51
|
Pirfenidone prevents and reverses hepatic insulin resistance and steatohepatitis by polarizing M2 macrophages. J Transl Med 2019; 99:1335-1348. [PMID: 31019294 DOI: 10.1038/s41374-019-0255-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is associated with lipotoxic liver injury, leading to insulin resistance, inflammation, and fibrosis. Despite its increased global incidence, very few promising treatments for NASH are available. Pirfenidone is an antifibrotic agent used to treat pulmonary fibrosis; it suppresses the pulmonary influx of T cells and macrophages. Here, we investigated the effect of pirfenidone in a mouse model of lipotoxicity-induced NASH via a high-cholesterol and high-fat diet. After 12 weeks of feeding, pirfenidone administration attenuated excessive hepatic lipid accumulation and peroxidation by reducing the expression of genes related to lipogenesis and fatty acid synthesis and enhancing the expression of those related to fatty acid oxidation. Flow cytometry indicated that pirfenidone reduced the number of total hepatic macrophages, particularly CD11c+CD206-(M1)-type macrophages, increased the number of CD11c-CD206+(M2)-type macrophages, and subsequently reduced T-cell numbers, which helped improve insulin resistance and steatohepatitis. Moreover, pirfenidone downregulated the lipopolysaccharide (LPS)-induced mRNA expression of M1 marker genes and upregulated IL-4-induced M2 marker genes in a dose-dependent manner in RAW264.7 macrophages. Importantly, pirfenidone reversed insulin resistance, hepatic inflammation, and fibrosis in mice with pre-existing NASH. These findings suggest that pirfenidone is a potential candidate for the treatment of NASH.
Collapse
|
52
|
Takakura K, Oikawa T, Nakano M, Saeki C, Torisu Y, Kajihara M, Saruta M. Recent Insights Into the Multiple Pathways Driving Non-alcoholic Steatohepatitis-Derived Hepatocellular Carcinoma. Front Oncol 2019; 9:762. [PMID: 31456946 PMCID: PMC6700399 DOI: 10.3389/fonc.2019.00762] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic syndrome with fatty liver is spreading on a worldwide scale. Correspondingly, the number of patients with the hepatic phenotype of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in its advanced states, non-alcoholic steatohepatitis (NASH), and the subsequent hepatocellular carcinoma (HCC) derived from NASH (NASH-HCC) is increasing remarkably. A large-scale epidemiological study revealed that obesity can be a risk factor of such cancers as HCC. Moreover, despite the ongoing trends of declining cancer incidence and mortality for most cancer types, HCC has experienced a markedly increased rate of both. Considering the differences in liver-related mortality among NAFLD patients, NASH, and NASH-HCC should be included in the objectives of initiatives to manage NAFLD patients and their progression to the advanced stages. Unfortunately, research has yet to make a crucial drug discovery for the effective treatment of NASH and NASH-HCC, although it is urgently needed. The latest widespread concept of the “multiple parallel hits hypothesis,” whereby multiple factors contribute concurrently to disease pathogenesis has led to advances in the elucidation of hepatic and systemic molecular mechanisms driving NASH and the subsequent NASH-HCC progression; the results are not only extensive but promising for therapeutics. Here, we have summarized the myriad landmark discoveries of recent research into the pathogenic processes underlying NASH-HCC development and with the greatest possibility for a new generation of pharmaceutical products for interference and treatment.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
53
|
Shin JY, Hernandez-Ono A, Fedotova T, Östlund C, Lee MJ, Gibeley SB, Liang CC, Dauer WT, Ginsberg HN, Worman HJ. Nuclear envelope-localized torsinA-LAP1 complex regulates hepatic VLDL secretion and steatosis. J Clin Invest 2019; 129:4885-4900. [PMID: 31408437 PMCID: PMC6819140 DOI: 10.1172/jci129769] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Cecilia Östlund
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J. Lee
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - William T. Dauer
- Department of Neurology, and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Howard J. Worman
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
54
|
Effect of Oxidative Stress and Fatty Acids Disbalance on the Development of Apoptosis in the Placenta with Cytomegalovirus Infection in the First Trimester. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background. Reactivation of cytomegalovirus infection (CMV) during pregnancy is associated with manifestation of oxidative stress, both in the maternal peripheral blood and in the placental tissues. One of the effects of oxidative stress is a disturbance of the metabolism of fatty acids, which leads to the initiation of the apoptotic cascade, the death of trophoblast cells and, as a result, tissue or organ dysfunction, promoting to the development of a pathological condition. However, an analysis of the current literature indicates insufficient information on this problem in the villous chorion of the placenta in CMV infection.Aims. To study the relationship between the oxidative stress development and fatty acid imbalance in apoptosis of trophoblast cells during reactivation of CMV in the first trimester.Material and methods. We examined peripheral blood, urine, a homogenate of the villous chorions from 35 pregnant women with CMV reactivation within 9–11 weeks of pregnancy and from 30 pregnant women without CMV of the same gestation period. We studied levels of IgM and IgG for cytomegalovirus, low-avid IgG antibodies to cytomegalovirus (avidity index), phospholipase A2 content, fatty acid content, number of apoptotic trophoblast cells, fatty acid peroxide content and catalase activity. Sampling and analysis of material from pregnant women was conducted in 2016–2018.Results. The reactivation of CMV in the first trimester of pregnancy led to an increase content in the phospholipase A2 in villous chorion by 2.5 times, by 1.5 times of fatty acid peroxides, 1.5 times arachidonic acid, palmitic acid by 1.3 times, number of trophoblast cells in a state of apoptosis by 4.7 times and decrease catalase activity by 1.44 times.Conclusion. As a result of the study, cytomegalovirus-dependent induction of oxidative stress and imbalance of fatty acids triggering apoptosis of trophoblast cells was identified. Increased apoptosis initiates inflammation and destructive processes in the early placenta.
Collapse
|
55
|
Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis. Proc Natl Acad Sci U S A 2019; 116:11776-11785. [PMID: 31123148 DOI: 10.1073/pnas.1814480116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cytoplasmic coat protein complex-II (COPII) is evolutionarily conserved machinery that is essential for efficient trafficking of protein and lipid cargos. How the COPII machinery is regulated to meet the metabolic demand in response to alterations of the nutritional state remains largely unexplored, however. Here, we show that dynamic changes of COPII vesicle trafficking parallel the activation of transcription factor X-box binding protein 1 (XBP1s), a critical transcription factor in handling cellular endoplasmic reticulum (ER) stress in both live cells and mouse livers upon physiological fluctuations of nutrient availability. Using live-cell imaging approaches, we demonstrate that XBP1s is sufficient to promote COPII-dependent trafficking, mediating the nutrient stimulatory effects. Chromatin immunoprecipitation (ChIP) coupled with high-throughput DNA sequencing (ChIP-seq) and RNA-sequencing analyses reveal that nutritional signals induce dynamic XBP1s occupancy of promoters of COPII traffic-related genes, thereby driving the COPII-mediated trafficking process. Liver-specific disruption of the inositol-requiring enzyme 1α (IRE1α)-XBP1s signaling branch results in diminished COPII vesicle trafficking. Reactivation of XBP1s in mice lacking hepatic IRE1α restores COPII-mediated lipoprotein secretion and reverses the fatty liver and hypolipidemia phenotypes. Thus, our results demonstrate a previously unappreciated mechanism in the metabolic control of liver protein and lipid trafficking: The IRE1α-XBP1s axis functions as a nutrient-sensing regulatory nexus that integrates nutritional states and the COPII vesicle trafficking.
