51
|
Abstract
Although chitinase-3-like-1 (CHI3L1), predominately produced by epithelial cells and macrophages, is relevant to pulmonary disease in cystic fibrosis (CF), fecal levels have not yet been assessed in children with CF. Fecal CHI3L1 was measured with a commercial immunoassay using fecal samples provided by children with CF and healthy control (HC) children. Higher median (interquartile range) fecal CHI3L1 levels were seen in the 52 children with CF than in the 35 controls: 15.97 (3.34-50.53) ng/g versus 2.93 (2.13-9.27) ng/g ( P = 0.001). Fecal CHI3LI did not differ according to sex. In the children with CF, fecal CHI3L1 levels did not correlate with growth parameters nor were the levels affected by pancreatic insufficiency. Children with CF had higher fecal CHI3L1 levels, suggesting underlying gut inflammation. Further work is required to confirm the current findings and to ascertain the longer-term significance of elevated CHI3L1.
Collapse
|
52
|
Mori G, Delfino D, Pibiri P, Rivetti C, Percudani R. Origin and significance of the human DNase repertoire. Sci Rep 2022; 12:10364. [PMID: 35725583 PMCID: PMC9208542 DOI: 10.1038/s41598-022-14133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The human genome contains four DNase1 and two DNase2 genes. The origin and functional specialization of this repertoire are not fully understood. Here we use genomics and transcriptomics data to infer the evolutionary history of DNases and investigate their biological significance. Both DNase1 and DNase2 families have expanded in vertebrates since ~ 650 million years ago before the divergence of jawless and jawed vertebrates. DNase1, DNase1L1, and DNase1L3 co-existed in jawless fish, whereas DNase1L2 originated in amniotes by tandem duplication of DNase1. Among the non-human DNases, DNase1L4 and newly identified DNase1L5 derived from early duplications that were lost in terrestrial vertebrates. The ancestral gene of the DNase2 family, DNase2b, has been conserved in synteny with the Uox gene across 700 million years of animal evolution,while DNase2 originated in jawless fish. DNase1L1 acquired a GPI-anchor for plasma membrane attachment in bony fishes, and DNase1L3 acquired a C-terminal basic peptide for the degradation of microparticle DNA in jawed vertebrates. The appearance of DNase1L2, with a distinct low pH optimum and skin localization, is among the amniote adaptations to life on land. The expansion of the DNase repertoire in vertebrates meets the diversified demand for DNA debris removal in complex multicellular organisms.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Danila Delfino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Paola Pibiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
53
|
Determination of Cystic Fibrosis Mutation Frequency in Preterm and Term Neonates with Respiratory Tract Problems. Balkan J Med Genet 2022; 24:25-31. [PMID: 36249513 PMCID: PMC9524182 DOI: 10.2478/bjmg-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease. The genetic transition occurs with CF transmembrane conductance regulator (CFTR) gene mutation. We aimed to determine the frequency of CF mutations and also new mutations in the CFTR gene in neonates with respiratory distress. Newborn babies hospitalized due to respiratory distress were included in the patient group. The control group consisted of infants who had no respiratory distress. The CFTR genes of both groups were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods. A total of 40 patients (20 in the patient group and 20 in the control group) were evaluated. The CFTR gene analysis was normal in 16 neonates in the patient group, whereas in others: A46D (c.137C>A) (n = 1), D1312G (c.3935A>G) (n = 1), R117H (c.350G>A) (n = 1), S1426P (c.4276T>C) (n = 1) heterozygotes were detected; CFTR gene analysis was normal at 14 neonates in the control group, whereas in others: E1228G (c.3683A>G) (n = 1), E217G (c.650A>G) (n = 1), E632TfsX9 (c1894_1895delAG) (n = 1), I807M (c.2421 A>G) (n = 2), S573F (c.1718C>T) (n = 1) heterozygotes were detected. There was no significant difference in the patient and control groups’ CFTR gene analysis (p = 0.340). This study demonstrates the importance of CFTR gene analysis in asymptomatic newborn infants for follow-up and early diagnosis of CFTR-related disorders. In this study, a c.1894_1895delAG (E632TfsX9) heterozygous mutation detected in the CFTR gene in an asymptomatic newborn infant, was first encountered in the literature.
Collapse
|
54
|
The role of procalcitonin as a biomarker for acute pulmonary exacerbation in subjects with cystic fibrosis and non-cystic fibrosis bronchiectasis. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Trimble A, Zeman K, Wu J, Ceppe A, Bennett W, Donaldson S. Effect of airway clearance therapies on mucociliary clearance in adults with cystic fibrosis: A randomized controlled trial. PLoS One 2022; 17:e0268622. [PMID: 35594286 PMCID: PMC9122229 DOI: 10.1371/journal.pone.0268622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is an inherited disorder causing impaired mucociliary clearance within the respiratory tract, and is associated with bronchiectasis, chronic respiratory infections, and early death. Airway clearance therapies have long been a cornerstone of management of individuals with CF, although evidence supporting their use is lacking. We designed a randomized controlled trial to quantitatively compare the effects of different forms of airway clearance on mucociliary clearance. METHODS Three different physiotherapy methods to augment cough-clearance were studied in addition to cough-clearance alone: high-frequency chest-wall oscillating vest, oscillatory positive expiratory pressure, and whole-body vibration. We used gamma scintigraphy after inhalation of radiolabeled particles to quantify mucus clearance before, during, and after physiotherapy. As secondary endpoints, we measured concentrations of small molecules in exhaled breath that may impact mucus clearance. RESULTS Ten subjects were enrolled and completed study procedures. No differences were identified between any method of airway clearance, including cough clearance alone. We did identify changes in certain small molecule concentrations in exhaled breath following airway clearance. CONCLUSIONS Due to the limitations of this study, we do not believe the negative results suggest a change in clinical practice with regard to airway clearance. Findings pertaining to small molecules in exhaled breath may serve as future opportunities for study.
Collapse
Affiliation(s)
- Aaron Trimble
- Department of Medicine, Oregon Health and Science University (OHSU), Portland, Oregon, United States of America
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| | - Kirby Zeman
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| | - Jihong Wu
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| | - Agathe Ceppe
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| | - William Bennett
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| | - Scott Donaldson
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, United States of America
| |
Collapse
|
56
|
Keith JD, Henderson AG, Fernandez-Petty CM, Davis JM, Oden AM, Birket SE. Muc5b Contributes to Mucus Abnormality in Rat Models of Cystic Fibrosis. Front Physiol 2022; 13:884166. [PMID: 35574458 PMCID: PMC9096080 DOI: 10.3389/fphys.2022.884166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by excessive and accumulative mucus in the airways. Mucociliary clearance becomes defective as mucus secretions become hyperconcentrated and viscosity increases. The CFTR-knockout (KO) rat has been previously shown to progressively develop delayed mucociliary transport, secondary to increased viscoelasticity of airway secretions. The humanized-G551D CFTR rat model has demonstrated that abnormal mucociliary clearance and hyperviscosity is reversed by ivacaftor treatment. In this study, we sought to identify the components of mucus that changes as the rat ages to contribute to these abnormalities. We found that Muc5b concentrations, and to a lesser extent Muc5ac, in the airway were increased in the KO rat compared to WT, and that Muc5b concentration was directly related to the viscosity of the mucus. Additionally, we found that methacholine administration to the airway exacerbates these characteristics of disease in the KO, but not WT rat trachea. Lastly we determined that at 6 months of age, CF rats had mucus that was adherent to the airway epithelium, a process that is reversed by ivacaftor therapy in the hG551D rat. Overall, these data indicate that accumulation of Muc5b initiates the muco-obstructive process in the CF lung prior to infection.
