through nanoparticle tracking analysis. Nox-1 levels, fibrinogen binding and P-selectin exposure were measured using flow cytometry, and protein levels quantified by immunoblot analysis. ROS were quantified using DCF fluorescence and electron paramagnetic resonance. RESULTS Nox-1 was found to be increased on the platelet outer membrane upon activation and was present in PDEVs. PDEVs induced platelet activation, while co-addition of GPVI agonist collagen-related peptide (CRP) did not potentiate this response. PDEVs were shown to be able to generate superoxide in a process at least partially mediated by Nox-1, while Nox-1 inhibition with ML171 (also known as 2-APT) did not influence PDEV production. Finally, inhibition of Nox-1 abrogated PDEV-mediated platelet activation. CONCLUSIONS PDEVs are able to generate superoxide, bind to and activate platelets in a process mediated by Nox-1. These data provide novel mechanisms by which Nox-1 potentiates platelet responses, thus proposing Nox-1 inhibition as a feasible strategy to treat and prevent thrombotic diseases.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | - Plinio M Ferreira
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joanne L Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Giordano Pula
- University Medical Center Eppendorf Hamburg, Institute for Clinical Chemistry and Laboratory Medicine, Hamburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
54
|
Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:632131. [PMID: 33718454 PMCID: PMC7943466 DOI: 10.3389/fcvm.2021.632131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.
Collapse
Affiliation(s)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Suhaila Idris
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Lee Si Yuen
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wong Jia Hui
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Malaysia
| | - Chuang Huei Gau
- Department of Psychology and Counselling, Faculty of Arts and Social Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, University of Queensland (UQ), Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Yuri Na
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Linqing Feng
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, National Health and Medical Research Council (NHMRC), Heidelberg, VIC, Australia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian, Malaysia
| |
Collapse
|
55
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
56
|
Lind SE. Phosphatidylserine is an overlooked mediator of COVID-19 thromboinflammation. Heliyon 2021; 7:e06033. [PMID: 33495740 PMCID: PMC7817455 DOI: 10.1016/j.heliyon.2021.e06033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
A ubiquitous component of cell membrane, phosphatidylserine (PS), is likely to play a major, but as yet unrecognized, role in the thromboinflammation of COVID-19 and other critical illnesses. PS is present in all plasma membranes but is "hidden" on the inner surface by the action of an ATP-requiring enzyme. Failure of PS to be sequestered on the inner surface of cell membranes, release of PS-containing microparticles from cells, or shedding of enveloped viruses allows it to interact with extracellular proteins, including those of the coagulation and complement systems. Detection and quantification of circulating PS is not standardized, and current methodologies have either focused on circulating cellular elements or subcellular plasma components, but not both. PS may also promote thromboinflammation without circulating if expressed on the surface of endothelial cells, a condition that might only be documented if novel imaging techniques are developed. Research into the role of PS in inflammation and coagulation, called here a "procoagulant phospholipidopathy" may provide novel insights and therapeutic approaches for patients with a variety of illnesses.
Collapse
Affiliation(s)
- Stuart E Lind
- Departments of Medicine and Pathology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
57
|
Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021; 10:327. [PMID: 33477341 PMCID: PMC7830384 DOI: 10.3390/jcm10020327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy;
| | - Maria F. Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| |
Collapse
|
58
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
59
|
Prattichizzo F, Matacchione G, Giuliani A, Sabbatinelli J, Olivieri F, de Candia P, De Nigris V, Ceriello A. Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Am J Cancer Res 2021; 11:1031-1045. [PMID: 33391519 PMCID: PMC7738884 DOI: 10.7150/thno.51605] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease causing the development of a large range of cardiovascular (CV) complications. Lifestyle changes and pharmacological therapies only partially halt T2DM progression, and existing drugs are unable to completely suppress the increased CV risk of T2DM patients. Extracellular vesicles (EV)s are membrane-coated nanoparticles released by virtually all living cells and are emerging as novel mediators of T2DM and its CV complications. As a matter of fact, several preclinical models suggest a key involvement of EVs in the initiation and/or progression of insulin resistance, β-cell dysfunction, diabetic dyslipidaemia, atherosclerosis, and other T2DM complications. In addition, preliminary findings also suggest that EV-associated molecular cargo, and in particular the miRNA repertoire, may provide with useful diagnostic and/or prognostic information for the management of T2DM. Here, we review the latest findings showing that EV biology is altered during the entire trajectory of T2DM, i.e. from diagnosis to development of CV complications. We also critically highlight the potential of this emerging research field, by describing both preclinical and clinical observations, and the limitations that must be overcome to translate the preclinical findings into the development of EV-based nano-diagnostic and/or nano-therapeutic tools. Finally, we summarize how two lifestyle changes known to prevent or limit T2DM, i.e. diet and exercise, affect EV number and composition, with a focus on the possible role of EVs contained in food in shaping metabolic responses, a promising approach still in its infancy.
Collapse
|
60
|
Fonseca F, Ballerini AP, Izar MC, Kato J, Ferreira CE, Fonzar W, do Amaral J, Rezende P, Machado-Santelli G, França C. Advanced chronic kidney disease is associated with higher serum concentration of monocyte microparticles. Life Sci 2020; 260:118295. [PMID: 32822720 DOI: 10.1016/j.lfs.2020.118295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
Advanced chronic kidney disease is associated with high rates of cardiovascular disease. Considering the crucial role of capillaries in renal function, our study aimed to evaluate microparticles related to vascular physiology examining the link between stages of chronic kidney disease with circulating endothelial (EMP), platelet (PMP) and monocytic (MMP) microparticles. Cross-sectional study with blinded endpoints included subjects of both sexes, aged 40-75 years (n = 247), with established cardiovascular disease (coronary heart disease, ischemic stroke, or peripheral artery disease). They were stratified 1:1 by the presence or absence of decreased glomerular filtration rate (GFR < 60 mL/min/1.73 m2) estimated by the CKD-EPI criteria, and according to the stages of CKD. Microparticles were quantified by flow-cytometry using specific antibodies to identify endothelial, platelet, and monocytic derived microparticles. Higher percentages of circulating MMP (p = 0.036), but not for EMP or PMP, were observed in subjects with reduced GFR. Circulating MMP were also related to the stages of chronic kidney disease (trend analysis across renal stages, p = 0.038). Higher percentages of circulating MMP were found in subjects with reduced GFR, and their percentages were progressively higher according to the stage of chronic renal function.
Collapse
Affiliation(s)
| | | | | | - Juliana Kato
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Waléria Fonzar
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
61
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
62
|
Identification of Key Genes of Human Advanced Diabetic Nephropathy Independent of Proteinuria by Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7283581. [PMID: 32685522 PMCID: PMC7336202 DOI: 10.1155/2020/7283581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of ESRD. Emerging evidence indicated that proteinuria may not be the determinant of renal survival in DN. The aim of the current study was to provide molecular signatures apart from proteinuria in DN by an integrative bioinformatics approach. Method Affymetrix microarray datasets from microdissected glomerular and tubulointerstitial compartments of DN, healthy controls, and proteinuric disease controls including minimal change disease and membranous nephropathy were extracted from open-access database. Differentially expressed genes (DEGs) in DN versus both healthy and proteinuric controls were identified by limma package, and further defined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Hub genes were checked by protein-protein interaction networks. Results A total of 566 glomerular and 581 tubulointerstitial DEGs were identified in DN, which were commonly differentially expressed compared to normal controls and proteinuric disease controls. The upregulated DEGs in both compartments were significantly enriched in GO biological process associated with fibrosis, inflammation, and platelet dysfunction, and largely located in extracellular space, including matrix and extracellular vesicles. Pathway analysis highlighted immune system regulation. Hub genes of the upregulated DEGs negatively correlated with estimated glomerular filtration rate (eGFR). While the downregulated DEGs and their hub genes in tubulointerstitium were enriched in pathways associated with lipid metabolism and oxidation, which positively correlated with eGFR. Conclusions Our study identified pathways including fibrosis, inflammation, lipid metabolism, and oxidative stress contributing to the progression of DN independent of proteinuria. These genes may serve as biomarkers and therapeutic targets.