Collapse
|
56
|
van den Boogert MAW, Larsen LE, Ali L, Kuil SD, Chong PLW, Loregger A, Kroon J, Schnitzler JG, Schimmel AWM, Peter J, Levels JHM, Steenbergen G, Morava E, Dallinga-Thie GM, Wevers RA, Kuivenhoven JA, Hand NJ, Zelcer N, Rader DJ, Stroes ESG, Lefeber DJ, Holleboom AG. N-Glycosylation Defects in Humans Lower Low-Density Lipoprotein Cholesterol Through Increased Low-Density Lipoprotein Receptor Expression. Circulation 2019; 140:280-292. [PMID: 31117816 DOI: 10.1161/circulationaha.118.036484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.
Collapse
Affiliation(s)
- Marjolein A W van den Boogert
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Lars E Larsen
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Lubna Ali
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Sacha D Kuil
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick L W Chong
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Anke Loregger
- Medical Biochemistry (A.L., N.Z.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Jeffrey Kroon
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Johan G Schnitzler
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Alinda W M Schimmel
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Jorge Peter
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Johannes H M Levels
- Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Gerry Steenbergen
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN (E.M.)
| | - Geesje M Dallinga-Thie
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands.,Experimental Vascular Medicine (M.A.W.v.d.B., L.E.L., L.A., P.L.W.C., J.K., J.G.S., A.W.M.S., J.P., J.H.M.L., G.M.D.-T.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, The Netherlands (J.A.K.)
| | - Nicholas J Hand
- Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Noam Zelcer
- Medical Biochemistry (A.L., N.Z.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Daniel J Rader
- Department of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (L.E.L., P.L.W.C., N.J.H., D.J.R.)
| | - Erik S G Stroes
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Translational Metabolic Laboratory (S.D.K., G.S., R.A.W., D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology (D.J.L.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriaan G Holleboom
- Departments of Vascular Medicine (M.A.W.v.d.B., J.K., G.M.D.-T., E.S.G.S., A.G.H.), Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
57
|
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to liver disease and hepatic fibrosis, but the role it plays varies depending on the cause and progression of the disease. Furthermore, ER stress plays a distinct role in hepatocytes versus hepatic stellate cells (HSCs), which adds to the complexity of understanding ER stress and its downstream signaling through the unfolded protein response (UPR) in liver disease. Here, the authors focus on the current literature of ER stress in nonalcoholic and alcoholic fatty liver diseases, how ER stress impacts hepatocyte injury, and the role of ER stress in HSC activation and hepatic fibrosis. This review provides insight into the complex signaling and regulation of the UPR, parallels and distinctions between different liver diseases, and how ER stress may be targeted as an antisteatotic or antifibrotic therapy to limit the progression of liver disease.
Collapse
Affiliation(s)
- Jessica L. Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
58
|
Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications. Pharmacol Res 2019; 144:116-131. [PMID: 30954630 DOI: 10.1016/j.phrs.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/08/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
In the past two decades, significant advances have been made in the etiology of lipid disorders. Concomitantly, the discovery of liporegulatory functions of certain short-chain fatty acids has generated interest in their clinical applications. In particular, butyric acid (BA) and its derivative, 4-phenylbutyric acid (PBA), which afford health benefits against lipid disorders while being generally well tolerated by animals and humans have been assessed clinically. This review examines the evidence from cell, animal and human studies pertaining to the lipid-regulating effects of BA and PBA, their molecular mechanisms and therapeutic potential. Collectively, the evidence supports the view that intakes of BA and PBA benefit lipid homeostasis across biological systems. We reviewed the evidence that BA and PBA downregulate de novo lipogenesis, ameliorate lipotoxicity, slow down atherosclerosis progression, and stimulate fatty acid β-oxidation. Central to their mode of action, BA appears to function as a histone deacetylase (HDAC) inhibitor while PBA acts as a chemical chaperone and/or a HDAC inhibitor. Areas of further inquiry include the effects of BA and PBA on adipogenesis, lipolysis and apolipoprotein metabolism.
Collapse
|
59
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
60
|
Sundaram V, Morgan TR. Will Studies in Nonalcoholic Steatohepatitis Help Manage Alcoholic Steatohepatitis? Clin Liver Dis 2019; 23:157-165. [PMID: 30454829 DOI: 10.1016/j.cld.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic steatosis and steatohepatitis have several etiologies; the most common are alcoholic steatohepatitis (ASH) and obesity/metabolic syndrome-induced steatohepatitis, also known as nonalcoholic steatohepatitis (NASH). Although the etiology of these 2 conditions is different, they share pathways to disease progression and severity. They also have differences in physiologic pathways, and shared and divergent mechanisms can be therapeutic targets. There is no approved pharmacologic therapy for NASH, but several molecules are under study. Focus remains on modulation of insulin resistance, oxidative stress, the inflammatory cascade, hepatic fibrosis, and cell death. This review provides an overview of pathophysiologic similarities and differences between ASH and NASH.
Collapse
Affiliation(s)
- Vinay Sundaram
- Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, 8900 Beverly Boulevard, Suite 250, Los Angeles, CA 90048, USA
| | - Timothy R Morgan
- Gastroenterology Section, VA Long Beach Healthcare System, 5901 East Seventh Street - 11G, Long Beach, CA 90822, USA.
| |
Collapse
|
61
|
Žáček P, Bukowski M, Mehus A, Johnson L, Zeng H, Raatz S, Idso JP, Picklo M. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice. J Nutr Biochem 2019; 64:32-44. [DOI: 10.1016/j.jnutbio.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
62
|
Sołtysik K, Ohsaki Y, Tatematsu T, Cheng J, Fujimoto T. Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun 2019; 10:473. [PMID: 30692541 PMCID: PMC6349838 DOI: 10.1038/s41467-019-08411-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here we show that nuclear LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs, a precursor to very low-density lipoproprotein (VLDL) generated in the ER lumen by microsomal triglyceride transfer protein. ApoB-free lumenal LDs accumulate under ER stress, grow within the lumen of the type I nucleoplasmic reticulum, and turn into nucleoplasmic LDs by disintegration of the surrounding inner nuclear membrane. Oleic acid with or without tunicamycin significantly increases the formation of nucleoplasmic LDs, to which CTP:phosphocholine cytidylyltransferase α (CCTα) is recruited, resulting in activation of phosphatidylcholine (PC) synthesis. Perilipin-3 competes with CCTα in binding to nucleoplasmic LDs, and thus, knockdown and overexpression of perilipin-3 increases and decreases PC synthesis, respectively. The results indicate that nucleoplasmic LDs in hepatocytes constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress. The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here authors show that nucleoplasmic LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs and constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Ohsaki
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyako Tatematsu
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jinglei Cheng
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
63
|
Xu L, Nagata N, Chen G, Nagashimada M, Zhuge F, Ni Y, Sakai Y, Kaneko S, Ota T. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res Care 2019; 7:e000783. [PMID: 31749970 PMCID: PMC6827766 DOI: 10.1136/bmjdrc-2019-000783] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE We reported previously that empagliflozin-a sodium-glucose cotransporter (SGLT) 2 inhibitor-exhibited preventive effects against obesity. However, it was difficult to extrapolate these results to human subjects. Here, we performed a therapeutic study, which is more relevant to clinical situations in humans, to investigate antiobesity effects of empagliflozin and illustrate the mechanism underlying empagliflozin-mediated enhanced fat browning in obese mice. RESEARCH DESIGN AND METHODS After 8 weeks on a high-fat diet (HFD), C57BL/6J mice exhibited obesity, accompanied by insulin resistance and low-grade chronic inflammation. Cohorts of obese mice were continued on the HFD for an additional 8-week treatment period with or without empagliflozin. RESULTS Treatment with empagliflozin for 8 weeks markedly increased glucose excretion in urine, and suppressed HFD-induced weight gain, insulin resistance and hepatic steatosis. Notably, empagliflozin enhanced oxygen consumption and carbon dioxide production, leading to increased energy expenditure. Consistently, the level of uncoupling protein 1 expression was increased in both brown and white (WAT) adipose tissues of empagliflozin-treated mice. Furthermore, empagliflozin decreased plasma levels of interleukin (IL)-6 and monocyte chemoattractant protein-1, but increased plasma levels of IL-33 and adiponectin in obese mice. Finally, we found that empagliflozin reduced M1-polarized macrophage accumulation, while inducing the anti-inflammatory M2 phenotype of macrophages in the WAT and liver, thereby attenuating obesity-related chronic inflammation. CONCLUSIONS Treatment with empagliflozin attenuated weight gain by increasing energy expenditure and adipose tissue browning, and alleviated obesity-associated inflammation and insulin resistance by alternative macrophage activation in the WAT and liver of obese mice.
