51
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
52
|
Jia L, Li D, Wang YN, Zhang D, Xu X. PSAT1 positively regulates the osteogenic lineage differentiation of periodontal ligament stem cells through the ATF4/PSAT1/Akt/GSK3β/β-catenin axis. J Transl Med 2023; 21:70. [PMID: 36732787 PMCID: PMC9893676 DOI: 10.1186/s12967-022-03775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) are important seed cells for tissue engineering to realize the regeneration of alveolar bone. Understanding the gene regulatory mechanisms of osteogenic lineage differentiation in PDLSCs will facilitate PDLSC-based bone regeneration. However, these regulatory molecular signals have not been clarified. METHODS To screen potential regulators of osteogenic differentiation, the gene expression profiles of undifferentiated and osteodifferentiated PDLSCs were compared by microarray and bioinformatics methods, and PSAT1 was speculated to be involved in the gene regulation network of osteogenesis in PDLSCs. Lentiviral vectors were used to overexpress or knock down PSAT1 in PDLSCs, and then the proliferation activity, migration ability, and osteogenic differentiation ability of PDLSCs in vitro were analysed. A rat mandibular defect model was built to analyse the regulatory effects of PSAT1 on PDLSC-mediated bone regeneration in vivo. The regulation of PSAT1 on the Akt/GSK3β/β-catenin signalling axis was analysed using the Akt phosphorylation inhibitor Ly294002 or agonist SC79. The potential sites on the promoter of PSAT1 that could bind to the transcription factor ATF4 were predicted and verified. RESULTS The microarray assay showed that the expression levels of 499 genes in PDLSCs were altered significantly after osteogenic induction. Among these genes, the transcription level of PSAT1 in osteodifferentiated PDLSCs was much lower than that in undifferentiated PDLSCs. Overexpressing PSAT1 not only enhanced the proliferation and osteogenic differentiation abilities of PDLSCs in vitro, but also promoted PDLSC-based alveolar bone regeneration in vivo, while knocking down PSAT1 had the opposite effects in PDLSCs. Mechanistic experiments suggested that PSAT1 regulated the osteogenic lineage fate of PDLSCs through the Akt/GSK3β/β-catenin signalling axis. PSAT1 expression in PDLSCs during osteogenic differentiation was controlled by transcription factor ATF4, which is realized by the combination of ATF4 and the PSAT1 promoter. CONCLUSION PSAT1 is a potential important regulator of the osteogenic lineage differentiation of PDLSCs through the ATF4/PSAT1/Akt/GSK3β/β-catenin signalling pathway. PSAT1 could be a candidate gene modification target for enhancing PDLSCs-based bone regeneration.
Collapse
Affiliation(s)
- Linglu Jia
- grid.27255.370000 0004 1761 1174Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China ,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dongfang Li
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ya-Nan Wang
- grid.27255.370000 0004 1761 1174Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China ,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China. .,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China. .,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
53
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
54
|
Phang JM. The regulatory mechanisms of proline and hydroxyproline metabolism: Recent advances in perspective. Front Oncol 2023; 12:1118675. [PMID: 36818667 PMCID: PMC9930595 DOI: 10.3389/fonc.2022.1118675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/28/2023] Open
Abstract
For diverse human tumors, growth and metastasis are dependent on proline synthesis, but the mechanisms underlying this association are not clear. Proline incorporated into collagen is primarily synthesized from glutamine. Thus, rates of collagen synthesis are modulated by the enzymes of proline synthesis. On the other hand, the hydroxylation of collagen proline requires αKG, ascorbate and ferrous iron, substrates necessary for the epigenetic demethylation of DNA and histones. The metabolic relationship of proline and hydroxyproline degradation are initiated by distinct dehydrogenases but the respective oxidized products, P5C and OH-P5C are substrates for P5C Reductase and P5C Dehydrogenase allowing for mutual competition. This provides a model by which proline synthesis in cancer plays a role in reprogramming gene expression. The metabolism of proline and hydroxyproline are also linked to the HIF response to hypoxia. Hypoxia increased the expression of ALDH18A1, which is the limiting step in proline and collagen synthesis. Hydroxyproline increases levels of HIF-1α presumably by inhibiting its degradation. These new findings allow the suggestion that there is a regulatory axis from glutamine to proline and collagen synthesis, and the release of free hydroxyproline can feed back on the HIF pathway.
Collapse
|
55
|
Lian N, Jin H, Zhu W, Zhang C, Qi Y, Jiang M, Mao J, Lu X, Zhao F, Xi B, Qi X, Li Y. Inhibition of glutamine transporter ASCT2 mitigates bleomycin-induced pulmonary fibrosis in mice. Acta Histochem 2022; 124:151961. [DOI: 10.1016/j.acthis.2022.151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/01/2022]
|
56
|
Fenbendazole Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Suppression of Fibroblast-to-Myofibroblast Differentiation. Int J Mol Sci 2022; 23:ijms232214088. [PMID: 36430565 PMCID: PMC9693227 DOI: 10.3390/ijms232214088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-β (TGF-β1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.