Collapse
|
63
|
Nair S, Salomon C. Extracellular vesicles as critical mediators of maternal-fetal communication during pregnancy and their potential role in maternal metabolism. Placenta 2020; 98:60-68. [PMID: 33039033 DOI: 10.1016/j.placenta.2020.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) have been implicated in the pathophysiology of metabolic disorders by transferring biologically active molecules such as miRNAs and proteins to recipient cells, and influencing their metabolic pathways. Pregnancy is one of the greatest metabolic challenges faced by both the mother and the growing fetus, and this is fine-tuned by several factors, including hormones, soluble molecules, and molecules encapsulated in EVs released from the placenta. A wide range of EVs originating from the placenta are present in maternal circulation, and changes in their circulating levels and bioactivity (i.e., capacity to induce changes in the target cells) have been associated with several complications of pregnancies, including gestational diabetes mellitus (GDM), preeclampsia, preterm birth, and fetal growth restriction. Complications of pregnancies are associated with maternal metabolic dysfunction with short- and long-term consequences for both mother and child. However, the potential roles of circulating EVs originating from the placenta and other tissues (e.g. adipose tissue), on changes in maternal metabolism during normal and pregnancy complications have not been fully described. The aim of this brief review, thus, is to discuss the diversity of EVs, and their potential roles in the metabolic alterations during pregnancy, with a special focus on GDM.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| |
Collapse
|
64
|
Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of Adipose-derived Extracellular Vesicles in Metabolic Homeostasis and Diseases: Communication from the distance between cells/tissues. Am J Cancer Res 2020; 10:7422-7435. [PMID: 32642003 PMCID: PMC7330853 DOI: 10.7150/thno.42167] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes, microvesicles (MVs), and apoptotic bodies, are small membrane vesicular structures that are released during cell activation, senescence, or programmed cell death, including apoptosis, necroptosis, and pyroptosis. EVs serve as novel mediators for long-distance cell-to-cell communications and can transfer various bioactive molecules, such as encapsulated cytokines and genetic information from their parental cells to distant target cells. In the context of obesity, adipocyte-derived EVs are implicated in metabolic homeostasis serving as novel adipokines. In particular, EVs released from brown adipose tissue or adipose-derived stem cells may help control the remolding of white adipose tissue towards browning and maintaining metabolic homeostasis. Interestingly, EVs may even serve as mediators for the transmission of metabolic dysfunction across generations. Also, EVs have been recognized as novel modulators in various metabolic disorders, including insulin resistance, diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we summarize the latest progress from basic and translational studies regarding the novel effects of EVs on metabolic diseases. We also discuss EV-mediated cross-talk between adipose tissue and other organs/tissues that are relevant to obesity and metabolic diseases, as well as the relevant mechanisms, providing insight into the development of new therapeutic strategies in obesity and metabolic diseases.
Collapse
|
65
|
Wu SF, Noren Hooten N, Freeman DW, Mode NA, Zonderman AB, Evans MK. Extracellular vesicles in diabetes mellitus induce alterations in endothelial cell morphology and migration. J Transl Med 2020; 18:230. [PMID: 32517700 PMCID: PMC7285586 DOI: 10.1186/s12967-020-02398-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation-related atherosclerotic peripheral vascular disease is a major end organ complication of diabetes mellitus that results in devastating morbidity and mortality. Extracellular vesicles (EVs) are nano-sized particles that contain molecular cargo and circulate in the blood. Here, we examined EV protein cargo from diabetic individuals and whether these EVs cause functional changes in endothelial cells. Methods We quantified inflammatory protein levels in plasma-derived EVs from a longitudinal cohort of euglycemic and diabetic individuals and used in vitro endothelial cell biological assays to assess the functional effects of these EVs with samples from a cross-sectional cohort. Results We found several significant associations between EV inflammatory protein levels and diabetes status. The angiogenic factor, vascular endothelial growth factor A (VEGF-A), was associated with diabetes status in our longitudinal cohort. Those with diabetes mellitus had higher EV VEGF-A levels compared to euglycemic individuals. Additionally, EV levels of VEGF-A were significantly associated with homeostatic model assessment of insulin resistance (HOMA-IR) and β-cell function (HOMA-B). To test whether EVs with different inflammatory cargo can demonstrate different effects on endothelial cells, we performed cell migration and immunofluorescence assays. We observed that EVs from diabetic individuals increased cell lamellipodia formation and migration when compared to EVs from euglycemic individuals. Conclusions Higher levels of inflammatory proteins were found in EVs from diabetic individuals. Our data implicate EVs as playing important roles in peripheral vascular disease that occur in individuals with diabetes mellitus and suggest that EVs may serve as an informative diagnostic tool for the disease.
Collapse
Affiliation(s)
- Sharon F Wu
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David W Freeman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.,University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
66
|
Sáez T, Toledo F, Sobrevia L. Extracellular Vesicles and Insulin Resistance: A Potential Interaction in Vascular Dysfunction. Curr Vasc Pharmacol 2020; 17:491-497. [PMID: 30277159 DOI: 10.2174/1570161116666181002095745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Insulin resistance plays a key role in cardiovascular complications associated with diabetes mellitus and hypertensive disorders. In states of insulin resistance several circulating factors may contribute to a defective insulin sensitivity in different tissues, including the vasculature. One of these factors influencing the vascular insulin resistance are the extracellular vesicles. The extracellular vesicles include exosomes, microvesicles, and apoptotic bodies which are released to the circulation by different vascular cells. Since the cargo of extracellular vesicles seems to be altered in metabolic complications associated with insulin resistance, these vesicles may be candidates contributing to vascular insulin resistance. Despite the studies linking insulin resistance signalling pathways with the vascular effect of extracellular vesicles, the involvement of these structures in vascular insulin resistance is a phenomenon that remains unclear.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton T6G 2S2, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Bio-Bio University, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,Department of Physiology, Faculty of Pharmacy, University of Sevilla, Seville E-41012, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| |
Collapse
|
67
|
Carracedo J, Alique M, Ramírez-Carracedo R, Bodega G, Ramírez R. Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus. Curr Vasc Pharmacol 2020; 17:447-454. [PMID: 30124156 DOI: 10.2174/1570161116666180820115726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/ University Hospital Ramon y Cajal Research Unit (IRYCIS), Madrid, Spain
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| |
Collapse
|
68
|
Diabetes and Hyperglycemia Affect Platelet GPIIIa Expression. Effects on Adhesion Potential of Blood Platelets from Diabetic Patients under In Vitro Flow Conditions. Int J Mol Sci 2020; 21:ijms21093222. [PMID: 32370146 PMCID: PMC7247361 DOI: 10.3390/ijms21093222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood platelets play a crucial role in the early stages of atherosclerosis development. The process is believed to require firm adhesion of platelets to atherosclerosis-prone sites of the artery. However, little evidence exists regarding whether the blood platelets of individuals with pathological conditions associated with atherosclerosis have higher potential for adhesion. This process is to a large extent dependent on receptors present on the platelet membrane. Therefore, the aim of the presented study was to determine whether blood platelets from diabetic patients have higher capacity of adhesion under flow conditions and how diabetes affects one of the crucial platelet receptors involved in the process of adhesion-GPIIIa. The study compares the ability of platelets from non-diabetic and diabetic humans to interact with fibrinogen and von Willebrand factor, two proteins found in abundance on an inflamed endothelium, under flow conditions. The activation and reactivity of the blood platelets were also characterized by flow cytometry. Platelets from diabetic patients did not demonstrate enhanced adhesion to either studied protein, although they presented increased basal activation and responsiveness towards low concentrations of agonists. Platelets from diabetic patients were characterized by lower expression of GPIIIa, most likely due to an enhanced formation of platelet-derived microparticles PMPs, as supported by the observation of elevated concentration of this integrin and of GPIIIa-positive PMPs in plasma. We conclude that altered functionality of blood platelets in diabetes does not increase their adhesive potential. Increased glycation and decrease in the amount of GPIIIa on platelets may be partially responsible for this effect. Therefore, higher frequency of interactions of platelets with the endothelium, which is observed in animal models of diabetes, is caused by other factors. A primary cause may be a dysfunctional vascular wall.