Collapse
Affiliation(s)
- Liang Xu
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Guanliang Chen
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Fen Zhuge
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuriko Sakai
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
64
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
65
|
Moslehi A, Hamidi-zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol 2018; 6:332-338. [PMID: 30271747 PMCID: PMC6160306 DOI: 10.14218/jcth.2017.00061] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/10/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sterol regulator element binding proteins (SREBPs) are a family of transcription factors involved in the biogenesis of cholesterol, fatty acids and triglycerides. They also regulate physiological functions of many organs, such as thyroid, brain, heart, pancreas and hormone synthesis. Beside the physiological effects, SREBPs participate in some pathological processes, diabetes, endoplasmic reticulum stress, atherosclerosis and chronic kidney disease associated with SREBP expression changes. In the liver, SREBPs are involved in the pathogenesis of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, hepatitis and hepatic cancer. There are several SREBP inhibitors that have potential for treating obesity, diabetes and cancer. This review assesses the recent findings about the roles of SREBPs in the physiology of organs' function and pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Azam Moslehi
- Department of Physiology, Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Zeinab Hamidi-zad
- Department of Physiology, Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
66
|
Parafati M, Kirby RJ, Khorasanizadeh S, Rastinejad F, Malany S. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis. Dis Model Mech 2018; 11:11/9/dmm033530. [PMID: 30254132 PMCID: PMC6176998 DOI: 10.1242/dmm.033530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatic steatosis, a reversible state of metabolic dysregulation, can promote the onset of nonalcoholic steatohepatitis (NASH), and its transition is thought to be critical in disease evolution. The association between endoplasmic reticulum (ER) stress response and hepatocyte metabolism disorders prompted us to characterize ER stress-induced hepatic metabolic dysfunction in human induced pluripotent stem cell-derived hepatocytes (hiPSC-Hep), to explore regulatory pathways and validate a phenotypic in vitro model for progression of liver steatosis. We treated hiPSC-Hep with a ratio of unsaturated and saturated fatty acids in the presence of an inducer of ER stress to synergistically promote triglyceride accumulation and dysregulate lipid metabolism. We monitored lipid accumulation by high-content imaging and measured gene regulation by RNA sequencing and reverse transcription quantitative PCR analyses. Our results show that ER stress potentiated intracellular lipid accumulation by 5-fold in hiPSC-Hep in the absence of apoptosis. Transcriptome pathway analysis identified ER stress pathways as the most significantly dysregulated of all pathways affected. Obeticholic acid dose dependently inhibited lipid accumulation and modulated gene expression downstream of the farnesoid X receptor. We were able to identify modulation of hepatic markers and gene pathways known to be involved in steatosis and nonalcoholic fatty liver disease (NAFLD), in support of a hiPSC-Hep disease model that is relevant to clinical data for human NASH. Our results show that the model can serve as a translational discovery platform for the understanding of molecular pathways involved in NAFLD, and can facilitate the identification of novel therapeutic molecules based on high-throughput screening strategies. Summary: Our study demonstrates expanded use of human induced pluripotent stem cell-derived hepatocytes for molecular studies and drug screening, to evaluate new therapeutics with an antisteatotic mechanism of action for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Maddalena Parafati
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| | - R Jason Kirby
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| | - Sepideh Khorasanizadeh
- Center for Metabolic Origins of Disease, Sanford Burham Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Center for Metabolic Origins of Disease, Sanford Burham Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA
| | - Siobhan Malany
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| |
Collapse
|
67
|
Shaheen A. Effect of the unfolded protein response on ER protein export: a potential new mechanism to relieve ER stress. Cell Stress Chaperones 2018; 23:797-806. [PMID: 29730847 PMCID: PMC6111102 DOI: 10.1007/s12192-018-0905-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 02/04/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Alaa Shaheen
- Kafr El-Sharakwa Medical Center, Aga, Dakahlia, Egypt.
| |
Collapse
|
68
|
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018; 75:3313-3327. [PMID: 29936596 PMCID: PMC6105174 DOI: 10.1007/s00018-018-2860-6] [Citation(s) in RCA: 812] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the world's most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
69
|
Abstract
Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dyslipidemia in diabetes consists of elevated serum concentrations of TG-rich lipoproteins (TRLs), a high prevalence of small dense low-density lipoprotein (LDL), and low concentrations of cholesterol-rich high-density lipoprotein (HDL)2-C. A central lipoprotein abnormality is an increase in large TG-rich very-low-density lipoprotein (VLDL)1, and other lipoprotein abnormalities are metabolically linked to increased TRLs. Insulin critically regulates serum VLDL concentrations by suppressing hepatic VLDL production and stimulating VLDL removal by activation of lipoprotein lipase. It is still debated whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of VLDL. This review introduces experimental and clinical observations revealing that insulin resistance, but not hyperinsulinemia stimulates hepatic VLDL production. LDL and HDL consist of heterogeneous particles with different size and density. Cholesterol-depleted small dense LDL and cholesterol-rich HDL2 subspecies are particularly affected by insulin resistance and can be named “Metabolic LDL and HDL,” respectively. We established the direct assays for quantifying small dense LDL-C and small dense HDL(HDL3)-C, respectively. Subtracting HDL3-C from HDL-C gives HDL2-C. I will explain clinical relevance of measurements of LDL and HDL subspecies determined by our assays. Diabetic kidney disease (DKD) substantially worsens plasma lipid profile thereby potentiated atherogenic risk. Finally, I briefly overview pathophysiology of dyslipidemia associated with DKD, which has not been so much taken up by other review articles.
