51
|
Neckář J, Alánová P, Olejníčková V, Papoušek F, Hejnová L, Šilhavý J, Behuliak M, Bencze M, Hrdlička J, Vecka M, Jarkovská D, Švíglerová J, Mistrová E, Štengl M, Novotný J, Ošťádal B, Pravenec M, Kolář F. Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin Sci (Lond) 2021; 135:2143-2163. [PMID: 34486670 DOI: 10.1042/cs20210648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.
Collapse
Affiliation(s)
- Jan Neckář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Alánová
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Šilhavý
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Bencze
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovská
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Švíglerová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Eliška Mistrová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Štengl
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bohuslav Ošťádal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
52
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
53
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
54
|
Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, Shivkumar K. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res 2021; 117:1732-1745. [PMID: 33989382 PMCID: PMC8208752 DOI: 10.1093/cvr/cvab172] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The cardiac autonomic nervous system (ANS) plays an integral role in normal cardiac physiology as well as in disease states that cause cardiac arrhythmias. The cardiac ANS, comprised of a complex neural hierarchy in a nested series of interacting feedback loops, regulates atrial electrophysiology and is itself susceptible to remodelling by atrial rhythm. In light of the challenges of treating atrial fibrillation (AF) with conventional pharmacologic and myoablative techniques, increasingly interest has begun to focus on targeting the cardiac neuraxis for AF. Strong evidence from animal models and clinical patients demonstrates that parasympathetic and sympathetic activity within this neuraxis may trigger AF, and the ANS may either induce atrial remodelling or undergo remodelling itself to serve as a substrate for AF. Multiple nexus points within the cardiac neuraxis are therapeutic targets, and neuroablative and neuromodulatory therapies for AF include ganglionated plexus ablation, epicardial botulinum toxin injection, vagal nerve (tragus) stimulation, renal denervation, stellate ganglion block/resection, baroreceptor activation therapy, and spinal cord stimulation. Pre-clinical and clinical studies on these modalities have had promising results and are reviewed here.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Eric Buch
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 1100 N Lindsay Ave, Oklahoma City, OK 73104, USA
| | - Christian Meyer
- Division of Cardiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Kirchfeldstraße 40, 40217 Düsseldorf, Germany
- Institute of Neural and Sensory Physiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - John D Tompkins
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Jeffrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| |
Collapse
|
55
|
Bandoni RL, Bricher Choque PN, Dellê H, de Moraes TL, Porter MHM, da Silva BD, Neves GA, Irigoyen MC, De Angelis K, Pavlov VA, Ulloa L, Consolim-Colombo FM. Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial infarction in spontaneous hypertensive rats. Sci Rep 2021; 11:9563. [PMID: 33953291 PMCID: PMC8099899 DOI: 10.1038/s41598-021-89104-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The mechanisms regulating immune cells recruitment into the heart during healing after an acute myocardial infarction (AMI) have major clinical implications. We investigated whether cholinergic stimulation with pyridostigmine, a cholinesterase inhibitor, modulates heart and spleen immune responses and cardiac remodeling after AMI in spontaneous hypertensive rats (SHRs). Male adult SHRs underwent sham surgery or ligation of the left coronary artery and were randomly allocated to remain untreated or to pyridostigmine treatment (40 mg/kg once a day by gavage). Blood pressure and heart rate variability were determined, and echocardiography was performed at day six after MI. The heart and spleen were processed for immunohistochemistry cellular analyses (CD3+ and CD4+ lymphocytes, and CD68+ and CD206+ macrophages), and TNF levels were determined at day seven after MI. Pyridostigmine treatment increased the parasympathetic tone and T CD4+ lymphocytes in the myocardium, but lowered M1/M2 macrophage ratio towards an anti-inflammatory profile that was associated with decreased TNF levels in the heart and spleen. Treatment with this cholinergic agent improved heart remodeling manifested by lower ventricular diameters and better functional parameters. In summary, cholinergic stimulation by pyridostigmine enhances the parasympathetic tone and induces anti-inflammatory responses in the heart and spleen fostering cardiac recovery after AMI in SHRs.
Collapse
Affiliation(s)
- Robson Luiz Bandoni
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Pamela Nithzi Bricher Choque
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Humberto Dellê
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Tercio Lemos de Moraes
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria Helena Mattos Porter
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Bruno Durante da Silva
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Gizele Alves Neves
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria-Claudia Irigoyen
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Kátia De Angelis
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.411249.b0000 0001 0514 7202Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Valentin A. Pavlov
- grid.416477.70000 0001 2168 3646Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Luis Ulloa
- grid.189509.c0000000100241216Department of Anesthesiology, Duke University Medical Center, Durham, NC USA
| | - Fernanda Marciano Consolim-Colombo
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
56
|
Rey Novoa M, Muñoz-Sellart M, Catalán Soriano M, Vinyes D. Treatment of Localized Vulvar Pain with Neural Therapy: A Case Series and Literature Review. Complement Med Res 2021; 28:571-577. [PMID: 33845481 DOI: 10.1159/000514945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Localized vulvar pain (LVP) is a common condition among fertile women, with physical and psychosexual implications. Treatment is complex with limited benefits. Neural therapy is a regulatory therapy that uses injections of local anesthetics in low concentrations in specific points to treat different conditions. CASE PRESENTATION We present the cases of 5 women, ages 33-44 years, with LVP treated with procaine 0.5% injections in painful points. Complete relief from pain occurred in 2 patients, and significant improvement in 3. Only 1 or 2 sessions were required. Initial VAS score was ≥70 and decreased to ≤30 after the intervention. The improvement was maintained over time, with a minimum follow-up period of 6 months. None of the patients were able to have sex or use tampons due to pain, but they were able to resume after the intervention. CONCLUSIONS In this case series, local injections of procaine showed a favorable outcome. Future randomized clinical trials could help elucidate the role of this intervention in LVP.
Collapse
Affiliation(s)
- Modesto Rey Novoa
- Department of Obstetrics and Gynecology, Hospital Universitario de Burgos, Burgos, Spain.,Campus Docent de Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Muñoz-Sellart
- Campus Docent de Sant Joan de Déu, Barcelona, Spain.,Neural Therapy Research Foundation, Barcelona, Spain.,Institute of Neural Therapy and Regulatory Medicine, Sabadell, Barcelona, Spain
| | - Marta Catalán Soriano
- Campus Docent de Sant Joan de Déu, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital del Vendrell, Tarragona, Spain
| | - David Vinyes
- Campus Docent de Sant Joan de Déu, Barcelona, Spain.,Neural Therapy Research Foundation, Barcelona, Spain.,Institute of Neural Therapy and Regulatory Medicine, Sabadell, Barcelona, Spain
| |
Collapse
|
57
|
Baine S, Bonilla I, Belevych A, Stepanov A, Dorn LE, Terentyeva R, Terentyev D, Accornero F, Carnes CA, Gyorke S. Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure. J Cell Mol Med 2021; 25:4637-4648. [PMID: 33755308 PMCID: PMC8107086 DOI: 10.1111/jcmm.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andrei Stepanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
58
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
59
|
Pelat M, Barbe F, Daveu C, Ly-Nguyen L, Lartigue T, Marque S, Tavares G, Ballet V, Guillon JM, Steinmeyer K, Wirth K, Gögelein H, Arndt P, Rackelmann N, Weston J, Bellevergue P, McCort G, Trellu M, Lucats L, Beauverger P, Pruniaux-Harnist MP, Janiak P, Chézalviel-Guilbert F. SAR340835, a Novel Selective Na +/Ca 2+ Exchanger Inhibitor, Improves Cardiac Function and Restores Sympathovagal Balance in Heart Failure. J Pharmacol Exp Ther 2021; 377:293-304. [PMID: 33602875 DOI: 10.1124/jpet.120.000238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.