Collapse
|
69
|
Noren Hooten N, Evans MK. Extracellular vesicles as signaling mediators in type 2 diabetes mellitus. Am J Physiol Cell Physiol 2020; 318:C1189-C1199. [PMID: 32348178 DOI: 10.1152/ajpcell.00536.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus type 2, a chronic metabolic disease, has globally increased in incidence and prevalence throughout the lifespan due to the rise in obesity and sedentary lifestyle. The end-organ cardiovascular and cerebrovascular effects of diabetes mellitus result in significant morbidity and mortality that increases with age. Thus, it is crucial to fully understand how molecular mechanisms are influenced by diabetes mellitus and may influence the development of end-organ complications. Circulating factors are known to play important physiological and pathological roles in diabetes. Recent data have implicated extracellular vesicles (EVs) as being circulating mediators in type 2 diabetes. These small lipid-bound vesicles are released by cells into the circulation and can carry functional cargo, including lipids, proteins, and nucleic acids, to neighboring cells or between tissues. In this review, we will summarize the current evidence for EVs as promising diagnostic and prognostic factors in diabetes, the mechanisms that drive EV alterations with diabetes, and the role EVs play in the pathology associated with diabetes.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
70
|
Wei H, Davies JE, Harper MT. 2-Aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov 2020; 6:10. [PMID: 32140260 PMCID: PMC7051957 DOI: 10.1038/s41420-020-0244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca2+- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood. A clearer understanding of this process may aid the development of drugs to selectively block their release. In this study we report that 2-aminoethoxydiphenylborate (2-APB) significantly inhibits the release of PS-exposing EVs from platelets stimulated with the Ca2+ ionophore, A23187, or the pore-forming toxin, streptolysin-O. Two analogues of 2-APB, diphenylboronic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A), inhibited PS-exposing EV release with similar potency. Although 2-APB and DPBA weakly inhibited platelet PS exposure and calpain activity, this was not seen with DP3A despite inhibiting PS-exposing EV release. These data suggest that there is a further target of 2-APB, independent of cytosolic Ca2+ signalling, PS exposure and calpain activity, that is required for PS-exposing EV release. DP3A is likely to inhibit the same target, without these other effects. Identifying the target of 2-APB, DPBA and DP3A may provide a new way to inhibit PS-exposing EV release from activated platelets and inhibit their contribution to thrombosis and inflammation.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
71
|
Zhang W, Jiang H, Kong Y. Exosomes derived from platelet-rich plasma activate YAP and promote the fibrogenic activity of Müller cells via the PI3K/Akt pathway. Exp Eye Res 2020; 193:107973. [PMID: 32059976 DOI: 10.1016/j.exer.2020.107973] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the role of exosomes derived from platelet-rich plasma (PRP-Exos) in the regulation of the fibrogenic activity of Müller cells and the underlying mechanism. We studied the effects of PRP-Exos on the fibrogenic activity of human retinal Müller cells (hMCs) in vitro. PRP-Exos were isolated from the plasma of diabetic rats (DM-PRP-Exos) and normal control rats (Nor-PRP-Exos) and then observed by transmission electron microscopy. After treatment with DM-PRP-Exos or Nor-PRP-Exos, the proliferation and migration of hMCs were measured in vitro. Western blotting was conducted to assess the levels of fibrogenic molecules and activation of Yes-associated protein (YAP) and the PI3K-Akt signalling pathway. In cultured hMCs, DM-PRP-Exos but not Nor-PRP-Exos effectively increased the proliferative and migratory activities and improved connective tissue growth factor (CTGF) and fibronectin expression. Genetic and pharmacological suppression of YAP could reduce the proliferative and migratory activities of hMCs induced by DM-PRP-Exo. Additionally, YAP knockdown inhibited the DM-PRP-Exo-induced up-regulation of CTGF and fibronectin. Furthermore, DM-PRP-Exo-induced PI3K-Akt signalling mediated YAP activation and the expression of CTGF and fibronectin. In summary, DM-PRP-Exos, through YAP activation, enhance both the proliferation and fibrogenic activity of Müller cells via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Yichun Kong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China.
| |
Collapse
|
72
|
Rocca B, Patrono C. Aspirin in the primary prevention of cardiovascular disease in diabetes mellitus: A new perspective. Diabetes Res Clin Pract 2020; 160:108008. [PMID: 31926190 DOI: 10.1016/j.diabres.2020.108008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Although the improved control of hyperglycaemia and other cardiovascular risk factors was associated with a parallel decline of atherosclerotic cardiovascular disease (ASCVD) and death in both type 1 (T1) and type 2 (T2) diabetes mellitus (DM), the burden of death and hospitalization for ASCVD remains significantly higher by about 2-fold versus the matched non-DM population. Life style interventions, such as physical activity and healthy diet, and drugs, such as statins and low-dose aspirin, may have beneficial effects by targeting one or multiple pathways responsible for accelerated atherosclerosis and its thrombotic complications. The debate on the benefit-risk balance of primary cardiovascular prevention with aspirin has been especially vivacious over the past two years, following the publication of three large randomized, placebo-controlled, primary prevention trials in different settings, spanning from healthy elderly to DM subjects. The aim of this review is to discuss the pathophysiological, pharmacological and clinical evidence supporting the appropriate use of low-dose aspirin in DM, within the context of the current multifactorial approach to primary cardiovascular prevention.
Collapse
Affiliation(s)
- Bianca Rocca
- Institute of Pharmacology, Catholic University School of Medicine, and Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| | - Carlo Patrono
- Institute of Pharmacology, Catholic University School of Medicine, and Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
73
|
Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine Growth Factor Rev 2020; 51:27-39. [PMID: 31917095 DOI: 10.1016/j.cytogfr.2019.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
Metabolic diseases are based on a dysregulated crosstalk between various cells such as adipocytes, hepatocytes and immune cells. Generally, hormones and metabolites mediate this crosstalk that becomes alterated in metabolic syndrome including obesity and diabetes. Recently, Extracellular Vesicles (EVs) are emerging as a novel way of cell-to-cell communication and represent an attractive strategy to transfer fundamental informations between the cells through the transport of proteins and nucleic acids. EVs, released in the extracellular space, circulate via the various body fluids and modulate the cellular responses following their interaction with the near and far target cells. Clinical and experimental data support their role as biomarkers and bioeffectors in several diseases includimg also the metabolic syndrome. Despite numerous studies on the role of macrophages in the development of metabolic diseases, to date, there are little informations about the influence of metabolic stress on the EVs produced by macrophages and about the role of the released vesicles in the organism. Here, we review current understanding about the role of EVs in metabolic diseases, mainly in inflammation status burst. This knowledge may play a relevant role in health monitoring, medical diagnosis and personalized medicine.