Collapse
Affiliation(s)
- Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine
| |
Collapse
|
70
|
Gasparin FRS, Carreño FO, Mewes JM, Gilglioni EH, Pagadigorria CLS, Natali MRM, Utsunomiya KS, Constantin RP, Ouchida AT, Curti C, Gaemers IC, Elferink RPJO, Constantin J, Ishii-Iwamoto EL. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2495-2509. [DOI: 10.1016/j.bbadis.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
|
71
|
Luo L, Jiang W, Liu H, Bu J, Tang P, Du C, Xu Z, Luo H, Liu B, Xiao B, Zhou Z, Liu F. De-silencing Grb10 contributes to acute ER stress-induced steatosis in mouse liver. J Mol Endocrinol 2018; 60:285-297. [PMID: 29555819 DOI: 10.1530/jme-18-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
The growth factor receptor bound protein GRB10 is an imprinted gene product and a key negative regulator of the insulin, IGF1 and mTORC1 signaling pathways. GRB10 is highly expressed in mouse fetal liver but almost completely silenced in adult mice, suggesting a potential detrimental role of this protein in adult liver function. Here we show that the Grb10 gene could be reactivated in adult mouse liver by acute endoplasmic reticulum stress (ER stress) such as tunicamycin or a short-term high-fat diet (HFD) challenge, concurrently with increased unfolded protein response (UPR) and hepatosteatosis. Lipogenic gene expression and acute ER stress-induced hepatosteatosis were significantly suppressed in the liver of the liver-specific GRB10 knockout mice, uncovering a key role of Grb10 reactivation in acute ER stress-induced hepatic lipid dysregulation. Mechanically, acute ER stress induces Grb10 reactivation via an ATF4-mediated increase in Grb10 gene transcription. Our study demonstrates for the first time that the silenced Grb10 gene can be reactivated by acute ER stress and its reactivation plays an important role in the early development of hepatic steatosis.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanxiang Jiang
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jicheng Bu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Tang
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyangzi Du
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhipeng Xu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of PharmacologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
72
|
Elkin RG, Kukorowski AN, Ying Y, Harvatine KJ. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil. Lipids 2018; 53:235-249. [PMID: 29569243 DOI: 10.1002/lipd.12016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexandra N Kukorowski
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun Ying
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
73
|
Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5045182. [PMID: 29721506 PMCID: PMC5867538 DOI: 10.1155/2018/5045182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.
Collapse
|
74
|
ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis. Cell Rep 2018; 19:1794-1806. [PMID: 28564599 DOI: 10.1016/j.celrep.2017.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/31/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.
Collapse
|
75
|
Moslehi A, Farahabadi M, Chavoshzadeh SA, Barati A, Ababzadeh S, Mohammadbeigi A. The Effect of Amygdalin on Endoplasmic Reticulum (ER) Stress Induced Hepatic Steatosis in Mice. Malays J Med Sci 2018; 25:16-23. [PMID: 29599631 DOI: 10.21315/mjms2018.25.1.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress creates abnormalities in the insulin action, inflammatory responses, lipoprotein B100 degradation, and hepatic lipogenesis. Hepatic steatosis leads to a broad spectrum of hepatic disorders such as nonalcoholic fatty liver disease (NAFLD) and NASH. Amygdalin has beneficial effects on asthma, bronchitis, diabetes, and atherosclerosis. We designed this study to evaluate the effect of amygdalin on the ER stress induced hepatic steatosis. Methods Inbred mice received saline, DMSO and amygdalin, as control groups. ER stress was induced by tunicamycin (TM) injection. Amygdalin was administered 1 h before the TM challenge (Amy + TM group). Mice body and liver weights were measured. Hematoxylin and eosin (H&E) and oil red O staining from liver tissue, were performed. Alanin aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and cholesterol levels were measured. Results Histological evaluation revealed that amygdalin was unable to decrease the TM induced liver steatosis; however, ALT and AST levels decreased [ALT: 35.33(2.15) U/L versus 92.33(6.66) U/L; (57.000, (50.63, 63.36), P < 0.001) and AST: 93(5.09) U/L versus 345(97.3) U/L, (252, (163.37, 340.62), P < 0.001)]. Amygdalin also decreased triglyceride and cholesterol plasma levels in the Amy + TM group [TG: 42.66(2.15) versus 53.33(7.24) mg/dL; (10.67, (3.80, 17.54), P = 0.006) and TC: 9.33(3.55) versus 112.66(4.31) mg/dL, (103.33, (98.25, 108.40) P < 0.001)]. Conclusion Amygdalin improved the ALT, AST, and lipid serum levels after the TM challenge; however, it could not attenuate hepatic steatosis.
Collapse
Affiliation(s)
- Azam Moslehi
- Cellular& Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Farahabadi
- BSC of Operating Room, Qom University of Medical Sciences, Qom, Iran
| | | | - Akram Barati
- BSC of Nursing, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Cellular& Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Mohammadbeigi
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
76
|
Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Kamei J, Ishikawa H, Komatsu Y, Kaneko S, Ota T. A porcine placental extract prevents steatohepatitis by suppressing activation of macrophages and stellate cells in mice. Oncotarget 2018; 9:15047-15060. [PMID: 29599925 PMCID: PMC5871096 DOI: 10.18632/oncotarget.24587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/21/2018] [Indexed: 01/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by ectopic fat accumulation in the liver. NAFLD is associated with hepatic inflammation and oxidative stress, resulting in nonalcoholic steatohepatitis (NASH) with advanced fibrosis. Placental extracts have been used to treat various chronic diseases due to their antioxidative effect. However, the effects of the extracts on the development of NASH have yet to be elucidated. Here, we demonstrated that supplementation with an oral porcine placental extract (PPE) attenuated lipid accumulation and peroxidation, insulin resistance, inflammatory and stress signaling, and fibrogenesis in the liver of NASH model mice fed a high-cholesterol and high-fat diet. The PPE reduced the number of M1-like liver macrophages, but increased the number of anti-inflammatory M2-like macrophages, resulting in a predominance of M2 over M1 macrophage populations in the liver of NASH mice. Accordingly, the PPE suppressed lipopolysaccharide-induced M1 polarization in isolated murine peritoneal macrophages, whereas it facilitated interleukin 4-induced M2 polarization. Furthermore, the PPE reduced the hepatic stellate cell (HSC) activation associated with the attenuated transforming growth factor-β/Smad3 signaling, both in the liver of NASH mice and in RI-T cells, a HSC line. The PPE may be a potential approach to prevent NASH by limiting lipid peroxidation, promoting M2 macrophage polarization, and attenuating HSC activation.
