51
|
Bergmann C, Hallenberger L, Chenguiti Fakhouri S, Merlevede B, Brandt A, Dees C, Zhu H, Zehender A, Zhou X, Schwab A, Chen CW, Györfi AH, Matei AE, Chakraborty D, Trinh-Minh T, Rauber S, Coras R, Bozec A, Kreuter A, Ziemer M, Schett G, Distler JHW. X-linked inhibitor of apoptosis protein (XIAP) inhibition in systemic sclerosis (SSc). Ann Rheum Dis 2021; 80:1048-1056. [PMID: 33903093 DOI: 10.1136/annrheumdis-2020-219822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE X-linked inhibitor of apoptosis protein (XIAP) is a multifunctional protein with important functions in apoptosis, cellular differentiation and cytoskeletal organisation and is emerging as potential target for the treatment of various cancers. The aim of the current study was to investigate the role of XIAP in the pathogenesis of systemic sclerosis (SSc). METHODS The expression of XIAP in human skin samples of patients with SSc and chronic graft versus host disease (cGvHD) and healthy individuals was analysed by quantitative PCR, immunofluorescence (IF) and western blot. XIAP was inactivated by siRNA-mediated knockdown and pharmacological inhibition. The effects of XIAP inactivation were analysed in cultured fibroblasts and in the fibrosis models bleomycin-induced and topoisomerase-I-(topoI)-induced fibrosis and in Wnt10b-transgenic mice. RESULTS The expression of XIAP, but not of other inhibitor of apoptosis protein family members, was increased in fibroblasts in SSc and sclerodermatous cGvHD. Transforming growth factor beta (TGF-β) induced the expression of XIAP in a SMAD3-dependent manner. Inactivation of XIAP reduced WNT-induced fibroblast activation and collagen release. Inhibition of XIAP also ameliorated fibrosis induced by bleomycin, topoI and overexpression of Wnt10b in well-tolerated doses. The profibrotic effects of XIAP were mediated via WNT/β-catenin signalling. Inactivation of XIAP reduces binding of β-catenin to TCF to in a TLE-dependent manner to block WNT/β-catenin-dependent transcription. CONCLUSIONS Our data characterise XIAP as a novel link between two core pathways of fibrosis. XIAP is overexpressed in SSc and cGvHD in a TGF-β/SMAD3-dependent manner and in turn amplifies the profibrotic effects of WNT/β-catenin signalling on fibroblasts via transducin-like enhancer of split 3. Targeted inactivation of XIAP inhibits the aberrant activation of fibroblasts in murine models of SSc.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Ludwig Hallenberger
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Sara Chenguiti Fakhouri
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Benita Merlevede
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Amelie Brandt
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany.,Department of Rheumatology and Immunology, Xiangya Hospital Central South University, Changsha, China
| | - Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Annemarie Schwab
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andrea Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexandru Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Aline Bozec
- Institute for Clinical Immunology University of Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexander Kreuter
- Department of Dermatology and Allergology, HELIOS Sankt Elisabeth Klinik Oberhausen, Oberhausen, Nordrhein-Westfalen, Germany
| | - Mirjana Ziemer
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig, Leipzig, Sachsen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Inflammation has been shown to be an important factor in the development and progression of heart failure (HF), regardless of the etiology. There have been many studies that demonstrated roles of inflammatory biomarkers in diagnosis, prognosis of chronic and acute HF patients, and also markers of cardiotoxicity from chemotherapy. These cytokines are high-sensitivity C-reactive protein (hsCRP), myeloperoxidase (MPO), soluble growth stimulation expressed gene 2 (sST2), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), growth differentiation factor-15 (GDF-15), endothelin-1 (ET-1), and galectin-3. In this review, we discuss the past and present insights of those inflammatory biomarkers in order to gain more understanding in pathogenesis of HF, risk stratification of HF patients, and early detection of cardiotoxicity from cancer therapy. RECENT FINDINGS Many inflammatory cytokines have been shown to be associated with mortality of both chronic and acute HF patients, and some of them are able to track treatment responses, especially sST2 and galectin-3, which are the only two inflammatory biomarkers recommended to use in clinical setting by the recent standard HF guidelines, while some studies described ET-1 and MPO as potential predictors of cardiotoxicity from cancer drugs. The prognostic implications of inflammatory biomarkers in HF patients have been demonstrated more consistently in chronic than acute HF, with some suggestions of ET-1 and MPO in patients receiving chemotherapy. However, further studies are necessary for the use of inflammatory biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA.
| |
Collapse
|
53
|
Innate Lymphoid Cells Play a Pathogenic Role in Pericarditis. Cell Rep 2021; 30:2989-3003.e6. [PMID: 32130902 PMCID: PMC7332109 DOI: 10.1016/j.celrep.2020.02.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
We find that cardiac group 2 innate lymphoid cells (ILC2s) are essential for the development of IL-33-induced eosinophilic pericarditis. We show a pathogenic role for ILC2s in cardiac inflammation, in which ILC2s activated by IL-33 drive the development of eosinophilic pericarditis in collaboration with cardiac fibroblasts. ILCs, not T and B cells, are required for the development of pericarditis. ILC2s transferred to the heart of Rag2-/-Il2rg-/- mice restore their susceptibility to eosinophil infiltration. Moreover, ILC2s direct cardiac fibroblasts to produce eotaxin-1. We also find that eosinophils reside in the mediastinal cavity and that eosinophils transferred to the mediastinal cavity of eosinophil-deficient ΔdblGATA1 mice following IL-33 treatment migrate to the heart. Thus, the serous cavities may serve as a reservoir of cardiac-infiltrating eosinophils. In humans, patients with pericarditis show higher amounts of ILCs in pericardial fluid than do healthy controls and patients with other cardiac diseases. We demonstrate that ILCs play a critical role in pericarditis.
Collapse
|
54
|
A possible role for ST2 as prognostic biomarker for COVID-19. Vascul Pharmacol 2021; 138:106857. [PMID: 33746068 PMCID: PMC7970796 DOI: 10.1016/j.vph.2021.106857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 is a pandemic illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2). It has been estimated that 80% of subject infected are asymptomatic or have mild to moderate symptoms. Differently, in severe cases of COVID-19, cytokine storm, acute respiratory distress syndrome (ARDS), severe systemic inflammatory response and cardiovascular diseases were observed Even if all molecular mechanisms leading to cardiovascular dysfunction in COVID-19 patients remain to be clarified, the evaluation of biomarkers of cardiac injury, stress and inflammation proved to be an excellent tool to identify the COVID-19 patients with worse outcome. However, the number of biomarkers used to manage COVID-19 patients is expected to increase with the increasing knowledge of the pathophysiology of the disease. It is our view that soluble suppressor of tumorigenicity 2 (sST2) can be used as biomarker in COVID-19. sST2 is routinely used as prognostic biomarker in patients with HF. Moreover, high circulating levels of sST2 have also been found in subjects with ARDS, pulmonary fibrosis and sepsis. Keeping in mind these considerations, in this review the possible mechanisms through which the SARS-CoV2 infection could damage the cardiovascular system were summarized and the possible role of sST2 in COVID-19 patients with CVD was discussed.
Collapse
|
55
|
Zong X, Fan Q, Zhang H, Yang Q, Xie H, Chen Q, Zhang R, Tao R. Soluble ST2 levels for predicting the presence and severity of metabolic syndrome. Endocr Connect 2021; 10:336-344. [PMID: 33617466 PMCID: PMC8052583 DOI: 10.1530/ec-20-0645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
To explore the relationship between soluble ST2 (sST2) and metabolic syndrome (MetS) and determine whether sST2 levels can predict the presence and severity of MetS. We evaluated 550 consecutive subjects (58.91 ± 9.69 years, 50% male) with or without MetS from the Department of Vascular & Cardiology, Shanghai Jiao Tong University-Affiliated Ruijin Hospital. Serum sST2 concentrations were measured. The participants were divided into three groups according to the sST2 tertiles. Univariate and multivariable logistic regression models were used to evaluate the association between serum sST2 concentrations and the presence of MetS. Serum sST2 concentrations were significantly higher in the MetS group than in those in the no MetS group (14.80 ± 7.01 vs 11.58 ± 6.41 ng/mL, P < 0.01). Subjects with more MetS components showed higher levels of sST2. sST2 was associated with the occurrence of MetS after multivariable adjustment as a continuous log-transformed variable (per 1 SD, odds ratio (OR): 1.42, 95% CI: 1.13-1.80, P < 0.01). Subgroup analysis showed that individuals with MetS have significantly higher levels of sST2 than those without MetS regardless of sex and age. High serum sST2 levels were significantly and independently associated with the presence and severity of MetS. Thus, sST2 levels may be a novel biomarker and clinical predictor of MetS.
Collapse
Affiliation(s)
- Xiao Zong
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Fan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Xie
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujing Chen
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Tao
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to R Tao:
| |
Collapse
|
56
|
Garcia-Pena A, Ibarrola J, Navarro A, Sadaba A, Tiraplegui C, Garaikoetxea M, Arrieta V, Matilla L, Fernández-Celis A, Sadaba R, Alvarez V, Gainza A, Jover E, López-Andrés N. Activation of the Interleukin-33/ST2 Pathway Exerts Deleterious Effects in Myxomatous Mitral Valve Disease. Int J Mol Sci 2021; 22:ijms22052310. [PMID: 33669101 PMCID: PMC7956196 DOI: 10.3390/ijms22052310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/22/2023] Open
Abstract
Mitral valve disease (MVD) is a frequent cause of heart failure and death worldwide, but its etiopathogenesis is not fully understood. Interleukin (IL)-33 regulates inflammation and thrombosis in the vascular endothelium and may play a role in the atherosclerotic process, but its role in mitral valve has not been investigated. We aim to explore IL-33 as a possible inductor of myxomatous degeneration in human mitral valves. We enrolled 103 patients suffering from severe mitral regurgitation due to myxomatous degeneration undergoing mitral valve replacement. Immunohistochemistry of the resected leaflets showed IL-33 and ST2 expression in both valve interstitial cells (VICs) and valve endothelial cells (VECs). Positive correlations were found between the levels of IL-33 and molecules implicated in the development of myxomatous MVD, such as proteoglycans, extracellular matrix remodeling enzymes (matrix metalloproteinases and their tissue inhibitors), inflammatory and fibrotic markers. Stimulation of single cell cultures of VICs and VECs with recombinant human IL-33 induced the expression of activated VIC markers, endothelial–mesenchymal transition of VECs, proteoglycan synthesis, inflammatory molecules and extracellular matrix turnover. Our findings suggest that the IL-33/ST2 system may be involved in the development of myxomatous MVD by enhancing extracellular matrix remodeling.