Collapse
Affiliation(s)
- Michel Pelat
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Cyril Daveu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laetitia Ly-Nguyen
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Thomas Lartigue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Suzanne Marque
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Georges Tavares
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Véronique Ballet
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Steinmeyer
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Wirth
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Heinz Gögelein
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Petra Arndt
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Nils Rackelmann
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - John Weston
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Patrice Bellevergue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Gary McCort
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marc Trellu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laurence Lucats
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marie-Pierre Pruniaux-Harnist
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philip Janiak
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Frédérique Chézalviel-Guilbert
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| |
Collapse
|
60
|
Nearing BD, Libbus I, Carlson GM, Amurthur B, KenKnight BH, Verrier RL. Chronic vagus nerve stimulation is associated with multi-year improvement in intrinsic heart rate recovery and left ventricular ejection fraction in ANTHEM-HF. Clin Auton Res 2021; 31:453-462. [PMID: 33590355 PMCID: PMC8184538 DOI: 10.1007/s10286-021-00780-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
Purpose Disturbed autonomic function is implicated in high mortality rates in heart failure patients. High-intensity vagus nerve stimulation therapy was shown to improve intrinsic heart rate recovery and left ventricular ejection fraction over a period of 1 year. Whether these beneficial effects are sustained across multiple years and are related to improved baroreceptor response was unknown. Methods All patients (n = 21) enrolled in the ANTHEM-HF clinical trial (NCT01823887, registered 4/3/2013) with 24 h ambulatory electrocardiograms at all time points and 54 normal subjects (PhysioNet database) were included. Intrinsic heart rate recovery, based on ~ 2000 spontaneous daily activity-induced heart rate acceleration/deceleration events per patient, was analyzed at screening and after 12, 24, and 36 months of chronic vagus nerve stimulation therapy (10 or 5 Hz, 250 μs pulse width, 18% duty cycle, maximum tolerable current amplitude). Results In response to chronic high-intensity vagus nerve stimulation (≥ 2.0 mA), intrinsic heart rate recovery (all time points, p < 0.0001), heart rate turbulence slope, an indicator of baroreceptor reflex gain (all, p ≤ 0.02), and left ventricular ejection fraction (all, p ≤ 0.04) were improved over screening at 12, 24, and 36 months. Intrinsic heart rate recovery and heart rate turbulence slope were inversely correlated at both screening (r = 0.67, p < 0.002) and 36 months (r = 0.78, p < 0.005). Conclusion This non-randomized study provides evidence of an association between improvement in intrinsic heart rate recovery and left ventricular ejection fraction during high-intensity vagus nerve stimulation for a period of ≥ 3 years. Correlated favorable effects on heart rate turbulence slope implicate enhanced baroreceptor function in response to chronic, continuously cyclic vagus nerve stimulation as a physiologic mechanism.
Collapse
Affiliation(s)
- Bruce D Nearing
- Department of Medicine, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN-301, Boston, MA, 02215-3908, USA
| | | | | | | | | | - Richard L Verrier
- Department of Medicine, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN-301, Boston, MA, 02215-3908, USA.
| |
Collapse
|
61
|
A Step further-The Role of Trigeminocardiac Reflex in Therapeutic Implications: Hypothesis, Evidence, and Experimental Models. J Neurosurg Anesthesiol 2021; 34:364-371. [PMID: 33538537 DOI: 10.1097/ana.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Abstract
The trigeminocardiac reflex (TCR) is a well-recognized brainstem reflex that represents a unique interaction between the brain and the heart through the Vth and Xth cranial nerves and brainstem nuclei. The TCR has mainly been reported as an intraoperative phenomenon causing cardiovascular changes during skull-base surgeries. However, it is now appreciated that the TCR is implicated during non-neurosurgical procedures and in nonsurgical conditions, and its complex reflex pathways have been explored as potential therapeutic options in various neurological and cardiovascular diseases. This narrative review presents an in-depth overview of hypothetical and experimental models of the TCR phenomenon in relation to the Vth and Xth cranial nerves. In addition, primitive interactions between these 2 cranial nerves and their significance are highlighted. Finally, therapeutic models of the complex interactions of the TCR and areas for further research will be considered.
Collapse
|
62
|
Izumi Y, Mennerick SJ, Doherty JJ, Zorumski CF. Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal N-Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. J Pharmacol Exp Ther 2021; 377:181-188. [PMID: 33441369 PMCID: PMC8051516 DOI: 10.1124/jpet.120.000376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ethanol is a noncompetitive inhibitor of N-methyl-d-aspartate receptors (NMDARs) and acutely disrupts hippocampal synaptic plasticity and learning. In the present study, we examined the effects of oxysterol positive allosteric modulators (PAMs) of NMDARs on ethanol-mediated inhibition of NMDARs, block of long-term potentiation (LTP) and long-term depression (LTD) in rat hippocampal slices, and defects in one-trial learning in vivo. We found that 24S-hydroxycholesterol and a synthetic oxysterol analog, SGE-301, overcame effects of ethanol on NMDAR-mediated synaptic responses in the CA1 region but did not alter acute effects of ethanol on LTD; the synthetic oxysterol, however, overcame acute inhibition of LTP. In addition, both oxysterols overcame persistent effects of ethanol on LTP in vitro, and the synthetic analog reversed defects in one-trial inhibitory avoidance learning in vivo. These results indicate that effects of ethanol on both LTP and LTD arise by complex mechanisms beyond NMDAR antagonism and that oxysterol NMDAR PAMS may represent a novel approach for preventing and reversing acute ethanol-mediated changes in cognition.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Steven J Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - James J Doherty
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| |
Collapse
|
63
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
64
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
65
|
Geng M, Lin A, Nguyen TP. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front Pharmacol 2020; 11:581837. [PMID: 33240090 PMCID: PMC7680856 DOI: 10.3389/fphar.2020.581837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since the clinical use of digitalis as the first pharmacological therapy for atrial fibrillation (AF) 235 years ago in 1785, antiarrhythmic drug therapy has advanced considerably and become a cornerstone of AF clinical management. Yet, a preventive or curative panacea for sustained AF does not exist despite the rise of AF global prevalence to epidemiological proportions. While multiple elevated risk factors for AF have been established, the natural history and etiology of AF remain incompletely understood. In the present article, the first section selectively highlights some disappointing shortcomings and current efforts in antiarrhythmic drug therapy to uncover reasons why AF is such a clinical challenge. The second section discusses some modern takes on the natural history of AF as a relentless, progressive fibro-inflammatory "atriomyopathy." The final section emphasizes the need to redefine therapeutic strategies on par with new insights of AF pathophysiology.