Collapse
Affiliation(s)
- Liang Xu
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Fen Zhuge
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Guanliang Chen
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Junzo Kamei
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | - Shuichi Kaneko
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan.,Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
77
|
Tian S, Li B, Lei P, Yang X, Zhang X, Bao Y, Shan Y. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways. Mol Nutr Food Res 2018; 62:e1700737. [DOI: 10.1002/mnfr.201700737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sicong Tian
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Baolong Li
- Heilongjiang University of Chinese Medicine; Harbin China
| | - Peng Lei
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiuli Yang
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology; School of Medicine; Ningbo University; Zhejiang China
| | - Yongping Bao
- Norwich Medical School; University of East Anglia; Norwich UK
| | - Yujuan Shan
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| |
Collapse
|
78
|
Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, Tang Y, Yao P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol 2018; 114:52-60. [PMID: 29438776 DOI: 10.1016/j.fct.2018.02.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
The consumption of a quercetin-rich diet has been well-established as a feasible method against non-alcoholic fatty liver disease (NAFLD); however, the molecular mechanisms underlying the progression of NAFLD and its intervention by quercetin remain largely obscure. Male Sprague-Dawley rats fed high-fat diet (HFD), and HepG2 cells stimulated with free fatty acid, were treated with quercetin and various pharmacological reagents to explore the effect of signaling pathways involved in endoplasmic reticulum stress on very low-density lipoprotein (VLDL) assembly and lipophagy. Quercetin intake decreased hepatic TG content by 39%, with a 1.5-fold increase in VLDL, and up-regulated spliced X-box binding protein 1 (XBP1s) expression compared with the HFD group. Thapsigargin or STF-083010 (an IRE1α endonuclease inhibitor) decreased VLDL content in a dose-dependent manner, partially counteracting the protective effects of quercetin, 4-PBA or APY-29 (an IRE1α endonuclease activator). Additionally, microsomal TG-transfer protein complex expression was increased with quercetin-treated and down-regulated by STF-083010. Moreover, quercetin increased co-localization of lysosomes with lipid droplets (LDs) accompanied by decreased p62 accumulation. STF-083010 partially abolished the effect of quercetin on LDs autophagy in an mTOR-independent manner. Collectively, these findings demonstrate that hepatic VLDL assembly and lipophagy are the main targets of quercetin against NAFLD via the IRE1a/XBP1s pathway.
Collapse
Affiliation(s)
- Xinhong Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peiyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
79
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
80
|
Namkoong S, Cho CS, Semple I, Lee JH. Autophagy Dysregulation and Obesity-Associated Pathologies. Mol Cells 2018; 41:3-10. [PMID: 29370691 PMCID: PMC5792710 DOI: 10.14348/molcells.2018.2213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is one of the major degradative mechanisms that can eliminate excessive nutrients, toxic protein aggregates, damaged organelles and invading microorganisms. In response to obesity and obesity-associated lipotoxic, proteotoxic and oxidative stresses, autophagy plays an essential role in maintaining physiological homeostasis. However, obesity and its associated stress insults can often interfere with the autophagic process through various mechanisms, which result in further aggravation of obesity-related metabolic pathologies in multiple metabolic organs. Paradoxically, inhibition of autophagy, within specific contexts, indirectly produces beneficial effects that can alleviate several detrimental consequences of obesity. In this minireview, we will provide a brief discussion about our current understanding of the impact of obesity on autophagy and the role of autophagy dysregulation in modulating obesity-associated pathological outcomes.
Collapse
Affiliation(s)
- Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Ian Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| |
Collapse
|
81
|
Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, Huang T, Ferguson C, Parton RG, Yang H, Li P. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 2018; 217:975-995. [PMID: 29367353 PMCID: PMC5839781 DOI: 10.1083/jcb.201704184] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Lipid incorporation from endoplasmic reticulum (ER) to lipid droplet (LD) is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link mediating ER and LD cross talk remains elusive. Here, we identified Rab18 as an important Rab guanosine triphosphatase in controlling LD growth and maturation. Rab18 deficiency resulted in a drastically reduced number of mature LDs and decreased lipid storage, and was accompanied by increased ER stress. Rab3GAP1/2, the GEF of Rab18, promoted LD growth by activating and targeting Rab18 to LDs. LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER-LD contact. Cells with defects in the NRZ/SNARE complex function showed reduced LD growth and lipid storage. Overall, our data reveal that the Rab18-NRZ-SNARE complex is critical protein machinery for tethering ER-LD and establishing ER-LD contact to promote LD growth.
Collapse
Affiliation(s)
- Dijin Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dongyu Zhao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinhai Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tuozhi Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
82
|
Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM, Lykkesfeldt J, Fledelius C. Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr 2018; 10:4. [PMID: 29410708 PMCID: PMC5781341 DOI: 10.1186/s13098-018-0307-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In humans and animal models, excessive intake of dietary fat, fructose and cholesterol has been linked to the development of non-alcoholic fatty liver disease (NAFLD). However, the individual roles of the dietary components remain unclear. To investigate this further, we compared the effects of a high-fat diet, a high-fructose diet and a combination diet with added cholesterol on the development of NAFLD in rats. METHODS Forty male Sprague-Dawley rats were randomized into four groups receiving either a control-diet (Control: 10% fat); a high-fat diet (HFD: 60% fat, 20% carbohydrate), a high-fructose diet [HFr: 10% fat, 70% carbohydrate (mainly fructose)] or a high-fat/high-fructose/high-cholesterol-diet (NASH: 40% fat, 40% carbohydrate (mainly fructose), 2% cholesterol) for 16 weeks. RESULTS After 16 weeks, liver histology revealed extensive steatosis and inflammation in both NASH- and HFD-fed rats, while hepatic changes in HFr-rats were much more subtle. These findings were corroborated by significantly elevated hepatic triglyceride content in both NASH- (p < 0.01) and HFD-fed rats (p < 0.0001), elevated hepatic cholesterol levels in NASH-fed rats (p < 0.0001), but no changes in HFr-fed rats, compared to Control. On the contrary, only HFr-fed rats developed dyslipidemia as characterized by higher levels of plasma triglycerides compared to all other groups (p < 0.0001). Hepatic dysfunction and inflammation was confirmed in HFD-fed rats by elevated levels of hepatic MCP-1 (p < 0.0001), TNF-alpha (p < 0.001) and plasma β-hydroxybutyrate (p < 0.0001), and in NASH-fed rats by elevated levels of hepatic MCP-1 (p < 0.01), increased hepatic macrophage infiltration (p < 0.001), and higher plasma levels of alanine aminotransferase (p < 0.0001) aspartate aminotransferase (p < 0.05), haptoglobin (p < 0.001) and TIMP-1 (p < 0.01) compared to Control. CONCLUSION These findings show that dietary fat and cholesterol are the primary drivers of NAFLD development and progression in rats, while fructose mostly exerts its effect on the circulating lipid pool.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Henning Hvid
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jesper Damgaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Helle Nygaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Camilla Ingvorsen
- Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Erik Max Wulff
- Obesity and Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
| | - Christian Fledelius
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| |
Collapse
|
83
|
Thibeaux S, Siddiqi S, Zhelyabovska O, Moinuddin F, Masternak MM, Siddiqi SA. Cathepsin B regulates hepatic lipid metabolism by cleaving liver fatty acid-binding protein. J Biol Chem 2017; 293:1910-1923. [PMID: 29259130 DOI: 10.1074/jbc.m117.778365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Synthesis and secretion of hepatic triglycerides (TAG) associated with very-low-density lipoprotein (VLDL) play a major role in maintaining overall lipid homeostasis. This study aims to identify factors affecting synthesis and secretion of VLDL-TAG using the growth hormone-deficient Ames dwarf mouse model, which has reduced serum TAG. Proteomic analysis coupled with a bioinformatics-driven approach revealed that these mice express greater amounts of hepatic cathepsin B and lower amounts of liver fatty acid-binding protein (LFABP) than their wildtype littermates. siRNA-mediated knockdown of cathepsin B in McA-RH7777 cells resulted in a 39% increase in [3H]TAG associated with VLDL secretion. Cathepsin B knockdown was accompanied by a 74% increase in cellular LFABP protein levels, but only when cells were exposed to 0.4 mm oleic acid (OA) complexed to BSA. The cathepsin B knockdown and 24-h treatment with OA resulted in increased CD36 expression alone and additively. Co-localization of LFABP and cathepsin B was observed in a distinct Golgi apparatus-like pattern, which required a 1-h OA treatment. Moreover, we observed co-localization of LFABP and apoB, independent of the OA treatment. Overexpression of cathepsin B resulted in decreased OA uptake and VLDL secretion. Co-expression of cathepsin B and cathepsin B-resistant mutant LFABP in McA-RH7777 cells resulted in an increased TAG secretion as compared with cells co-expressing cathepsin B and wildtype LFABP. Together, these data indicate that cathepsin B regulates VLDL secretion and free fatty acid uptake via cleavage of LFABP, which occurs in response to oleic acid exposure.