Collapse
|
57
|
Li J, Zhai X, Sun X, Cao S, Yuan Q, Wang J. Metabolic reprogramming of pulmonary fibrosis. Front Pharmacol 2022; 13:1031890. [PMID: 36452229 PMCID: PMC9702072 DOI: 10.3389/fphar.2022.1031890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 08/13/2023] Open
Abstract
Pulmonary fibrosis is a progressive and intractable lung disease with fibrotic features that affects alveoli elasticity, which leading to higher rates of hospitalization and mortality worldwide. Pulmonary fibrosis is initiated by repetitive localized micro-damages of the alveolar epithelium, which subsequently triggers aberrant epithelial-fibroblast communication and myofibroblasts production in the extracellular matrix, resulting in massive extracellular matrix accumulation and interstitial remodeling. The major cell types responsible for pulmonary fibrosis are myofibroblasts, alveolar epithelial cells, macrophages, and endothelial cells. Recent studies have demonstrated that metabolic reprogramming or dysregulation of these cells exerts their profibrotic role via affecting pathological mechanisms such as autophagy, apoptosis, aging, and inflammatory responses, which ultimately contributes to the development of pulmonary fibrosis. This review summarizes recent findings on metabolic reprogramming that occur in the aforementioned cells during pulmonary fibrosis, especially those associated with glucose, lipid, and amino acid metabolism, with the aim of identifying novel treatment targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Sun
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
58
|
Gibb AA, Huynh AT, Gaspar RB, Ploesch TL, Lombardi AA, Lorkiewicz PK, Lazaropoulos MP, Bedi K, Arany Z, Margulies KB, Hill BG, Elrod JW. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J Mol Cell Cardiol 2022; 172:78-89. [PMID: 35988357 PMCID: PMC10486318 DOI: 10.1016/j.yjmcc.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibrosis and extracellular matrix remodeling are mediated by resident cardiac fibroblasts (CFs). In response to injury, fibroblasts activate, differentiating into specialized synthetic and contractile myofibroblasts producing copious extracellular matrix proteins (e.g., collagens). Myofibroblast persistence in chronic diseases, such as HF, leads to progressive cardiac dysfunction and maladaptive remodeling. We recently reported that an increase in αKG (alpha-ketoglutarate) bioavailability, which contributes to enhanced αKG-dependent lysine demethylase activity and chromatin remodeling, is required for myofibroblast formation. Therefore, we aimed to determine the substrates and metabolic pathways contributing to αKG biosynthesis and their requirement for myofibroblast formation. METHODS Stable isotope metabolomics identified glutaminolysis as a key metabolic pathway required for αKG biosynthesis and myofibroblast formation, therefore we tested the effects of pharmacologic inhibition (CB-839) or genetic deletion of glutaminase (Gls1-/-) on myofibroblast formation in both murine and human cardiac fibroblasts. We employed immunofluorescence staining, functional gel contraction, western blotting, and bioenergetic assays to determine the myofibroblast phenotype. RESULTS Carbon tracing indicated enhanced glutaminolysis mediating increased αKG abundance. Pharmacological and genetic inhibition of glutaminolysis prevented myofibroblast formation indicated by a reduction in αSMA+ cells, collagen gel contraction, collagen abundance, and the bioenergetic response. Inhibition of glutaminolysis also prevented TGFβ-mediated histone demethylation and supplementation with cell-permeable αKG rescued the myofibroblast phenotype. Importantly, inhibition of glutaminolysis was sufficient to prevent myofibroblast formation in CFs isolated from the human failing heart. CONCLUSIONS These results define glutaminolysis as necessary for myofibroblast formation and persistence, providing substantial rationale to evaluate several new therapeutic targets to treat cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Anh T Huynh
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ryan B Gaspar
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tori L Ploesch
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alyssa A Lombardi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pawel K Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | - Michael P Lazaropoulos
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ken Bedi
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Zolt Arany
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Kenneth B Margulies
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
59
|
Li G, Xu Q, Cheng D, Sun W, Liu Y, Ma D, Wang Y, Zhou S, Ni C. Caveolin-1 and Its Functional Peptide CSP7 Affect Silica-Induced Pulmonary Fibrosis by Regulating Fibroblast Glutaminolysis. Toxicol Sci 2022; 190:41-53. [PMID: 36053221 DOI: 10.1093/toxsci/kfac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure to silica is a cause of pulmonary fibrosis disease termed silicosis, which leads to respiratory failure and ultimately death. However, what drives fibrosis is not fully elucidated and therapeutic options remain limited. Our previous RNA-sequencing analysis showed that the expression of caveolin-1 (CAV1) was downregulated in silica-inhaled mouse lung tissues. Here, we not only verified that CAV1 was decreased in silica-induced fibrotic mouse lung tissues in both messenger RNA and protein levels, but also found that CSP7, a functional peptide of CAV1, could attenuate pulmonary fibrosis in vivo. Further in vitro experiments revealed that CAV1 reduced the expression of Yes-associated protein 1(YAP1) and affected its nuclear translocation in fibroblasts. In addition, Glutaminase 1 (GLS1), a key regulator of glutaminolysis, was identified to be a downstream effector of YAP1. CAV1 could suppress the activity of YAP1 to decrease the transcription of GLS1, thereby inhibiting fibroblast activation. Taken together, our results demonstrated that CAV1 and its functional peptide CSP7 may be potential molecules or drugs for the prevention and intervention of silicosis.
Collapse
Affiliation(s)
- Guanru Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
60
|
Wu Y, Li Y, Luo Y, Zhou Y, Wen J, Chen L, Liang X, Wu T, Tan C, Liu Y. Gut microbiome and metabolites: The potential key roles in pulmonary fibrosis. Front Microbiol 2022; 13:943791. [PMID: 36274689 PMCID: PMC9582946 DOI: 10.3389/fmicb.2022.943791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
There are a wide variety of microbiomes in the human body, most of which exist in the gastrointestinal tract. Microbiomes and metabolites interact with the host to influence health. Rapid progress has been made in the study of its relationship with abenteric organs, especially lung diseases, and the concept the of "gut-lung axis" has emerged. In recent years, with the in-depth study of the "gut-lung axis," it has been found that changes of the gut microbiome and metabolites are related to fibrotic interstitial lung disease. Understanding their effects on pulmonary fibrosis is expected to provide new possibilities for the prevention, diagnosis and even treatment of pulmonary fibrosis. In this review, we focused on fibrotic interstitial lung disease, summarized the changes the gut microbiome and several metabolites of the gut microbiome in different types of pulmonary fibrosis, and discussed their contributions to the occurrence and development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Lu Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China,*Correspondence: Chunyu Tan,
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China,Yi Liu,
| |
Collapse
|
61
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
62
|
Seeliger B, Carleo A, Wendel-Garcia PD, Fuge J, Montes-Warboys A, Schuchardt S, Molina-Molina M, Prasse A. Changes in serum metabolomics in idiopathic pulmonary fibrosis and effect of approved antifibrotic medication. Front Pharmacol 2022; 13:837680. [PMID: 36059968 PMCID: PMC9428132 DOI: 10.3389/fphar.2022.837680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality and morbidity. Approval of antifibrotic therapy has ameliorated disease progression, but therapy response is heterogeneous and to date, adequate biomarkers predicting therapy response are lacking. In recent years metabolomic technology has improved and is broadly applied in cancer research thus enabling its use in other fields. Recently both aberrant metabolic and lipidomic pathways have been described to influence profibrotic responses. We thus aimed to characterize the metabolomic and lipidomic changes between IPF and healthy volunteers (HV) and analyze metabolomic changes following treatment with nintedanib and pirfenidone. We collected serial serum samples from two IPF cohorts from Germany (n = 122) and Spain (n = 21) and additionally age-matched healthy volunteers (n = 16). Metabolomic analysis of 630 metabolites covering 14 small molecule and 12 different lipid classes was carried out using flow injection analysis tandem mass spectrometry for lipids and liquid chromatography tandem mass spectrometry for small molecules. Levels were correlated with survival and disease severity. We identified 109 deregulated analytes in IPF compared to HV in cohort 1 and 112 deregulated analytes in cohort 2. Metabolites which were up-regulated in both cohorts were mainly triglycerides while the main class of down-regulated metabolites were phosphatidylcholines. Only a minority of de-regulated analytes were small molecules. Triglyceride subclasses were inversely correlated with baseline disease severity (GAP-score) and a clinical compound endpoint of lung function decline or death. No changes in the metabolic profiles were observed following treatment with pirfenidone. Nintedanib treatment induced up-regulation of triglycerides and phosphatidylcholines. Patients in whom an increase in these metabolites was observed showed a trend towards better survival using the 2-years composite endpoint (HR 2.46, p = 0.06). In conclusion, we report major changes in metabolites in two independent cohorts testing a large number of patients. Specific lipidic metabolite signatures may serve as biomarkers for disease progression or favorable treatment response to nintedanib.