Collapse
Affiliation(s)
| | | | - Thao P. Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
66
|
Kowalski CW, Ragozzino FJ, Lindberg JEM, Peterson B, Lugo JM, McLaughlin RJ, Peters JH. Cannabidiol activation of vagal afferent neurons requires TRPA1. J Neurophysiol 2020; 124:1388-1398. [PMID: 32965166 DOI: 10.1152/jn.00128.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.
Collapse
Affiliation(s)
- Cody W Kowalski
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Janelle M Lugo
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
67
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
68
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
69
|
Kaniusas E, Szeles JC, Kampusch S, Alfageme-Lopez N, Yucuma-Conde D, Li X, Mayol J, Neumayer C, Papa M, Panetsos F. Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome. Front Physiol 2020; 11:890. [PMID: 32848845 PMCID: PMC7399203 DOI: 10.3389/fphys.2020.00890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Covid-19 is an infectious disease caused by an invasion of the alveolar epithelial cells by coronavirus 19. The most severe outcome of the disease is the Acute Respiratory Distress Syndrome (ARDS) combined with hypoxemia and cardiovascular damage. ARDS and co-morbidities are associated with inflammatory cytokine storms, sympathetic hyperactivity, and respiratory dysfunction. Hypothesis: In the present paper, we present and justify a novel potential treatment for Covid19-originated ARDS and associated co-morbidities, based on the non-invasive stimulation of the auricular branch of the vagus nerve. Methods: Auricular vagus nerve stimulation activates the parasympathetic system including anti-inflammatory pathways (the cholinergic anti-inflammatory pathway and the hypothalamic pituitary adrenal axis) while regulating the abnormal sympatho-vagal balance and improving respiratory control. Results: Along the paper (1) we expose the role of the parasympathetic system and the vagus nerve in the control of inflammatory processes (2) we formulate our physiological and methodological hypotheses (3) we provide a large body of clinical and preclinical data that support the favorable effects of auricular vagus nerve stimulation in inflammation, sympatho-vagal balance as well as in respiratory and cardiac ailments, and (4) we list the (few) possible collateral effects of the treatment. Finally, we discuss auricular vagus nerve stimulation protective potential, especially in the elderly and co-morbid population with already reduced parasympathetic response. Conclusions: Auricular vagus nerve stimulation is a safe clinical procedure and it could be either an effective treatment for ARDS originated by Covid-19 and similar viruses or a supplementary treatment to actual ARDS therapeutic approaches.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Faculty of Electrical Engineering and Information Technology, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Jozsef C. Szeles
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Nuria Alfageme-Lopez
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Daniela Yucuma-Conde
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Xie Li
- The Pediatric Department, Women and Children's Hospital of Hunan, Changsha, China
| | - Julio Mayol
- San Carlos Clinical Hospital, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Christoph Neumayer
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
70
|
Machhada A, Hosford PS, Dyson A, Ackland GL, Mastitskaya S, Gourine AV. Optogenetic Stimulation of Vagal Efferent Activity Preserves Left Ventricular Function in Experimental Heart Failure. JACC Basic Transl Sci 2020; 5:799-810. [PMID: 32875170 PMCID: PMC7452237 DOI: 10.1016/j.jacbts.2020.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
This study was designed to determine the effect of selective optogenetic simulation of vagal efferent activity on left ventricular function in an animal (rat) model of MI-induced heart failure. Optogenetic stimulation of dorsal brainstem vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved LV function and exercise capacity in animals with MI. The data suggest that activation of vagal efferents is critically important to deliver the therapeutic benefit of VNS in chronic heart failure.
Large clinical trials designed to test the efficacy of vagus nerve stimulation (VNS) in patients with heart failure did not demonstrate benefits with respect to the primary endpoints. The nonselective nature of VNS may account for the failure to translate promising results of preclinical and earlier clinical studies. This study showed that optogenetic stimulation of vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved left ventricular function and exercise capacity in a rat model of myocardial infarction−induced heart failure. These data suggested that stimulation of vagal efferent activity is critically important to deliver the therapeutic benefit of VNS in heart failure.
Collapse
Key Words
- ABP, arterial blood pressure
- DVMN, dorsal motor nucleus of the vagus nerve
- GRK2, G-protein−coupled receptor kinase 2
- LAD, left anterior descending coronary artery
- LV dP/dtMAX, maximum rate of rise of left ventricular pressure
- LV, left ventricle
- LVEDP, left ventricular end-diastolic pressure
- LVESP, left ventricular end-systolic pressure
- LVP, left ventricular pressure
- LVV, lentiviral vector
- MI, myocardial infarction
- VNS, vagus nerve stimulation
- autonomic nervous system
- eGFP, enhanced green fluorescent protein
- heart failure
- myocardial infarction
- neuromodulation
- vagus nerve stimulation
Collapse
Affiliation(s)
- Asif Machhada
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alex Dyson
- Clinical Physiology, Division of Medicine, University College London, London, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
71
|
Verrier RL, Pang TD, Nearing BD, Schachter SC. Response to Letter to the Editor by Drs. Fialho and colleagues. Epilepsy Behav 2020; 108:107040. [PMID: 32451249 DOI: 10.1016/j.yebeh.2020.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 11/25/2022]
|
72
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
73
|
Liu H, Zhan P, Meng F, Wang W. Chronic vagus nerve stimulation for drug-resistant epilepsy may influence fasting blood glucose concentration. Biomed Eng Online 2020; 19:40. [PMID: 32471438 PMCID: PMC7257242 DOI: 10.1186/s12938-020-00784-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cervical vagus nerve stimulation (VNS) has been widely accepted as adjunctive therapy for drug-resistant epilepsy and major depression. Its effects on glycemic control in humans were however poorly understood. The aim of our study was to investigate the potential effects of VNS on fasting blood glucose (FBG) in patients with drug-resistant epilepsy. Methods Patients with drug-resistant epilepsy who had received VNS implants at the same hospital were retrospectively studied. Effects on FBG, weight, body mass index and blood pressure were evaluated at 4, 8 and 12 months of follow-up. Results 32 subjects (11 females/21 males, 19 ± 9 years, body mass index 22.2 ± 4.0 kg/m2) completed 12-month follow-up. At the 4 months, there were no significant changes in FBG concentrations from baseline to follow-up in both Sham-VNS (4.89 ± 0.54 vs. 4.56 ± 0.54 mmol/L, N = 13, p = 0.101) and VNS (4.80 ± 0.54 vs. 4.50 ± 0.56 mmol/L, N = 19, p = 0.117) groups. However, after 8 (4.90 ± 0.42 mmol/L, N = 32, p = 0.001) and 12 (4.86 ± 0.40 mmol/L, N = 32, p = 0.002) months of VNS, FBG levels significantly increased compared to baseline values (4.52 ± 0.54 mmol/L, N = 32). Changes in FBG concentrations at both 8 (R2 = 0.502, N = 32, p < 0.001) and 12 (R2 = 0.572, N = 32, p < 0.001) months were negatively correlated with baseline FBG levels. Conclusions Our study suggests that chronic cervical VNS elevates FBG levels with commonly used stimulation parameters in patients with epilepsy. Trial registration VNSRE, NCT02378792. Registered 4 March 2015—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02378792
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, 100853, China.,Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhan
- Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing, 100050, China. .,Neurosurgery, Beijing Tian Tan Hospital Capital Medical University, Beijing, 100050, China.