Collapse
Affiliation(s)
- Simeon Thibeaux
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shaila Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Olga Zhelyabovska
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Faisal Moinuddin
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Michal M Masternak
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shadab A Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
84
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
85
|
Kim S, Lee AY, Kim HJ, Hong SH, Go RE, Choi KC, Kang KS, Cho MH. Exposure to cigarette smoke disturbs adipokines secretion causing intercellular damage and insulin resistance in high fructose diet-induced metabolic disorder mice. Biochem Biophys Res Commun 2017; 494:648-655. [PMID: 29079192 DOI: 10.1016/j.bbrc.2017.10.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
A large amount of fructose intake along with smoking is associated with increased incidence of diseases linked to metabolic syndrome. More research is necessary to understand the complex mechanism that ultimately results in metabolic syndrome and the effect, if any, of high fructose dietary intake and smoking on individual health. In this study, we investigated changes in ER-Golgi network and disturbance to secretion of adipokines induced by cigarette smoking (CS) and excess fructose intake and their contribution to the disruption of metabolic homeostasis. We used high fructose-induced metabolic disorder mice model by feeding them with high fructose diet for 8 weeks. For CS exposure experiment, these mice were exposed to CS for 28 days according to OECD guideline 412. Our results clearly showed that the immune system was suppressed and ER stress was induced in mice with exposure to CS and fed with high fructose. Furthermore, their concentrations of adipokines including leptin and adiponectin were aberrant. Such alteration in secretion of adipokines could cause insulin resistance which may lead to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Sanghwa Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea; Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ah Young Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Jeong Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Bio medicine Lab., CKD Research Institute, Yongin 16995, Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 08826, 151-742, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| |
Collapse
|
86
|
Hetherington AM, Sawyez CG, Sutherland BG, Robson DL, Arya R, Kelly K, Jacobs RL, Borradaile NM. Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice. Physiol Rep 2017; 4:4/17/e12963. [PMID: 27613825 PMCID: PMC5027364 DOI: 10.14814/phy2.12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor EEF1A1 is induced by oxidative and ER stress, and contributes to subsequent cell death in many cell types, including hepatocytes. We recently showed that blocking the protein synthesis activity of EEF1A1 with the peptide inhibitor, didemnin B, decreases saturated fatty acid overload-induced cell death in HepG2 cells. In light of this and other recent work suggesting that limiting protein synthesis may be beneficial in treating ER stress-related disease, we hypothesized that acute intervention with didemnin B would decrease hepatic ER stress and lipotoxicity in obese mice with nonalcoholic fatty liver disease (NAFLD). Hyperphagic male ob/ob mice were fed semipurified diet for 4 weeks, and during week 5 received i.p. injections of didemnin B or vehicle on days 1, 4, and 7. Interestingly, we observed that administration of this compound modestly decreased food intake without evidence of illness or distress, and thus included an additional control group matched for food consumption with didemnin B-treated animals. Treatment with didemnin B improved several characteristics of hepatic lipotoxicity to a greater extent than the effects of caloric restriction alone, including hepatic steatosis, and some hepatic markers of ER stress and inflammation (GRP78, Xbp1s, and Mcp1). Plasma lipid and lipoprotein profiles and histopathological measures of NAFLD, including lobular inflammation, and total NAFLD activity score were also improved by didemnin B. These data indicate that acute intervention with the EEF1A inhibitor, didemnin B, improves hepatic lipotoxicity in obese mice with NAFLD through mechanisms not entirely dependent on decreased food intake, suggesting a potential therapeutic strategy for this ER stress-related disease.
Collapse
Affiliation(s)
- Alexandra M Hetherington
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Cynthia G Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada Robarts Research Institute, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada Department of Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Brian G Sutherland
- Robarts Research Institute, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Debra L Robson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Rigya Arya
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Karen Kelly
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| |
Collapse
|
87
|
Moslehi A, Nabavizadeh F, Zekri A, Amiri F. Naltrexone changes the expression of lipid metabolism-related proteins in the endoplasmic reticulum stress induced hepatic steatosis in mice. Clin Exp Pharmacol Physiol 2017; 44:207-212. [PMID: 27813192 DOI: 10.1111/1440-1681.12695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress is closely associated with several chronic diseases such as obesity, atherosclerosis, type 2 diabetes, and hepatic steatosis. Steatosis in hepatocytes may also lead to disorders such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), fibrosis, and possibly cirrhosis. Opioid peptides are involved in triglyceride and cholesterol dysregulation. Naltrexone also attenuates ER stress induced hepatic steatosis in mice. In this study, we evaluated the effects of naltrexone on the expression of lipid metabolism-related nuclear factors and enzymes in the ER stress induced hepatic steatosis. C57/BL6 mice received saline, DMSO and naltrexone as control groups. In a fourth group, ER stress was induced by tunicamycin (TM) injection and in the last group, naltrexone was given before TM administration. Histopathological evaluations, real-time RT-PCR and western blot were performed. We found that GRP78, IRE1α, PERK and ATF6 gene expression and steatosis significantly reduced in naltrexone treated animals. Naltrexone alleviated the gene and protein expression of SREBP1c. Expression of ACAT1, apolipoprotein B (ApoB) and PPARα also increased after naltrexone treatment. In conclusion, this study, for the first time, shows that naltrexone has a considerable role in attenuation of ER stress-induced liver injury.
Collapse
Affiliation(s)
- Azam Moslehi
- Cellular& Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Amiri
- Physiology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
88
|
Khetarpal SA, Zeng X, Millar JS, Vitali C, Somasundara AVH, Zanoni P, Landro JA, Barucci N, Zavadoski WJ, Sun Z, de Haard H, Toth IV, Peloso GM, Natarajan P, Cuchel M, Lund-Katz S, Phillips MC, Tall AR, Kathiresan S, DaSilva-Jardine P, Yates NA, Rader DJ. A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med 2017; 23:1086-1094. [PMID: 28825717 PMCID: PMC5669375 DOI: 10.1038/nm.4390] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.