Collapse
Affiliation(s)
- Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | | | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Ana Montes-Warboys
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Hospital Universitari Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- *Correspondence: Antje Prasse,
| |
Collapse
|
63
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
64
|
Wang S, Li X, Ma Q, Wang Q, Wu J, Yu H, Li K, Li Y, Wang J, Zhang Q, Wang Y, Wu Q, Chen H. Glutamine Metabolism Is Required for Alveolar Regeneration during Lung Injury. Biomolecules 2022; 12:biom12050728. [PMID: 35625656 PMCID: PMC9138637 DOI: 10.3390/biom12050728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Abnormal repair after alveolar epithelial injury drives the progression of idiopathic pulmonary fibrosis (IPF). The maintenance of epithelial integrity is based on the self-renewal and differentiation of alveolar type 2 (AT2) cells, which require sufficient energy. However, the role of glutamine metabolism in the maintenance of the alveolar epithelium remains unclear. In this study, we investigated the role of glutamine metabolism in AT2 cells of patients with IPF and in mice with bleomycin-induced fibrosis. (2) Methods: Single-cell RNA sequencing (scRNA-seq), transcriptome, and metabolomics analyses were conducted to investigate the changes in the glutamine metabolic pathway during pulmonary fibrosis. Metabolic inhibitors were used to stimulate AT2 cells to block glutamine metabolism. Regeneration of AT2 cells was detected using bleomycin-induced mouse lung fibrosis and organoid models. (3) Results: Single-cell analysis showed that the expression levels of catalytic enzymes responsible for glutamine catabolism were downregulated (p < 0.001) in AT2 cells of patients with IPF, suggesting the accumulation of unusable glutamine. Combined analysis of the transcriptome (p < 0.05) and metabolome (p < 0.001) revealed similar changes in glutamine metabolism in bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inhibition of the key enzymes involved in glucose metabolism, glutaminase-1 (GLS1) and glutamic-pyruvate transaminase-2 (GPT2) leads to reduced proliferation (p < 0.01) and differentiation (p < 0.01) of AT2 cells. (4) Conclusions: Glutamine metabolism is required for alveolar epithelial regeneration during lung injury.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin 300350, China; (S.W.); (Q.M.)
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin 300350, China; (S.W.); (Q.M.)
| | - Qi Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Junping Wu
- Department of Tuberculosis, Haihe Hospital, Tianjin University, Tianjin 300350, China; (J.W.); (H.Y.)
| | - Hongzhi Yu
- Department of Tuberculosis, Haihe Hospital, Tianjin University, Tianjin 300350, China; (J.W.); (H.Y.)
| | - Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
| | - Youwei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Correspondence: (Y.W.); (Q.W.); (H.C.)
| | - Qi Wu
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
- Correspondence: (Y.W.); (Q.W.); (H.C.)
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin 300350, China; (S.W.); (Q.M.)
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin 300350, China; (X.L.); (Q.W.); (K.L.); (Y.L.); (J.W.); (Q.Z.)
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin 300350, China
- Correspondence: (Y.W.); (Q.W.); (H.C.)
| |
Collapse
|
65
|
Shi W, Hao J, Wu Y, Liu C, Shimizu K, Li R, Zhang C. Protective effects of heterophyllin B against bleomycin-induced pulmonary fibrosis in mice via AMPK activation. Eur J Pharmacol 2022; 921:174825. [PMID: 35283110 DOI: 10.1016/j.ejphar.2022.174825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease with unknown etiology. In the present study, we evaluated the anti-fibrotic effects of heterophyllin B, a natural product from Radix Pseudostellariae having anti-inflammatory and tyrosinase inhibitory activities. In bleomycin (BLM)-induced PF mouse model, heterophyllin B treatments (5 or 20 mg/kg/d) significantly attenuated BLM-induced alveolar cavity collapse, inflammatory cell infiltration, alveolar wall thickening and collagen deposition. When compared to model group, heterophyllin B treatments also increased adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation levels by 359% (P < 0.001) and reduced the expression of stimulator of interferon genes (STING) by 73% (P < 0.001). Furthermore, co-administration of heterophyllin B with AMPK inhibitor dorsomorphin (Compound C) significantly blocked the improvement effects of heterophyllin B on BLM-damaged lung tissue, and also increased the protein expression of STING which was inhibited by heterophyllin B in fibrotic lungs (P < 0.001). It is known that alveolar epithelia and lung fibroblasts exert prominent roles in the fibrosis progression. In the present study we found that, in vitro, heterophyllin B significantly inhibited alveolar epithelial mesenchymal transition (EMT) and lung fibroblast transdifferentiation. We also found that the inhibition of heterophyllin B on lung fibroblast transdifferentiation and STING expression was reversed by Compound C. To summarize, heterophyllin B exhibited protective effects on BLM-induced lung fibrosis potentially by inhibiting TGF-Smad2/3 signalings and AMPK-mediated STING signalings.
Collapse
Affiliation(s)
- Wen Shi
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiatong Hao
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Yanliang Wu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Kuniyoshi Shimizu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Department of Forest and Forest Products Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Renshi Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
66
|
Amamou A, O’Mahony C, Leboutte M, Savoye G, Ghosh S, Marion-Letellier R. Gut Microbiota, Macrophages and Diet: An Intriguing New Triangle in Intestinal Fibrosis. Microorganisms 2022; 10:490. [PMID: 35336066 PMCID: PMC8952309 DOI: 10.3390/microorganisms10030490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) without specific treatment. As macrophages are the key actors in inflammatory responses and the wound healing process, they have been extensively studied in chronic diseases these past decades. By their exceptional ability to integrate diverse stimuli in their surrounding environment, macrophages display a multitude of phenotypes to underpin a broad spectrum of functions, from the initiation to the resolution of inflammation following injury. The hypothesis that distinct macrophage subtypes could be involved in fibrogenesis and wound healing is emerging and could open up new therapeutic perspectives in the treatment of intestinal fibrosis. Gut microbiota and diet are two key factors capable of modifying intestinal macrophage profiles, shaping their specific function. Defects in macrophage polarisation, inadequate dietary habits, and alteration of microbiota composition may contribute to the development of intestinal fibrosis. In this review, we describe the intriguing triangle between intestinal macrophages, diet, and gut microbiota in homeostasis and how the perturbation of this discreet balance may lead to a pro-fibrotic environment and influence fibrogenesis in the gut.