Collapse
Affiliation(s)
- Johnathan D Keith
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander G Henderson
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney M Fernandez-Petty
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joy M Davis
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley M Oden
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan E Birket
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
57
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
58
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
59
|
Karanth TK, Karanth VKLK, Ward BK, Woodworth BA, Karanth L. Medical interventions for chronic rhinosinusitis in cystic fibrosis. Cochrane Database Syst Rev 2022; 4:CD012979. [PMID: 35390177 PMCID: PMC8989145 DOI: 10.1002/14651858.cd012979.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis frequently occurs in people with cystic fibrosis. Several medical interventions are available for treating chronic rhinosinusitis in people with cystic fibrosis; for example, different concentrations of nasal saline irrigations, topical or oral corticosteroids, antibiotics - including nebulized antibiotics - dornase alfa and modulators of the cystic fibrosis transmembrane conductance regulator (CFTR) (such as lumacaftor, ivacaftor or tezacaftor). However, the efficacy of these interventions is unclear. This is an update of a previously published review. OBJECTIVES The objective of this review is to compare the effects of different medical interventions in people diagnosed with cystic fibrosis and chronic rhinosinusitis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and hand searching of journals and conference abstract books. Date of last search of trials register: 09 September 2021. We also searched ongoing trials databases, other medical databases and the reference lists of relevant articles and reviews. Date of latest additional searches: 22 November 2021. SELECTION CRITERIA Randomized and quasi-randomized trials of different medical interventions compared to each other or to no intervention or to placebo. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials identified for potential inclusion in the review. We planned to conduct data collection and analysis in accordance with Cochrane methods and to independently rate the quality of the evidence for each outcome using the GRADE guidelines. MAIN RESULTS We identified no trials that met the pre-defined inclusion criteria. The most recent searches identified 44 new references, none of which were eligible for inclusion in the current version of this review; 12 studies are listed as excluded and one as ongoing. AUTHORS' CONCLUSIONS We identified no eligible trials assessing the medical interventions in people with cystic fibrosis and chronic rhinosinusitis. High-quality trials are needed which should assess the efficacy of different treatment options detailed above for managing chronic rhinosinusitis, preventing pulmonary exacerbations and improving quality of life in people with cystic fibrosis.
Collapse
Affiliation(s)
| | | | - Bryan K Ward
- Division of Otology, Neurotology and Skull Base Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Laxminarayan Karanth
- Department of Obstetrics and Gynaecology, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Melaka, Malaysia
| |
Collapse
|
60
|
Wucherpfennig L, Triphan SM, Wege S, Kauczor HU, Heussel CP, Schmitt N, Wuennemann F, Mayer VL, Sommerburg O, Mall MA, Eichinger M, Wielpütz MO. Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J Cyst Fibros 2022; 21:1053-1060. [DOI: 10.1016/j.jcf.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
61
|
FitzMaurice TS, McCann C, Nazareth DS, McNamara PS, Walshaw MJ. Use of Dynamic Chest Radiography to Assess Treatment of Pulmonary Exacerbations in Cystic Fibrosis. Radiology 2022; 303:675-681. [PMID: 35289662 DOI: 10.1148/radiol.212641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Although spirometry is an important marker in the management of pulmonary exacerbations in cystic fibrosis (CF), it is a forced maneuver and can generate aerosol. Therefore, it may be difficult to perform in some individuals. Dynamic chest radiography (DCR) provides real-time information regarding pulmonary dynamics alongside fluoroscopic-style thoracic imaging. Purpose To assess the effect of pulmonary exacerbation treatment by using both spirometry and DCR and assess the clinical utility of DCR in participants with CF experiencing pulmonary exacerbations. Materials and Methods In this prospective, observational, single-center pilot study, spirometry and DCR were performed before and after treatment of pulmonary exacerbations in participants with CF between December 2019 and August 2020. Spirometry measured forced expiratory volume in 1 second (FEV1) and forced vital capacity. DCR helped to measure projected lung area (PLA), hemidiaphragm midpoint position, and speed during tidal and deep breathing. Data were analyzed by using the paired t test or Wilcoxon signed-rank test. Correlation was assessed by using the Spearman rank correlation coefficient. Results Twenty participants with CF (mean age, 25 years ± 7 [standard deviation]; 14 women) were evaluated. Spirometry showed that percentage predicted FEV1 improved from a median of 44% (interquartile range [IQR], 17%) before treatment to 55% (IQR, 16%) after treatment (P = .004). DCR showed improvement in median deep breathing excursion for left and right hemidiaphragms (from 18 [IQR, 11] to 25 [IQR, 16] mm [P = .03] and from 13 [IQR, 6] to 19 [IQR, 14] mm [P = .03], respectively) and in median expiratory speed following deep breathing for left and right hemidiaphragms (from 7 [IQR, 2] to 11 [IQR, 5] mm/sec [P = .004] and 6 [IQR, 3] to 9 [IQR, 6] mm/sec [P = .004], respectively). PLA rate of change during full expiration and change in PLA during tidal breathing improved (from a mean of 42 cm2/sec ± 16 to 56 cm2/sec ± 24 [P = .03] and from a mean of 29 cm2 ± 14 to 35 cm2 ± 10 [P = .03], respectively). Conclusion Dynamic chest radiography demonstrated improvement in diaphragm speed and range of chest wall movement during respiration aftere treatment for pulmonary exacerbations in cystic fibrosis and showed potential as a tool to investigate the effect of pulmonary exacerbations on lung mechanics. Clinical trials registration no. NCT01234567 Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Thomas Simon FitzMaurice
- From the Adult CF Unit (T.S.F., D.S.N., M.J.W.) and Department of Radiology (C.M.), Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK; Institute of Life Course and Medical Sciences (T.S.F., P.S.M.) and Institute of Infection and Global Health (D.S.N., M.J.W.), University of Liverpool, Liverpool, UK; and Institute in the Park (University of Liverpool), Alder Hey Children's Hospital, Liverpool, UK (P.S.M.)
| | - Caroline McCann
- From the Adult CF Unit (T.S.F., D.S.N., M.J.W.) and Department of Radiology (C.M.), Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK; Institute of Life Course and Medical Sciences (T.S.F., P.S.M.) and Institute of Infection and Global Health (D.S.N., M.J.W.), University of Liverpool, Liverpool, UK; and Institute in the Park (University of Liverpool), Alder Hey Children's Hospital, Liverpool, UK (P.S.M.)
| | - Dilip S Nazareth
- From the Adult CF Unit (T.S.F., D.S.N., M.J.W.) and Department of Radiology (C.M.), Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK; Institute of Life Course and Medical Sciences (T.S.F., P.S.M.) and Institute of Infection and Global Health (D.S.N., M.J.W.), University of Liverpool, Liverpool, UK; and Institute in the Park (University of Liverpool), Alder Hey Children's Hospital, Liverpool, UK (P.S.M.)
| | - Paul S McNamara
- From the Adult CF Unit (T.S.F., D.S.N., M.J.W.) and Department of Radiology (C.M.), Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK; Institute of Life Course and Medical Sciences (T.S.F., P.S.M.) and Institute of Infection and Global Health (D.S.N., M.J.W.), University of Liverpool, Liverpool, UK; and Institute in the Park (University of Liverpool), Alder Hey Children's Hospital, Liverpool, UK (P.S.M.)
| | - Martin J Walshaw
- From the Adult CF Unit (T.S.F., D.S.N., M.J.W.) and Department of Radiology (C.M.), Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, UK; Institute of Life Course and Medical Sciences (T.S.F., P.S.M.) and Institute of Infection and Global Health (D.S.N., M.J.W.), University of Liverpool, Liverpool, UK; and Institute in the Park (University of Liverpool), Alder Hey Children's Hospital, Liverpool, UK (P.S.M.)