Collapse
|
57
|
Serra R, Jiritano F, Bracale UM, Ielapi N, Licastro N, Provenzano M, Andreucci M, Rizzuto A, Mastroroberto P, Serraino GF. Novel biomarkers in cardiovascular surgery. Biomark Med 2021; 15:307-318. [PMID: 33590769 DOI: 10.2217/bmm-2020-0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease includes health problems related to the heart, arteries and veins and is a significant healthcare problem worldwide. Cardiovascular disease may be acute or chronic and relapses are frequent. Biomarkers involved in this field may help clinicians and surgeons in diagnosis and adequate decision making. Relevant articles searched in the following databases Medline, Scopus, ScienceDirect, were retrieved and analysed. Several biomarkers have been identified and we analyzed those of most importance from a clinical and surgical point of view. Biomarkers can better identify high-risk individuals, facilitate follow-up process, provide information regarding prognosis and better tailor the most appropriate surgical treatment.
Collapse
Affiliation(s)
- Raffaele Serra
- Department of Medical & Surgical Sciences, University of Catanzaro, Italy.,Interuniversity Center of Phlebolymphology (CIFL), International Research & Educational Program in Clinical & Experimental Biotechnology at The Department of Surgical & Medical Sciences University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100, Catanzaro, Italy
| | - Federica Jiritano
- Department of Experimental & Clinical Medicine, University of Catanzaro, Italy
| | - Umberto M Bracale
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Nicola Ielapi
- Department of Medical & Surgical Sciences, University of Catanzaro, Italy.,Sapienza University of Rome, Department of Public Health & Infectious Disease, Roma, Italy
| | - Noemi Licastro
- Department of Medical & Surgical Sciences, University of Catanzaro, Italy.,Interuniversity Center of Phlebolymphology (CIFL), International Research & Educational Program in Clinical & Experimental Biotechnology at The Department of Surgical & Medical Sciences University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100, Catanzaro, Italy
| | - Michele Provenzano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonia Rizzuto
- Interuniversity Center of Phlebolymphology (CIFL), International Research & Educational Program in Clinical & Experimental Biotechnology at The Department of Surgical & Medical Sciences University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100, Catanzaro, Italy
| | | | - Giuseppe F Serraino
- Department of Experimental & Clinical Medicine, University of Catanzaro, Italy
| |
Collapse
|
58
|
Cediel G, Codina P, Spitaleri G, Domingo M, Santiago-Vacas E, Lupón J, Bayes-Genis A. Gender-Related Differences in Heart Failure Biomarkers. Front Cardiovasc Med 2021; 7:617705. [PMID: 33469552 PMCID: PMC7813809 DOI: 10.3389/fcvm.2020.617705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Important differences in comorbidities and clinical characteristics exist between women and men with heart failure (HF). In particular, differences in the kinetics of biological circulating biomarkers—a critical component of cardiovascular care—are highly relevant. Most circulating HF biomarkers are assessed daily by clinicians without taking sex into account, despite the multiple gender-related differences observed in plasma concentrations. Even in health, compared to men, women tend to exhibit higher levels of natriuretic peptides and galectin-3 and lower levels of cardiac troponins and the cardiac stress marker, soluble ST2. Many biological factors can provide a reliable explanation for these differences, like body composition, fat distribution, or menopausal status. Notwithstanding, these sex-specific differences in biomarker levels do not reflect different pathobiological mechanisms in HF between women and men, and they do not necessarily imply a need to use different diagnostic cut-off levels in clinical practice. To date, the sex-specific prognostic value of HF biomarkers for risk stratification is an unresolved issue that future research must elucidate. This review outlines current evidence regarding gender-related differences in circulating biomarkers widely used in HF, the pathophysiological mechanisms underlying these differences, and their clinical relevance.
Collapse
Affiliation(s)
- Germán Cediel
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Pau Codina
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Giosafat Spitaleri
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Mar Domingo
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Evelyn Santiago-Vacas
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Josep Lupón
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
59
|
Chen WY, Wu YH, Tsai TH, Li RF, Lai ACY, Li LC, Yang JL, Chang YJ. Group 2 innate lymphoid cells contribute to IL-33-mediated alleviation of cardiac fibrosis. Am J Cancer Res 2021; 11:2594-2611. [PMID: 33456562 PMCID: PMC7806479 DOI: 10.7150/thno.51648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: The major cause of heart failure is myocardium death consequent to detrimental cardiac remodeling and fibrosis following myocardial infarction. The cardiac protective cytokine interleukin (IL)-33, which signals by ST2 receptor binding, is associated with group 2 innate lymphoid cell (ILC2) activation and regulates tissue homeostasis and repair following tissue injury in various tissues. However, the distribution and role of IL-33-responsive ILC2s in cardiac fibrosis remain unclear. In this study, we elucidated the roles of IL-33-responsive cardiac-resident ILC2s and IL-33-mediated immunomodulatory functions in cardiac fibrosis. Methods: We examined the distribution of cardiac ILC2s by using flow cytometry. The roles of IL-33-mediated ILC2 expansion in cardiac fibrosis was evaluated in the mouse model of catecholamine-induced cardiac fibrosis. ILC-deficient Rag2‒/‒IL2Rγc‒/‒ mice were implemented to determine the contribution of endogenous ILC in the progression of cardiac fibrosis. Histopathological assessments, speckle tracking echocardiography, and transcriptome profile analysis were performed to determine the effects of IL-33-mediated cardiac protective functions. Results: We identified the resident cardiac ILC2s, which share similar cell surface marker and transcriptional factor expression characteristics as peripheral blood and lung tissue ILC2s. IL-33 treatment induced ILC2 expansion via ST2. In vivo, ILC-deficient Rag2‒/‒IL2Rγc‒/‒ mice developed exacerbated cardiac fibrosis following catecholamine-induced stress cardiac injury. IL-33 treatment expanded cardiac ILC2s and revealed protective effects against cardiac tissue damage with reduced cardiomyocyte death, immune cell infiltration, tissue fibrosis, and improved myocardial function. Transcriptome analysis revealed that IL-33 attenuated extracellular matrix synthesis- and fibroblast activation-associated gene expressions. IL13-knockout or epidermal growth factor receptor (EGFR) inhibition abolished IL-33-mediated cardiac protective function, confirming IL-13 and EGFR signaling as crucial for IL-33-mediated cardioprotective responses. Moreover, ILC2-produced BMP-7 served as a novel anti-fibrotic factor to inhibit TGF-β1-induced cardiac fibroblast activation. Conclusion: Our findings indicate the presence of IL-33-responsive ILC2s in cardiac tissue and that IL-33-mediated ILC2 expansion affords optimal cardioprotective function via ILC2-derived factors. IL-33-mediated immunomodulation is thus a promising strategy to promote tissue repair and alleviate cardiac fibrosis following acute cardiac injury.
Collapse
|
60
|
Wang Y, Su H, Yan M, Zhang L, Tang J, Li Q, Gu X, Gong Q. Interleukin-33 Promotes Cell Survival via p38 MAPK-Mediated Interleukin-6 Gene Expression and Release in Pediatric AML. Front Immunol 2020; 11:595053. [PMID: 33324412 PMCID: PMC7726021 DOI: 10.3389/fimmu.2020.595053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). Cytokine provide signals for leukemia cells to improve their survival in the BM microenvironment. Previously, we identified interleukin-33 (IL-33) as a promoter of cell survival in a human AML cell line and primary mouse leukemia cells. In this study, we report that the cell surface expression of IL-33–specific receptor, Interleukin 1 Receptor Like 1 (IL1RL1), is elevated in BM cells from AML patients at diagnosis, and the serum level of IL-33 in AML patients is higher than that of healthy donor controls. Moreover, IL-33 levels are found to be positively associated with IL-6 levels in pediatric patients with AML. In vitro, IL-33 treatment increased IL-6 mRNA expression and protein level in BM and peripheral blood (PB) cells from AML patients. Evidence was also provided that IL-33 inhibits cell apoptosis by activating p38 mitogen-activated protein kinase (MAPK) pathway using human AML cell line and AML patient samples. Finally, we confirmed that IL-33 activated IL-6 expression in a manner that required p38 MAPK pathway using clinical AML samples. Taken together, we identified a potential mechanism of IL-33–mediated survival involving p38 MAPK in pediatric AML patients that would facilitate future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiancheng Tang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quanxin Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Blood Transfusion, Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
61
|
Using proximity extension proteomics assay to identify biomarkers associated with infarct size and ejection fraction after ST-elevation myocardial infarction. Sci Rep 2020; 10:18663. [PMID: 33122738 PMCID: PMC7596042 DOI: 10.1038/s41598-020-75399-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Plasma concentrations of many cardiovascular and inflammatory proteins are altered after ST-elevation myocardial infarction (STEMI) and may provide prognostic information. We conducted a large-scale proteomic analysis in patients with STEMI, correlating protein levels to infarct size and left ventricular ejection fraction (LVEF) determined with cardiac magnetic resonance imaging. We analysed 131 cardiovascular and inflammatory proteins using a multiplex proximity extension assay and blood samples obtained at baseline, 6, 24, and 96 h from the randomised clinical trial CHILL-MI. Cardiac magnetic resonance imaging data at 4 ± 2 days and 6 months were available as per trial protocol. Using a linear regression model with bootstrap resampling and false discovery rate adjustment we identified five proteins (ST2, interleukin-6, pentraxin-3, interleukin-10, renin, and myoglobin) with elevated values corresponding to larger infarct size or worse LVEF and four proteins (TNF-related apoptosis-inducing ligand, TNF-related activation induced cytokine, interleukin-16, and cystatin B) with values inversely related to LVEF and infarct size, concluding that among 131 circulating inflammatory and cardiovascular proteins in the acute and sub-acute phase of STEMI, nine showed a relationship with infarct size and LVEF post-STEMI, with IL-6 and ST2 exhibiting the strongest association.