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, 100853, China. .,Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
74
|
Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias: Methods to Assess Treatment and Outcomes. JACC Clin Electrophysiol 2020; 6:467-483. [PMID: 32439031 PMCID: PMC7370838 DOI: 10.1016/j.jacep.2020.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of multiple cardiac arrhythmias, including atrial fibrillation and ventricular tachycardia. As such, autonomic modulation represents an attractive therapeutic approach in these conditions. Notably, autonomic modulation exploits the plasticity of the neural tissue to induce neural remodeling and thus obtain therapeutic benefit. Different forms of autonomic modulation include vagus nerve stimulation, tragus stimulation, renal denervation, baroreceptor activation therapy, and cardiac sympathetic denervation. This review seeks to highlight these autonomic modulation therapeutic modalities, which have shown promise in early preclinical and clinical trials and represent exciting alternatives to standard arrhythmia treatment. We also present an overview of the various methods used to assess autonomic tone, including heart rate variability, skin sympathetic nerve activity, and alternans, which can be used as surrogate markers and predictors of the treatment effect. Although the use of autonomic modulation to treat cardiac arrhythmias is supported by strong preclinical data and preliminary studies in humans, in light of the disappointing results of a number of recent randomized clinical trials of autonomic modulation therapies in heart failure, the need for optimization of the stimulation parameters and rigorous patient selection based on appropriate biomarkers cannot be overemphasized.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
75
|
Zeitler EP, Abraham WT. Novel Devices in Heart Failure. JACC-HEART FAILURE 2020; 8:251-264. [DOI: 10.1016/j.jchf.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
|
76
|
Burger AM, D'Agostini M, Verkuil B, Van Diest I. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 2020; 57:e13571. [PMID: 32202671 DOI: 10.1111/psyp.13571] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/25/2022]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive neurostimulation technique that is currently being tested as a potential treatment for a myriad of neurological and psychiatric disorders. However, the working mechanisms underlying tVNS are poorly understood and it remains unclear whether stimulation activates the vagus nerve for every participant. Finding a biological marker of tVNS is imperative, as it can help guide research on clinical applications and can inform researchers on optimal stimulation sites and parameters to further optimize treatment efficacy. In this narrative review, we discuss five potential biomarkers for tVNS and review currently available evidence for these markers for both invasive and tVNS. While some of these biomarkers hold promise from a theoretical perspective, none of the potential biomarkers provide clear and definitive indications that tVNS increases the vagal activity or augments activity in the locus coeruleus-noradrenaline network. We conclude the review by providing several recommendations for how to tackle the challenges and opportunities when researching potential biomarkers for the effects of tVNS.
Collapse
Affiliation(s)
- Andreas Michael Burger
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium.,Biological Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Martina D'Agostini
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Bart Verkuil
- Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Ilse Van Diest
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
77
|
Wessler I, Kirkpatrick CJ. Cholinergic signaling controls immune functions and promotes homeostasis. Int Immunopharmacol 2020; 83:106345. [PMID: 32203906 DOI: 10.1016/j.intimp.2020.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine (ACh) was created by nature as one of the first signaling molecules, expressed already in procaryotes. Based on the positively charged nitrogen, ACh could initially mediate signaling in the absence of receptors. When evolution established more and more complex organisms the new emerging organs systems, like the smooth and skeletal muscle systems, energy-generating systems, sexual reproductive system, immune system and the nervous system have further optimized the cholinergic signaling machinery. Thus, it is not surprising that ACh and the cholinergic system are expressed in the vast majority of cells. Consequently, multiple common interfaces exist, for example, between the nervous and the immune system. Research of the last 20 years has unmasked these multiple regulating mechanisms mediated by cholinergic signaling and thus, the biological role of ACh has been revised. The present article summarizes new findings and describes the role of both non-neuronal and neuronal ACh in protecting the organism from external and internal health threats, in providing energy for the whole organism and for the individual cell, controling immune functions to prevent inflammatory dysbalance, and finally, the involvement in critical brain functions, such as learning and memory. All these capacities of ACh enable the organism to attain and maintain homeostasis under changing external conditions. However, the existence of identical interfaces between all these different organ systems complicates the research for new therapeutic interventions, making it essential that every effort should be undertaken to find out more specific targets to modulate cholinergic signaling in different diseases.
Collapse
Affiliation(s)
- Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany.
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| |
Collapse
|
78
|
Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf) 2020; 228:e13396. [PMID: 31595611 DOI: 10.1111/apha.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality worldwide. Cardiovascular diseases such as acute myocardial infarction, ischaemia/reperfusion injury and heart failure are associated with cardiac autonomic imbalance characterized by sympathetic overactivity and parasympathetic withdrawal from the heart. Increased parasympathetic activity by electrical vagal nerve stimulation has been shown to provide beneficial effects in the case of cardiovascular diseases in both animals and patients by improving autonomic function, cardiac remodelling and mitochondrial function. However, clinical limitations for electrical vagal nerve stimulation exist because of its invasive nature, costly equipment and limited clinical validation. Therefore, novel therapeutic approaches which moderate parasympathetic activities could be beneficial for in the case of cardiovascular disease. Acetylcholinesterase inhibitors inhibit acetylcholinesterase and hence increase cholinergic transmission. Recent studies have reported that acetylcholinesterase inhibitors improve autonomic function and cardiac function in cardiovascular disease models. Despite its potential clinical benefits for cardiovascular disease patients, the role of acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation remains unclear. This article comprehensively reviews the effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure scenarios from in vitro and in vivo studies to clinical reports. The mechanisms involved are also discussed in this review.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
79
|
Radcliffe EJ, Pearman CM, Watkins A, Lawless M, Kirkwood GJ, Saxton SN, Eisner DA, Trafford AW. Chronic vagal nerve stimulation has no effect on tachycardia-induced heart failure progression or excitation-contraction coupling. Physiol Rep 2020; 8:e14321. [PMID: 31961064 PMCID: PMC6971309 DOI: 10.14814/phy2.14321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Autonomic dysregulation plays a key role in the development and progression of heart failure (HF). Vagal nerve stimulation (VNS) may be a promising therapeutic approach. However, the outcomes from clinical trials evaluating VNS in HF have been mixed, and the mechanisms underlying this treatment remain poorly understood. Intermittent high-frequency VNS (pulse width 300 µs, 30 Hz stimulation, 30 s on, and 300 s off) was used in healthy sheep and sheep in which established HF had been induced by 4 weeks rapid ventricular pacing to assess (a) the effects of VNS on intrinsic cardiac vagal tone, (b) whether VNS delays the progression of established HF, and (c) whether high-frequency VNS affects the regulation of cardiomyocyte calcium handling in health and disease. VNS had no effect on resting heart rate or intrinsic vagal tone in the healthy heart. Although fewer VNS-treated animals showed subjective signs of heart failure at 6 weeks, overall VNS did not slow the progression of clinical or echocardiographic signs of HF. Chronic VNS did not affect left ventricular cardiomyocyte calcium handling in healthy sheep. Rapid ventricular pacing decreased the L-type calcium current and calcium transient amplitude, but chronic VNS did not rescue dysfunctional calcium handling. Overall, high-frequency VNS did not prevent progression of established HF or influence cellular excitation-contraction coupling. However, a different model of HF or selection of different stimulation parameters may have yielded different results. These results highlight the need for greater insight into VNS dosing and parameter selection and a deeper understanding of its physiological effects.