| |
Collapse
|
62
|
O’Connor JB, Mottlowitz M, Kruk ME, Mickelson A, Wagner BD, Harris JK, Wendt CH, Laguna TA. Network Analysis to Identify Multi-Omic Correlations in the Lower Airways of Children With Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:805170. [PMID: 35360097 PMCID: PMC8960254 DOI: 10.3389/fcimb.2022.805170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The leading cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung disease secondary to chronic airway infection and inflammation; however, what drives CF airway infection and inflammation is not well understood. By providing a physiological snapshot of the airway, metabolomics can provide insight into these processes. Linking metabolomic data with microbiome data and phenotypic measures can reveal complex relationships between metabolites, lower airway bacterial communities, and disease outcomes. In this study, we characterize the airway metabolome in bronchoalveolar lavage fluid (BALF) samples from persons with CF (PWCF) and disease control (DC) subjects and use multi-omic network analysis to identify correlations with the airway microbiome. The Biocrates targeted liquid chromatography mass spectrometry (LC-MS) platform was used to measure 409 metabolomic features in BALF obtained during clinically indicated bronchoscopy. Total bacterial load (TBL) was measured using quantitative polymerase chain reaction (qPCR). The Qiagen EZ1 Advanced automated extraction platform was used to extract DNA, and bacterial profiling was performed using 16S sequencing. Differences in metabolomic features across disease groups were assessed univariately using Wilcoxon rank sum tests, and Random forest (RF) was used to identify features that discriminated across the groups. Features were compared to TBL and markers of inflammation, including white blood cell count (WBC) and percent neutrophils. Sparse supervised canonical correlation network analysis (SsCCNet) was used to assess multi-omic correlations. The CF metabolome was characterized by increased amino acids and decreased acylcarnitines. Amino acids and acylcarnitines were also among the features most strongly correlated with inflammation and bacterial burden. RF identified strong metabolomic predictors of CF status, including L-methionine-S-oxide. SsCCNet identified correlations between the metabolome and the microbiome, including correlations between a traditional CF pathogen, Staphylococcus, a group of nontraditional taxa, including Prevotella, and a subnetwork of specific metabolomic markers. In conclusion, our work identified metabolomic characteristics unique to the CF airway and uncovered multi-omic correlations that merit additional study.
Collapse
Affiliation(s)
- John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: John B. O’Connor,
| | - Madison Mottlowitz
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Alan Mickelson
- Department of Medicine, University of Minnesota, Minneapolis VA Medical Center, Minneapolis, MN, United States
| | - Brandie D. Wagner
- School of Medicine, University of Colorado, Aurora, CO, United States
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | | | - Christine H. Wendt
- Department of Medicine, University of Minnesota, Minneapolis VA Medical Center, Minneapolis, MN, United States
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
63
|
Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther 2022; 11:661-682. [PMID: 35150435 PMCID: PMC8960490 DOI: 10.1007/s40121-022-00591-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates are frequent causes of serious nosocomial infections that may compromise the selection of antimicrobial therapy. The goal of this review is to summarize recent epidemiologic, microbiologic, and clinical data pertinent to the therapeutic management of patients with infections caused by MDR/XDR-P. aeruginosa. Historically, conventional antipseudomonal β-lactam antibiotics have been used for the empiric treatment of MDR/XDR-P. aeruginosa. Owing to the remarkable capacity of P. aeruginosa to confer resistance via multiple mechanisms, these traditional therapies are often rendered ineffective. To increase the likelihood of administering empiric antipseudomonal therapy with in vitro activity, a second agent from a different antibiotic class is often administered concomitantly with a traditional antipseudomonal β-lactam. However, combination therapy may pose an increased risk of antibiotic toxicity and secondary infection, notably, Clostridioides difficile. Multiple novel agents that demonstrate in vitro activity against MDR-P. aeruginosa (e.g., β-lactam/β-lactamase inhibitor combinations and cefiderocol) have been recently granted US Food and Drug Administration (FDA) approval and are promising additions to the antipseudomonal armamentarium. Even so, comparative clinical data pertaining to these novel agents is sparse, and concerns surrounding the scarcity of antibiotics active against refractory MDR/XDR-P. aeruginosa necessitates continued assessment of alternative therapies. This is particularly important in patients with cystic fibrosis (CF) who may be chronically colonized and suffer from recurrent infections and disease exacerbations due in part to limited efficacious antipseudomonal agents. Bacteriophages represent a promising candidate for combatting recurrent and refractory infections with their ability to target specific host bacteria and circumvent traditional mechanisms of antibiotic resistance seen in MDR/XDR-P. aeruginosa. Future goals for the management of these infections include increased comparator clinical data of novel agents to determine in what scenario certain agents may be preferred over others. Until then, appropriate treatment of these infections requires a thorough evaluation of patient- and infection-specific factors to guide empiric and definitive therapeutic decisions.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Nicholas Rebold
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
64
|
Henderson AG, Davis JM, Keith JD, Green ME, Oden AM, Rowe SM, Birket SE. Static mucus impairs bacterial clearance and allows chronic infection with Pseudomonas aeruginosa in the cystic fibrosis rat. Eur Respir J 2022; 60:2101032. [PMID: 35115338 PMCID: PMC9944330 DOI: 10.1183/13993003.01032-2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) airway disease is characterised by chronic Pseudomonas aeruginosa infection. Successful eradication strategies have been hampered by a poor understanding of the mechanisms underlying conversion to chronicity. The CFTR-knockout (KO) rat harbors a progressive defect in mucociliary transport and viscosity. KO rats were infected before and after the appearance of the mucus defect, using a clinical, mucoid-isolate of P. aeruginosa embedded in agarose beads. Young KO rats that were exposed to bacteria before the development of mucociliary transport defects resolved the infection and subsequent tissue damage. However, older KO rats that were infected in the presence of hyperviscous and static mucus were unable to eradicate bacteria, but instead had bacterial persistence through 28 days post-infection that was accompanied by airway mucus occlusion and lingering inflammation. Normal rats responded to infection with increased mucociliary transport to supernormal rates, which reduced the severity of a second bacterial exposure. We therefore conclude that the aberrant mucus present in the CF airway permits persistence of P. aeruginosa in the lung.
Collapse
Affiliation(s)
- Alexander G Henderson
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joy M Davis
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Johnathan D Keith
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgan E Green
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley M Oden
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
65
|
Grant JJ, McDade EJ, Zobell JT, Young DC. The indispensable role of pharmacy services and medication therapy management in cystic fibrosis. Pediatr Pulmonol 2022; 57 Suppl 1:S17-S39. [PMID: 34347382 DOI: 10.1002/ppul.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Care for people with cystic fibrosis (PWCF) is highly complex and requires a multidisciplinary approach where the pharmacist plays a vital role. The purpose of this manuscript is to serve as a guideline for pharmacists and pharmacy technicians who provide care for PWCF by providing background and current recommendations for the use of cystic fibrosis (CF)-specific medications in both the acute and ambulatory care settings. The article explores current literature surrounding the role of pharmacists and pharmacy technicians, proven pharmacy models to emulate, and pharmacokinetic idiosyncrasies unique to the CF population while also identifying areas of future research. Clinical recommendations for the use of CF-specific medications are broken down by organ system including mechanism of action, adverse events, dosages, and monitoring parameters. The article also includes quick reference tables essential to the acute and chronic medication therapy management of PWCF.
Collapse
Affiliation(s)
- Jonathan J Grant
- Department of Outpatient Pharmacy-Specialty Services, The John's Hopkins Hospital, Baltimore, Maryland, USA
| | - Erin J McDade
- Pharmacy Department, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffery T Zobell
- Pharmacy Department, Intermountain Primary Children's Hospital, Salt Lake City, Utah, USA
| | - David C Young
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
66
|
Garcia BA, McDaniel MS, Loughran AJ, Johns JD, Narayanaswamy V, Fernandez Petty C, Birket SE, Baker SM, Barnaby R, Stanton BA, Foote JB, Rowe SM, Swords WE. Poly (acetyl, arginyl) glucosamine disrupts Pseudomonas aeruginosa biofilms and enhances bacterial clearance in a rat lung infection model. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35077346 PMCID: PMC8914243 DOI: 10.1099/mic.0.001121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer that has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity, which can normalize the rheological properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, and may warrant further evaluation as a therapeutic.