Collapse
Affiliation(s)
- Asma Amamou
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Mathilde Leboutte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| | - Guillaume Savoye
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France;
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Rachel Marion-Letellier
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| |
Collapse
|
67
|
Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031172. [PMID: 35162195 PMCID: PMC8835093 DOI: 10.3390/ijerph19031172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 evolution depends on immunological capacity. The global hospital mortality rate is 15–20%, but in México it is 46%. There are several therapeutic protocols, however, integral nutrition is not considered. In this study, a Nutritional Support System (NSS) was employed to increase survival and reduce mortality in patients with stage III COVID-19. A randomized, blinded, controlled clinical trial was performed. Eighty patients (aged 30 to 75 years, both sexes) were assigned to (1) “Control Group” (CG) hospital diet and medical treatment or (2) “Intervention Group” (IG) hospital diet, medical treatment, and the NSS (vitamins, minerals, fiber, omega-3, amino acids, B-complex, and probiotics). IG significantly increased survival and reduced mortality compared to CG (p = 0.027). IG decreased progression to Mechanical Ventilation Assistance (MVA) by 10%, reduced the intubation period by 15 days, and increased survival in intubated patients by 38% compared to CG. IG showed improvement compared to CG in decrease in supplemental oxygen (p = 0.014), the qSOFA test (p = 0.040), constipation (p = 0.014), the PHQ-9 test (p = 0.003), and in the follow-up, saturation with oxygen (p = 0.030). The NSS increases survival and decreases mortality in patients with stage III COVID-19.
Collapse
|
68
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
69
|
Yakupova EI, Zorov DB, Plotnikov EY. Bioenergetics of the Fibrosis. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1599-1606. [PMID: 34937539 DOI: 10.1134/s0006297921120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
70
|
Weckerle J, Picart-Armada S, Klee S, Bretschneider T, Luippold AH, Rist W, Haslinger C, Schlüter H, Thomas MJ, Krawczyk B, Fernandez-Albert F, Kästle M, Veyel D. Mapping the metabolomic and lipidomic changes in the Bleomycin model of pulmonary fibrosis in young and aged mice. Dis Model Mech 2021; 15:274099. [PMID: 34845494 PMCID: PMC8807555 DOI: 10.1242/dmm.049105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Alterations in metabolic pathways were recently recognized as potential underlying drivers of idiopathic pulmonary fibrosis (IPF), translating into novel therapeutic targets. However, knowledge of metabolic and lipid regulation in fibrotic lungs is limited. To comprehensively characterize metabolic perturbations in the bleomycin mouse model of IPF, we analyzed the metabolome and lipidome by mass spectrometry. We identified increased tissue turnover and repair, evident by enhanced breakdown of proteins, nucleic acids and lipids and extracellular matrix turnover. Energy production was upregulated, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, lactate production and fatty acid oxidation. Higher eicosanoid synthesis indicated inflammatory processes. Because the risk of IPF increases with age, we investigated how age influences metabolomic and lipidomic changes in the bleomycin-induced pulmonary fibrosis model. Surprisingly, except for cytidine, we did not detect any significantly differential metabolites or lipids between old and young bleomycin-treated lungs. Together, we identified metabolomic and lipidomic changes in fibrosis that reflect higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation, which might serve to improve diagnostic and therapeutic options for fibrotic lung diseases in the future. Editor's choice: Using bleomycin-induced lung injury as a mouse model for idiopathic pulmonary fibrosis, this study identifies metabolomic and lipidomic changes in fibrosis reflecting higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation.
Collapse
Affiliation(s)
- Jelena Weckerle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Sergio Picart-Armada
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Stephan Klee
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Andreas H Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Christian Haslinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Holger Schlüter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Bartlomiej Krawczyk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Marc Kästle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Daniel Veyel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
71
|
Phang JM. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 2021; 53:1967-1975. [PMID: 34825974 PMCID: PMC8651602 DOI: 10.1007/s00726-021-03103-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023]
Abstract
In the 35 years since the introduction of the "proline cycle", its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.
Collapse
Affiliation(s)
- James M Phang
- Scientist Emeritus, Mouse Cancer Genetics Program, CCR, NCI at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
72
|
Bacigalupa ZA, Rathmell WK. Upcycling the TCA cycle-rewiring tumour-associated fibroblasts. Nat Metab 2021; 3:1439-1440. [PMID: 34764458 PMCID: PMC9383054 DOI: 10.1038/s42255-021-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations to the extracellular matrix have long been associated with cancer progression and therapeutic resistance. Schwörer et al. describe a mechanism whereby fibroblasts reroute metabolites to fuel the demands of collagen synthesis, leading to cancer progression.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
73
|
Zhu W, Ding Q, Wang L, Xu G, Diao Y, Qu S, Chen S, Shi Y. Vitamin D3 alleviates pulmonary fibrosis by regulating the MAPK pathway via targeting PSAT1 expression in vivo and in vitro. Int Immunopharmacol 2021; 101:108212. [PMID: 34656907 DOI: 10.1016/j.intimp.2021.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. However, there are insufficient drugs available for IPF treatment, and the currently used drugs are accompanied by many adverse reactions. Deficiency of vitamin D3 (VD3) in the development of IPF and the potential role of VD3 in the treatment of IPF have attracted increasing attention. In vivo experimental results showed that VD3 could increase the survival rate in bleomycin (BLM)-induced models, relieve lung inflammation, reduce hydroxyproline content, and inhibit collagen deposition and cell apoptosis. We further performed proteomics analysis and screened 251 target proteins that reflect VD3 intervention in BLM-induced animal models. These target proteins were involved in acute inflammation, oxidative stress, antioxidant activity and extracellular matrix binding. Combined with the comprehensive analysis of clinical samples, PSAT1 was screened out as a candidate target related to IPF disease and VD3 treatment. Through further computational analysis, the MAPK signaling pathway was considered to be the most probable candidate pathway for VD3 function targeting IPF. In in vivo experiments, VD3 inhibited BLM-induced expression of PSAT1 and phosphorylation of p38 and ERK1/2 in mouse lung tissue. The experiments of cell proliferation and western blot confirmed that VD3 inhibited the expression of PSAT1 and the activation of the mitogen-activated protein kinase (MAPK) pathway in human pulmonary fibroblasts (HPF). Furthermore, experiments with transfection plasmids overexpressing PSAT1 proved that VD3 could attenuate the proliferation and differentiation of HPF by suppressing the effect of PSAT1 on the MAPK signaling pathway. Finally, we confirmed that vitamin D receptor (VDR) could occupy the PSAT1 promoter to reveal the transcriptional regulation effect of VD3 on PSAT1. In conclusion, VD3 exerted a therapeutic effect on IPF by down-regulating the MAPK signaling pathway via targeting the expression of PSAT1.
Collapse
Affiliation(s)
- Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Chen
- Shenzhen Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
74
|
Ung CY, Onoufriadis A, Parsons M, McGrath JA, Shaw TJ. Metabolic perturbations in fibrosis disease. Int J Biochem Cell Biol 2021; 139:106073. [PMID: 34461262 DOI: 10.1016/j.biocel.2021.106073] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Metabolic changes occur in all forms of disease but their impact on fibrosis is a relatively recent area of interest. This review provides an overview of the major metabolic pathways, glycolysis, amino acid metabolism and lipid metabolism, and highlights how they influence fibrosis at a cellular and tissue level, drawing on key discoveries in dermal, renal, pulmonary and hepatic fibrosis. The emerging influence of adipose tissue-derived cytokines is discussed and brings a link between fibrosis and systemic metabolism. To close, the concept of targeting metabolism for fibrotic therapy is reviewed, drawing on lessons from the more established field of cancer metabolism, with an emphasis on important considerations for clinical translation.