Collapse
|
62
|
IL-33 induces type-2-cytokine phenotype but exacerbates cardiac remodeling post-myocardial infarction with eosinophil recruitment, worsened systolic dysfunction, and ventricular wall rupture. Clin Sci (Lond) 2020; 134:1191-1218. [PMID: 32432676 DOI: 10.1042/cs20200402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is the leading cause of mortality worldwide. Interleukin (IL)-33 (IL-33) is a cytokine present in most cardiac cells and is secreted on necrosis where it acts as a functional ligand for the ST2 receptor. Although IL-33/ST2 axis is protective against various forms of cardiovascular diseases, some studies suggest potential detrimental roles for IL-33 signaling. The aim of the present study was to examine the effect of IL-33 administration on cardiac function post-MI in mice. MI was induced by coronary artery ligation. Mice were treated with IL-33 (1 μg/day) or vehicle for 4 and 7 days. Functional and molecular changes of the left ventricle (LV) were assessed. Single cell suspensions were obtained from bone marrow, heart, spleen, and peripheral blood to assess the immune cells using flow cytometry at 1, 3, and 7 days post-MI in IL-33 or vehicle-treated animals. The results of the present study suggest that IL-33 is effective in activating a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. However, IL-33 administration was associated with worsened cardiac function and adverse cardiac remodeling in the MI mouse model. IL-33 administration increased infarct size, LV hypertrophy, cardiomyocyte death, and overall mortality rate due to cardiac rupture. Moreover, IL-33-treated MI mice displayed a significant myocardial eosinophil infiltration at 7 days post-MI when compared with vehicle-treated MI mice. The present study reveals that although IL-33 administration is associated with a reparative phenotype following MI, it worsens cardiac remodeling and promotes heart failure.
Collapse
|
63
|
Li T, Zhang Z, Bartolacci JG, Dwyer GK, Liu Q, Mathews LR, Velayutham M, Roessing AS, Lee YC, Dai H, Shiva S, Oberbarnscheidt MH, Dziki JL, Mullet SJ, Wendell SG, Wilkinson JD, Webber SA, Wood-Trageser M, Watkins SC, Demetris AJ, Hussey GS, Badylak SF, Turnquist HR. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. J Clin Invest 2020; 130:5397-5412. [PMID: 32644975 PMCID: PMC7524467 DOI: 10.1172/jci133008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.
Collapse
Affiliation(s)
- Tengfang Li
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Zhongqiang Zhang
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Joe G. Bartolacci
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Gaelen K. Dwyer
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quan Liu
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Southern University of Science and Technology, Shenzhen, China
| | - Lisa R. Mathews
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Murugesan Velayutham
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anna S. Roessing
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoojin C. Lee
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helong Dai
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin H. Oberbarnscheidt
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jenna L. Dziki
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Steven J. Mullet
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D. Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Steven A. Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Michelle Wood-Trageser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology and
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Pathology and
| | - George S. Hussey
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Stephen F. Badylak
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
64
|
Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int J Mol Sci 2020; 21:E7165. [PMID: 32998408 PMCID: PMC7583949 DOI: 10.3390/ijms21197165] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Buono
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, 06123 Perugia, Italy;
| | - Antonino Bruno
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
65
|
Ragusa R, Di Molfetta A, Amodeo A, Trivella MG, Caselli C. Pathophysiology and molecular signalling in pediatric heart failure and VAD therapy. Clin Chim Acta 2020; 510:751-759. [PMID: 32949569 DOI: 10.1016/j.cca.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Heart Failure (HF) is a progressive clinical syndrome characterized by molecular and structural abnormalities that result in impaired ventricular filling and a reduced blood ejection. In pediatric patients, HF represents an important cause of morbidity and mortality, but underlying cause, presentation and disease course remains unclear in many cases. It is evident that a child is not a "small adult" and findings are not comparable. The adoption of a standardized clinical and surgical tools as well as increased biomolecular research and therapeutic trials targeting pediatric patients with HF would greatly improve the management of this special class of patients. This review examines the most current information about the pathophysiology and molecular mechanisms related to HF in children to identify gaps in our knowledge base to further improve clinical care and outcomes.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Arianna Di Molfetta
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Amodeo
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
66
|
Wang K, Zelnick LR, Anderson A, Cohen J, Dobre M, Deo R, Feldman H, Go A, Hsu J, Jaar B, Kansal M, Shlipak M, Soliman E, Rao P, Weir M, Bansal N. Cardiac Biomarkers and Risk of Mortality in CKD (the CRIC Study). Kidney Int Rep 2020; 5:2002-2012. [PMID: 33163721 PMCID: PMC7609912 DOI: 10.1016/j.ekir.2020.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Cardiovascular disease (CVD) is the leading cause of mortality among individuals with chronic kidney disease (CKD). Cardiac biomarkers of myocardial distention, injury, and inflammation may signal unique pathways underlying CVD in CKD. In this analysis, we studied the association of baseline levels and changes in 4 traditional and novel cardiac biomarkers with risk of all-cause, CV, and non-CV mortality in a large cohort of patients with CKD. Methods Among 3664 adults with CKD enrolled in the Chronic Renal Insufficiency Cohort Study, we conducted a cohort study to examine the associations of baseline levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac high-sensitivity troponin T (hsTnT), growth differentiation factor−15 (GDF-15), and soluble ST-2 (sST-2) with risks of all-cause and cardiovascular (CV) mortality. Among a subcohort of 842 participants, we further examined the associations between change in biomarker levels over 2 years with risk of all-cause mortality. We used Cox proportional hazards regression models and adjusted for demographics, kidney function measures, cardiovascular risk factors, and medication use. Results After adjustment, elevated baseline levels of each cardiac biomarker were associated with increased risk of all-cause mortality: NT-proBNP (hazard ratio [HR] = 1.92, 95% confidence interval [CI] = 1.73−2.12); hsTnT (HR = 1.62, 95% CI = 1.48, 1.78]); GDF-15 (HR = 1.61, 95% CI = 1.46−1.78]); and sST-2 (HR = 1.26, CI = 1.16−1.37). Higher baseline levels of all 4 cardiac biomarkers were also associated with increased risk of CV. Declines in NT-proBNP (adjusted HR = 0.55, 95% CI = 0.36−0.86) and sST2 (HR = 0.55, 95% CI = 0.36−0.86]) over 2 years were associated with lower risk of all-cause mortality. Conclusion In a large cohort of CKD participants, elevations of NT-proBNP, hsTnT, GDF-15, and sST-2 were independently associated with greater risks of all-cause and CV mortality.
Collapse
Affiliation(s)
- Ke Wang
- Kidney Research Institute, Seattle, Washington, USA.,Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Leila R Zelnick
- Kidney Research Institute, Seattle, Washington, USA.,Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Amanda Anderson
- Department of Epidemiology, Tulane University New Orleans, Louisiana, USA
| | - Jordana Cohen
- Department of Medicine, Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirela Dobre
- Department of Medicine, Division of Nephrology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rajat Deo
- Department Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold Feldman
- Department Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Jesse Hsu
- Department Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bernard Jaar
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mayank Kansal
- Department of Medicine, Division of Cardiology, University of Illinois-Chicago, Chicago, Illinois, USA
| | - Michael Shlipak
- Department of Medicine, Division of Nephrology, San Francisco VA Medical Center, San Francisco, California, USA
| | - Elsayed Soliman
- Department of Medicine, Division of Cardiology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Panduranga Rao
- Department of Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt Weir
- Department of Medicine, Division of Nephrology, University of Maryland, Baltimore, Maryland, USA
| | - Nisha Bansal
- Kidney Research Institute, Seattle, Washington, USA.,Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
67
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
68
|
Daseke MJ, Tenkorang-Impraim MAA, Ma Y, Chalise U, Konfrst SR, Garrett MR, DeLeon-Pennell KY, Lindsey ML. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol 2020; 145:112-121. [PMID: 32574573 PMCID: PMC7483959 DOI: 10.1016/j.yjmcc.2020.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Macrophages and neutrophils are primary leukocytes involved in the inflammatory response to myocardial infarction (MI). While interleukin (IL)-4 is an in vitro anti-inflammatory stimulus, the MI myocardium does not express a considerable amount of IL-4 but does express IL4 receptors. We hypothesized that continuous exogenous IL-4 infusion starting 24 h after MI would promote a polarization switch in inflammatory cells towards a reparative phenotype. METHODS C57BL/6J male mice (3-6 months of age) were subcutaneously infused with either saline (n = 17) or IL-4 (20 ng/g/day; n = 17) beginning 24 h after MI and evaluated at MI day 3. RESULTS Macrophages and neutrophils were isolated ex vivo from the infarct region and examined. Exogenous IL-4 decreased pro-inflammatory Ccl3, Il12a, Tnfa, and Tgfb1 in neutrophils and increased anti-inflammatory Arg1 and Ym1 in macrophages (all p < .05). Tissue clearance by IL-4 treated neutrophils was not different, while selective phagocytosis of neutrophils doubled in IL-4 treated macrophages (p < .05). Of 24,339 genes examined by RNA-sequencing, 2042 genes were differentially expressed in macrophages from IL-4 stimulated infarct (all FDR p < .05). Pdgfc gene expression was ranked first, increasing 3-fold in macrophages stimulated with IL-4 (p = 1 × 10-9). Importantly, changes in macrophage physiology and transcriptome occurred in the absence of global LV effects. Bone marrow derived monocytes stimulated with mouse recombinant PDGF-CC protein (10 μg/ml) or PDGF-CC blocking antibody (200 ng/ml) did not change Arg1 or Ym1 expression, indicating the in vivo effect of IL-4 to stimulate macrophage anti-inflammatory gene expression was independent of PDGF-CC. CONCLUSIONS Our results indicate that exogenous IL-4 promotes inflammation resolution by turning off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to mediate removal of apoptotic neutrophils.