Collapse
Affiliation(s)
- Emma J. Radcliffe
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Charles M. Pearman
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Amy Watkins
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Michael Lawless
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Graeme J. Kirkwood
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Sophie N. Saxton
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - David A. Eisner
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Andrew W. Trafford
- Unit of Cardiac PhysiologyInstitute of Cardiovascular SciencesManchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| |
Collapse
|
80
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
81
|
Mayyas F, Alsaheb A, Alzoubi KH. The role of fish oil in attenuating cardiac oxidative stress, inflammation and fibrosis in rat model of thyrotoxicosis. Heliyon 2019; 5:e02976. [PMID: 31872133 PMCID: PMC6909073 DOI: 10.1016/j.heliyon.2019.e02976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperthyroidism is associated with cardiovascular complications. Fish oil reduces risk of cardiovascular diseases. This study aims to evaluate the impact of fish oil on myocardial oxidative stress, inflammation and fibrosis in rat model of thyrotoxicosis. Rats were randomized into four groups; control rats, fish oil treated rats (FO, 100mg omega-3/100g body weight/day), hyperthyroid rats (Hyper, i.p levothyroxine 3 mg/kg/day), and hyperthyroid rats treated with fish oil (Hyper + FO) for 8 weeks. Changes in oxidants/antioxidants, inflammatory and fibrotic markers were measured. Thyrotoxicosis increased serum endothelin-1, thiobarbituric acid reactive substances (TBARS) and reduced activities of cardiac catalase and super oxide dismutase (SOD). Cardiac fibrosis paralleled with a decrease of matrix metalloproteinase -2 (MMP2) levels were observed in Hyper group. Use of FO increased activities of SOD and catalase, increased TBARS levels, and attenuated cardiac fibrosis by normalizing MMP-2 levels. Use of FO may attenuate cardiac oxidative stress and fibrosis in hyperthyroid states.
Collapse
Affiliation(s)
- F Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - A Alsaheb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
82
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
83
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
84
|
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Front Neurosci 2019; 13:911. [PMID: 31551679 PMCID: PMC6738225 DOI: 10.3389/fnins.2019.00911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides expansion into new clinical avenues, animal models of VNS have also increased in recent years. To advance this promising treatment, however, there are a number of experimental parameters that must be considered when planning a study, such as physiology of the vagus nerve, electrical stimulation parameters, electrode design, stimulation equipment, and microsurgical technique. In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | | | - Timur M. Urakov
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jackson Memorial Hospital, Miami, FL, United States
| | - Joshua P. Aronson
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
85
|
May SM, Reyes A, Martir G, Reynolds J, Paredes LG, Karmali S, Stephens RCM, Brealey D, Ackland GL. Acquired loss of cardiac vagal activity is associated with myocardial injury in patients undergoing noncardiac surgery: prospective observational mechanistic cohort study. Br J Anaesth 2019; 123:758-767. [PMID: 31492527 DOI: 10.1016/j.bja.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial injury is more frequent after noncardiac surgery in patients with preoperative cardiac vagal dysfunction, as quantified by delayed heart rate (HR) recovery after cessation of cardiopulmonary exercise testing. We hypothesised that serial and dynamic measures of cardiac vagal activity are also associated with myocardial injury after noncardiac surgery. METHODS Serial autonomic measurements were made before and after surgery in patients undergoing elective noncardiac surgery. Cardiac vagal activity was quantified by HR variability and HR recovery after orthostatic challenge (supine to sitting). Revised cardiac risk index (RCRI) was calculated for each patient. The primary outcome was myocardial injury (high-sensitivity troponin ≥15 ng L-1) within 48 h of surgery, masked to investigators. The exposure of interest was cardiac vagal activity (high-frequency power spectral analysis [HFLn]) and HR recovery 90 s from peak HR after the orthostatic challenge. RESULTS Myocardial injury occurred in 48/189 (25%) patients, in whom 41/48 (85%) RCRI was <2. In patients with myocardial injury, vagal activity (HFLn) declined from 5.15 (95% confidence interval [CI]: 4.58-5.72) before surgery to 4.33 (95% CI: 3.76-4.90; P<0.001) 24 h after surgery. In patients who remained free of myocardial injury, HFLn did not change (4.95 [95% CI: 4.64-5.26] before surgery vs 4.76 [95% CI: 4.44-5.08] after surgery). Before and after surgery, the orthostatic HR recovery was slower in patients with myocardial injury (5 beats min-1 [95% CI: 3-7]), compared with HR recovery in patients who remained free of myocardial injury (10 beats min-1 [95% CI: 7-12]; P=0.02). CONCLUSIONS Serial HR measures indicating loss of cardiac vagal activity are associated with perioperative myocardial injury in lower-risk patients undergoing noncardiac surgery.
Collapse
Affiliation(s)
- Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anna Reyes
- University College London NHS Hospitals Trust, London, UK
| | - Gladys Martir
- University College London NHS Hospitals Trust, London, UK
| | - Joseph Reynolds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Shamir Karmali
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - David Brealey
- University College London NHS Hospitals Trust, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
86
|
Neuromodulation for Ventricular Tachycardia and Atrial Fibrillation: A Clinical Scenario-Based Review. JACC Clin Electrophysiol 2019; 5:881-896. [PMID: 31439288 DOI: 10.1016/j.jacep.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Autonomic dysregulation in cardiovascular disease plays a major role in the pathogenesis of arrhythmias. Cardiac neural control relies on complex feedback loops consisting of efferent and afferent limbs, which carry sympathetic and parasympathetic signals from the brain to the heart and sensory signals from the heart to the brain. Cardiac disease leads to neural remodeling and sympathovagal imbalances with arrhythmogenic effects. Preclinical studies of modulation at central and peripheral levels of the cardiac autonomic nervous system have yielded promising results, leading to early stage clinical studies of these techniques in atrial fibrillation and refractory ventricular arrhythmias, particularly in patients with inherited primary arrhythmia syndromes and structural heart disease. However, significant knowledge gaps in basic cardiac neurophysiology limit the success of these neuromodulatory therapies. This review discusses the recent advances in neuromodulation for cardiac arrhythmia management, with a clinical scenario-based approach aimed at bringing neurocardiology closer to the realm of the clinical electrophysiologist.