Collapse
Affiliation(s)
- Chuin Ying Ung
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | | | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK.
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, SE19RT, UK.
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
75
|
Metabolic orchestration of the wound healing response. Cell Metab 2021; 33:1726-1743. [PMID: 34384520 DOI: 10.1016/j.cmet.2021.07.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Wound healing requires cooperation between different cell types, among which macrophages play a central role. In particular, inflammatory macrophages are engaged in the initial response to wounding, and alternatively activated macrophages are essential for wound closure and the resolution of tissue repair. The links between temporal activation-induced changes in the metabolism of such macrophages and the influence this has on their functional states, along with the realization that metabolites play both intrinsic and extrinsic roles in the cells that produce them, has focused attention on the metabolism of wound healing. Here, we discuss macrophage metabolism during distinct stages of normal healing and its related pathologic processes, such as during cancer and fibrosis. Further, we frame these insights in a broader context of the current understanding of macrophage metabolic reprogramming linked to cellular activation and function. Finally, we discuss parallels between the metabolism of macrophages and fibroblasts, the latter being a key stromal cell type in wound healing, and consider the importance of the metabolic interplay between different cell types in the wound microenvironment.
Collapse
|
76
|
Kay EJ, Koulouras G, Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front Oncol 2021; 11:719922. [PMID: 34513697 PMCID: PMC8429785 DOI: 10.3389/fonc.2021.719922] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as 'wounds that do not heal'. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.
Collapse
Affiliation(s)
- Emily J. Kay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
77
|
Jiang T, Liu L, Zhang M, Qiao Z, Zhao T, Su J, Cao G, Su T. Metabolomics Reveals the Mechanisms for the Pulmonary Toxicity of Siegesbeckia orientalis L. and the Toxicity-Reducing Effect of Processing. Front Pharmacol 2021; 12:630319. [PMID: 34434104 PMCID: PMC8381750 DOI: 10.3389/fphar.2021.630319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Siegesbeckia orientalis L. (SO) is a commonly used Chinese medicinal herb. It has long been used as a remedy in traditional Chinese medicine (TCM) for symptoms that resemble inflammatory joint disorders. However, it is slightly toxic. According to the TCM theory, processing can reduce the toxicity of the herbs. Here, we performed metabolomics to determine whether processing with rice wine reduces the toxicity of raw SO, and to explore the mechanisms underlying the raw SO–induced toxicity and the toxicity-reducing effect of processing. Our results showed that raw SO has long-term toxicity in rats. It significantly elevated the serum level of LDH and caused histopathological damages in the lung tissues. It is worth noting that the LDH level in the PSO group was lower than that in the raw SO group, and the damages in lung tissues were relatively mild in PSO-treated rats, suggesting that processing reduces the pulmonary toxicity of the raw. Moreover, a total of 32 significantly changed metabolites were identified. Based on the MetaboAnalyst pathway analysis, we found that two characteristic metabolic pathways including alanine, aspartate and glutamate metabolism and glycerophospholipid metabolism were only changed in the raw SO group, while histidine metabolism was only changed in the PSO group, which suggests that induction of oxidative stress contributes to raw SO–induced pulmonary toxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on how raw SO induces pulmonary toxicity and how the toxicity can be reduced by processing. This study not only provides scientific justifications for the traditional processing theory of SO, but also helps to optimize the processing protocol and the clinical drug combination of SO.
Collapse
Affiliation(s)
- Ting Jiang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mi Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiping Qiao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingxiu Zhao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfang Su
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
78
|
Selvarajah B, Azuelos I, Anastasiou D, Chambers RC. Fibrometabolism-An emerging therapeutic frontier in pulmonary fibrosis. Sci Signal 2021; 14:14/697/eaay1027. [PMID: 34429381 DOI: 10.1126/scisignal.aay1027] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrosis is the final pathological outcome and major cause of morbidity and mortality in many common and chronic inflammatory, immune-mediated, and metabolic diseases. Despite the growing incidence of fibrotic diseases and extensive research efforts, there remains a lack of effective therapies that improve survival. The application of omics technologies has revolutionized our approach to identifying previously unknown therapeutic targets and potential disease biomarkers. The application of metabolomics, in particular, has improved our understanding of disease pathomechanisms and garnered a wave of scientific interest in the role of metabolism in the biology of myofibroblasts, the key effector cells of the fibrogenic response. Emerging evidence suggests that alterations in metabolism not only are a feature of but also may play an influential role in the pathogenesis of fibrosis, most notably in idiopathic pulmonary fibrosis (IPF), the most rapidly progressive and fatal of all fibrotic conditions. This review will detail the role of key metabolic pathways, their alterations in myofibroblasts, and the potential this new knowledge offers for the development of antifibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Ilan Azuelos
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK.
| |
Collapse
|
79
|
Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, Kolmetzky DW, Berretta RM, Wallner M, Houser SR, Elrod JW. Molecular Signature of HFpEF: Systems Biology in a Cardiac-Centric Large Animal Model. JACC Basic Transl Sci 2021; 6:650-672. [PMID: 34466752 PMCID: PMC8385567 DOI: 10.1016/j.jacbts.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022]
Abstract
In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.