Collapse
Affiliation(s)
- Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Mavis A A Tenkorang-Impraim
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
69
|
Josiassen J, Frydland M, Holmvang L, Lerche Helgestad OK, Okkels Jensen L, Goetze JP, Eifer Møller J, Hassager C. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers 2020; 25:506-512. [PMID: 32649233 DOI: 10.1080/1354750x.2020.1795265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To validate the IABP-SHOCK II risk score in a Danish cohort and assess the association between the IABP-SHOCK II risk score and admission concentration of biomarkers reflecting neurohormonal - (Copeptin, Pro-atrial natriuretic peptide (proANP), Mid-regional pro-adrenomedullin (MRproADM)) and inflammatory (ST2) activation in patients with CS complicating ST segment elevation myocardial infarction (STEMI). METHODS A total of 137 consecutive patients admitted with STEMI and CS at two tertiary heart centres were stratified according to the IABP-SHOCK II risk score (0-2; 3/4; 5-9), and had blood sampled upon admission. RESULTS Plasma concentrations of Copeptin (median (pmol/L) score 0-2: 313; score 3/4: 682; score 5-9: 632 p < 0.0001), proANP (pmol/L) (1459; 2225; 2876 p = 0.0009) and MRproADM (nmol/L) (0.86; 1.2; 1.4 p = 0.04) were significantly associated with the risk score, whereas ST2 (ng/mL) was not (44; 60; 45 p = 0.23). The IABP-SHOCK II risk score predicted 30-day mortality (score 0-2: 22%; score 4/3: 51%; score 5-9: 72%, area under the curve (AUC): 0.73, plogrank < 0.0001), while the tested biomarkers did not (AUC: 0.51<plogrank < 0.57). CONCLUSION Plasma concentrations of Copeptin, MRproADM and proANP were associated with the IABP-SHOCK II risk score in STEMI patients admitted with CS. The risk score predicted 30-day mortality, with no improvement in prediction when concentrations of the assessed biomarkers were added.
Collapse
Affiliation(s)
- Jakob Josiassen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Frydland
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jens Peter Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Choi YB, Lee MJ, Park JT, Han SH, Kang SW, Yoo TH, Kim HJ. Prognostic value of soluble ST2 and soluble LR11 on mortality and cardiovascular events in peritoneal dialysis patients. BMC Nephrol 2020; 21:228. [PMID: 32539731 PMCID: PMC7296670 DOI: 10.1186/s12882-020-01886-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Background Although the soluble form of suppression of tumorigenicity 2 (sST2) and soluble low-density lipoprotein receptor relative with 11 ligand-binding repeats (sLR11) have emerged as novel cardiovascular biomarkers in patients with cardiovascular disease, their prognostic value has not been fully investigated in peritoneal dialysis (PD) patients. Methods We included 74 prevalent PD patients from a prospective cohort and measured serum sST2 and sLR11 concentrations by an enzyme-linked immunosorbent assay. The association of these biomarkers and all-cause mortality and major adverse cardiac and cerebrovascular events (MACCEs) was evaluated. Results During a follow-up of 38.5 months, all-cause deaths and MACCEs were observed in 13 (17.6%) patients and 23 (31.3%) patients. Multivariable Cox analyses demonstrated that greater sST2 was independently associated with higher risk of all-cause mortality (≥75.8 ng/mL; hazard ratio [HR] = 5.551; 95% confidence interval [CI] = 1.360–22.660) and MACCEs (≥72.5 ng/mL; HR = 4.609; 95% CI = 1.608–13.208). Furthermore, sST2 showed additive predictive value for mortality to the base model including traditional risk factors (net reclassification index = 0.598, P = 0.04). sLR11 was not significantly associated with all-cause mortality or MACCE. Conclusions sST2, but not sLR11, indicated a significant prognostic value for all-cause mortality and cardiovascular events in PD patients. Further research is needed to validate emerging biomarkers in these populations.
Collapse
Affiliation(s)
- Yu Bum Choi
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea
| | - Mi Jung Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea.,Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyung Jong Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Korea.
| |
Collapse
|
71
|
Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|
72
|
Firouzabadi N, Dashti M, Dehshahri A, Bahramali E. Biomarkers of IL-33 and sST2 and Lack of Association with Carvedilol Therapy in Heart Failure. Clin Pharmacol 2020; 12:53-58. [PMID: 32607003 PMCID: PMC7305854 DOI: 10.2147/cpaa.s256290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The IL-33/ST2 pathway plays a fundamental role in the cardiovascular system and can be considered as a new therapeutic strategy for the treatment or prevention of cardiovascular diseases. ST2, as an interleukin (IL)-1 receptor family member, has transmembrane (ST2L) and soluble (sST2) isoforms. sST2 neutralizes IL-33 and thereby inhibits the cardioprotective role of IL-33/ST2L signaling pathway. Increase in sST2 level is associated with weak cardiac output and can be a predictor of mortality in heart failure (HF). Thereby, we hypothesized that there may be a relationship between the cardioprotective effects of carvedilol and sST2 and IL-3 in HF patients. METHODS sST2 and IL-33 were measured in serum of 66 individuals; 22 healthy volunteers and 44 suffering from HF; among whom 25 patients received carvedilol and the other 19 patients did not receive any β-blockers. RESULTS Lack of association between serum levels of IL-33 and sST2 was observed between HF patients and healthy individuals (2.4466 ± 0.69 vs 2.6748 ± 0.33 and 3416.6 ± 1089.1 vs 2971.6 ± 792.5, respectively). Our results indicated no significant difference between sST2 and IL-33 levels in HF patients who did not receive beta-blockers and patients receiving carvedilol (P=0.59 and P=0.97). CONCLUSION Our results showed a lack of association between serum levels of IL-33 and sST2 and HF. Moreover, the results do not confirm the cardioprotective mechanism of carvedilol by means of IL-33/sST2 pathway.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Dashti
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Bahramali
- Digestive Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Aimo A, Januzzi JL, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, Emdin M. Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 74:2193-2203. [PMID: 31648713 DOI: 10.1016/j.jacc.2019.08.1039] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
Soluble suppression of tumorigenesis-2 (sST2) is released in response to vascular congestion and inflammatory and pro-fibrotic stimuli, and is a strong, independent predictor of mortality and heart failure (HF) hospitalization in patients with acute or chronic HF. sST2 meets 2 fundamental criteria for clinically useful biomarkers: accurate, repeated measurements are available at a reasonable cost, and the biomarker provides information not already available from a careful clinical assessment. In particular, the prognostic value of sST2 is additive to natriuretic peptides and (in the case of chronic HF) to high-sensitivity troponin T. Nevertheless, the need for a multibiomarker approach to risk stratification and the role of sST2 as a guide to therapy decision-making remain to be established. Four years after a consensus document on sST2, and following major advances in the comprehension of the clinical value of this biomarker, the authors felt it worthwhile to reappraise current knowledge on sST2 in HF.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts
| | - Antoni Bayes-Genis
- Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona), CIBERCV, Barcelona, Spain
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Paolo Sciarrone
- Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| |
Collapse
|
74
|
The utility of growth differentiation factor-15, galectin-3, and sST2 as biomarkers for the diagnosis of heart failure with preserved ejection fraction and compared to heart failure with reduced ejection fraction: a systematic review. Heart Fail Rev 2020; 26:799-812. [PMID: 32472523 DOI: 10.1007/s10741-020-09913-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective was to evaluate the diagnosis of heart failure with preserved ejection fraction (HFpEF) using the biomarkers, growth differentiation factor-15 (GDF-15), galectin-3 (Gal-3), and soluble ST2 (sST2), and to determine whether they can differentiate HFpEF from heart failure with reduced ejection fraction (HFrEF). Medline and Embase databases were searched with the terms diastolic heart failure or HFpEF, biomarkers, and diagnosis, limited to years 2000 to 2019. There were significantly and consistently higher levels of GDF-15, Gal-3, and sST2 in HFpEF compared to no heart failure. Importantly, the magnitude of the increase in GDF-15 or Gal-3 and possibly sST2,correlated with a greater degree of diastolic dysfunction. There were no significant differences between GDF-15, Gal-3, and sST2 in patients with HFpEF vs HFrEF. In the studies assessing these three biomarkers, BNP was significantly greater in heart failure than controls. Furthermore, BNP was significantly higher in HFrEF compared to HFpEF. The diagnostic utility of GDF-15, Gal-3, and sST2 compared to BNP was evaluated by comparing ROC curves. The data supports the contention that to distinguish HFpEF from HFrEF, an index is needed that incorporates GDF-15, Gal-3, or sST2 as well as BNP. The three biomarkers GDF-15, Gal-3, or sST2 can identify patients with HFpEF compared to individuals without heart failure but cannot differentiate HFpEF from HFrEF. BNP is higher in and is better at differentiating HFrEF from HFpEF. Indices that incorporate GDF-15, Gal-3, or sST2 as well as BNP show promise in differentiating HFpEF from HFrEF.