Collapse
|
87
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
88
|
Premchand RK, Sharma K, Mittal S, Monteiro R, Libbus I, Ardell JL, Gregory DD, KenKnight BH, Amurthur B, DiCarlo LA, Anand IS. Background pharmacological therapy in the ANTHEM-HF: comparison to contemporary trials of novel heart failure therapies. ESC Heart Fail 2019; 6:1052-1056. [PMID: 31339232 PMCID: PMC6816059 DOI: 10.1002/ehf2.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Clinical trials of new heart failure (HF) therapies administer guideline-directed medical therapy (GDMT) as background pharmacologic treatment (BPT). In the ANTHEM-HF Pilot Study, addition of autonomic regulation therapy to GDMT significantly improved left ventricular function, New York Heart Association (NYHA) class, 6 min walk distance, and quality of life in patients with HF with reduced ejection fraction (HFrEF). A post hoc analysis was performed to compare BPT in ANTHEM-HF with two other trials of novel HF therapies: the PARADIGM-HF study of sacubitril-valsartan and the SHIFT study of ivadrabine. All three studies evaluated patients with HFrEF, and the recommendations for use of GDMT were similar. A left ventricular ejection fraction ≤40% was required for entry into ANTHEM-HF and PARADIGM-HF and ≤35% for SHIFT. NYHA 2 or 3 symptoms were required for entry into ANTHEM-HF, and patients with predominantly NYHA 2 or 3 symptoms were enrolled in PARADIGM-HF and SHIFT. METHODS AND RESULTS Data on BPT were obtained from peer-reviewed publications and the public domain. Pearson's χ2 test was used to evaluate differences in proportions, and Student's unpaired t-test was used to evaluate differences in mean values. The minimum period of stable GDMT required before randomization was longer in ANTHEM-HF: 3 months vs. 1 month in PARADIGM-HF and SHIFT, respectively. When compared with PARADIGM-HF and SHIFT, more patients in ANTHEM-HF received beta-blockers (100% vs. 93% and 89%, P < 0.04 and P < 0.007) and mineralocorticoid receptor antagonists (75% vs. 55% and 61%, P < 0.002 and P < 0.03). More patients in PARADIGM-HF received an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker than in ANTHEM-HF or SHIFT (100% vs. 85%, P < 0.0001, and 100% vs. 91%, P < 0.001), which was related to PARADIGM's design. When beta-blocker doses in ANTHEM-HF and SHIFT were compared, significantly fewer patients in ANTHEM-HF received doses ≥100% of target (10% vs. 23%, P < 0.02), and fewer patients tended to receive doses ≥50% of target (17% vs. 26%, P = 0.11). When ANTHEM-HF and PARADIGM-HF were compared, more patients in ANTHEM-HF tended to receive doses ≥100% of target (10% vs. 7%, P = 0.36), and fewer patients tended to receive doses ≥50% of target (17% vs. 20%, P = 0.56). CONCLUSIONS Background treatment with GDMT in ANTHEM-HF compared favourably with that in two other contemporary trials of new HF therapies. The minimum period of stable GDMT required before randomization was longer, and GDMT remained unchanged for the study's duration. These findings serve to further support the potential role of autonomic regulation therapy as an adjunct to GDMT for patients with HFrEF.
Collapse
Affiliation(s)
| | - Kamal Sharma
- Sanjivani Super Specialty Hospitals, Ahmedabad, India
| | | | | | | | | | | | | | | | | | - Inder S Anand
- University of Minnesota (Emeritus), Minneapolis, MN, USA
| |
Collapse
|
89
|
Wang Y, Po SS, Scherlag BJ, Yu L, Jiang H. The role of low-level vagus nerve stimulation in cardiac therapy. Expert Rev Med Devices 2019; 16:675-682. [PMID: 31306049 DOI: 10.1080/17434440.2019.1643234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: Cardiovascular diseases are accompanied by autonomic nervous system (ANS) imbalance which is characterized by decreased vagal tone. Preclinical and clinical studies have revealed that increasing vagal activity via vagus nerve stimulation (VNS) could protect the heart. Based on these studies, VNS has emerged as a potential non-pharmaceutical treatment strategy. Although it's still difficult to find the optimal stimulus parameters, however, in arrhythmia model, it is reported that low-level VNS (LL-VNS) exacts paradoxical effects from the high-level VNS. Thus, the concept of LL-VNS is introduced. Areas covered: Animal and human studies have discussed the safety and efficacy of VNS and LL-VNS, and this review will discuss the research data in cardiovascular diseases, including atrial arrhythmia, ventricular arrhythmia, ischemia/reperfusion injury, heart failure, and hypertension. Expert opinion: In this regard, various clinical studies have been performed to verify the safety and efficacy of VNS. It is shown that VNS is well-tolerated and safe, but the results of its efficacy are conflicting, which may well block the translational process of VNS. The appearance of LL-VNS brings new idea and inspiration, suggesting an important role of subthreshold stimulation. A better understanding of the LL-VNS will contribute to translational research of VNS.
Collapse
Affiliation(s)
- Yuhong Wang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China.,b Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University , Harbin , China
| | - Sunny S Po
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Benjamin J Scherlag
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Lilei Yu
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| | - Hong Jiang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| |
Collapse
|
90
|
Musselman ED, Pelot NA, Grill WM. Empirically Based Guidelines for Selecting Vagus Nerve Stimulation Parameters in Epilepsy and Heart Failure. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034264. [PMID: 30181356 DOI: 10.1101/cshperspect.a034264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vagus nerve stimulation (VNS) is a promising therapy to treat patients with epilepsy and heart failure. Outcomes of preclinical studies and clinical trials indicate that the selection of stimulation parameters has a direct impact on therapeutic efficacy and patient tolerability, suggesting that both the efficacy and tolerability of VNS could potentially be improved with a change in stimulation parameters. In this review, the success of translating stimulation parameters for epilepsy and heart failure from preclinical studies in animal models to human use in the clinic is evaluated on the basis of patient outcomes and stimulation-induced side effects. Data suggest that patients receiving VNS for epilepsy may experience improved seizure reduction by increasing the frequency and/or duty cycle of stimulation as well as incorporating closed-loop systems to deliver stimulation closer to seizure onset. Further, data suggest that VNS for heart failure is limited by the inability to activate the nerve fibers mediating therapeutic benefit without co-activation of side effect-inducing fibers. This may explain why pivotal trials of VNS for heart failure failed to meet primary efficacy outcomes despite promising preclinical outcomes in animal models. Improved characterization of the relationship between the stimulation parameter space and recruitment of the underlying fiber populations will likely expand the use of VNS to treat a variety of diseases and also improve upon current understanding of the mechanisms of action underlying VNS.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708.,Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708.,Department of Neurobiology, Duke University, Durham, North Carolina 27708.,Department of Neurosurgery, Duke University, Durham, North Carolina 27708
| |
Collapse
|
91
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
92
|
Abstract
There is a bidirectional relationship between affective disorders and cardiovascular abnormalities, often described as a downward spiral, whereas major depressive disorders (MDD, and anxiety disorders) significantly increase the risk of developing cardiovascular diseases (CVD); CVD are also associated with increased risk of developing MDD (and anxiety disorders). Moreover, the prognosis and progression of CVD is significantly worsened in the presence of MDD. Heart rate variability (HRV) has often been suggested as a potential mediator in this comorbidity. In this review, we discuss HRV alterations in MDD. However, we mainly focus on the direct relationship between HRV alterations and psychiatric symptoms, rather than its relationship with CVD, as this has been reviewed elsewhere. After a general introduction to HRV and how it can be measured, we review how HRV is altered in MDD. We subsequently describe how antidepressant drugs affect HRV, showing that some classes (such as tricyclics) generally worsen HRV, whereas others (most notably selective serotonin reuptake inhibitors) have a more positive influence. We also review the effects of several other treatments, with a special focus on vagal nerve stimulation, finishing with some further considerations and recommendation for further research, both in humans and animals.