Collapse
|
74
|
Zhang C, Ou Q, Gu Y, Cheng G, Du R, Yuan L, Cordiner RLM, Kang D, Zhang J, Huang Q, Yu C, Kang L, Wang X, Sun X, Mo X, Tian H, Pearson ER, Meng W, Li S. Circulating Tissue Factor-Positive Procoagulant Microparticles in Patients with Type 1 Diabetes. Diabetes Metab Syndr Obes 2019; 12:2819-2828. [PMID: 32021345 PMCID: PMC6978680 DOI: 10.2147/dmso.s225761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the count of circulating tissue factor-positive (TF+) procoagulant microparticles (MPs) in patients with type 1 diabetes mellitus (T1DM). METHODS This case-control study included patients with T1DM and age and sex-matched healthy volunteers. The counts of phosphatidylserine-positive (PS+) MPs and TF+PS+MPs and the subgroups derived from different cell types were measured in the peripheral blood sample of the two groups using multicolor flow cytometric assay. We compared the counts of each MP between groups as well as the ratio of the TF+PS+MPs and PS+MPs (TF+PS+MPs/PS+MPs). RESULTS We recruited 36 patients with T1DM and 36 matched healthy controls. Compared with healthy volunteers, PS+MPs, TF+PS+MPs and TF+PS+MPs/PS+MPs were elevated in patients with T1DM (PS+MPs: 1078.5 ± 158.08 vs 686.84 ± 122.04/μL, P <0.001; TF+PS+MPs: 202.10 ± 47.47 vs 108.33 ± 29.42/μL, P <0.001; and TF+PS+MPs/PS+MPs: 0.16 ± 0.04 vs 0.19 ± 0.05, P = 0.004), mostly derived from platelet, lymphocytes and endothelial cells. In the subgroup analysis, the counts of total and platelet TF+PS+MPs were increased in patients with diabetic retinopathy (DR) and with higher HbA1c, respectively. CONCLUSION Circulating TF+PS+MPs and those derived from platelet, lymphocytes and endothelial cells were elevated in patients with T1DM.
Collapse
Affiliation(s)
- Chenghui Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu610041, People’s Republic of China
| | - Qing Ou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yan Gu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Gaiping Cheng
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Rong Du
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu610041, People’s Republic of China
| | - Li Yuan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ruth LM Cordiner
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Deying Kang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jiaying Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Chuan Yu
- Department of Health-Related Social and Behavioral Science, West China School of Public Health, Sichuan University, Chengdu610041, People’s Republic of China
| | - Li Kang
- Division of Systems Medicine, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Xuan Wang
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala75123, Sweden
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, DundeeDD1 9SY, Scotland, UK
| |
Collapse
|
75
|
Abstract
Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Valerio Azzimato
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Myriam Aouadi
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden.
| |
Collapse
|
76
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 621] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
77
|
Kafian S, Wallén H, Samad BA, Mobarrez F. Microvesicles from patients with acute coronary syndrome enhance platelet aggregation. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:507-512. [PMID: 31502883 DOI: 10.1080/00365513.2019.1663554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microvesicles (MVs) released from leukocytes, platelets and endothelial cells are elevated in patients with acute coronary syndrome (ACS). In the present study, we assessed the potential pro-aggregatory properties of MVs obtained from ACS patients. Thus, we divided the patients into two groups based on clopidogrel-responsiveness, i.e. high on-treatment platelet reactivity (HPR; n = 16), and low or normal on-treatment platelet reactivity (non-HPR; n = 14), respectively. MVs from patients were obtained by high-speed centrifugation, and the pro-aggregatory effect of MVs added to fresh isolated platelets from healthy subjects were analyzed by 96-well microplate aggregometry. MVs from HPR patients significantly enhanced spontaneous platelet aggregation around two times more than MVs from non-HPR patients. The pro-aggregatory effect of three out of four MV phenotypes correlated to MV-concentrations as determined by flow cytometry. Furthermore, MVs from patients with diabetes mellitus (n = 9) had a stronger pro-aggregatory effect compared to MVs from those without diabetes (n = 21; p = .025 between groups). In conclusion, MVs from ACS patients with clopidogrel non-responsiveness enhance platelet aggregation, as do MVs from ACS patients with diabetes. Thus, MVs from patients with hyperreactive platelets boost platelet aggregation. Blocking MV-formation may reduce platelet hyperreactivity.
Collapse
Affiliation(s)
- Sam Kafian
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Bassem A Samad
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Fariborz Mobarrez
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University , Uppsala , Sweden
| |
Collapse
|
78
|
Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, Zografou I, Markala D, Douma S. Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diab Vasc Dis Res 2019; 16:458-465. [PMID: 31046456 DOI: 10.1177/1479164119844691] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the thrombotic microenvironment in early stages of type 2 diabetes mellitus measuring platelet-derived, endothelial-derived and erythrocyte-derived microvesicles. METHODS We recruited 50 newly diagnosed type 2 diabetes mellitus patients who did not receive glucose-lowering treatment except for metformin and 25 matched non-type 2 diabetes mellitus volunteers. Microvesicles were measured with flow cytometry, glycated haemoglobin with high-performance liquid chromatography and advanced glycation end products with enzyme-linked immunosorbent assay. RESULTS Type 2 diabetes mellitus patients showed significantly higher levels of platelet-derived microvesicles [195/μL (115-409) vs 110/μL (73-150), p = 0.001] and erythrocyte-derived microvesicles [26/μL (9-100) vs 9/μL (4-25), p = 0.007] compared to non-type 2 diabetes mellitus individuals. Platelet-derived microvesicles were positively associated with fasting blood glucose (p = 0.026) and glycated haemoglobin (p = 0.002). Erythrocyte-derived microvesicles were also positively associated with fasting blood glucose (p = 0.018) but not with glycated haemoglobin (p = 0.193). No significant association was observed between platelet-derived microvesicles (p = 0.126) or erythrocyte-derived microvesicles (p = 0.857) and advanced glycation end products. Erythrocyte-derived microvesicles predicted the presence of type 2 diabetes mellitus, independently of platelet-derived microvesicles. CONCLUSION In newly diagnosed type 2 diabetes mellitus, ongoing atherothrombosis is evident during the early stages as evidenced by increased microvesicles levels. Furthermore, the association with glycemic profile suggests that microvesicles represent not only a novel mechanism by which hyperglycemia amplifies thrombotic tendency in type 2 diabetes mellitus but also early markers of thrombosis highlighting the need for earlier management of hyperglycemia.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Barbara Nikolaidou
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gavriilaki
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthalia Yiannaki
- 2 Department of Hematology, Theagenion Cancer Center, Thessaloniki, Greece
| | - Panagiota Anyfanti
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Zografou
- 3 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Markala
- 2 Department of Hematology, Theagenion Cancer Center, Thessaloniki, Greece
| | - Stella Douma
- 1 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
79
|
Bratseth V, Chiva-Blanch G, Byrkjeland R, Solheim S, Arnesen H, Seljeflot I. Elevated levels of circulating microvesicles in coronary artery disease patients with type 2 diabetes and albuminuria: Effects of exercise training. Diab Vasc Dis Res 2019; 16:431-439. [PMID: 31023084 DOI: 10.1177/1479164119843094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Circulating microvesicles, released from activated/apoptotic cells, are involved in vascular complications and may be looked upon as biomarkers. Albuminuria is characteristic of disease progression in type 2 diabetes mellitus. We aimed to investigate quantitative and qualitative differences of circulating microvesicles in type 2 diabetes mellitus with and without albuminuria and whether 12-month exercise training influenced expression of circulating microvesicles. METHODS Coronary artery disease patients with type 2 diabetes mellitus (n = 75), of which 25 had albuminuria, were included. Annexin V+ (AV+) circulating microvesicles were analysed by flow cytometry in citrated plasma. The exercise volume was 150 min per week. RESULTS In albuminuria patients, circulating microvesicles from endothelial-(CD146+/CD62E+/AV+) and endothelial-progenitor-(CD309+/CD34+/AV+) cells were significantly higher compared to those without (p ⩽ 0.01, both). Receiver operating characteristic curve analysis of the endothelial circulating microvesicles shows an area under the curve of 0.704 (95% confidence interval: 0.57-0.84; p = 0.004). Albuminuria patients had more circulating microvesicles derived from activated leukocytes and monocytes and monocytes carrying tissue factor (CD11b+/AV+, CD11b+/CD14+/AV+, CD142+/CD14+/AV+, respectively, p ⩽ 0.05, all) and higher number of circulating microvesicles from activated platelets (CD62P+/AV+). Within exercising patients, circulating microvesicles from progenitor cells increased (p = 0.023), however, not significantly different from controls. CONCLUSION Coronary artery disease patients with type 2 diabetes mellitus and albuminuria had elevated number of circulating microvesicles from activated blood and vascular cells, rendering them as potential predictors of disease severity. The circulating microvesicles were limitedly affected by long-term exercise training in our population.