Collapse
|
75
|
Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ Res 2020; 126:1260-1280. [PMID: 32324502 DOI: 10.1161/circresaha.120.315937] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular sensing protein termed NLRP3 (for NACHT, LRR, and PYD domains-containing protein 3) forms a macromolecular structure called the NLRP3 inflammasome. The NLRP3 inflammasome plays a major role in inflammation, particularly in the production of IL (interleukin)-1β. IL-1β is the most studied of the IL-1 family of cytokines, including 11 members, among which are IL-1α and IL-18. Here, we summarize preclinical and clinical findings supporting the key pathogenetic role of the NLRP3 inflammasome and IL-1 cytokines in the formation, progression, and complications of atherosclerosis, in ischemic (acute myocardial infarction), and nonischemic injury to the myocardium (myocarditis) and the progression to heart failure. We also review the clinically available IL-1 inhibitors, although not currently approved for cardiovascular indications, and discuss other IL-1 inhibitors, not currently approved, as well as oral NLRP3 inflammasome inhibitors currently in clinical development. Canakinumab, IL-1β antibody, prevented the recurrence of ischemic events in patients with prior acute myocardial infarction in a large phase III clinical trial, including 10 061 patients world-wide. Phase II clinical trials show promising data with anakinra, recombinant IL-1 receptor antagonist, in patients with ST-segment-elevation acute myocardial infarction or heart failure with reduced ejection fraction. Anakinra also improved outcomes in patients with pericarditis, and it is now considered standard of care as second-line treatment for patients with recurrent/refractory pericarditis. Rilonacept, a soluble IL-1 receptor chimeric fusion protein neutralizing IL-1α and IL-1β, has also shown promising results in a phase II study in recurrent/refractory pericarditis. In conclusion, there is overwhelming evidence linking the NLRP3 inflammasome and the IL-1 cytokines with the pathogenesis of cardiovascular diseases. The future will likely include targeted inhibitors to block the IL-1 isoforms, and possibly oral NLRP3 inflammasome inhibitors, across a wide spectrum of cardiovascular diseases.
Collapse
Affiliation(s)
- Antonio Abbate
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | - Stefano Toldo
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | - Carlo Marchetti
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Richmond, VA (C.M., C.A.D.)
| | - Jordana Kron
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | | | - Charles A Dinarello
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Richmond, VA (C.M., C.A.D.)
| |
Collapse
|
76
|
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in developed countries, and it is the primary cause of mortality in the elderly worldwide. The processes of inflammatory response activation, production and release of pro-inflammatory cytokines, activation of the complement system, synthesis of autoantibodies, and overexpression of Class II major histocompatibility complex molecules contribute to the HF development and progression. High levels of circulating cytokines correlate with the severity of HF, measured with the use of New York Heart Association's classification, and prognosis of the disease. In HF, there is an imbalance between pro-inflammatory and anti-inflammatory cytokines. Concentrations of several interleukins are increased in HF, including IL-1β, IL-6, IL-8, IL-9, IL-10, IL-13, IL-17, and IL-18, whereas the levels of IL-5, IL-7, or IL-33 are down-regulated. Concentrations of inflammatory mediators are associated with cardiac function and can be HF markers and predictors of adverse outcomes or mortality. This review presents the role of interleukins, which contribute to the HF initiation and progression, the importance of their pathways in transition from myocardial injury to HF, and the role of interleukins as markers of disease severity and outcome predictors.
Collapse
|
77
|
Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases. Clin Chim Acta 2020; 507:75-87. [PMID: 32305537 DOI: 10.1016/j.cca.2020.04.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
The Suppression of Tumorigenicity 2 protein (ST2) is a member of the interleukin (IL) 1 receptor family with transmembrane (ST2L) and soluble (sST2) isoforms that are (over)expressed in several cells in different conditions and following various triggers (e.g. inflammation, stress). The ligand of ST2 is IL-33, which on binding to ST2L results in nuclear signalling and immunomodulatory action in various cells (tumour, immune, heart). sST2, that is released in the circulation, functions as a »decoy« receptor of IL-33 and inhibits IL-33/ST2L signalling and beneficial effects. The importance and role of the ST2/IL-33 axis and sST2 have been evaluated and confirmed in several inflammatory, cancer and cardiac diseases. sST2 is involved in homeostasis/pathogenesis of these diseases, as the counterbalance/response on IL-33/ST2L axis activation, which is triggered and expressed during developing fibrosis, tissue damage/inflammation and remodelling. In clinical studies, sST2 has been recognised as an important prognostic marker in patients with cardiac disease, including patients with chronic kidney disease where specific characteristics of sST2 enable better assessment of the risk of End-Stage Renal Disease patients on dialysis. sST2 is also recognised as an important marker for monitoring treatment in heart failure patients. However, accurate measurement and interpretation of ST2 concentration in serum/plasma samples for routine and research applications require the use of appropriate methods and recognition of essential characteristics of both the methods and the analyte that may influence the result. sST2, as one of the most promising disease biomarkers, is deserving of further study and wider application in clinical practice.
Collapse
Affiliation(s)
- Evgenija Homsak
- Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor, Slovenia.
| | - Damien Gruson
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Universite Catholique de Lovain, Brussels, Belgium
| |
Collapse
|
78
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
79
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
80
|
Proregenerative Activity of IL-33 in Gastric Tissue Cells Undergoing Helicobacter Pylori-Induced Apoptosis. Int J Mol Sci 2020; 21:ijms21051801. [PMID: 32151084 PMCID: PMC7084496 DOI: 10.3390/ijms21051801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-33 is a proinflammatory mediator that alerts the host immune system to disorders in tissue homeostasis. Aim. To understand the role of IL-33 in modulating gastric tissue cell growth affected by Helicobacter pylori (H. pylori). Methods. IL-33 production in guinea pigs (Caviae porcellus) experimentally infected with H. pylori was evaluated by ELISA or immunohistochemical staining. The proregenerative activity of IL-33 was evaluated using gastric epithelial cells and fibroblasts that were naive or transfected with IL-33 siRNA exposed to H. pylori glycine acid extract antigenic complex (GE), as well as by measuring cell migration, proliferation, metabolic activity and apoptosis. Animals infected by H. pylori responded with increased production of IL-33. Also, cells treated in vitro with GE released more IL-33 than cells that were unstimulated. Silencing IL-33 in cells resulted in downregulation of metabolic activity, adhesion, migration and proliferation, especially after treatment with H. pylori GE, as well as upregulation of cells apoptosis associated with caspase 3 increase and Bcl-xL decrease, suggesting proregenerative activity of IL-33. Interestingly, upregulation of cell proliferation by IL-33 was Erk independent. Our results indicate that IL-33 may protect gastric tissue from loss of homeostasis caused by deleterious effects of H. pylori components and the inflammatory response developed during infection.
Collapse
|
81
|
Somuncu MU, Kalayci B, Avci A, Akgun T, Karakurt H, Demir AR, Avci Y, Can M. Predicting long-term cardiovascular outcomes of patients with acute myocardial infarction using soluble ST2. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0062. [PMID: 32112700 DOI: 10.1515/hmbci-2019-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/15/2020] [Indexed: 01/30/2023]
Abstract
Background The increase in soluble suppression of tumorigenicity 2 (sST2) both in the diagnosis and prognosis of heart failure is well established; however, existing data regarding sST2 values as the prognostic marker after myocardial infarction (MI) are limited and have been conflicting. This study aimed to assess the clinical significance of sST2 in predicting 1-year adverse cardiovascular (CV) events in MI patients. Materials and methods In this prospective study, 380 MI patients were included. Participants were grouped into low sST2 (n = 264, mean age: 60.0 ± 12.1 years) and high sST2 groups (n = 116, mean age: 60.5 ± 11.6 years), and all study populations were followed up for major adverse cardiovascular events (MACE) which are composed of CV mortality, target vessel revascularization (TVR), non-fatal reinfarction, stroke and heart failure. Results During a 12-month follow-up, 68 (17.8%) patients had MACE. CV mortality and heart failure were significantly higher in the high sST2 group compared to the low sST2 group (15.5% vs. 4.9%, p = 0.001 and 8.6% vs. 3.4% p = 0.032, respectively). Multivariate Cox regression analysis concluded that high serum sST2 independently predicted 1-year CV mortality [hazard ratio (HR) 2.263, 95% confidence interval (CI) 1.124-4.557, p = 0.022)]. Besides, older age, Killip class >1, left anterior descending (LAD) as the culprit artery and lower systolic blood pressure were the other independent risk factors for 1-year CV mortality. Conclusions High sST2 levels are an important predictor of MACE, including CV mortality and heart failure in a 1-year follow-up period in MI patients.
Collapse
Affiliation(s)
- Mustafa Umut Somuncu
- Bülent Ecevit Universitesi Tıp Fakultesi Dekanlıgı Ibn-i Sina Kampusu, 67600 Esenköy/Kozlu Zonguldak, Turkey, Phone: +90 532 340 1525, Fax: +90 372 261 02 64
- Department of Cardiology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Belma Kalayci
- Department of Cardiology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Ahmet Avci
- Department of Cardiology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Tunahan Akgun
- Department of Cardiology, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Huseyin Karakurt
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Ali Riza Demir
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Yalcin Avci
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital, Istanbul, Turkey
| | - Murat Can
- Department of Biochemistry, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| |
Collapse
|
82
|
Kim M, Lee DI, Lee JH, Kim SM, Lee SY, Hwang KK, Kim DW, Cho MC, Bae JW. Lack of prognostic significance for major adverse cardiac events of soluble suppression of tumorigenicity 2 levels in patients with ST-segment elevation myocardial infarction. Cardiol J 2020; 28:244-254. [PMID: 32104902 DOI: 10.5603/cj.a2020.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Elevation of soluble suppression of tumorigenicity 2 (sST2) is associated with cardiac fibrosis and hypertrophy. Under investigation herein, was whether sST2 level is associated with major adverse cardiac events (MACE) and left ventricular (LV) remodeling after primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). METHODS In total, this study included 184 patients who underwent successful primary PCI. A subsequent guideline-based medical follow-up was included (61.4 ± 11.8 years old, 85% male, 21% with Killip class ≥ I). sST2 concentration correlations with echocardiographic, angiographic, laboratory parameters, and clinical outcomes in STEMI patients were evaluated. RESULTS The median sST2 level was 60.3 ng/mL; 6 (3.2%) deaths occurred within 1 year. The sST2 level correlated with LV ejection fraction (LVEF) changes from baseline to 6 months (r= -0.273; p = 0.006) after adjustment for echocardiographic parameters including wall motions score index (WMSI). Recovery of LVEF at 6 months was highest in the tertile 1 group (Δ6 months - baseline LVEF; tertile 1, p = 0.001; tertile 2, p = 0.319; tertile 3, p = 0.205). The decrease in WMSI at 6 months was greater in the tertiles 1 and 2 groups than in the tertile 3 group (Δ6 months - baseline WMSI; tertile 1, p = 0.001; tertile 2, p = 0.013; tertile 3, p = 0.055). There was no association between sST2 levels and short-term (log rank p = 0.598) and long-term (p = 0.596) MACE. CONCLUSIONS sST2 concentration have predictive value for LV remodeling on echocardiography in patients with STEMI who underwent primary PCI. However, sST2 concentration was not associated with short-term and long-term MACE.