Collapse
|
93
|
Abstract
Heart failure (HF) is one of the most prevalent cardiovascular diseases and is associated with high morbidity and mortality. Mechanistically, HF is characterized by an overactive sympathetic nervous system and parasympathetic withdrawal, and this autonomic imbalance contributes to the progression of the disease. As such, modulation of autonomic nervous system by device-based therapy is an attractive treatment target. In this review, we discuss the role of autonomic nervous system dysfunction in the pathogenesis of HF and present the available evidence regarding vagus nerve stimulation for HF, with special emphasis on optimization of stimulation parameters. Finally, we discuss future avenues of research for neuromodulation in patients with HF.
Collapse
Affiliation(s)
- Zain UA Asad
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
94
|
Devgun J, Jobanputra YB, Arustamyan M, Chait R, Ghumman W. Devices and interventions for the prevention of adverse outcomes of tachycardia on heart failure. Heart Fail Rev 2019; 23:507-516. [PMID: 29430580 DOI: 10.1007/s10741-018-9680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is the leading cause of hospitalization in the USA. Despite advances in pharmacologic management, the incidence of HF is on the rise and survivability is persistently reduced. Sympathetic overdrive is implicated in the pathophysiology of HF, particularly HF with reduced ejection fraction (HFrEF). Tachycardia can be particularly deleterious and thus has spurred significant investigation to mitigate its effects. Various modalities including vagus nerve stimulation, baroreceptor activation therapy, spinal cord stimulation, renal sympathetic nerve denervation, left cardiac sympathetic denervation, and carotid body removal will be discussed. However, the effects of these modalities on tachycardia and its outcomes in HFrEF have not been well-studied. Further studies to characterize this are necessary in the future.
Collapse
Affiliation(s)
- Jasneet Devgun
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Avenue Third Floor, Columbus, OH, 43210, USA.
| | - Yash B Jobanputra
- Department of Internal Medicine, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | | | - Robert Chait
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | - Waqas Ghumman
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| |
Collapse
|
95
|
Liu L, Zhao M, Yu X, Zang W. Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neurosci Bull 2019; 35:156-166. [PMID: 30218283 PMCID: PMC6357265 DOI: 10.1007/s12264-018-0286-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular diseases are life-threatening illnesses with high morbidity and mortality. Suppressed vagal (parasympathetic) activity and increased sympathetic activity are involved in these diseases. Currently, pharmacological interventions primarily aim to inhibit over-excitation of sympathetic nerves, while vagal modulation has been largely neglected. Many studies have demonstrated that increased vagal activity reduces cardiovascular risk factors in both animal models and human patients. Therefore, the improvement of vagal activity may be an alternate approach for the treatment of cardiovascular diseases. However, drugs used for vagus nerve activation in cardiovascular diseases are limited in the clinic. In this review, we provide an overview of the potential drug targets for modulating vagal nerve activation, including muscarinic, and β-adrenergic receptors. In addition, vagomimetic drugs (such as choline, acetylcholine, and pyridostigmine) and the mechanism underlying their cardiovascular protective effects are also discussed.
Collapse
Affiliation(s)
- Longzhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
96
|
Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Front Physiol 2019; 10:25. [PMID: 30766489 PMCID: PMC6365472 DOI: 10.3389/fphys.2019.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic hypertension (HTN) affects more than 1 billion people worldwide, and is associated with an increased risk of cardiovascular disease. Despite decades of promising research, effective treatment of HTN remains challenging. This work investigates vagus nerve stimulation (VNS) as a novel, device-based therapy for HTN treatment, and specifically evaluates its effects on long-term survival and HTN-associated adverse effects. HTN was induced in Dahl salt-sensitive rats using a high-salt diet, and the rats were randomly divided into two groups: VNS (n = 9) and Sham (n = 8), which were implanted with functional or non-functional VNS stimulators, respectively. Acute and chronic effects of VNS therapy were evaluated through continuous monitoring of blood pressure (BP) and ECG via telemetry devices. Autonomic tone was quantified using heart rate (HR), HR variability (HRV) and baroreflex sensitivity (BRS) analysis. Structural cardiac changes were quantified through gross morphology and histology studies. VNS significantly improved the long-term survival of hypertensive rats, increasing median event-free survival by 78% in comparison to Sham rats. Acutely, VNS improved autonomic balance by significantly increasing HRV during stimulation, which may lead to beneficial chronic effects of VNS therapy. Chronic VNS therapy slowed the progression of HTN through an attenuation of SBP and by preserving HRV. Finally, VNS significantly altered cardiac structure, increasing heart weight, but did not alter the amount of fibrosis in the hypertensive hearts. These results suggest that VNS has the potential to improve outcomes in subjects with severe HTN.