Collapse
Affiliation(s)
- Sumeet A Khetarpal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John S Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Vitali
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amritha Varshini Hanasoge Somasundara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paolo Zanoni
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Zhiyuan Sun
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sissel Lund-Katz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Phillips
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Nathan A Yates
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
89
|
Lepreux S, Villeneuve J, Dewitte A, Bérard AM, Desmoulière A, Ripoche J. CD40 signaling and hepatic steatosis: Unanticipated links. Clin Res Hepatol Gastroenterol 2017; 41:357-369. [PMID: 27989689 DOI: 10.1016/j.clinre.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Obesity predisposes to an increased risk of nonalcoholic fatty liver disease (NAFLD). Hepatic steatosis is the key pathological feature of NAFLD and has emerged as a metabolic disorder in which innate and adaptive arms of the immune response play a central role in disease pathogenesis. Recent studies have revealed unexpected relationships between CD40 signaling and hepatic steatosis in high fat diet rodent models. CD154, the ligand of CD40, is a mediator of inflammation and controls several critical events of innate and adaptive immune responses. In the light of these reports, we discuss potential links between CD40 signaling and hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, 33600 Pessac, France
| | - Annie M Bérard
- Service de Biochimie, CHU de Bordeaux, 33000 Bordeaux, France
| | | | - Jean Ripoche
- INSERM U1026, Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
90
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
91
|
Abstract
The immune response and metabolic regulation are highly integrated, and their interface maintains a homeostatic system. Their dysfunction can cause obesity and its comorbidities, including insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). Endoplasmic reticulum (ER) stress is a central abnormality linking obesity, insulin resistance, and NAFLD. ER stress in response to increased hepatic lipids may decrease the ability of the liver to secrete triglyceride by limiting apolipoprotein B secretion, thereby worsening fatty liver. Overnutrition or obesity activates the innate immune system, with the subsequent recruitment of immune cells that contributes to the development of insulin resistance. A significant advance in our understanding of obesity-induced inflammation and insulin resistance has been a recognition of the critical role of adipose tissue macrophages. A role for chemokines, small proteins that direct the trafficking of immune cells to sites of inflammation, has also been demonstrated. Chemokines activate the production of inflammatory cytokines through specific chemokine receptors. This review highlights the chemokine systems linking obesity to inflammation and insulin resistance. Treatment options that target immune cells with the aim of halting the development of insulin resistance and type 2 diabetes remain limited. DPP-4 inhibitors or micronutrients may contribute to the immune regulation of glucose and lipid metabolism by regulating macrophage polarization, thereby reducing insulin resistance and preventing the progression of NAFLD. A detailed understanding of the immune regulation of glucose and lipid homeostasis can lead to the development of a novel therapy for insulin resistance, type 2 diabetes, and NAFLD.
Collapse
|
92
|
Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine 2017; 20:137-149. [PMID: 28579299 PMCID: PMC5478253 DOI: 10.1016/j.ebiom.2017.05.028] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Sodium-glucose cotransporter (SGLT) 2 inhibitors increase urinary glucose excretion (UGE), leading to blood glucose reductions and weight loss. However, the impacts of SGLT2 inhibition on energy homeostasis and obesity-induced insulin resistance are less well known. Here, we show that empagliflozin, a SGLT2 inhibitor, enhanced energy expenditure and attenuated inflammation and insulin resistance in high-fat-diet-induced obese (DIO) mice. C57BL/6J mice were pair-fed a high-fat diet (HFD) or a HFD with empagliflozin for 16weeks. Empagliflozin administration increased UGE in the DIO mice, whereas it suppressed HFD-induced weight gain, insulin resistance, and hepatic steatosis. Moreover, empagliflozin shifted energy metabolism towards fat utilization, elevated AMP-activated protein kinase and acetyl-CoA carbolxylase phosphorylation in skeletal muscle, and increased hepatic and plasma fibroblast growth factor 21 levels. Importantly, empagliflozin increased energy expenditure, heat production, and the expression of uncoupling protein 1 in brown fat and in inguinal and epididymal white adipose tissue (WAT). Furthermore, empagliflozin reduced M1-polarized macrophage accumulation while inducing the anti-inflammatory M2 phenotype of macrophages within WAT and liver, lowering plasma TNFα levels and attenuating obesity-related chronic inflammation. Thus, empagliflozin suppressed weight gain by enhancing fat utilization and browning and attenuated obesity-induced inflammation and insulin resistance by polarizing M2 macrophages in WAT and liver.
Collapse
Affiliation(s)
- Liang Xu
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Fen Zhuge
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Guanliang Chen
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Eric Mayoux
- Boehringer-Ingelheim, Cardio-metabolic Diseases Research, Biberach, Germany
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of System Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
93
|
Song Y, Zhao M, Cheng X, Shen J, Khound R, Zhang K, Su Q. CREBH mediates metabolic inflammation to hepatic VLDL overproduction and hyperlipoproteinemia. J Mol Med (Berl) 2017; 95:839-849. [PMID: 28455595 DOI: 10.1007/s00109-017-1534-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Metabolic inflammation is closely associated with hyperlipidemia and cardiovascular disease. However, the underlying mechanisms are not fully understood. The current study established that cAMP-responsive-element-binding protein H (CREBH), an acute-phase transcription factor, enhances very-low-density lipoprotein (VLDL) assembly and secretion by upregulating apolipoprotein B (apoB) expression and contributes to metabolic inflammation-associated hyperlipoproteinemia induced by TNFα, lipopolysaccharides (LPS), and high-fat diet (HFD) in mice. Specifically, overexpression of CREBH significantly induced mRNA and protein expression of apoB in McA-7777 cells. Luciferase assay further revealed that the presence of CREBH could significantly increase the activity of the apoB gene promoter. In contrast, genetic depletion of CREBH in mice resulted in significant reduction in expression of hepatic apoB mRNA. Challenging mice with an acute fat load led to upregulation of triglyceride (TG)-rich lipoprotein secretion in wild type mice, but not in CREBH-null mice. TNFα treatment activated hepatic CREBH expression, which in turn enhanced hepatic apoB biosynthesis and VLDL secretion. Metabolic inflammation induced by LPS or HFD also resulted in overproduction of apoB and hyperlipoproteinemia in wild type mice, but not in CREBH-null mice. This study demonstrates that CREBH could be a mediator between metabolic inflammation and hepatic VLDL overproduction in chronic metabolic disorders. This novel finding establishes CREBH as the first transcription factor that regulates apoB expression on the transcriptional level and the subsequent VLDL biosynthesis in response to metabolic inflammation. The study also provides novel insight into the pathogenesis of hyperlipidemia in metabolic syndrome. KEY MESSAGES CREBH mediates inflammatory signaling to VLDL overproduction in metabolic stress. Activation of CREBH in inflammation enhances mRNA and protein expression of apoB. CREBH presents a potential novel therapeutic target for hyperlipoproteinemia.
Collapse
Affiliation(s)
- Yongyan Song
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Miaoyun Zhao
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Xiao Cheng
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Rituraj Khound
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA.
| |
Collapse
|
94
|
Picklo MJ, Idso J, Seeger DR, Aukema HM, Murphy EJ. Comparative effects of high oleic acid vs high mixed saturated fatty acid obesogenic diets upon PUFA metabolism in mice. Prostaglandins Leukot Essent Fatty Acids 2017; 119:25-37. [PMID: 28410667 DOI: 10.1016/j.plefa.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023]
Abstract
Emerging evidence indicates that the fatty acid composition of obesogenic diets influences physiologic outcomes. There are scant data regarding how the content of non-essential fatty acids like monounsaturated fatty acids (MUFA) and saturated fatty acids (SFAs) impact the metabolism of polyunsaturated fatty acids (PUFAs). In this work, we tested the hypothesis that obesogenic diets enriched in oleic acid (OA; 18:1n-9) reduce polyunsaturated fatty acid (PUFA) levels vs an obesogenic diet enriched in SFAs. Adult male mice were fed for eight weeks either (1) a control 16% fat energy (en) diet with 5.7% en OA and 4.4% en SFA, (2) a 50% fat en diet with 33% en OA and 9.9% en SFA, or (3) a 50% en diet with a high SFA diet with 33% en SFA and 9.1% en OA. Dietary levels and intake of linoleic acid (LA; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3) were constant between the experimental groups. Several peripheral organs (liver, heart, kidney, and adipose) were analyzed for lipid composition and oxylipin analysis was performed for liver and adipose. Our data demonstrate that a high OA diet reduced tissue content of LA and ALA (≥30%) in phospholipid and neutral lipid fractions, reduced the content of some LA-derived and ALA-derived oxylipins in liver and adipose, and conversely, elevated hepatic content of PGF2α. In all tissues examined, except for adipose, levels of arachidonic acid (ARA; 20:4n-6) and docosahexaenoic acid (DHA; 22:6n-3) were either elevated or unaffected by the obesogenic diets. Our data indicate that the non-essential fatty content of obesogenic diets impacts PUFA content in peripheral tissues and influences the levels of bioactive oxylipins.