Collapse
Affiliation(s)
- Min Kim
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Dae In Lee
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Ju-Hee Lee
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Sang Min Kim
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Sang Yeub Lee
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Kyung-Kuk Hwang
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Dong-Woon Kim
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Myeong-Chan Cho
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of
| | - Jang-Whan Bae
- Chungbuk Regional Cardiovascular Center, Chungbuk National University Hospital, Cheongju, Korea, Republic Of.
| |
Collapse
|
83
|
Patel DM, Thiessen-Philbrook H, Brown JR, McArthur E, Moledina DG, Mansour SG, Shlipak MG, Koyner JL, Kavsak P, Whitlock RP, Everett AD, Malenka DJ, Garg AX, Coca SG, Parikh CR. Association of plasma-soluble ST2 and galectin-3 with cardiovascular events and mortality following cardiac surgery. Am Heart J 2020; 220:253-263. [PMID: 31911262 PMCID: PMC7008086 DOI: 10.1016/j.ahj.2019.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cardiac surgery induces hemodynamic stress on the myocardium, and this process can be associated with significant post-operative morbidity and mortality. Soluble suppression of tumorigenicity 2 (sST2) and galectin-3 (gal-3) are biomarkers of myocardial remodeling and fibrosis; however, their potential association with post-operative changes is unknown. METHODS We measured peri-operative plasma sST2 and gal-3 levels in two prospective cohorts (TRIBE-AKI and NNE) of over 1800 patients who underwent cardiac surgery. sST2 and gal-3 levels were evaluated for association with a composite primary outcome of cardiovascular event or mortality over median follow-up periods of 3.4 and 6.0 years, respectively, for the two cohorts. Meta-analysis of hazard ratio estimates from the cohorts was performed using random effects models. RESULTS Cohorts demonstrated event rates of 70.2 and 66.8 per 1000 person-years for the primary composite outcome. After adjustment for clinical covariates, higher post-operative sST2 and gal-3 levels were significantly associated with cardiovascular event or mortality [pooled estimate HRs: sST2 1.29 (95% CI 1.16, 1.44); gal-3 1.26 (95% CI 1.09, 1.46)]. These associations were not significantly modified by pre-operative congestive heart failure or AKI. CONCLUSIONS Higher post-operative sST2 and gal-3 values were associated with increased incidence of cardiovascular event or mortality. These two biomarkers should be further studied for potential clinical utility for patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Dipal M Patel
- Program of Applied Translational Research, Department of Medicine, Yale University School of Medicine, New Haven, CT
| | | | - Jeremiah R Brown
- Dartmouth Institute for Health Policy and Clinical Practice, and the Departments of Biomedical Data Science and Epidemiology, Geisel School of Medicine, Lebanon, NH
| | | | - Dennis G Moledina
- Program of Applied Translational Research, Department of Medicine, Yale University School of Medicine, New Haven, CT; Section of Nephrology, Yale University School of Medicine, New Haven, CT
| | - Sherry G Mansour
- Program of Applied Translational Research, Department of Medicine, Yale University School of Medicine, New Haven, CT; Section of Nephrology, Yale University School of Medicine, New Haven, CT
| | - Michael G Shlipak
- Kidney Health Research Collaborative, University of California San Francisco, San Francisco, CA; Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Pritzker School of Medicine, Chicago, IL
| | - Peter Kavsak
- Departments of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Richard P Whitlock
- Population Health Research Institute and Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - David J Malenka
- Dartmouth Institute for Health Policy and Clinical Practice, and the Departments of Biomedical Data Science and Epidemiology, Geisel School of Medicine, Lebanon, NH
| | - Amit X Garg
- ICES, Toronto, ON, Canada; Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chirag R Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
84
|
Song Y, Li F, Xu Y, Liu Y, Wang Y, Han X, Fan Y, Cao J, Luo J, Sun A, Hu K, Zhou J, Ge J. Prognostic value of sST2 in patients with heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 2020; 304:95-100. [PMID: 32019693 DOI: 10.1016/j.ijcard.2020.01.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUNDS Prognostic value of soluble suppression of tumorigenecity (sST2), a novel circulating biomarker for myocardial fibrosis, remains elusive in the heart failure patients with preserved ejection fraction (HFpEF). METHODS 405 consecutive patients with heart failure (HF) were enrolled prospectively, and were grouped into HF with reduced ejection fraction (HFrEF, N = 215), HF with mid-range ejection fraction (HFmrEF, N = 80) and HFpEF (N = 110). The primary endpoint was the composite endpoint of all-cause death and HF rehospitalization. RESULTS After a median of 12 months, 139 patients reached the primary endpoint, with 57 patients died and 82 patients rehospitalized. Multivariate analysis confirmed that sST2 was an independent risk factor of the primary endpoint for all HF patients [hazard ratio (HR) 2.35, 95% confidence interval (CI) 1.30-4.22, P = 0.004]. Predicting efficacy of sST2 on outcomes was higher for HFpEF (HR 6.48, 95%CI 1.89-22.21, P = 0.003) as compared to HFrEF (HR 3.21, 95% CI 1.67-6.19, P = 0.000). But the association between sST2 and outcomes in HFmrEF is not statistical (HR 3.38, 95%CI 0.82-13.86, P = 0.091). The combined use of sST2 and N terminal pro B type natriuretic peptide (NT-proBNP) could improve the prognostic value compared to using NT-proBNP alone in HFrEF (AUC = 0.794 vs. 0.752, P = 0.034). CONCLUSION Higher baseline sST2 levels are associated with increased risk of all-cause death and HF rehospitalization in patients with HF independent of ejection fraction. The combined use of sST2 and NT-proBNP could improve the prognostic value than using these two values alone, especially for HFrEF patients.
Collapse
Affiliation(s)
- Yu Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Fuhai Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yamei Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuan Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yanyan Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xueting Han
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuyuan Fan
- The Central Hospital of Xuhui District, Shanghai, China
| | - Juan Cao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Luo
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
85
|
Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The Biomarkers for Acute Myocardial Infarction and Heart Failure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2018035. [PMID: 32016113 PMCID: PMC6988690 DOI: 10.1155/2020/2018035] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023]
Abstract
The use of a large number of cardiovascular biomarkers, meant to complement the use of the electrocardiogram, echocardiography cardiac imaging, and clinical symptom assessment, has become a routine in clinical diagnosis, differential diagnosis, risk stratification, and prognosis and guides the management of patients with suspected cardiovascular diseases. There is a broad consensus that cardiac troponin and natriuretic peptides are the preferred biomarkers in clinical practice for the diagnosis of the acute coronary syndrome and heart failure, respectively, while the roles and possible clinical applications of several other potential biomarkers are still under study. This review mainly focuses on the recent studies of the roles and clinical applications of troponin and natriuretic peptides, which seem to be the best-validated markers in distinguishing and predicting the future cardiac events of patients with suspected cardiovascular diseases. Additionally, the review briefly discusses some of the large number of potential markers that may play a more prominent role in the future.
Collapse
Affiliation(s)
- Xi-Ying Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang-Rong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
86
|
Zeng ZM, Xu P, Zhou S, Du HY, Jiang XL, Cai J, Huang L, Liu AW. Positive association between heart dosimetry parameters and a novel cardiac biomarker, solubleST-2, in thoracic cancer chest radiation. J Clin Lab Anal 2020; 34:e23150. [PMID: 31923333 PMCID: PMC7171349 DOI: 10.1002/jcla.23150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Early screening and diagnosis of radiation‐induced heart disease (RIHD) is difficult in patients with chest radiation exposure. sST‐2 is involved in myocardial stress or injury. We evaluated the relationship between heart dose parameters and sST‐2 changes in chest malignant tumor patients who received chest radiation. Methods We prospectively collected thoracic malignancy cancer patients who had received chest radiotherapy. Heart dosimetry parameters were extracted from the treatment planning system. sST‐2 was measured at baseline, the middle stage, and after radiotherapy (recorded as pre‐ST‐2, mid‐ST‐2, and post‐ST‐2). sST‐2 change rate was calculated. Scatter plots showed the relationship between cardiac dose parameters and ST‐2 change rate. Multiple regression was used to analyze the relationship between cardiac dose parameters and ST‐2 change rate. Results Totally, 60 patients were enrolled. The mean V5, V10, V20, V30, V40, and MHD was 60.93 ± 27.79%, 51.43 ± 25.44%, 39.17 ± 21.75%, 28.07 ± 17.15%,18.66 ± 12.18%, and 18.60 ± 8.63 Gy, respectively. The median M‐LAD was 11.31 (IQR 3.33‐18.76) Gy. The mean pre‐ST‐2, mid‐ST‐2, and post‐ST‐2 was 5.1 ± 3.8, 6.4 ± 3.9, and 7.6 ± 4.4, respectively. sST‐2 was elevated with thoracic irradiation (P < .001). Multivariate linear regression analyses showed that V5, V10, V20, and MHD were independently and positively associated with ST‐2 change rate (β = .04, .04, .04, and .10, respectively, all P < .05). Conclusion Serum sST‐2 levels were elevated over time during radiotherapy. V5, V10, V20 and MHD were independently and positively associated with the elevated ST‐2 change rate.