Collapse
Affiliation(s)
- Elizabeth M Annoni
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Dusty Van Helden
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Yugene Guo
- Department of Biology, University of Minnesota, Minneapolis, MN, United States
| | - Brett Levac
- Department of Electrical Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | | | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
97
|
Zhao Q, Zhang S, Zhao H, Zhang S, Dai Z, Qian Y, Zhang Y, Wang X, Tang Y, Huang C. Median nerve stimulation prevents atrial electrical remodelling and inflammation in a canine model with rapid atrial pacing. Europace 2019; 20:712-718. [PMID: 28379329 DOI: 10.1093/europace/eux003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Aims Studies have shown that stellate ganglion nerve activity has association with atrial electrical remodelling and atrial fibrillation (AF) inducibility, while median nerve stimulation (MNS) decreases cardiac sympathetic drive. In this study, we tested the hypothesis that MNS suppresses atrial electrical remodelling and AF vulnerability. Methods and results The atrial effective refractory period (AERP) and AF inducibility at baseline and after 3 h of rapid atrial pacing were determined in dogs undergoing MNS (n = 7), MNS+ application of methyllycaconitine (n = 7) or sham procedure (n = 6). Then, the levels of tumour necrosis factor-alpha (TNF-a), interleukin-6 (IL-6), and acetylcholine (Ach) in the plasma and atrial tissues were measured. The control dogs (n = 4) were assigned to measure atrial inflammation cytokines. Short-term rapid atrial pacing induced shortening of the AERP, an increase in AERP dispersion, and an increase AF vulnerability in the sham dogs, which were all suppressed by MNS. Levels of TNF-a and IL-6 were higher, and Ach levels were lower in the left and the right atrium in the sham dogs than in the MNS dogs. Methyllycaconitine blunted the effects of MNS on the AERP, AERP dispersion, the AF vulnerability, and TNF-a and IL-6 levels in the atrium, but had no impact on the levels of Ach. Conclusions The effects of MNS on atrial electrical remodelling and AF inducibility might be associated with the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Shujuan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Zixuan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Yongsheng Qian
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Youjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City 430060, PR China
| |
Collapse
|
98
|
Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, George MS, Bikson M. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp 2019. [PMID: 30663712 DOI: 10.3791/58984] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) may be administered via a novel, emerging neuromodulatory technique known as transcutaneous auricular vagus nerve stimulation (taVNS). Unlike cervically-implanted VNS, taVNS is an inexpensive and non-surgical method used to modulate the vagus system. taVNS is appealing as it allows for rapid translation of basic VNS research and serves as a safe, inexpensive, and portable neurostimulation system for the future treatment of central and peripheral disease. The background and rationale for taVNS is described, along with electrical and parametric considerations, proper ear targeting and attachment of stimulation electrodes, individual dosing via determination of perception threshold (PT), and safe administration of taVNS.
Collapse
Affiliation(s)
- Bashar W Badran
- Department of Biomedical Engineering, City College of New York; U.S. Army Research Laboratory, Aberdeen Proving Ground; Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina;
| | - Alfred B Yu
- U.S. Army Research Laboratory, Aberdeen Proving Ground
| | - Devin Adair
- Department of Biomedical Engineering, City College of New York
| | - Georgia Mappin
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina
| | - William H DeVries
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina
| | | | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina; Department of Neurology, Medical University of South Carolina; Ralph H. Johnson VA Medical Center
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York
| |
Collapse
|
99
|
Abbott TEF, Pearse RM, Cuthbertson BH, Wijeysundera DN, Ackland GL. Cardiac vagal dysfunction and myocardial injury after non-cardiac surgery: a planned secondary analysis of the measurement of Exercise Tolerance before surgery study. Br J Anaesth 2018; 122:188-197. [PMID: 30686304 PMCID: PMC6354047 DOI: 10.1016/j.bja.2018.10.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background The aetiology of perioperative myocardial injury is poorly understood and not clearly linked to pre-existing cardiovascular disease. We hypothesised that loss of cardioprotective vagal tone [defined by impaired heart rate recovery ≤12 beats min−1 (HRR ≤12) 1 min after cessation of preoperative cardiopulmonary exercise testing] was associated with perioperative myocardial injury. Methods We conducted a pre-defined, secondary analysis of a multi-centre prospective cohort study of preoperative cardiopulmonary exercise testing. Participants were aged ≥40 yr undergoing non-cardiac surgery. The exposure was impaired HRR (HRR≤12). The primary outcome was postoperative myocardial injury, defined by serum troponin concentration within 72 h after surgery. The analysis accounted for established markers of cardiac risk [Revised Cardiac Risk Index (RCRI), N-terminal pro-brain natriuretic peptide (NT pro-BNP)]. Results A total of 1326 participants were included [mean age (standard deviation), 64 (10) yr], of whom 816 (61.5%) were male. HRR≤12 occurred in 548 patients (41.3%). Myocardial injury was more frequent amongst patients with HRR≤12 [85/548 (15.5%) vs HRR>12: 83/778 (10.7%); odds ratio (OR), 1.50 (1.08–2.08); P=0.016, adjusted for RCRI). HRR declined progressively in patients with increasing numbers of RCRI factors. Patients with ≥3 RCRI factors were more likely to have HRR≤12 [26/36 (72.2%) vs 0 factors: 167/419 (39.9%); OR, 3.92 (1.84–8.34); P<0.001]. NT pro-BNP greater than a standard prognostic threshold (>300 pg ml−1) was more frequent in patients with HRR≤12 [96/529 (18.1%) vs HRR>12 59/745 (7.9%); OR, 2.58 (1.82–3.64); P<0.001]. Conclusions Impaired HRR is associated with an increased risk of perioperative cardiac injury. These data suggest a mechanistic role for cardiac vagal dysfunction in promoting perioperative myocardial injury.
Collapse
Affiliation(s)
- T E F Abbott
- William Harvey Research Institute, Queen Mary University of London, London, UK; University College London Hospital, London, UK
| | - R M Pearse
- William Harvey Research Institute, Queen Mary University of London, London, UK; Barts Health NHS Trust, London, UK
| | - B H Cuthbertson
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - D N Wijeysundera
- University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Toronto General Hospital, Toronto, ON, Canada
| | - G L Ackland
- William Harvey Research Institute, Queen Mary University of London, London, UK; Barts Health NHS Trust, London, UK.
| | | |
Collapse
|
100
|
Yao G, Kang L, Li J, Long Y, Wei H, Ferreira CA, Jeffery JJ, Lin Y, Cai W, Wang X. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun 2018; 9:5349. [PMID: 30559435 PMCID: PMC6297229 DOI: 10.1038/s41467-018-07764-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo vagus nerve stimulation holds great promise in regulating food intake for obesity treatment. Here we present an implanted vagus nerve stimulation system that is battery-free and spontaneously responsive to stomach movement. The vagus nerve stimulation system comprises a flexible and biocompatible nanogenerator that is attached on the surface of stomach. It generates biphasic electric pulses in responsive to the peristalsis of stomach. The electric signals generated by this device can stimulate the vagal afferent fibers to reduce food intake and achieve weight control. This strategy is successfully demonstrated on rat models. Within 100 days, the average body weight is controlled at 350 g, 38% less than the control groups. This work correlates nerve stimulation with targeted organ functionality through a smart, self-responsive system, and demonstrated highly effective weight control. This work also provides a concept in therapeutic technology using artificial nerve signal generated from coordinated body activities. Developing new technologies for the neuromodulation of the vagus nerve can enable therapeutic strategies for body weight control in obese patients. Here, the authors present a battery-free self-powered implantable vagus nerve stimulation system that electrically responds to stomach movement.
Collapse
Affiliation(s)
- Guang Yao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, People's Republic of China
| | - Lei Kang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.,State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, People's Republic of China
| | - Hao Wei
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Carolina A Ferreira
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
| | - Yuan Lin
- State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, People's Republic of China
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|