Collapse
Affiliation(s)
- Bryan A Garcia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa S McDaniel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Allister J Loughran
- Synedgen, Inc., Claremont, CA, USA.,St Jude Children's Research Hospital, Memphis, TN, USA
| | - J Dixon Johns
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cell Developmental and Integrative Physiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shenda M Baker
- Synedgen, Inc., Claremont, CA, USA.,Synspira Therapeutics, Inc., Framingham, MA, USA
| | - Roxanna Barnaby
- Dartmouth Cystic Fibrosis Research Center, New Hanover, NH, USA
| | - Bruce A Stanton
- Dartmouth Cystic Fibrosis Research Center, New Hanover, NH, USA
| | - Jeremy B Foote
- Comparative Pathology Laboratory, at University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cell Developmental and Integrative Physiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - W Edward Swords
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
67
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
68
|
Guerini M, Condrò G, Perugini P. Evaluation of the Mucoadhesive Properties of Chitosan-Based Microstructured Lipid Carrier (CH-MLC). Pharmaceutics 2022; 14:pharmaceutics14010170. [PMID: 35057065 PMCID: PMC8781266 DOI: 10.3390/pharmaceutics14010170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Different mucoadhesive systems have been studied in recent years to increase the residence time of the delivery systems and to prolong the release of the drug. The aim of this work was to evaluate the mucoadhesive properties of chitosan-based Microstructured Lipid Carrier (CH-MLC) with a new approach which requires chitosan and mucin to be compacted into a tablet and mucoadhesion to be assessed on a non-mucoadhesive substrate. This type of test showed that chitosan maintains a close bond with mucin even in the presence of a fluid and even encapsulated in microparticles. After this, using a bioreactor, the release of N-acetylcysteine (NAC) from the microparticles (NA-CH-MLC) through a layer of mucus mimicking the pathological conditions of a patient with cystic fibrosis was tested. The release of the active from NAC-CH-MLC demonstrated how the chitosan inside the microparticles acts as a penetration enhancer and how the microparticles can impart a prolonged release over time.
Collapse
Affiliation(s)
- Marta Guerini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (P.P.)
- Correspondence:
| | - Giorgia Condrò
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (P.P.)
| | - Paola Perugini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (P.P.)
- Etichub, Academic Spin-Off, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
69
|
EVALUATING THE EFFICACY OF HUMAN BRONCHIECTASISBASED ANTIBIOTIC THERAPY IN THE TREATMENT OF ORANGUTAN RESPIRATORY DISEASE SYNDROME. J Zoo Wildl Med 2022; 52:1205-1216. [PMID: 34998290 DOI: 10.1638/2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Unique among apes, orangutans (Pongo spp.) develop a chronic respiratory disease called orangutan respiratory disease syndrome (ORDS). The authors define ORDS as intermittent bacterial infection and chronic inflammation of any region or combination of regions of the respiratory tract, including the sinuses, air sacs, cranial bones, airways, and lung parenchyma. Infection in any of these areas can present acutely but then becomes recurrent, chronic, progressive, and ultimately fatal. The closest model to this disease is cystic fibrosis (CF) in people. We hypothesized that use of a 4-8-wk course of combined oral antibiotics used in the treatment of bronchiectasis in CF patients would lead to prolonged symptomatic and computed tomography (CT) scan improvement in orangutans experiencing early signs of ORDS. Nine adult Bornean orangutans (Pongo pygmaeus, eight males, one female, 18-29 yr of age) diagnosed with early ORDS-like respiratory disease underwent CT scan before initiation of treatment. Each animal received a combined course of azithromycin (400 mg 3/wk, mean 7 mg/kg) and levofloxacin (500 mg PO q24h, mean 8.75 mg/kg) for a period of 4-8 wk. CT scan was repeated 6-14 mon after completion of antibiotic treatment. Pretreatment CT showed that six of nine animals had lower respiratory pathology (airway disease, pneumonia, or both). All six orangutans had concurrent sinusitis, mastoiditis, airsacculitis, or a combination of these conditions. Upper respiratory disease alone was observed in three animals. CT showed improvement or resolution in four of five sinusitis cases, improvement in one of two instances of mastoiditis, resolution in five of six instances of airsacculitis, improvement or resolution in six of six instance of lower airway disease (P = 0.03, 95% CI 0.54-1.0], and resolution in five of five cases of pneumonia. Resolution of pretreatment clinical signs was observed in all nine animals. Two developed signs not present at pretreatment. These results show that combination antibiotic therapy with azithromycin and levofloxacin provides improvement in clinical signs and CT evidence of ORDS-related pathology, resulting in symptom-free status in some animals for up to 33 mon.
Collapse
|
70
|
Poore TS, Meier M, Towler E, Martiniano SL, Brinton JT, DeBoer EM, Sagel SD, Wagner BD, Zemanick ET. Clinical characteristics of people with cystic fibrosis and frequent fungal infection. Pediatr Pulmonol 2022; 57:152-161. [PMID: 34687280 PMCID: PMC8665034 DOI: 10.1002/ppul.25741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Individuals with cystic fibrosis (CF) and fungal airway infection may present with fungal bronchitis, allergic bronchopulmonary aspergillosis (ABPA) or may appear unaffected despite fungal detection. We sought to characterize people with CF with frequent detection of fungi from airway samples and determine clinical outcomes. METHODS This retrospective study included individuals with CF with ≥4 lower airway cultures over a 2-year baseline period and ≥2 years of follow-up. We defined two groups: ≤1 positive fungus culture (rare) or ≥2 positive cultures during baseline (frequent). Clinical characteristics and outcomes were determined. RESULTS Between 2004 and 2016, 294 individuals met inclusion with 62% classified as rare and 38% as frequent fungi during baseline. Median follow-up was 6 years (range: 2-9 years). Aspergillus fumigatus was the most common fungal species detected. Individuals with frequent fungi were older (13.7 vs. 11.7 years, p = .02) and more likely to have Stenotrophomonas maltophilia (35% vs. 17%, p < .001) at baseline, but did not differ in lung function or ABPA diagnosis. During follow-up, those with frequent fungi were more likely to have chronic Pseudomonas aeruginosa and S. maltophilia. Individuals with ABPA and frequent fungi had the highest rates of co-infection and co-morbidities, and a trend towards more rapid lung function decline. DISCUSSION Fungal infection in CF was associated with frequent P. aeruginosa and S. maltophilia co-infection even in those without ABPA. Individuals with frequent fungi and ABPA had worse outcomes, highlighting the potential contribution of fungi to CF pulmonary disease.