Collapse
Affiliation(s)
- Vibeke Bratseth
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
- 2 Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gemma Chiva-Blanch
- 3 Cardiovascular Program - ICCC - IR Hospital Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Rune Byrkjeland
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Svein Solheim
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Harald Arnesen
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
- 2 Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ingebjørg Seljeflot
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
- 2 Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
80
|
Zhou F, Huang L, Qu SL, Chao R, Yang C, Jiang ZS, Zhang C. The emerging roles of extracellular vesicles in diabetes and diabetic complications. Clin Chim Acta 2019; 497:130-136. [PMID: 31361990 DOI: 10.1016/j.cca.2019.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Diabetes and diabetic vascular complications are now the leading cause of death in the world. The effects of traditional medical treatment are usually limited and accompanied by many side effects, such as hypoglycemia, obesity, liver and kidney damage, and gastrointestinal adverse reactions. Thus, it is urgent to explore some new strategies for the treatment of patients with diabetes. Recently, extracellular vesicles have received increased attention because of their emerging roles of cell-to-cell communication under physiological and pathological conditions. In addition, because of their abundant existence in almost all body fluids, as well as their plentiful cargos of bioactive proteins and miRNAs they carry, extracellular vesicles have a strong potential for therapeutic and diagnostic applications in many metabolic diseases, such as obesity and insulin resistance. Here, with the aim of providing the basis for the development of new treatments for diabetes, we review current understanding of extracellular vesicles and the critical roles it has played in the onset and progression of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Fan Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Liang Huang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China; Department of Operative Surgery, School of Medicine, University of South China, Hengyang, Hunan 421002, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ru Chao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
81
|
Yun JW, Barzegar M, Boyer CJ, Minagar A, Couraud PO, Alexander JS. Brain Endothelial Cells Release Apical and Basolateral Microparticles in Response to Inflammatory Cytokine Stimulation: Relevance to Neuroinflammatory Stress? Front Immunol 2019; 10:1455. [PMID: 31316509 PMCID: PMC6610500 DOI: 10.3389/fimmu.2019.01455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Microparticles (MP) are regarded both as biomarkers and mediators of many forms of pathology, including neurovascular inflammation. Here, we characterized vectorial release of apical and basolateral MPs (AMPs and BMPs) from control and TNF-α/IFN-γ treated human brain endothelial monolayers, studied molecular composition of AMPs and BMPs and characterized molecular pathways regulating AMP and BMP release. The effects of AMPs and BMPs on blood-brain barrier properties and human brain microvascular smooth muscle tonic contractility in vitro were also evaluated. We report that human brain microvascular endothelial cells release MPs both apically and basolaterally with both AMP and BMP release significantly increased following inflammatory cytokine challenge (3.5-fold and 3.9-fold vs. control, respectively). AMPs and BMPs both carry proteins derived from parent cells including those in BBB junctions (Claudin−1, −3, −5, occludin, VE-cadherin). AMPs and BMPs represent distinct populations whose release appears to be regulated by distinctly separate molecular pathways, which depend on signaling from Rho-associated, coiled-coil containing protein kinase (ROCK), calpain as well as cholesterol depletion. AMPs and BMPs modulate functions of neighboring cells including BBB endothelial solute permeability and brain vascular smooth muscle contractility. While control AMPs enhanced brain endothelial barrier, cytokine-induced AMPs impaired BBB. Cytokine-induced but not control BMPs significantly impaired human brain smooth muscle contractility as early as day 1. Taken together these results indicate that AMPs and BMPs may contribute to neurovascular inflammatory disease progression both within the circulation (AMP) and in the brain parenchyma (BMP).
Collapse
Affiliation(s)
- J Winny Yun
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mansoureh Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Christen J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | - Jonathan Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
82
|
Zhang W, Wang Y, Kong Y. Exosomes Derived From Mesenchymal Stem Cells Modulate miR-126 to Ameliorate Hyperglycemia-Induced Retinal Inflammation Via Targeting HMGB1. Invest Ophthalmol Vis Sci 2019; 60:294-303. [PMID: 30657854 DOI: 10.1167/iovs.18-25617] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose In this study, we aim to investigate whether mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) could regulate hyperglycemia-induced retinal inflammation by transferring microRNA-126 (miR-126). Methods MSC-Exos were isolated from the media of human umbilical cord-derived mesenchymal stem cells (hUCMSCs), and this isolation was followed by the transfer of miR-126. MSC-Exos or MSC-Exos overexpressing miR-126 were intravitreally injected into diabetic rats in vivo and were cocultured with high glucose-affected human retinal endothelial cells (HRECs) in vitro. Plasma samples were obtained from the vitreous of rats and from HREC cells after treatment for ELISA assay. Retinal sections were examined using immunohistochemistry. RT-PCR and Western blotting were conducted to assess the levels of high-mobility group box 1 (HMGB1), NLRP3 inflammasome, and NF-κB/P65 in retinas and HRECs. Results Our results showed that hyperglycemia greatly increased inflammation in diabetic rats or HRECs exposed to high glucose, increasing the levels of caspase-1, interleukin-1β (IL-1β) and IL-18. The administration of MSC-Exos could effectively reverse this reaction. Compared to control MSC-Exos, MSC-Exos overexpressing miR-126 more successfully suppressed the HMGB1 signaling pathway and suppressed inflammation in diabetic rats. The administration of miR-126-expressing MSC-Exos significantly reduced high glucose-induced HMGB1 expression and the activity of the NLRP3 inflammasome in HRECs. Conclusions miR-126 expression in MSC-Exos reduces hyperglycemia-induced retinal inflammation by downregulating the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yichun Kong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
83
|
Cell-derived microvesicles in infective endocarditis: Role in diagnosis and potential for risk stratification at hospital admission. J Infect 2019; 79:101-107. [PMID: 31207323 DOI: 10.1016/j.jinf.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To characterize the plasmatic profile of cell-derived microvesicles (MVs) at diagnosis and during the treatment of patients with infective endocarditis (IE). METHODS Blood samples from 57 patients with IE were obtained on 3 consecutive moments: upon admission (T0), at 2 weeks (T1), and at the end of treatment (T2), and were compared with 22 patients with other bacterial infections. MPs were measured by flow cytometry and labeled for specific cell markers of CD45 (leukocytes), CD66b (neutrophils), CD14 (monocytes), CD41a (platelets), CD51 (endothelial cells), CD3 (T lymphocyte) and CD235a (erythrocytes). RESULTS MVs from platelets (pltMVs), leukocytes (leukMVs), neutrophils (neutMVs), monocytes (monoMVs) and lymphocytes (lymphMVs) were significantly more elevated in the patients with IE, compared to the patients with other bacterial infections, despite comparable age, sex, blood counts and C-reactive protein levels. MVs values revealed a relatively stable pattern over time in IE, except for a significant increase in leukMVs and neutMVs in T1. LeukMVs (p = 0.011), neutMVs (p = 0.010), monoMVs (p = 0.016) and lymphMVs (p = 0.020), measured at admission, were significantly higher in IE patients that died during hospitalization in comparison with those that survived. In a multivariable analyses, the levels of neutMVs remained as an independent factor associated with mortality (odds ratio 2.203; 95% confidence interval 1.217 - 3.988; p = 0.009), adjustment for heart failure during the treatment. CONCLUSIONS Plasma levels of pltMVs, leukMVs, neutMVs, monoMVs and lymphMVs were significantly more elevated in patients with IE than in patients with other bacterial infections at hospital admission. Furthermore, neutMVs at admission have been identified as an independent predictor of mortality in patients with IE. Thus, cell derived MPs may become an important tool in the differential diagnosis and mortality risk assessment early in the course of IE suspected cases.