Collapse
Key Words
- BCAA, branched chain amino acids
- DAG, diacylglycerol
- ECM, extracellular matrix
- EF, ejection fraction
- ESI, electrospray ionization
- ETC, electron transport chain
- FC, fold change
- FDR, false discovery rate
- GO, gene ontology
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LA, left atrial
- LAV, left atrial volume
- LV, left ventricle/ventricular
- MS/MS, tandem mass spectrometry
- RCR, respiratory control ratio
- RI, retention index
- UPLC, ultraperformance liquid chromatography
- heart failure
- m/z, mass to charge ratio
- metabolomics
- mitochondria
- preserved ejection fraction
- systems biology
- transcriptomics
Collapse
Affiliation(s)
- Andrew A. Gibb
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Emma K. Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deborah M. Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Anh T. Huynh
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joanne F. Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Devin W. Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Remus M. Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Steven R. Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Address for correspondence: Dr John W. Elrod, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, MERB 949, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
80
|
Han S, Chandel NS. Lessons from Cancer Metabolism for Pulmonary Arterial Hypertension and Fibrosis. Am J Respir Cell Mol Biol 2021; 65:134-145. [PMID: 33844936 DOI: 10.1165/rcmb.2020-0550tr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is essential for a living organism to sustain life. It provides energy to a cell by breaking down compounds (catabolism) and supplies building blocks for the synthesis of macromolecules (anabolism). Signal transduction pathways tightly regulate mammalian cellular metabolism. Simultaneously, metabolism itself serves as a signaling pathway to control many cellular processes, such as proliferation, differentiation, cell death, gene expression, and adaptation to stress. Considerable progress in the metabolism field has come from understanding how cancer cells co-opt metabolic pathways for growth and survival. Recent data also show that several metabolic pathways may participate in the pathogenesis of lung diseases, some of which could be promising therapeutic targets. In this translational review, we will outline the basic metabolic principles learned from the cancer metabolism field as they apply to the pathogenesis of pulmonary arterial hypertension and fibrosis and will place an emphasis on therapeutic potential.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care, Department of Medicine, and
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care, Department of Medicine, and.,Department Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
81
|
Cui C, Wang J, Guo L, Wu C. PINCH-1 promotes Δ 1-pyrroline-5-carboxylate synthase expression and contributes to proline metabolic reprogramming in lung adenocarcinoma. Amino Acids 2021; 53:1875-1890. [PMID: 34283311 DOI: 10.1007/s00726-021-03050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Proline metabolic reprogramming is intimately involved in cancer progression. We recently identified a critical role of PINCH-1, a cell-extracellular matrix (ECM) adhesion protein whose expression is elevated in lung adenocarcinoma, in the promotion of proline biosynthesis, fibrosis and lung adenocarcinoma growth. How PINCH-1 promotes proline biosynthesis, however, was incompletely understood. In this study, we show that PINCH-1 promotes the expression of Δ1-pyrroline-5-carboxylate synthase (P5CS), a key enzyme that links glutamate metabolism to proline biosynthesis. Depletion of PINCH-1 from lung adenocarcinoma cells reduced the protein but not mRNA level of P5CS, resulting in down-regulation of the cellular level of P5C and cell proliferation. Treatment of the cells with protease inhibitor leupeptin effectively reversed PINCH-1 deficiency-induced reduction of the P5CS level. At the molecular level, PINCH-1, through its LIM2 domain, physically associated with P5CS in lung adenocarcinoma cells. Re-expression of wild type PINCH-1, but not that of the PINCH-1 LIM2 deletion mutant, in PINCH-1 deficient lung adenocarcinoma cells restored P5CS expression, proline biosynthesis and cell proliferation. Finally, P5CS expression, like that of PINCH-1, is elevated in human and mouse lung adenocarcinoma. Using a mouse model of lung adenocarcinoma in which PINCH-1 is conditionally ablated, we show that knockout of PINCH-1 from lung adenocarcinoma effectively reduced the P5CS level in vivo. Our results reveal an important role of PINCH-1 in the promotion of P5CS expression, which likely contributes to proline metabolic reprogramming and consequently lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
82
|
Kocher F, Tymoszuk P, Amann A, Sprung S, Salcher S, Daum S, Haybaeck J, Rinnerthaler G, Huemer F, Kauffmann-Guerrero D, Tufman A, Seeber A, Wolf D, Pircher A. Deregulated glutamate to pro-collagen conversion is associated with adverse outcome in lung cancer and may be targeted by renin-angiotensin-aldosterone system (RAS) inhibition. Lung Cancer 2021; 159:84-95. [PMID: 34315093 DOI: 10.1016/j.lungcan.2021.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The tumor-microenvironment (TME) represents an attractive therapeutic target in NSCLC and plays an important role for efficacy of cancer therapeutics. We hypothesized that upregulation of collagen synthesis might be associated with adverse outcome in NSCLC. Literature evidence suggests that renin-angiotensin system inhibitors (RASi) decrease collagen deposition. Therefore, we aimed to explore the prognostic role of RASi intake and their influence on the TME in NSCLC. METHODS Four publicly available datasets were used to evaluate the impact of key enzymes involved in collagen biosynthesis. To investigate the influence of RASi intake on the TME and prognosis we evaluated a cohort of metastatic NSCLC patients and performed histopathological characterization of the TME. A three-dimensional microtissue in vitro model was developed to define the impact of RASi on collagen synthesis. RESULTS Expression of three genes of the collagen synthesis pathway, ALDH18A1, PLOD2 and P4HA1, was upregulated in NSCLC compared to normal lung tissue and linked to shortened overall survival in all investigated cohorts. Together, these genes formed a 'Collagen Signature' which represents an independent unfavourable prognostic factor in two NSCLC cohorts and was linked to alterations of the extracellular matrix deposition and cell cycle pathways. In the cohort of metastatic NSCLC, RASi intake was linked to improved overall response rate and survival. Exploratory in vitro experiments revealed that RASi led to a dose dependent reduction of collagen deposition and degradation of three-dimensional lung cancer cell spheroids. CONCLUSION We demonstrate that collagen synthesis is a key upregulated process in the NSCLC TME and its transcriptional readout, the three gene Collagen Signature is independently associated with poor outcome. Pharmacological targeting of this pathways e.g. by RASi bears potential of improving outcome in NSCLC.
Collapse
Affiliation(s)
- Florian Kocher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Laboratory for Immunotherapy, Medical University of Innsbruck, Innsbruck, Austria; Data Analytics Service Tirol, daas.tirol, Innsbruck, Austria
| | - Arno Amann
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Salcher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Sophia Daum
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Diego Kauffmann-Guerrero
- Division of Respiratory Medicine and Thoracic Oncology, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Amanda Tufman
- Division of Respiratory Medicine and Thoracic Oncology, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Seeber
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
83
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
84
|
Zhang P, Wang J, Luo W, Yuan J, Cui C, Guo L, Wu C. Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression. Am J Respir Cell Mol Biol 2021; 65:54-69. [PMID: 33761308 DOI: 10.1165/rcmb.2020-0320oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disease characterized by activation of lung fibroblasts and excessive deposition of collagen matrix. We show here that the concentrations of kindlin-2 and its binding partner PYCR1, a key enzyme for proline synthesis, are significantly increased in the lung tissues of human patients with pulmonary fibrosis. Treatment of human lung fibroblasts with TGF-β1 markedly increased the expression of kindlin-2 and PYCR1, resulting in increased kindlin-2 mitochondrial translocation, formation of the kindlin-2-PYCR1 complex, and proline synthesis. The concentrations of the kindlin-2-PYCR1 complex and proline synthesis were markedly reduced in response to pirfenidone or nintedanib, two clinically approved therapeutic drugs for pulmonary fibrosis. Furthermore, depletion of kindlin-2 alone was sufficient to suppress TGF-β1-induced increases of PYCR1 expression, proline synthesis, and fibroblast activation. Finally, using a bleomycin mouse model of pulmonary fibrosis, we show that ablation of kindlin-2 effectively reduced the concentrations of PYCR1, proline, and collagen matrix and alleviate the progression of pulmonary fibrosis in vivo. Our results suggest that kindlin-2 is a key promoter of lung fibroblast activation, collagen matrix synthesis, and pulmonary fibrosis, underscoring the therapeutic potential of targeting the kindlin-2 signaling pathway for control of this deadly lung disease.