Collapse
Affiliation(s)
- T. Spencer Poore
- Division of Pulmonary and Sleep Medicine, Department of PediatricsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Maxene Meier
- Department of Biostatistics and InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Elinor Towler
- Section of Pediatric Pulmonary and Sleep Medicine and Children's Hospital Colorado, Department of PediatricsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Stacey L. Martiniano
- Section of Pediatric Pulmonary and Sleep Medicine and Children's Hospital Colorado, Department of PediatricsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - John T. Brinton
- Department of Biostatistics and InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Emily M. DeBoer
- Section of Pediatric Pulmonary and Sleep Medicine and Children's Hospital Colorado, Department of PediatricsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Scott D. Sagel
- Section of Pediatric Pulmonary and Sleep Medicine and Children's Hospital Colorado, Department of PediatricsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Brandie D. Wagner
- Department of Biostatistics and InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Edith T. Zemanick
- Section of Pediatric Pulmonary and Sleep Medicine and Children's Hospital Colorado, Department of PediatricsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| |
Collapse
|
71
|
Woodley FW, Gecili E, Szczesniak RD, Shrestha CL, Nemastil CJ, Kopp BT, Hayes D. Sweat metabolomics before and after intravenous antibiotics for pulmonary exacerbation in people with cystic fibrosis. Respir Med 2022; 191:106687. [PMID: 34864373 PMCID: PMC8810598 DOI: 10.1016/j.rmed.2021.106687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND People with cystic fibrosis (PWCF) suffer from acute unpredictable reductions in pulmonary function associated with a pulmonary exacerbation (PEx) that may require hospitalization. PEx symptoms vary between PWCF without universal diagnostic criteria for diagnosis and response to treatment. RESEARCH QUESTION We characterized sweat metabolomes before and after intravenous (IV) antibiotics in PWCF hospitalized for PEx to determine feasibility and define biological alterations by IV antibiotics for PEx. STUDY DESIGN AND METHODS PWCF with PEx requiring hospitalization for IV antibiotics were recruited from clinic. Sweat samples were collected using the Macroduct® Sweat Collection System at admission prior to initiation of IV antibiotics and after completion prior to discharge. Samples were analyzed for metabolite changes using ultra-high-performance liquid chromatography/tandem accurate mass spectrometry. RESULTS Twenty-six of 29 hospitalized PWCF completed the entire study. A total of 326 compounds of known identity were detected in sweat samples. Of detected metabolites, 147 were significantly different between pre-initiation and post-completion of IV antibiotics for PEx (average treatment 14 days). Global sweat metabolomes changed from before and after IV antibiotic treatment. We discovered specific metabolite profiles predictive of PEx status as well as enriched biologic pathways associated with PEx. However, metabolomic changes were similar in PWCF who failed to return to baseline pulmonary function and those who did not. INTERPRETATION Our findings demonstrate the feasibility of non-invasive sweat metabolomic profiling in PWCF and the potential for sweat metabolomics as a prospective diagnostic and research tool to further advance our understanding of PEx in PWCF.
Collapse
Affiliation(s)
- Frederick W. Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emrah Gecili
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rhonda D. Szczesniak
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chandra L. Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher J. Nemastil
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T. Kopp
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA,Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
72
|
Secor PR, Michaels LA, Bublitz DC, Jennings LK, Singh PK. The Depletion Mechanism Actuates Bacterial Aggregation by Exopolysaccharides and Determines Species Distribution & Composition in Bacterial Aggregates. Front Cell Infect Microbiol 2022; 12:869736. [PMID: 35782109 PMCID: PMC9243289 DOI: 10.3389/fcimb.2022.869736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.
Collapse
Affiliation(s)
- Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Lia A Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Pradeep K Singh
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
73
|
Paes Leme RC, Chaves JRE, Gonçalves LCS, Alvim LC, Almeida JRCD, Renó LDC. Diabetic foot infection caused by bacteria of the Burkholderia cepacia complex: report of an unusual case and a scoping literature review. Rev Inst Med Trop Sao Paulo 2022; 64:e36. [PMID: 35674634 PMCID: PMC9173686 DOI: 10.1590/s1678-9946202264036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Burkholderia cepacia complex (BCC) is group of widespread gram-negative bacillus organized in over 20 phylogenetically distinct bacterial species. According to previous studies, BCC species pathogens are widely reported in patients with cystic fibrosis (CF), but not in individuals with diabetes mellitus (DM). In this case report, a 42-year-old male patient with DM and a foot infection caused by BCC is presented. The patient was hospitalized after antibiotic treatment failure and improved after two surgical debridement procedures and a high-dose extended infusion (EI) of meropenem. The team of vascular surgeons and the infectious disease specialists worked fervently to solve the case. Finally, a scoping review was conducted to map BCC infections in patients with DM.
Collapse
|
74
|
Piechowiak MB, Brown AW, Aryal S, Katugaha SB. Lung nodules due to Candida parapsilosis in a person with cystic fibrosis. BMJ Case Rep 2021; 14:e245441. [PMID: 34972773 PMCID: PMC8720950 DOI: 10.1136/bcr-2021-245441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
We present the first reported case of Candida parapsilosis pulmonary infection presenting as lung nodules. The patient is a 31-year-old man with cystic fibrosis (CF) colonised with multidrug-resistant Escherichia coli and increased frequency of pulmonary exacerbations in the preceding months. While on intravenous antibiotics for a pulmonary exacerbation, he developed bilateral pulmonary nodules. Bronchoalveolar lavage cultures grew C. parapsilosis He was initially treated with dual antifungal therapy, voriconazole and micafungin. Discontinuation of voriconazole due to transaminitis resulted in the development of new nodules, and isavuconazonium was added. Repeat imaging revealed no progression of disease. Micafungin was eventually discontinued. Monotherapy with isavuconazonium is planned for 1 year post lung transplant. In the CF population, C. parapsilosis may be an opportunistic pathogen. The case highlights that frequent CF exacerbations and antibiotic exposure increase the risk for opportunistic infections including Candida species and the implications for lung transplantation in this setting.
Collapse
Affiliation(s)
| | - Anne Whitney Brown
- Adult Cystic Fibrosis Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Shambhu Aryal
- Adult Cystic Fibrosis Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Shalika Basnayake Katugaha
- Adult Cystic Fibrosis Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
- Division of Infectious Diseases, Baptist Health, Jacksonville, Florida, USA
| |
Collapse
|
75
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
76
|
Vassilopoulos A, Swartz M, Paranjape S, Slifer KJ. Adolescent and caregiver mental health, pulmonary function, and healthcare utilization in pediatric cystic fibrosis. CHILDRENS HEALTH CARE 2021. [DOI: 10.1080/02739615.2021.2002695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Melissa Swartz
- Pediatric Psychology, Golisano Children’s Hospital of Southwest Florida, Fort Myers, FL, USA
| | - Shruti Paranjape
- Division of Pediatric Pulmonology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keith J. Slifer
- Department of Behavior Psychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Division of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
77
|
Liu M, Zaman R, Sawczak V, Periasamy A, Sun F, Zaman K. S-nitrosothiols signaling in cystic fibrosis airways. J Biosci 2021. [DOI: 10.1007/s12038-021-00223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Beauruelle C, Lamoureux C, Mashi A, Ramel S, Le Bihan J, Ropars T, Dirou A, Banerjee A, Tandé D, Le Bars H, Héry-Arnaud G. In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms 2021; 9:microorganisms9122473. [PMID: 34946075 PMCID: PMC8703882 DOI: 10.3390/microorganisms9122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria belonging to the genus Achromobacter are increasingly isolated from respiratory samples of people with cystic fibrosis (PWCF). The management of this multidrug-resistant genus is challenging and characterised by a lack of international recommendations, therapeutic guidelines and data concerning antibiotic susceptibility, especially concerning the newer antibiotics. The objective of this study was to describe the antibiotic susceptibility of Achromobacter isolates from PWCF, including susceptibility to new antibiotics. The minimum inhibitory concentrations (MICs) of 22 antibiotics were determined for a panel of 23 Achromobacter isolates from 19 respiratory samples of PWCF. Two microdilution MIC plates were used: EUMDROXF® plate (Sensititre) and Micronaut-S Pseudomonas MIC® plate (Merlin) and completed by a third method if necessary (E-test® or UMIC®). Among usual antimicrobial agents, the most active was imipenem (70% susceptibility). Trimethoprim-sulfamethoxazole, piperacillin and tigecycline (65%, 56% and 52% susceptibility, respectively) were still useful for the treatment of Achromobacter infections. Among new therapeutic options, β-lactams combined with a β-lactamase-inhibitor did not bring benefits compared to β-lactam alone. On the other hand, cefiderocol appeared as a promising therapeutic alternative for managing Achromobacter infections in PWCF. This study provides the first results on the susceptibility of clinical Achromobacter isolates concerning new antibiotics. More microbiological and clinical data are required to establish the optimal treatment of Achromobacter infections.