Collapse
|
84
|
Zahran AM, Mohamed IL, El Asheer OM, Tamer DM, Abo-ELela MGM, Abdel-Rahim MH, El-Badawy OHB, Elsayh KI. Circulating Endothelial Cells, Circulating Endothelial Progenitor Cells, and Circulating Microparticles in Type 1 Diabetes Mellitus. Clin Appl Thromb Hemost 2019; 25:1076029618825311. [PMID: 30760002 PMCID: PMC6714921 DOI: 10.1177/1076029618825311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background and Aim: Hyperglycemia in type 1 diabetes (T1D) is accompanied by endothelial cell dysfunction
which is known to contribute to the pathogenesis of cardiovascular disorders. The aim of
the current study was to explore the profile of circulating endothelial progenitor cells
(EPCs), circulating endothelial cells (CECs), endothelial and platelet derived
micropaticles (EMPs, PMPs) and total microparticles (TMPs), in T1D children in relation
to each other and to the metabolic disorders accompanying T1D. Patients and Methods: Thirty T1D patients and 20 age and sex matched healthy volunteers were assessed for
HbA1c level and lipid profile. Quantification of CECs, EPCs, TMPs, EMPs and PMPs was
done by flow cytometry. Results: The mean levels of EMPs, PMPs, TMPs and CECs were significantly higher in diabetic
children compared to controls. Meanwhile, the levels of EPCs were significantly lower in
diabetic children compared to controls. Both PMPs and CECs showed the highest
significant differences between patients and controls and their levels were directly
related to HbA1c, total cholesterol, LDL and triglycerides. A moderate correlation was
observed between the frequency of PMPs and CECs. EPCs revealed negative correlations
with both LDL and triglycerides. TMPs were only related to LDL, while EMPs were only
related to HbA1c. Conclusion: Although there is disturbance in the levels of EMPs, PMPs, TMPs, CECs and EPCs in type
1 diabetic children compared to the controls, only the levels of PMPs and CECs were
closely affected by the poor glycemic control and dyslipidemia occurring in T1D; thus
may contribute to a higher risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Asmaa M Zahran
- 1 Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Ismail L Mohamed
- 2 Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Osama M El Asheer
- 2 Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Deiaaeldin M Tamer
- 2 Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Mona H Abdel-Rahim
- 3 Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia H B El-Badawy
- 3 Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid I Elsayh
- 2 Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
85
|
Abstract
Microparticles are a distinctive group of small vesicles, without nucleus, which are involved as significant modulators in several physiological and pathophysiological mechanisms. Plasma microparticles from various cellular lines have been subject of research. Data suggest that they are key players in development and manifestation of cardiovascular diseases and their presence, in high levels, is associated with chronic inflammation, endothelial damage and thrombosis. The strong correlation of microparticle levels with several outcomes in cardiovascular diseases has led to their utilization as biomarkers. Despite the limited clinical application at present, their significance emerges, mainly because their detection and enumeration methods are improving. This review article summarizes the evidence derived from research, related with the genesis and the function of microparticles in the presence of various cardiovascular risk factors and conditions. The current data provide a substrate for several theories of how microparticles influence various cellular mechanisms by transferring biological information.
Collapse
Affiliation(s)
- Christos Voukalis
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Eduard Shantsila
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Gregory Y H Lip
- b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Department of Clinical Medicine, Aalborg Thrombosis Research Unit , Aalborg University , Aalborg , Denmark
| |
Collapse
|
86
|
Bos MH, Versteeg HH. Snakebites and microvesicles: Popping bubbles. Res Pract Thromb Haemost 2019; 3:156-157. [PMID: 31011698 PMCID: PMC6462744 DOI: 10.1002/rth2.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mettine H.A. Bos
- Department of Internal Medicine; Division of Thrombosis and Hemostasis; Einthoven Laboratory for Vascular and Regenerative Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine; Division of Thrombosis and Hemostasis; Einthoven Laboratory for Vascular and Regenerative Medicine; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
87
|
Hijmans JG, Bammert TD, Stockelman KA, Reiakvam WR, Greiner JJ, DeSouza CA. High glucose-induced endothelial microparticles increase adhesion molecule expression on endothelial cells. Diabetol Int 2019; 10:143-147. [PMID: 31139533 PMCID: PMC6506489 DOI: 10.1007/s13340-018-0375-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
The experimental aim of this study was to determine, in vitro, the effects of glucose-induced EMPs on endothelial cell expression of E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 and platelet cell adhesion molecule-1 (PECAM-1). Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 × 105 cells/condition. HUVECs were incubated with media containing either 25 mM d-glucose (concentration representing a hyperglycemic state) or 5 mM d-glucose (normoglycemic condition) for 48 h to generate EMPs. EMP identification (CD144+) and concentration were determined by flow cytometry. HUVECs (3 × 106 cells/condition) were treated with either high glucose-derived EMPs (hgEMPs) or normal glucose-derived (ngEMPs) for 24 h and surface expression of E-selectin (CD62E-PE), ICAM-1 (CD54-FITC), VCAM-1 (CD106-APC) and PECAM-1 (CD31-BV) was assessed by flow cytometry and reported as mean fluorescent intensity (MFI). Hyperglycemic-derived EMPs induced significantly higher surface expression of E-selectin (2614 ± 132 vs. 2010 ± 204 MFI), ICAM-1 (2110 ± 81 vs. 1688 ± 152 MFI), VCAM-1 (3589 ± 431 vs. 2134 ± 386) and PECAM-1 (4237 ± 395 vs. 2525 ± 269 MFI) on endothelial cells than EMPs from normoglycemic conditions. Microparticle-induced cell adhesion molecule expression provides potential novel mechanistic insight regarding the accelerated risk of atherosclerotic vascular disease associated with hyperglycemia.