Collapse
Affiliation(s)
- Ping Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Weiren Luo
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China; and
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
85
|
Guzy R, Redente EF. Kindlin for the Fire: Targeting Proline Synthesis to Extinguish Matrix Production in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:4-5. [PMID: 33844940 PMCID: PMC8320124 DOI: 10.1165/rcmb.2021-0137ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Robert Guzy
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado and.,Department of Medicine University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
86
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
87
|
Hamanaka RB, Mutlu GM. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 2021; 53:1851-1862. [PMID: 33963932 DOI: 10.1007/s00726-021-02996-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-β-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
88
|
Roque W, Romero F. Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids. Am J Physiol Cell Physiol 2021; 320:C689-C695. [PMID: 33471621 PMCID: PMC8163573 DOI: 10.1152/ajpcell.00586.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease of unknown etiology with limited treatment options. It is characterized by repetitive injury to alveolar epithelial cells and aberrant activation of numerous signaling pathways. Recent evidence suggests that metabolic reprogramming, metabolic dysregulation, and mitochondria dysfunction are distinctive features of the IPF lungs. Through numerous mechanisms, metabolomic abnormalities in alveolar epithelial cells, myofibroblast, macrophages, and fibroblasts contribute to the abnormal collagen synthesis and dysregulated airway remodeling described in lung fibrosis. This review summarizes the metabolomic changes in amino acids, lipids, glucose, and heme seen in IPF lungs. Simultaneously, we provide new insights into potential therapeutic strategies by targeting a variety of metabolites.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
89
|
Xu F, Tanabe N, Vasilescu DM, McDonough JE, Coxson HO, Ikezoe K, Kinose D, Ng KW, Verleden SE, Wuyts WA, Vanaudenaerde BM, Verschakelen J, Cooper JD, Lenburg ME, Morshead KB, Abbas AR, Arron JR, Spira A, Hackett TL, Colby TV, Ryerson CJ, Ng RT, Hogg JC. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EBioMedicine 2021; 66:103325. [PMID: 33862585 PMCID: PMC8054143 DOI: 10.1016/j.ebiom.2021.103325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition from normal lung anatomy to minimal and established fibrosis is an important feature of the pathology of idiopathic pulmonary fibrosis (IPF). The purpose of this report is to examine the molecular and cellular mechanisms associated with this transition. METHODS Pre-operative thoracic Multidetector Computed Tomography (MDCT) scans of patients with severe IPF (n = 9) were used to identify regions of minimal(n = 27) and established fibrosis(n = 27). MDCT, Micro-CT, quantitative histology, and next-generation sequencing were used to compare 24 samples from donor controls (n = 4) to minimal and established fibrosis samples. FINDINGS The present results extended earlier reports about the transition from normal lung anatomy to minimal and established fibrosis by showing that there are activations of TGFBI, T cell co-stimulatory genes, and the down-regulation of inhibitory immune-checkpoint genes compared to controls. The expression patterns of these genes indicated activation of a field immune response, which is further supported by the increased infiltration of inflammatory immune cells dominated by lymphocytes that are capable of forming lymphoid follicles. Moreover, fibrosis pathways, mucin secretion, surfactant, TLRs, and cytokine storm-related genes also participate in the transitions from normal lung anatomy to minimal and established fibrosis. INTERPRETATION The transition from normal lung anatomy to minimal and established fibrosis is associated with genes that are involved in the tissue repair processes, the activation of immune responses as well as the increased infiltration of CD4, CD8, B cell lymphocytes, and macrophages. These molecular and cellular events correlate with the development of structural abnormality of IPF and probably contribute to its pathogenesis.
Collapse
Affiliation(s)
- Feng Xu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Naoya Tanabe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dragos M Vasilescu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - John E McDonough
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Harvey O Coxson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Kohei Ikezoe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Daisuke Kinose
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Stijn E Verleden
- Laboratory of Respiratory Diseases, BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | | | - Johny Verschakelen
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Joel D Cooper
- Division of Thoracic Surgery, University of Pennsylvania, USA
| | | | | | | | | | - Avrum Spira
- Boston University Medical Center, Boston, MA, USA
| | - Tillie-Louise Hackett
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Thomas V Colby
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, USA
| | - Christopher J Ryerson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Raymond T Ng
- Department of Computer Science, The University of British Columbia, Vancouver, Canada
| | - James C Hogg
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
90
|
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021; 53:1917-1925. [PMID: 33818628 PMCID: PMC8651534 DOI: 10.1007/s00726-021-02968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Recent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
Collapse
Affiliation(s)
- Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| |
Collapse
|
91
|
Hewitson TD, Smith ER. A Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Is a Requisite for Renal Fibrogenesis-Why and How? Front Physiol 2021; 12:645857. [PMID: 33815149 PMCID: PMC8010236 DOI: 10.3389/fphys.2021.645857] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic Kidney Disease (CKD) is characterized by organ remodeling and fibrosis due to failed wound repair after on-going or severe injury. Key to this process is the continued activation and presence of matrix-producing renal fibroblasts. In cancer, metabolic alterations help cells to acquire and maintain a malignant phenotype. More recent evidence suggests that something similar occurs in the fibroblast during activation. To support these functions, pro-fibrotic signals released in response to injury induce metabolic reprograming to meet the high bioenergetic and biosynthetic demands of the (myo)fibroblastic phenotype. Fibrogenic signals such as TGF-β1 trigger a rewiring of cellular metabolism with a shift toward glycolysis, uncoupling from mitochondrial oxidative phosphorylation, and enhanced glutamine metabolism. These adaptations may also have more widespread implications with redirection of acetyl-CoA directly linking changes in cellular metabolism and regulatory protein acetylation. Evidence also suggests that injury primes cells to these metabolic responses. In this review we discuss the key metabolic events that have led to a reappraisal of the regulation of fibroblast differentiation and function in CKD.