Collapse
Affiliation(s)
- Zhi-Min Zeng
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China.,Jiangxi key laboratory of clinical translational cancer research, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Peng Xu
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China.,Jiangxi key laboratory of clinical translational cancer research, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Shan Zhou
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Hai-Yang Du
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Xiao-Liu Jiang
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Jing Cai
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Long Huang
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China.,Jiangxi key laboratory of clinical translational cancer research, The second affiliated hospital of Nanchang University, Nanchang, China
| | - An-Wen Liu
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China.,Jiangxi key laboratory of clinical translational cancer research, The second affiliated hospital of Nanchang University, Nanchang, China
| |
Collapse
|
87
|
Kabata H, Flamar AL, Mahlakõiv T, Moriyama S, Rodewald HR, Ziegler SF, Artis D. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol 2020; 13:626-636. [PMID: 32066836 PMCID: PMC7311324 DOI: 10.1038/s41385-020-0266-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a critical upstream cytokine inducing type 2 inflammation in various diseases, including asthma and atopic dermatitis. Accumulating evidence suggests that TSLP can directly stimulate a variety of immune cells, such as dendritic cells (DCs), basophils, T cells, and group 2 innate lymphoid cells (ILC2s). However, which cell types directly respond to TSLP in vivo and how TSLP initiates type 2 inflammation has remained controversial. To define the precise role of TSLP in vivo, for the first time we generated multiple cell lineage-specific TSLP receptor-deficient mice to systematically dissect the cell-intrinsic requirements for TSLP responsiveness in type 2 inflammation in the lung. In papain-induced innate immune-mediated type 2 airway inflammation, TSLP directly stimulated ILC2s, but not basophils, leading to enhanced type 2 inflammation. On the other hand, in OVA-induced adaptive immune-mediated type 2 airway inflammation, TSLP principally acted on DCs and CD4 + T cells during the sensitization phase, but not basophils or ILC2s, and facilitated the development of Th2 cell-mediated airway inflammation. Together, these findings reveal that TSLP activates distinct immune cell cascades in the context of innate and adaptive immune-mediated type 2 inflammation.
Collapse
Affiliation(s)
- Hiroki Kabata
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0004 1936 9959grid.26091.3cPresent Address: Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582 Japan
| | - Anne-Laure Flamar
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Tanel Mahlakõiv
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Saya Moriyama
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0001 2220 1880grid.410795.ePresent Address: Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640 Japan
| | - Hans-Reimer Rodewald
- 0000 0004 0492 0584grid.7497.dDivision of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Germany
| | - Steven F. Ziegler
- 0000 0000 9949 9403grid.263306.2Benaroya Research Institute, Immunology Research Program, Seattle, Washington, 98101 USA
| | - David Artis
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| |
Collapse
|
88
|
Abstract
Objective: Despite several improvements in the management of heart failure (HF), it is still an incurable and a progressive disease. Several trials demonstrated that the process of inflammation may be responsible for initiation and progression of HF. The aim of the present study was to investigate the role of interleukin-33 (IL-33) in the pathogenesis of HF and to assess whether disease etiology and course of the disease affect the expression of cytokines. Methods: The study included 155 (106 male and 49 female) patients with systolic HF with a mean left ventricle ejection fraction of 32.13±12.8% and 60 (36 male and 24 female) healthy individuals. IL-33 concentrations were evaluated using enzyme-linked immunosorbent assay. Results: The concentration of IL-33 was statistically significantly lower in patients with HF than in healthy subjects, 16.91 (0–81.00) pg/mL and 92.51 (33.61–439.61) pg/mL, respectively. Patients with HF with ischemic etiology had lower concentration of IL-33 (10.75 pg/mL) than subjects with HF with non-ischemic etiology (21.05 pg/mL). Patients with stable HF (10.46 pg/mL) had lower IL-33 levels than those with unstable HF (19.02 pg/mL). Conclusion: The concentrations of IL-33 were lower in patients with HF than in healthy controls, which may play an important role of above cytokine in HF development and progression. In addition, interleukin concentrations varied depending on the etiology and severity of the course of the disease.
Collapse
|
89
|
The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Cytokine Growth Factor Rev 2019; 50:60-74. [DOI: 10.1016/j.cytogfr.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
|
90
|
Kamardinov DK, Songurov RN, Ioshina VI, Buziashvili YI. [Soluble ST2 - as a biomarker, a tool for risk stratification and therapeutic target in patients with chronic heart failure]. ACTA ACUST UNITED AC 2019; 60:111-121. [PMID: 32345207 DOI: 10.18087/cardio.2020.2.n816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022]
Abstract
This review focuses on possibilities of using soluble ST2 as a HF marker for diagnostics, stratification of risk of adverse events, and for evaluation of prognosis and treatment effectiveness in patients with CHF. Circulating biomarkers are an essential element of algorithms for diagnostics, stratification of risk, and evaluation of prognosis in patients with HF. The recognized "gold standard", natriuretic peptides, has several well-known limitations, and multiple new candidate biomarkers have appeared in recent years. Soluble ST2, a marker of "mechanical myocardial stress", is considered as one of the most promising new biomarkers. This review discusses possibilities of using it in clinical practice in CHF patients.
Collapse
Affiliation(s)
- D K Kamardinov
- Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
| | - R N Songurov
- Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
| | - V I Ioshina
- Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
| | - Yu I Buziashvili
- Bakulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation
| |
Collapse
|
91
|
Yang J, Huang X, Hu F, Fu X, Jiang Z, Chen K. LncRNA ANRIL knockdown relieves myocardial cell apoptosis in acute myocardial infarction by regulating IL-33/ST2. Cell Cycle 2019; 18:3393-3403. [PMID: 31674275 DOI: 10.1080/15384101.2019.1678965] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: To investigate the role of lncRNA ANRIL in the modulation of myocardial cell apoptosis in acute myocardial infarction (AMI).Methods: AMI mice model was established, and lncRNA ANRIL, IL-33 and ST2 expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The apoptosis of myocardial cells was detected by TUNEL assay. RNA pull-down and RNA immunoprecipitation (RIP) assays were used to confirm the interaction between lncRNA ANRIL and USP17.Results: Compared with sham group, lncRNA ANRIL and ST2 expression levels were up-regulated, and the apoptosis of myocardial cells was increased in heart tissues of AMI group. Compared with normoxia group, the apoptosis of mouse myocardial cell HL-1 and primary murine myocardial cells was increased, and lncRNA ANRIL and ST2 expression levels were up-regulated in hypoxia group. We also found up-regulation of IL-33 in AMI group and hypoxia group. Besides, lncRNA ANRIL affected deubiquitinase USP17-mediated degradation of IL-33. Interfering lncRNA ANRIL reduced the apoptosis of myocardial cells through IL-33/ST2 pathway. In vivo experiments found that interfering lncRNA ANRIL relieved myocardial cell apoptosis and improved heart function in AMI mice.Conclusion: LncRNA ANRIL regulated myocardial cell apoptosis through IL-33/ST2 pathway.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianwei Huang
- Department of Emergency, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Fudong Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Fu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengming Jiang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kui Chen
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
92
|
Bansal N, Zelnick L, Go A, Anderson A, Christenson R, Deo R, Defilippi C, Lash J, He J, Ky B, Seliger S, Soliman E, Shlipak M. Cardiac Biomarkers and Risk of Incident Heart Failure in Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J Am Heart Assoc 2019; 8:e012336. [PMID: 31645163 PMCID: PMC6898812 DOI: 10.1161/jaha.119.012336] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Cardiac biomarkers may signal mechanistic pathways involved in heart failure (HF), a leading complication in chronic kidney disease. We tested the associations of NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide), high‐sensitivity troponin T (hsTnT), galectin‐3, growth differentiation factor‐15 (GDF‐15), and soluble ST2 (sST2) with incident HF in chronic kidney disease. Methods and Results We examined adults with chronic kidney disease enrolled in a prospective, multicenter study. All biomarkers were measured at baseline. The primary outcome was incident HF. Secondary outcomes included HF with preserved ejection fraction (EF≥50%) and reduced ejection fraction (EF<50%). Cox models were used to test the association of each cardiac biomarker with HF, adjusting for demographics, kidney function, cardiovascular risk factors, and medication use. Among 3314 participants, all biomarkers, with the exception of galectin‐3, were significantly associated with increased risk of incident HF (hazard ratio per SD higher concentration of log‐transformed biomarker): NT‐proBNP (hazard ratio, 2.07; 95% CI, 1.79–2.39); hsTnT (hazard ratio, 1.38; 95% CI, 1.21–1.56); GDF‐15 (hazard ratio, 1.44; 95% CI, 1.26–1.66) and sST2 (hazard ratio, 1.19; 95% CI, 1.05–1.35). Higher NT‐proBNP, hsTnT, and GDF‐15 were also associated with a greater risk of HF with reduced EF; while higher NT‐proBNP GDF‐15 and sST2 were associated with HF with preserved EF. Galectin‐3 was not associated with either HF with reduced EF or HF with preserved EF. Conclusions In chronic kidney disease, elevations of NT‐proBNP, hsTnT, GDF‐15, sST2 were associated with incident HF. There was a borderline association of galectin‐3 with incident HF. NT‐proBNP and hsTnT were more strongly associated with HF with reduced EF, while the associations of the newer biomarkers GDF‐15 and sST2 were stronger for HF with preserved EF.
Collapse
Affiliation(s)
| | | | - Alan Go
- Division of Research Kaiser Permanente Northern California Oakland CA
| | | | | | - Rajat Deo
- University of Pennsylvania Philadelphia PA
| | | | | | - Jiang He
- Tulane University New Orleans LA
| | - Bonnie Ky
- University of Pennsylvania Philadelphia PA
| | | | | | | | | | | |
Collapse
|
93
|
Skvortsov AA, Narusov OY, Muksinova MD. [Soluble ST2 - biomarker for prognosis and monitoring in decompensated heart failure]. ACTA ACUST UNITED AC 2019; 59:18-27. [PMID: 31884937 DOI: 10.18087/cardio.n765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022]
Abstract
The review aims to appraise the value of determining the concentrations of the new biomarker sST2 for assessing prognosis and monitoring treatment effectiveness of patients with decompensated heart failure during an episode of decompensation and during long-term follow-up after discharge from the hospital. The article analyses in detail the expedience of sST2 measurement in a patient with ADHF on admission and discharge from the hospital and the changes in the biomarker level during the period of active treatment for risk-stratification in patients, presents the optimal threshold values of sST2, which should be oriented when selecting patients with high and very high risk. The importance of subsequent monitoring of the marker concentration during long-term observation in emphasized to predict the risk of death, HF re-decompensation / HF rehospitalization. The potential benefits of choosing sST2 as the optimal marker for serial measurement during long-term follow-up, as well as evaluating the treatment effectiveness in patients with HF, compared to the "classical" variant - natriuretic peptides are shown.