Collapse
Affiliation(s)
- Jamie G. Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| | - Tyler D. Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| | - Kelly A. Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| | - Whitney R. Reiakvam
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| | - Jared J. Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| | - Christopher A. DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, 354 UCB, 1725 Pleasant St, Boulder, CO 80309 USA
| |
Collapse
|
88
|
Morphological determinators of platelet activation status in patients with atrial fibrillation. Int J Cardiol 2019; 279:90-95. [DOI: 10.1016/j.ijcard.2018.11.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
|
89
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
90
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
91
|
Liu D, Baqar S, Lincz LL, Ekinci EI. Sodium Intake, Circulating Microvesicles and Cardiovascular Outcomes in Type 2 Diabetes. Curr Diabetes Rev 2019; 15:435-445. [PMID: 30747074 DOI: 10.2174/1573399815666190212120822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 11/22/2022]
Abstract
There is ongoing debate surrounding the complex relationship between dietary sodium intake and cardiovascular morbidity and mortality. The existing literature consists largely of observational studies that have demonstrated positive, negative, U-/J-shaped or unclear associations between sodium intake and cardiovascular outcomes. Our group and others have previously demonstrated an inverse relationship between dietary sodium intake and cardiovascular outcomes in people with type 2 diabetes. Increased activity of the renin-angiotensin-aldosterone system and sympathetic nervous system is postulated to contribute to these paradoxical findings through endothelial dysfunction, a precursor to the development of cardiovascular disease. Microvesicles are submicron (0.1 - 1.0μm) vesicles that form during cellular activation, injury or death with endothelial microvesicles being recognized markers of endothelial dysfunction. They are pathologically elevated in a variety of vascular-related conditions including type 2 diabetes. Lower habitual sodium intake in type 2 diabetes has been associated with higher pro-coagulant platelet microvesicles levels but not with endothelial microvesicles. Research utilizing endothelial microvesicles to evaluate the mechanistic relationship between dietary sodium intake and adverse cardiovascular outcomes in type 2 diabetes remains scarce.
Collapse
Affiliation(s)
- Dorothy Liu
- Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Sara Baqar
- Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Lisa L Lincz
- Hunter Haematology Research Group, Calvary Mater Newcastle, New South Wales, Australia
| | - Elif I Ekinci
- Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
92
|
Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018; 34:936-943. [DOI: 10.1051/medsci/2018239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Les vésicules extracellulaires (VE) suscitent un intérêt croissant lié à leur capacité à transférer du contenu biologique entre cellules. Les VE, émises dans l’espace extracellulaire, circulent via les différents fluides de l’organisme et modulent localement ou à distance les réponses des cellules avec lesquelles elles ont interagi. Des données cliniques et expérimentales étayent leur rôle dans les maladies liées au syndrome métabolique. Les VE bousculent la vision traditionnelle de la communication intercellulaire et représentent ainsi un mode de communication alternatif et versatile, qui ouvre la porte à de nouveaux concepts et opportunités tant biologiques que thérapeutiques.
Collapse
|
93
|
Myette-Côté É, Durrer C, Neudorf H, Bammert TD, Botezelli JD, Johnson JD, DeSouza CA, Little JP. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: a randomized trial. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1210-R1219. [PMID: 30303707 PMCID: PMC6734060 DOI: 10.1152/ajpregu.00240.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Lowering carbohydrate consumption effectively lowers glucose, but impacts on inflammation are unclear. The objectives of this study were to: 1) determine whether reducing hyperglycemia by following a low-carbohydrate, high-fat (LC) diet could lower markers of innate immune cell activation in type 2 diabetes (T2D) and 2) examine if the combination of an LC diet with strategically timed postmeal walking was superior to an LC diet alone. Participants with T2D ( n = 11) completed a randomized crossover study involving three 4-day diet interventions: 1) low-fat low-glycemic index (GL), 2) and 3) LC with 15-min postmeal walks (LC+Ex). Four-day mean glucose was significantly lower in the LC+Ex group as compared with LC (-5%, P < 0.05), whereas both LC+Ex (-16%, P < 0.001) and LC (-12%, P < 0.001) conditions were lower than GL. A significant main effect of time was observed for peripheral blood mononuclear cells phosphorylated c-Jun N-terminal kinase ( P < 0.001), with decreases in all three conditions (GL: -32%, LC: -45%, and LC+Ex: -44%). A significant condition by time interaction was observed for monocyte microparticles ( P = 0.040) with a significant decrease in GL (-76%, P = 0.035) and a tendency for a reduction in LC (-70%, P = 0.064), whereas there was no significant change in LC+Ex (0.5%, P = 0.990). Both LC (-27%, P = 0.001) and LC+Ex (-35%, P = 0.005) also led to significant reductions in circulating proinsulin. An LC diet improved 4-day glycemic control and fasting proinsulin levels when compared with GL, with added glucose-lowering benefits when LC was combined with postmeal walking.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Cody Durrer
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
94
|
Freeman DW, Noren Hooten N, Eitan E, Green J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, Egan J, Becker KG, Mattson MP, Ejiogu N, Evans MK. Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes 2018; 67:2377-2388. [PMID: 29720498 PMCID: PMC6198336 DOI: 10.2337/db17-1308] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes is a chronic age-associated degenerative metabolic disease that reflects relative insulin deficiency and resistance. Extracellular vesicles (EVs) (exosomes, microvesicles, and apoptotic bodies) are small (30-400 nm) lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids as part of intercellular communication systems. Recent studies in mouse models and in cell culture suggest that EVs may modulate insulin signaling. Here, we designed cross-sectional and longitudinal cohorts of euglycemic participants and participants with prediabetes or diabetes. Individuals with diabetes had significantly higher levels of EVs in their circulation than euglycemic control participants. Using a cell-specific EV assay, we identified that levels of erythrocyte-derived EVs are higher with diabetes. We found that insulin resistance increases EV secretion. Furthermore, the levels of insulin signaling proteins were altered in EVs from individuals with high levels of insulin resistance and β-cell dysfunction. Moreover, EVs from individuals with diabetes were preferentially internalized by circulating leukocytes. Cytokine levels in the media and in EVs were higher from monocytes incubated with diabetic EVs. Microarray of these leukocytes revealed altered gene expression pathways related to cell survival, oxidative stress, and immune function. Collectively, these results suggest that insulin resistance increases the secretion of EVs, which are preferentially internalized by leukocytes, and alters leukocyte function.
Collapse
Affiliation(s)
- David W Freeman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Erez Eitan
- Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Jamal Green
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mark P Mattson
- Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ngozi Ejiogu
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
95
|
Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in non-valvular atrial fibrillation. Int J Cardiol 2018; 258:138-143. [PMID: 29544920 DOI: 10.1016/j.ijcard.2018.01.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The definitive role of phosphatidylserine (PS) in the prothrombotic state of non-valvular atrial fibrillation (NVAF) remains unclear. Our objectives were to study the PS exposure on blood cells and microparticles (MPs) in NVAF, and evaluate their procoagulant activity (PCA). METHODS NVAF patients without (n = 60) and with left atrial thrombi (n = 18) and controls (n = 36) were included in our study. Exposed PS was analyzed with flow cytometry and confocal microscopy. PCA was evaluated using clotting time, factor Xa (FXa), thrombin and fibrin formation. RESULTS PS+ blood cells and MPs were significantly higher in NVAF patients without and with left atrial thrombi (both P < 0.01) than in controls. Patients with left atrial thrombi showed increased PS+ platelets, neutrophils, erythrocytes and MPs compared with patients without thrombi (all P < 0.05). Moreover, in patients with left atrial thrombi, MPs primarily originated from platelets (56.1%) followed by leukocytes (21.9%, including MPs from neutrophils, monocytes and lymphocytes), erythrocytes (12.2%) and endothelial cells (8.9%). Additionally, PS+ blood cells and MPs contributed to markedly shortened coagulation time and dramatically increased FXa/thrombin/fibrin (all P < 0.001) generation in both NVAF groups. Furthermore, blockade of exposed PS on blood cells and MPs with lactadherin inhibited PCA by approximately 80%. Lastly, we found that the amount of PS+ platelets and MPs was positively correlated with thrombus diameter (all p < 0.005). CONCLUSIONS Our results suggest that exposed PS on blood cells and MPs play a procoagulant role in NVAF patients. Blockade of PS prior to thrombus formation might be a novel therapeutic approach in these patients.