Collapse
Affiliation(s)
- Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine-RMH, The University of Melbourne, Melbourne, VIC, Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine-RMH, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
92
|
Tsai HW, Lina I, Motz KM, Chung L, Ding D, Murphy MK, Feeley M, Elisseeff JH, Hillel AT. Glutamine Inhibition Reduces Iatrogenic Laryngotracheal Stenosis. Laryngoscope 2021; 131:E2125-E2130. [PMID: 33433011 DOI: 10.1002/lary.29385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE/HYPOTHESIS Glutamine inhibition has been demonstrated an antifibrotic effect in iatrogenic laryngotracheal stenosis (iLTS) scar fibroblasts in vitro. We hypothesize that broadly active glutamine antagonist, DON will reduce collagen formation and fibrosis-associated gene expression in iLTS mice. STUDY DESIGN Prospective controlled animal study. METHODS iLTS in mice were induced by chemomechanical injury of the trachea using a bleomycin-coated wire brush. PBS or DON (1.3 mg/kg) were administered by intraperitoneal injection (i.p.) every other day. Laryngotracheal complexes were harvested at days 7 and 14 after the initiation of DON treatment for the measurement of lamina propria thickness, trichrome stain, immunofluorescence staining of collagen 1, and fibrosis-associated gene expression. RESULTS The study demonstrated that DON treatment reduced lamina propria thickness (P = .025) and collagen formation in trichrome stain and immunofluorescence staining of collagen 1. In addition, DON decreased fibrosis-associated gene expression in iLTS mice. At day 7, DON inhibited Col1a1 (P < .0001), Col3a1 (P = .0046), Col5a1 (P < .0001), and Tgfβ (P = .023) expression. At day 14, DON reduced Co1a1 (P = .0076) and Tgfβ (P = .023) expression. CONCLUSIONS Broadly active glutamine antagonist, DON, significantly reduces fibrosis in iLTS mice. These results suggest that the concept of glutamine inhibition may be a therapeutic option to reduce fibrosis in the laryngotracheal stenosis. LEVEL OF EVIDENCE N/A Laryngoscope, 131:E2125-E2130, 2021.
Collapse
Affiliation(s)
- Hsiu-Wen Tsai
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Ioan Lina
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Kevin M Motz
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Liam Chung
- Bloomberg Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A.,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Dacheng Ding
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Michael K Murphy
- Department of Otolaryngology and Communication, State University of New York Upstate Medical University, Syracuse, New York, U.S.A
| | - Michael Feeley
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, U.S.A
| | - Jennifer H Elisseeff
- Bloomberg Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A.,Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Alexander T Hillel
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
93
|
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2021; 7:627842. [PMID: 33585567 PMCID: PMC7873863 DOI: 10.3389/fmolb.2020.627842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Rishikesh, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
94
|
Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J 2021; 288:6331-6352. [PMID: 33393204 DOI: 10.1111/febs.15693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| |
Collapse
|
95
|
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22:22-38. [PMID: 33188273 DOI: 10.1038/s41580-020-00306-w] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | | | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
96
|
O'Leary EM, Tian Y, Nigdelioglu R, Witt LJ, Cetin-Atalay R, Meliton AY, Woods PS, Kimmig LM, Sun KA, Gökalp GA, Mutlu GM, Hamanaka RB. TGF-β Promotes Metabolic Reprogramming in Lung Fibroblasts via mTORC1-dependent ATF4 Activation. Am J Respir Cell Mol Biol 2020; 63:601-612. [PMID: 32668192 DOI: 10.1165/rcmb.2020-0143oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by the TGF-β (transforming growth factor-β)-dependent differentiation of lung fibroblasts into myofibroblasts, which leads to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by myofibroblasts requires de novo synthesis of glycine, the most abundant amino acid found in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine-glycine synthesis pathway in lung fibroblasts; however, the transcriptional and signaling regulators of this pathway remain incompletely understood. Here, we demonstrate that TGF-β promotes accumulation of ATF4 (activating transcription factor 4), which is required for increased expression of the serine-glycine synthesis pathway enzymes in response to TGF-β. We found that induction of the integrated stress response (ISR) contributes to TGF-β-induced ATF4 activity; however, the primary driver of ATF4 downstream of TGF-β is activation of mTORC1 (mTOR Complex 1). TGF-β activates the PI3K-Akt-mTOR pathway, and inhibition of PI3K prevents activation of downstream signaling and induction of ATF4. Using a panel of mTOR inhibitors, we found that ATF4 activation is dependent on mTORC1, independent of mTORC2. Rapamycin, which incompletely and allosterically inhibits mTORC1, had no effect on TGF-β-mediated induction of ATF4; however, Rapalink-1, which specifically targets the kinase domain of mTORC1, completely inhibited ATF4 induction and metabolic reprogramming downstream of TGF-β. Our results provide insight into the mechanisms of metabolic reprogramming in myofibroblasts and clarify contradictory published findings on the role of mTOR inhibition in myofibroblast differentiation.
Collapse
Affiliation(s)
- Erin M O'Leary
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Recep Nigdelioglu
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois; and
| | - Leah J Witt
- Division of Geriatrics and Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, The University of California San Francisco, San Francisco, California
| | - Rengul Cetin-Atalay
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Parker S Woods
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lucas M Kimmig
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlyn A Sun
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gizem A Gökalp
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
97
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
98
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
99
|
Abstract
INTRODUCTION Myofibroblasts are the primary executor and influencer in lung fibrosis. Latest studies on lung myofibroblast pathobiology have significantly advanced the understanding of the pathogenesis of lung fibrosis and shed new light on strategies targeting these cells to treat this disease. AREAS COVERED This article reviewed the most recent progresses, mainly within the last 5 years, on the definition, origin, activity regulation, and targeting of lung myofibroblasts in lung fibrosis. We did a literature search on PubMed using the keywords below from the dates 2010 to 2020. EXPERT OPINION With the improved cell lineage characterization and the advent of scRNA-seq, the field is having much better picture of the lung myofibroblast origin and mesenchymal heterogeneity. Additionally, cellular metabolism has emerged as a key regulation of lung myofibroblast pathogenic phenotype and is a promising therapeutic target for treating a variety of lung fibrotic disorders.
Collapse
Affiliation(s)
- Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases , Beijing, China
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| |
Collapse
|
100
|
Sun X, Cui X, Chen X, Jiang X. Baicalein alleviated TGF β1-induced type I collagen production in lung fibroblasts via downregulation of connective tissue growth factor. Biomed Pharmacother 2020; 131:110744. [PMID: 32932046 DOI: 10.1016/j.biopha.2020.110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Although we have reported that baicalein ameliorated bleomycin-induced pulmonary fibrosis in rats and inhibited fibroblast-to-myofibroblast differentiation, the mechanisms of the capability of baicalein to suppress the production of type I collagen in fibroblasts remains unclear. Here, we showed that baicalein suppressed transforming growth factor β1 (TGF β1)-stimulated the production of type I collagen in lung fibroblast MRC-5 cells. By applying SILAC-based proteomic technology, 158 proteins were identified as baicalein-modulated proteins in TGF β1-stimulated the accumulation of type I collagen in MRC-5 cells. Our proteomic and biochemical analysis demonstrated that baicalein decreased the expression levels of connective tissue growth factor (CTGF) in TGF β1-stimulated MRC-5 cells. In addition, CTGF overexpression elevated the levels of type I collagen in baicalein-treated fibroblasts. Moreover, our results demonstrated that baicalein-downregulated CTGF expression might be related with the decrease of Smad2 phosphorylation, but not SP1. This work not only linked CTGF to TGF β1-stimulated the production of type I collagen in its attribution to the effects of baicalein, but also might provide valuable information for enhancing the knowledge of the pharmacological inhibition of collagen production, which might represent a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xinjian Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|