Collapse
Affiliation(s)
- Clémence Beauruelle
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
- Correspondence: ; Tel.:+332-98-14-51-05
| | - Claudie Lamoureux
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Arsid Mashi
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Jean Le Bihan
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Thomas Ropars
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anne Dirou
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anandadev Banerjee
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Didier Tandé
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Hervé Le Bars
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Geneviève Héry-Arnaud
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| |
Collapse
|
79
|
A Polyclonal Antibody Raised against the Burkholderia cenocepacia OmpA-like Protein BCAL2645 Impairs the Bacterium Adhesion and Invasion of Human Epithelial Cells In Vitro. Biomedicines 2021; 9:biomedicines9121788. [PMID: 34944603 PMCID: PMC8698911 DOI: 10.3390/biomedicines9121788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain a life threat to cystic fibrosis (CF) patients, due to the faster lung function decline and the absence of effective eradication strategies. Immunotherapies are regarded as an attractive alternative to control and reduce the damages caused by these infections. In this work, we report the cloning and functional characterization of the OmpA-like BCAL2645 protein, previously identified and found to be immunoreactive against sera from CF patients with a record of Bcc infections. The BCAL2645 protein is shown to play a role in biofilm formation, adherence to mucins and invasion of human lung epithelial cells. The expression of the BCAL2645 protein was found to be increased in culture medium, mimicking the lungs of CF patients and microaerophilic conditions characteristic of the CF lung. Moreover, a polyclonal antibody raised against BCAL2645 was found to inhibit, by about 75 and 85%, the ability of B. cenocepacia K56-2 to bind and invade in vitro CFBE41o- human bronchial epithelial cells. These results highlight the potential of anti-BCAL2645 antibodies for the development of passive immunization therapies to protect CF patients against Bcc infections.
Collapse
|
80
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
81
|
Bacci G, Rossi A, Armanini F, Cangioli L, De Fino I, Segata N, Mengoni A, Bragonzi A, Bevivino A. Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis. Int J Mol Sci 2021; 22:ijms222212169. [PMID: 34830048 PMCID: PMC8625166 DOI: 10.3390/ijms222212169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) disease leads to altered lung and gut microbiomes compared to healthy subjects. The magnitude of this dysbiosis is influenced by organ-specific microenvironmental conditions at different stages of the disease. However, how this gut-lung dysbiosis is influenced by Pseudomonas aeruginosa chronic infection is unclear. To test the relationship between CFTR dysfunction and gut-lung microbiome under chronic infection, we established a model of P. aeruginosa infection in wild-type (WT) and gut-corrected CF mice. Using 16S ribosomal RNA gene, we compared lung, stool, and gut microbiota of C57Bl/6 Cftr tm1UNCTgN(FABPCFTR) or WT mice at the naïve state or infected with P. aeruginosa. P. aeruginosa infection influences murine health significantly changing body weight both in CF and WT mice. Both stool and gut microbiota revealed significantly higher values of alpha diversity in WT mice than in CF mice, while lung microbiota showed similar values. Infection with P. aeruginosa did not changed the diversity of the stool and gut microbiota, while a drop of diversity of the lung microbiota was observed compared to non-infected mice. However, the taxonomic composition of gut microbiota was shown to be influenced by P. aeruginosa infection in CF mice but not in WT mice. This finding indicates that P. aeruginosa chronic infection has a major impact on microbiota diversity and composition in the lung. In the gut, CFTR genotype and P. aeruginosa infection affected the overall diversity and taxonomic microbiota composition, respectively. Overall, our results suggest a cross-talk between lung and gut microbiota in relation to P. aeruginosa chronic infection and CFTR mutation.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (G.B.); (L.C.); (A.M.)
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.R.); (I.D.F.); (A.B.)
| | - Federica Armanini
- Department CIBIO, University of Trento, 38122 Trento, Italy; (F.A.); (N.S.)
| | - Lisa Cangioli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (G.B.); (L.C.); (A.M.)
| | - Ida De Fino
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.R.); (I.D.F.); (A.B.)
| | - Nicola Segata
- Department CIBIO, University of Trento, 38122 Trento, Italy; (F.A.); (N.S.)
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (G.B.); (L.C.); (A.M.)
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.R.); (I.D.F.); (A.B.)
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, Italy
- Correspondence: ; Tel.: +39-0630-483-868
| |
Collapse
|
82
|
Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome. Int J Mol Sci 2021; 22:ijms222112050. [PMID: 34769481 PMCID: PMC8584531 DOI: 10.3390/ijms222112050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.
Collapse
|
83
|
Bozzella MJ, Chaney H, Sami I, Koumbourlis A, Bost JE, Zemanick ET, Freishtat RJ, Crandall KA, Hahn A. Impact of Anaerobic Antibacterial Spectrum on Cystic Fibrosis Airway Microbiome Diversity and Pulmonary Function. Pediatr Infect Dis J 2021; 40:962-968. [PMID: 34269323 PMCID: PMC8511214 DOI: 10.1097/inf.0000000000003211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The role of anaerobic organisms in the cystic fibrosis (CF) lung microbiome is unclear. Our objectives were to investigate the effect of broad (BS) versus narrow (NS) spectrum antianaerobic antibiotic activity on lung microbiome diversity and pulmonary function, hypothesizing that BS antibiotics would cause greater change in microbiome diversity without a significant improvement in lung function. METHODS Pulmonary function tests and respiratory samples were collected prospectively in persons with CF before and after treatment for pulmonary exacerbations. Treatment antibiotics were classified as BS or NS. Gene sequencing data from 16S rRNA were used for diversity analysis and bacterial genera classification. We compared the effects of BS versus NS on diversity indices, lung function and anaerobic/aerobic ratios. Statistical significance was determined by multilevel mixed-effects generalized linear models and mixed-effects regression models. RESULTS Twenty patients, 6-20 years of age, experienced 30 exacerbations. BS therapy had a greater effect on beta diversity than NS therapy when comparing time points before antibiotics to after and at recovery. After antibiotics, the NS therapy group had a greater return toward baseline forced expiratory volume at 1 second and forced expiratory flow 25%-75% values than the BS group. The ratio of anaerobic/aerobic organisms showed a predominance of anaerobes in the NS group with aerobes dominating in the BS group. CONCLUSIONS BS antianaerobic therapy had a greater and possibly longer lasting effect on the lung microbiome of persons with CF, without achieving the recovery of pulmonary function seen with the NS therapy. Specific antibiotic therapies may affect disease progression by changing the airway microbiome.
Collapse
Affiliation(s)
| | - Hollis Chaney
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Iman Sami
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Anastassios Koumbourlis
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - James E. Bost
- The George Washington University School of Medicine and Health Sciences
- Division of Biostatistics and Study Methodology, Children’s National Hospital
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Robert J. Freishtat
- The George Washington University School of Medicine and Health Sciences
- Division of Emergency Medicine, Children’s National Hospital
| | - Keith. A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University
| | - Andrea Hahn
- Division of Infectious Diseases, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| |
Collapse
|
84
|
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178:113973. [PMID: 34530014 DOI: 10.1016/j.addr.2021.113973] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial communities (biofilms) are a particular concern in this context. Biofilms are responsible for most human infections and are inherently less susceptible to antibiotic treatments. Biofilms have been linked with several challenging chronic diseases, including implant-associated osteomyelitis and chronic wounds. The specific local environments present in the infected tissues further contribute to the rise in antibiotic resistance by limiting the efficacy of systemic antibiotic therapies and reducing drug concentrations at the infection site, which can lead to reoccurring infections. To overcome the shortcomings of systemic drug delivery, encapsulation within polymeric carriers has been shown to enhance antimicrobial efficacy, permeation and retention at the infection site. In this Review, we present an overview of current strategies for antimicrobial encapsulation within polymeric carriers, comparing challenges and solutions on a tissue-by-tissue basis. We compare challenges and proposed drug delivery solutions from the perspective of the local environments for biofilms found in oral, wound, gastric, urinary tract, bone, pulmonary, vaginal, ocular and middle/inner ear tissues. We will also discuss future challenges and barriers to clinical translation for these therapeutics. The following Review demonstrates there is a significant imbalance between the research focus being placed on different tissue types, with some targets (oral and wound biofims) being extensively more studied than others (vaginal and otitis media biofilms and endocarditis). Furthermore, the importance of the local tissue environment when selecting target therapies is demonstrated, with some materials being optimal choices for certain sites of bacterial infection, while having limited applicability in others.