Collapse
Affiliation(s)
- A A Skvortsov
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| | - O Yu Narusov
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| | - M D Muksinova
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| |
Collapse
|
94
|
Tohari AM, Alhasani RH, Biswas L, Patnaik SR, Reilly J, Zeng Z, Shu X. Vitamin D Attenuates Oxidative Damage and Inflammation in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8090341. [PMID: 31450606 PMCID: PMC6770403 DOI: 10.3390/antiox8090341] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD), the most common visual disorder in elderly people, is characterized by the formation of deposits beneath the retinal pigment epithelium (RPE) and by dysfunction of RPE and photoreceptor cells. The biologically active form of vitamin D, 1,25-(OH)2D3 (VITD), is categorized as a multifunctional steroid hormone that modulates many transcriptional processes of different genes and is involved in a broad range of cellular functions. Epidemiological and genetic association studies demonstrate that VITD may have a protective role in AMD, while single nucleotide polymorphisms in the vitamin D metabolism gene (CYP24A1) increase the risk of AMD. However, the functional mechanisms of VITD in AMD are not fully understood. In the current study, we investigated the impact of VITD on H2O2-induced oxidative stress and inflammation in human RPE cells. We demonstrate that exposure to H2O2 caused significantly reduced cell viability, increased production of reactive oxygen species (ROS), lowered expression of antioxidant enzymes and enhanced inflammation. VITD exposure notably counteracted the above H2O2-induced effects. Our data suggest that VITD protects the RPE from oxidative damage and elucidate molecular mechanisms of VITD deficiency in the development of AMD.
Collapse
Affiliation(s)
- Ali Mohammad Tohari
- Department of Clinical Biochemistry, King Fahad Hospital, PO Box 204, Jazan 91991, Saudi Arabia
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Sarita Rani Patnaik
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhihong Zeng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410022, China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
95
|
Kim D, Lee GY, Choi JO, Kim K, Kim SJ, Ju ES, Jeon ES. Prognostic values of novel biomarkers in patients with AL amyloidosis. Sci Rep 2019; 9:12200. [PMID: 31434944 PMCID: PMC6704139 DOI: 10.1038/s41598-019-48513-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
As cardiac involvement is the most important prognostic marker in light-chain amyloidosis (AL), revised Mayo staging for AL incorporated N-terminal pro-brain natriuretic peptide (NTproBNP) and troponin T (TnT). However, prognostic value of novel biomarkers, such as soluble suppression of tumorigenicity 2 (sST2), growth differentiation factor 15 (GDF15), or osteopontin (OPN) is unknown in AL amyloidosis. We aimed to investigate additive predictive effects of novel biomarkers for overall mortality rates of AL amyloidosis patients. Levels of sST2, GDF15, and OPN were quantified at diagnosis in a total of 73 AL amyloidosis patients at Samsung Medical Center from 2010 to 2016. The median follow-up duration of the censored cases was 18.0 (12.4–28.1) months. A total of 25 deaths occurred during the follow-up period. Two novel biomarkers, sST2 and GDF-15 showed satisfactory predictive performances for both one-year and overall survival from ROC analysis. Best cut-off values for predicting one-year mortality were selected. Elevated sST2 and GDF-15 levels showed significant incremental prognostic values in addition to NT-ProBNP and TnT for overall mortality. Patients were assigned 1 point for elevated sST2 or GDF-15. The mean values of NT-proBNP, TnT, mean LV wall thickness, and septal e′ velocity differed significantly according to the scores. Patients with higher scores showed significantly worse prognosis even in patients with advanced revised Mayo staging. Two novel biomarkers, sST2 and GDF-15, showed satisfactory prognostic value for overall survival of AL amyloidosis patients. Furthermore, sST2 and GDF-15 showed additive incremental values over conventional biomarkers and further discriminated prognosis of patients in advanced stages.
Collapse
Affiliation(s)
- Darae Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ga Yeon Lee
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kihyun Kim
- Divsion of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Jin Kim
- Divsion of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Seon Ju
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
96
|
Torrungruang K, Katudat D, Mahanonda R, Sritara P, Udomsak A. Periodontitis is associated with elevated serum levels of cardiac biomarkers—Soluble ST2 and C‐reactive protein. J Clin Periodontol 2019; 46:809-818. [DOI: 10.1111/jcpe.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Kitti Torrungruang
- Department of Microbiology, Faculty of Dentistry Chulalongkorn University Bangkok Thailand
| | | | - Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry Chulalongkorn University Bangkok Thailand
| | - Piyamitr Sritara
- Cardiology Division, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok Thailand
| | - Artit Udomsak
- Medical and Health Department Electricity Generating Authority of Thailand Nonthaburi Thailand
| |
Collapse
|
97
|
IL33 attenuates ventricular remodeling after myocardial infarction through inducing alternatively activated macrophages ethical standards statement. Eur J Pharmacol 2019; 854:307-319. [DOI: 10.1016/j.ejphar.2019.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
|
98
|
Yin X, Cao H, Wei Y, Li HH. Alteration of the IL-33-sST2 pathway in hypertensive patients and a mouse model. Hypertens Res 2019; 42:1664-1671. [PMID: 31235844 PMCID: PMC8075887 DOI: 10.1038/s41440-019-0291-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/28/2019] [Accepted: 05/25/2019] [Indexed: 01/11/2023]
Abstract
Inflammatory cells play an important role in the occurrence of hypertension. Recent studies have demonstrated that interleukin-33/suppression of tumorigenicity 2 (IL-33/ST2) signaling plays a critical role in the pathogenesis of several cardiovascular diseases. We aimed to evaluate the association of IL-33 and its receptor levels with the occurrence of hypertension in angiotensin II (Ang II)-infused mice using microarray analysis and validated our results in human specimens. Male wild-type mice were infused with Ang II (1500 ng/kg/min) for 1, 3 and 7 days. Patients with essential hypertension (EH) (n = 166) and healthy control subjects (n = 306) were enrolled. Levels of IL-33 and ST2 mRNAs in serum and peripheral blood mononuclear cells (PBMCs) were analyzed by Luminex assay or ELISA and qPCR analysis. We found that IL-33 expression was significantly increased in the aortas of mice receiving Ang II infusion compared with that of control mice. In contrast, the levels of IL-33 in serum and PBMCs were not significantly different between hypertensive patients and normal controls. However, the levels of soluble ST2 (sST2) in serum and PBMCs were markedly higher in hypertensive patients than in controls (P < 0.001 and P = 0.014, respectively). In addition, the ST2L level in PBMCs was also significantly decreased in hypertensive patients (P = 0.028). Further, logistic analysis showed that the odds ratios of having hypertension based on sST2 levels in serum and PBMCs were 9.714 and 2.244 (P = 0.013 and P = 0.024, respectively) compared with the control group. Above all, sST2 acted as a risk factor for the occurrence of hypertension and may be a promising novel predictive marker for EH.
Collapse
Affiliation(s)
- Xiaoyun Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Huajun Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China. .,School of Public Health, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
99
|
Abstract
Objective, noninvasive, clinical assessment of patients with heart failure can be made using biomarker measurements, including natriuretic peptides, cardiac troponins, soluble suppression of tumorigenicity 2, and galectin-3. The aim of this review is to provide clinicians with guidance on the use of heart failure biomarkers in clinical practice. The authors provide a didactic narrative based on current literature, an exemplary case study, and their clinical experience.
Collapse
|
100
|
Schroder J, Mygind ND, Frestad D, Michelsen M, Suhrs HE, Bove KB, Gustafsson I, Kastrup J, Prescott E. Pro-inflammatory biomarkers in women with non-obstructive angina pectoris and coronary microvascular dysfunction. IJC HEART & VASCULATURE 2019; 24:100370. [PMID: 31193994 PMCID: PMC6545380 DOI: 10.1016/j.ijcha.2019.100370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Background Studies that evaluate larger numbers of protein biomarkers in patients with coronary microvascular dysfunction (CMD) have not previously been performed, and very little is known concerning the pathogenetic mechanisms leading to CMD. Our objective was to analyze associations between a broad cardiovascular disease (CVD) protein biomarker assay and CMD, and further explore internal biomarker relations in order to identify possible targets for future treatment interventions. Methods In 174 women with angina pectoris and no significant obstructive coronary artery disease (<50% stenosis on invasive coronary angiography), CMD was assessed by transthoracic Doppler echocardiography measuring coronary flow velocity reserve (CFVR). Blood samples were analyzed with a CVD proteomic panel encompassing 92 biomarkers. The relation between biomarkers and CFVR was evaluated by regression analysis, and possible interrelations between significant biomarkers were investigated by principal component analysis (PCA). Results Median age (SD) was 64 years (9.8), median CFVR (IQR) was 2.3 (1.9–2.7), and 28% of patients had CFVR < 2.0. Eighteen biomarkers were significantly correlated with CFVR. In PCA, 8 of the biomarkers significantly related to CFVR showed high loadings on principal component 1 (PC1). The component scores of PC1 were significantly related to CFVR (p = 0.002). The majority of the 8 interrelated PC1 biomarkers were related to the pro-inflammatory TNF-α – IL-6 – CRP pathway. Conclusion Eighteen protein biomarkers were significantly associated with CMD. Eight biomarkers were interrelated in PCA, and share connection with pro-inflammatory pathways, highlighting a possible important role of inflammation in CMD.
Collapse
Affiliation(s)
- Jakob Schroder
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| | - Naja Dam Mygind
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daria Frestad
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marie Michelsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Elena Suhrs
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kira Bang Bove
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|