Collapse
|
96
|
Amosse J, Durcin M, Malloci M, Vergori L, Fleury A, Gagnadoux F, Dubois S, Simard G, Boursier J, Hue O, Martinez MC, Andriantsitohaina R, Le Lay S. Phenotyping of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of Macrophage Migration Inhibitory Factor. Mol Metab 2018; 18:134-142. [PMID: 30473096 PMCID: PMC6309717 DOI: 10.1016/j.molmet.2018.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Obesity-associated metabolic dysfunctions are linked to dysregulated production of adipokines. Accumulating evidence suggests a role for fat-derived extracellular vesicles (EVs) in obesity-metabolic disturbances. Since EVs convey numerous proteins we aimed to evaluate their contribution in adipokine secretion. Methods Plasma collected from metabolic syndrome patients were used to isolate EV subtypes, namely microvesicles (MVs) and exosomes (EXOs). Numerous soluble factor concentrations were measured successively on total, MV- and EXO-depleted plasma by multiplexed immunoassays. Results Circulating MVs and EXOs were significantly increased with BMI, supporting a role of EVs as metabolic relays in obesity. Obesity was associated with dysregulated soluble factor production. Sequential depletion of plasma MVs and EXOs did not modify plasma levels of these molecules, with the exception of Macrophage Migration Inhibitory Factor (MIF). Half of plasma MIF circulated within MVs, and this MV secretory pathway was conserved over different MIF-producing cells. Although MV-associated MIF triggered rapid ERK1/2 activation in macrophages, these functional MV-MIF effects specifically relied on MIF tautomerase activity. Conclusion Our results emphasize the importance of reconsidering MIF-metabolic actions with regard to its MV-associated form and opening new EV-based strategies for therapeutic MIF approaches. Plasma EV subtypes are significantly increased with obesity. Plasma EV subtypes carry adipokines. MV (large EV subtype) constitute a major secretory pathway for MIF. MV-associated MIF transduces metabolic responses through its tautomerase activity.
Collapse
Affiliation(s)
- Jérémy Amosse
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Maëva Durcin
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - Marine Malloci
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Luisa Vergori
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Audrey Fleury
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | - Frédéric Gagnadoux
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Séverine Dubois
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France; Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Jérôme Boursier
- Centre Hospitalo-Universitaire d'Angers, Angers, France; HIFIH, EA3859, Université d'Angers, Angers, France
| | - Olivier Hue
- Adaptation to Tropical Climate and Exercise Laboratory, EA3596, University of the French West Indies, Pointe-à-Pitre, Guadeloupe, France
| | - M Carmen Martinez
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France
| | | | - Soazig Le Lay
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, France.
| |
Collapse
|
97
|
Fei X, Xing M, Wo M, Wang H, Yuan W, Huang Q. Thyroid stimulating hormone and free triiodothyronine are valuable predictors for diabetic nephropathy in patient with type 2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:305. [PMID: 30211193 DOI: 10.21037/atm.2018.07.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Diabetes seriously threatens human health, and diabetic nephropathy (DN) is one of the serious diabetic complications. Therefore, it is valuable to predict the occurrence of DN early. This study aims to evaluate the predicting significance of thyroid hormones for DN. Methods A total of 301 type 2 diabetes mellitus (T2DM) patients were enrolled. Thyroid hormones before treatment were measured, and the risk factors and their predicting significance for T2DM and DN were assessed. Results The results indicated that there was no statistical difference in any investigated variable between controls and patients without complications (P>0.05). However, patients with DN exhibited lower levels of triiodothyronine (T3) and free triiodothyronine (FT3), but higher levels of thyroid stimulating hormone (TSH) than T2DM patients without complications (P<0.001). Multivariate analysis did not demonstrate any thyroid hormone as the independent risk factor for T2DM without complications, but revealed increased TSH and decreased T3 and FT3 as the independent risk factors for patients with DN [odds ratio (OR): 2.087, 95% CI: 1.525-3.303; 1.335, 95% CI: 1.101-1.621; 7.414, 95% CI: 4.319-13.986; P<0.001, respectively]. The area under receiver operating characteristic (ROC) curve of TSH, FT3 and T3 was 0.850 (95% CI: 0.776-0.923), 0.824 (95% CI: 0.751-0.897), and 0.620 (95% CI: 0.515-0.725) for DN prediction. Based on their cutoff values of 1.85 mIU/L, 2.31 ng/L, and 0.61 µg/L, the sensitivity was 82%, 78%, and 64%, and the specificity was 77%, 79%, and 85%, respectively. Conclusions Our findings suggest that TSH and FT3 are useful predictors for DN in patients with T2DM.
Collapse
Affiliation(s)
- Xianming Fei
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Mingfen Xing
- Department of Laboratory Medicine, Nanxun People's Hospital, Huzhou 313000, China
| | - Mingyi Wo
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Huan Wang
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Wufeng Yuan
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Qinghua Huang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
98
|
Wei H, Malcor JDM, Harper MT. Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Sci Rep 2018; 8:9987. [PMID: 29968812 PMCID: PMC6030044 DOI: 10.1038/s41598-018-28363-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
99
|
Wang B, Cai W, Zhang Z, Zhang H, Tang K, Zhang Q, Wang X. Circulating microparticles in patients after ischemic stroke: a systematic review and meta-analysis. Rev Neurosci 2018; 32:/j/revneuro.ahead-of-print/revneuro-2017-0105/revneuro-2017-0105.xml. [PMID: 29750657 DOI: 10.1515/revneuro-2017-0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Microparticles (MPs), a class of cell products with biological activities, have been found to participate in a series of vascular activities. The aim of this article is to investigate the changes in the concentrations of MPs after ischemic stroke by meta-analysis. According to pre-established criteria, a strict screening of articles was performed through the Medline and Embase databases. Subsequently, the included studies were subjected to quality assessment and data extraction. Finally, a meta-analysis was performed on seven major outcomes from 985 noncerebrovascular disease controls and 988 ischemic stroke patients. The pooled concentrations of total MPs (TMPs), endotheliocyte-derived MPs (EMPs), platelet-derived MPs (PMPs), erythrocyte-derived MPs (RMPs), leukocyte-derived MPs (LMPs), and monocyte-derived MPs (MMPs) were significantly increased in the ischemic stroke patients compared to the noncerebrovascular disease controls, with the results as follows: TMPs [standardized mean difference (SMD), 1.12; 95% confidence interval (CI), 0.26-1.97; p=0.01], EMPs (SMD, 0.90; 95% CI, 0.67-1.13; p<0.00001), PMPs (SMD, 1.15; 95% CI, 0.69-1.60; p<0.00001), RMPs (SMD, 1.14; 95% CI, 0.57-1.71; p<0.0001), LMPs (SMD, 1.42; 95% CI, 0.74-2.10; p<0.0001), and MMPs (SMD, 1.09; 95% CI, 0.59-1.60; p<0.0001). However, the pooled concentration of lymphocyte-derived MPs (LyMPs) demonstrated no significant difference between the patients and the controls (SMD, 0.22; 95% CI, -0.19 to 0.63; p=0.29). The available data indicated that the circulating MPs, except for LyMPs, play an important role in the development and prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Botao Wang
- Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Wang Cai
- Department of Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhen Zhang
- Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hui Zhang
- Department of Oncology Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Zhang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, 6 Changjiang Road, Tianjin 300100, China
| | - Ximo Wang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Tianjin Nankai Hospital, 6 Changjiang Road, Tianjin 300100, China
| |
Collapse
|
100
|
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60:81-91. [DOI: 10.1016/j.mam.2017.11.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
|