Collapse
|
85
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
86
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
87
|
O’Connor JB, Mottlowitz MM, Wagner BD, Boyne KL, Stevens MJ, Robertson CE, Harris JK, Laguna TA. Divergence of bacterial communities in the lower airways of CF patients in early childhood. PLoS One 2021; 16:e0257838. [PMID: 34613995 PMCID: PMC8494354 DOI: 10.1371/journal.pone.0257838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale Chronic airway infection and inflammation resulting in progressive, obstructive lung disease is the leading cause of morbidity and mortality in cystic fibrosis. Understanding the lower airway microbiota across the ages can provide valuable insight and potential therapeutic targets. Objectives To characterize and compare the lower airway microbiota in cystic fibrosis and disease control subjects across the pediatric age spectrum. Methods Bronchoalveolar lavage fluid samples from 191 subjects (63 with cystic fibrosis) aged 0 to 21 years were collected along with relevant clinical data. We measured total bacterial load using quantitative polymerase chain reaction and performed 16S rRNA gene sequencing to characterize bacterial communities with species-level sensitivity for select genera. Clinical comparisons were investigated. Measurements and main results Cystic fibrosis samples had higher total bacterial load and lower microbial diversity, with a divergence from disease controls around 2–5 years of age, as well as higher neutrophilic inflammation relative to bacterial burden. Cystic fibrosis samples had increased abundance of traditional cystic fibrosis pathogens and decreased abundance of the Streptococcus mitis species group in older subjects. Interestingly, increased diversity in the heterogeneous disease controls was independent of diagnosis and indication. Sequencing was more sensitive than culture, and antibiotic exposure was more common in disease controls, which showed a negative relationship with load and neutrophilic inflammation. Conclusions Analysis of lower airway samples from people with cystic fibrosis and disease controls across the ages revealed key differences in airway microbiota and inflammation. The divergence in subjects during early childhood may represent a window of opportunity for intervention and additional study.
Collapse
Affiliation(s)
- John B. O’Connor
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Madison M. Mottlowitz
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Brandie D. Wagner
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathleen L. Boyne
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jonathan K. Harris
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Theresa A. Laguna
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
88
|
Vendrusculo FM, Piva TC, Luft C, Antunes KH, Donadio MVF. Aerobic fitness is associated with extracellular DNA levels in the sputum of patients with cystic fibrosis. Int J Clin Pract 2021; 75:e14616. [PMID: 34235820 DOI: 10.1111/ijcp.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Patients with cystic fibrosis (CF) develop with progressive loss of lung function and aerobic fitness. However, the precise mechanisms of exercise intolerance are still controversial and appear to be influenced by several factors. This study aimed to evaluate the association of aerobic fitness with free DNA levels in the sputum of patients with CF. METHODS This cross-sectional study included patients with CF older than 6 years, free from active exacerbations, but who were able to produce spontaneously expectorated sputum. Extracellular DNA in the sputum was quantified. Lung function (spirometry) and aerobic fitness (cardiopulmonary exercise testing [CPET]) were performed. In addition, demographic, anthropometric and clinical data were collected. RESULTS Sixteen patients with a mean age of 19.4 ± 6.9 years and mean forced expiratory volume in the first second (FEV1 ) of 51.8 ± 28.1 (% of predicted) were included. Mean peak oxygen consumption (VO2 peak) was 32.8 ± 5.2 mL• kg-1 • min-1 , oxygen saturation at the end of the test was 90.6% ± 6.3% and mean extracellular DNA levels was 305.3 ± 153.6 μg/mL. Individuals with a VO2 peak ≤ 30 mL• kg-1 • min-1 (P = .03) and a SpO2 ≤ 90% at the end of the test (P = .03) had a greater amount of extracellular DNA in the sputum. The proportion of patients with reduced VO2 peak in the group of patients with the lowest concentration of DNA in the sputum (<243 μg/mL) was significantly lower (0% vs 100%; P = .04). CONCLUSION There is an association between the presence of free DNA in sputum and aerobic fitness in patients with CF.
Collapse
Affiliation(s)
- Fernanda Maria Vendrusculo
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Taila Cristina Piva
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Krist Helen Antunes
- Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Centro Infant, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
89
|
Fraser-Pitt DJ, Dolan SK, Toledo-Aparicio D, Hunt JG, Smith DW, Lacy-Roberts N, Nupe Hewage PS, Stoyanova TN, Manson E, McClean K, Inglis NF, Mercer DK, O’Neil DA. Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:718213. [PMID: 34631600 PMCID: PMC8494450 DOI: 10.3389/fcimb.2021.718213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.
Collapse
Affiliation(s)
| | - Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Piumi Sara Nupe Hewage
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora N. Stoyanova
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Erin Manson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin McClean
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | - Neil F. Inglis
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | | | | |
Collapse
|
90
|
Soares VEM, do Carmo TIT, Dos Anjos F, Wruck J, de Oliveira Maciel SFV, Bagatini MD, de Resende E Silva DT. Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy. Mol Cell Biochem 2021; 477:39-51. [PMID: 34529223 DOI: 10.1007/s11010-021-04263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.
Collapse
Affiliation(s)
- Victor Emanuel Miranda Soares
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Fernanda Dos Anjos
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jonatha Wruck
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
91
|
Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Sci Rep 2021; 11:17535. [PMID: 34475490 PMCID: PMC8413329 DOI: 10.1038/s41598-021-97033-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1β, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.
Collapse
|
92
|
Abstract
Bacteria in the Burkholderia cepacia complex (BCC) are significant pathogens for people with cystic fibrosis (CF) and are often extensively antibiotic resistant. Here, we assess the impacts of clinically observed mutations in fixL, which encodes the sensor histidine kinase FixL. FixL along with FixJ compose a two-component system that regulates multiple phenotypes. Mutations in fixL across two species, B. dolosa and B. multivorans, have shown evidence of positive selection during chronic lung infection in CF. Herein, we find that BCC carrying the conserved, ancestral fixL sequence have lower survival in macrophages and in murine pneumonia models than mutants carrying evolved fixL sequences associated with clinical decline in CF patients. In vitro phosphotransfer experiments found that one evolved FixL protein, W439S, has a reduced ability to autophosphorylate and phosphorylate FixJ, while LacZ reporter experiments demonstrate that B. dolosa carrying evolved fixL alleles has reduced fix pathway activity. Interestingly, B. dolosa carrying evolved fixL alleles was less fit in a soil assay than those strains carrying the ancestral allele, demonstrating that increased survival of these variants in macrophages and the murine lung comes at a potential expense in their environmental reservoir. Thus, modulation of the two-component system encoded by fixLJ by point mutations is one mechanism that allows BCC to adapt to the host infection environment.
Collapse
|
93
|
Long DR, Wolter DJ, Lee M, Precit M, McLean K, Holmes E, Penewit K, Waalkes A, Hoffman LR, Salipante SJ. Polyclonality, Shared Strains, and Convergent Evolution in Chronic Cystic Fibrosis Staphylococcus aureus Airway Infection. Am J Respir Crit Care Med 2021; 203:1127-1137. [PMID: 33296290 DOI: 10.1164/rccm.202003-0735oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rationale: Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.
Collapse
Affiliation(s)
- Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine
| | - Daniel J Wolter
- Department of Pediatrics.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | | | - Kathryn McLean
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Elizabeth Holmes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Lucas R Hoffman
- Department of Pediatrics.,Department of Microbiology, and.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
94
|
Recombinant Pseudomonas bio-nanoparticles induce protection against pneumonic Pseudomonas aeruginosa infection. Infect Immun 2021; 89:e0039621. [PMID: 34310892 DOI: 10.1128/iai.00396-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitAT fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitAT bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 106 CFU (∼30 LD50) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.
Collapse
|
95
|
Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals (Basel) 2021; 14:ph14080707. [PMID: 34451803 PMCID: PMC8401281 DOI: 10.3390/ph14080707] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Healthcare, as a basic human right, has often become the focus of the development of innovative technologies. Technological progress has significantly contributed to the provision of high-quality, on-time, acceptable, and affordable healthcare. Advancements in nanoscience have led to the emergence of a new generation of nanostructures. Each of them has a unique set of properties that account for their astonishing applications. Since its inception, nanotechnology has continuously affected healthcare and has exerted a tremendous influence on its transformation, contributing to better outcomes. In the last two decades, the world has seen nanotechnology taking steps towards its omnipresence and the process has been accelerated by extensive research in various healthcare sectors. The inclusion of nanotechnology and its allied nanocarriers/nanosystems in medicine is known as nanomedicine, a field that has brought about numerous benefits in disease prevention, diagnosis, and treatment. Various nanosystems have been found to be better candidates for theranostic purposes, in contrast to conventional ones. This review paper will shed light on medically significant nanosystems, as well as their applications and limitations in areas such as gene therapy, targeted drug delivery, and in the treatment of cancer and various genetic diseases. Although nanotechnology holds immense potential, it is yet to be exploited. More efforts need to be directed to overcome these limitations and make full use of its potential in order to revolutionize the healthcare sector in near future.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
- Correspondence: ; Tel.: +92-300-6957038
| | - Sara Ishaque
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Hijab Fatima
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Wajiha Farooq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54000, Pakistan;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| |
Collapse
|
96
|
Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-β 1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res 2021; 7:00636-2020. [PMID: 34291109 PMCID: PMC8287132 DOI: 10.1183/23120541.00636-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/19/2021] [Indexed: 11/05/2022] Open
Abstract
Research question Pulmonary disease progression in patients with cystic fibrosis (CF) is characterised by inflammation and fibrosis and aggravated by Pseudomonas aeruginosa (Pa). We investigated the impact of Pa specifically on: 1) protease/antiprotease balance; 2) inflammation; and 3) the link of both parameters to clinical parameters of CF patients. Methods Transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-8, neutrophil elastase (NE) and elastase inhibitor elafin were measured (ELISA assays), and gene expression of the NF-κB pathway was assessed (reverse transcriptase PCR) in the sputum of 60 CF patients with a minimum age of 5 years. Spirometry was assessed according to American Thoracic Society guidelines. Results Our results demonstrated the following: 1) NE was markedly increased in Pa-positive sputum, whereas elafin was significantly decreased; 2) increased IL-1β/IL-8 levels were associated with both Pa infection and reduced forced expiratory volume in 1 s, and sputum TGF-β1 was elevated in Pa-infected CF patients and linked to an impaired lung function; and 3) gene expression of NF-κB signalling components was increased in sputum of Pa-infected patients, and these findings were positively correlated with IL-8. Conclusion Our study links Pa infection to an imbalance of NE and NE inhibitor elafin and increased inflammatory mediators. Moreover, our data demonstrate an association between high TGF-β1 sputum levels and a progress in chronic lung inflammation and pulmonary fibrosis in CF. Controlling the excessive airway inflammation by inhibition of NE and TGF-β1 might be promising therapeutic strategies in future CF therapy and a possible complement to cystic fibrosis transmembrane conductance regulator (CFTR) modulators.
Collapse
Affiliation(s)
- Jan C Thomassen
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Trojan
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Maxine Walz
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ernst Rietschel
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | |
Collapse
|
97
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
98
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
99
|
Fidan E, Alci G, Koldaş SS, Karadag B, Gökdemir Y, Erdem Eralp E, Karahasan Yagcı A. Cumulative Antimicrobial Susceptibility Data of Pseudomonas Aeruginosa Isolates from Cystic Fibrosis Patients: 4-Year Experience. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1731344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Objective Pseudomonas aeruginosa is the most important cause of lung infection among cystic fibrosis (CF) patients, and to reduce the severity of the infection, facility-specific cumulative antibiograms could help clinicians in empirical treatment.
Methods Respiratory samples of CF patients between January 2015 and December 2018 were scanned through Laboratory Operating System retrospectively. Demographical data of patients, culture results, and antibiotic susceptibilities are recorded using Microsoft Excel 2010. Cumulative antibiogram data were obtained according to the CLSI M39A4 document.
Results The number of registered patients increased in 4 years from 154 to 253. The mean age of patients varied from 9 to 11.7 (range, 2–42). The ratio of patients with a positive culture for P. aeruginosa increased from 32 to 40%, and the mean patients' age decreased from 16.6 to 11.1 (p <0.05). A total number of 4,146 respiratory samples were analyzed. Sputum samples consisted of 42.5% (n: 1,767) of the samples with a 58.4% isolation rate of P. aeruginosa (n: 1,034). A notable increase of resistance was seen almost all antimicrobials tested by years. The ratio of multidrug-resistant (MDR) P. aeruginosa was 4.1, 10.2, 4.5, and 8.6% in 2015, 2016, 2017, and 2018.
Conclusion Antimicrobial resistance is a challenging problem in CF patients, and surveillance should be done regularly.
Collapse
Affiliation(s)
- Ebru Fidan
- Medical Microbiology Department, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Gamze Alci
- Medical Microbiology Department, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Seda Sevilay Koldaş
- Medical Microbiology Department, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Bülent Karadag
- Division of Pediatric Pulmonology, Marmara University Hospital, Istanbul, Turkey
| | - Yasemin Gökdemir
- Division of Pediatric Pulmonology, Marmara University Hospital, Istanbul, Turkey
| | - Ela Erdem Eralp
- Division of Pediatric Pulmonology, Marmara University Hospital, Istanbul, Turkey
| | | |
Collapse
|
100
|
Zaher A, ElSaygh J, Elsori D, ElSaygh H, Sanni A. A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus 2021; 13:e16144. [PMID: 34268058 PMCID: PMC8266292 DOI: 10.7759/cureus.16144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a potentially fatal genetic disease that causes serious lung damage. With time, researchers have a more complete understanding of the molecular-biological defects that underlie CF. This knowledge is leading to alternative approaches regarding the treatment of this condition. Trikafta is the third FDA-approved drug that targets the F508del mutation of the CFTR gene. The drug is a combination of three individual drugs which are elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA). This trio increases the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) protein and reduces the mortality and morbidity rates in CF patients. The effectiveness of Trikafta, seen in clinical trials, outperforms currently available therapies in terms of lung function, quality of life, sweat chloride reduction, and pulmonary exacerbation reduction. The safety and efficacy of CFTR modulators in children with CF have also been studied. Continued evaluation of patient data is needed to confirm its long-term safety and efficacy. In this study, we will focus on reviewing data from clinical trials regarding the benefits of CFTR modulator therapy. We address the impact of Trikafta on lung function, pulmonary exacerbations, and quality of life. Adverse events of the different CFTR modulators are discussed.
Collapse
Affiliation(s)
- Anas Zaher
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Jude ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Dalal Elsori
- Pediatrics, Rhode Island Hospital, Brown University, Rhode Island, USA
| | - Hassan ElSaygh
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | | |
Collapse
|