Collapse
Affiliation(s)
- Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203-9034, USA; Department of Chemistry, University of North Dakota, Grand Forks, ND 58201, USA
| | - Joseph Idso
- USDA-ARS Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203-9034, USA
| | - Drew R Seeger
- Department of Basic Sciences, University of North Dakota School of Medicine, USA
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Eric J Murphy
- Department of Basic Sciences, University of North Dakota School of Medicine, USA
| |
Collapse
|
95
|
Newberry EP, Xie Y, Kennedy SM, Graham MJ, Crooke RM, Jiang H, Chen A, Ory DS, Davidson NO. Prevention of hepatic fibrosis with liver microsomal triglyceride transfer protein deletion in liver fatty acid binding protein null mice. Hepatology 2017; 65:836-852. [PMID: 27862118 PMCID: PMC5319898 DOI: 10.1002/hep.28941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Blocking hepatic very low-density lipoprotein secretion through genetic or pharmacologic inhibition of microsomal triglyceride transfer protein (Mttp) causes hepatic steatosis, yet the risks for developing hepatic fibrosis are poorly understood. We report that liver-specific Mttp knockout mice (Mttp-LKO) exhibit both steatosis and fibrosis, which is exacerbated by a high-transfat/fructose diet. When crossed into germline liver fatty acid (FA) binding protein null mice (Mttp-LKO, i.e., double knockout mice) hepatic steatosis was greatly diminished and fibrosis prevented, on both low-fat and high-fat diets. The mechanisms underlying protection include reduced long chain FA uptake, shifts in FA distribution (lipidomic profiling), and metabolic turnover, specifically decreased hepatic 18:2 FA and triglyceride species and a shift in 18:2 FA use for oxidation versus incorporation into newly synthesized triglyceride. Double knockout mice were protected against fasting-induced hepatic steatosis (a model of enhanced exogenous FA delivery) yet developed steatosis upon induction of hepatic de novo lipogenesis with fructose feeding. Mttp-LKO mice, on either the liver FA binding protein null or Apobec-1 null background (i.e., apolipoprotein B100 only) exhibited only subtle increases in endoplasmic reticulum stress, suggesting that an altered unfolded protein response is unlikely to account for the attenuated phenotype in double knockout mice. Acute, antisense-mediated liver FA binding protein knockdown in Mttp-LKO mice also reduced FA uptake, increased oxidation versus incorporation of 18:2 species with complete reversal of hepatic steatosis, increased hepatic injury, and worsened fibrosis. CONCLUSION Perturbing exogenous hepatic FA use modulates both hepatic steatosis and fibrosis in the setting of hepatic Mttp deletion, adding new insight into the pathophysiological mechanisms and consequences of defective very low-density lipoprotein secretion. (Hepatology 2017;65:836-852).
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Yan Xie
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Susan M. Kennedy
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | | | | | - Hui Jiang
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Anping Chen
- Department of Pathology, Saint Louis University Saint Louis, MO
| | - Daniel S. Ory
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110
| | - Nicholas O. Davidson
- Department of Medicine Washington University School of Medicine Saint Louis, MO 63110,Correspondence:
| |
Collapse
|
96
|
Lee JM. Nuclear Receptors Resolve Endoplasmic Reticulum Stress to Improve Hepatic Insulin Resistance. Diabetes Metab J 2017; 41:10-19. [PMID: 28236381 PMCID: PMC5328691 DOI: 10.4093/dmj.2017.41.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress culminating in proteotoxicity contributes to the development of insulin resistance and progression to type 2 diabetes mellitus. Pharmacologic interventions targeting several different nuclear receptors have emerged as potential treatments for insulin resistance. The mechanistic basis for these antidiabetic effects has primarily been attributed to multiple metabolic and inflammatory functions. Here we review recent advances in our understanding of the association of ER stress with insulin resistance and the role of nuclear receptors in promoting ER stress resolution and improving insulin resistance in the liver.
Collapse
Affiliation(s)
- Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea.
| |
Collapse
|
97
|
Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 2017; 19:94-105. [PMID: 28092655 DOI: 10.1038/ncb3461] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022]
Abstract
The cytoplasmic polyadenylation element-binding (CPEB) proteins regulate pre-mRNA processing and translation of CPE-containing mRNAs in early embryonic development and synaptic activity. However, specific functions in adult organisms are poorly understood. Here we show that CPEB4 is required for adaptation to high-fat-diet- and ageing-induced endoplasmic reticulum (ER) stress, and subsequent hepatosteatosis. Stress-activated liver CPEB4 expression is dual-mode regulated. First, Cpeb4 mRNA transcription is controlled by the circadian clock, and then its translation is regulated by the unfolded protein response (UPR) through upstream open reading frames within the 5'UTR. Thus, the CPEB4 protein is synthesized only following ER stress but the induction amplitude is circadian. In turn, CPEB4 activates a second wave of UPR translation required to maintain ER and mitochondrial homeostasis. Our results suggest that combined transcriptional and translational Cpeb4 regulation generates a 'circadian mediator', which coordinates hepatic UPR activity with periods of high ER-protein-folding demand. Accordingly, CPEB4 deficiency results in non-alcoholic fatty liver disease.
Collapse
|
98
|
Chapados NA, Boucher MP. Liver metabolic disruption induced after a single exposure to PCB126 in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1854-1861. [PMID: 27796995 DOI: 10.1007/s11356-016-7939-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been recognized as metabolic disruptors. The liver plays a pivotal role in detoxification of an organism. Fatty liver results from altered intra-, and extra-hepatic mediators and is associated with increased glucose-related protein 78 (GRP78), commonly used as a marker for endoplasmic reticulum (ER) stress signaling. This pilot study aimed to study the effects of a single exposure on fatty liver metabolic parameters. The objective of the study is to characterize the effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126) on ER stress protein chaperon GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP) and intra-hepatic mediators such as microsomal triglyceride transfer protein (MTP), sterol regulatory element-binding protein 1c (SREBP1c), and peroxisome proliferator-activated receptor alpha (PPARα), as well as extra-hepatic factors such as non-esterified fatty acid (NEFA) and tumor necrosis factor alpha (TNFα). Hepatic GRP78 mRNA and protein levels, indicating the presence of ER stress, were significantly increased following a single PCB126 exposure in rats. Intra-hepatic mechanisms such as lipoprotein secretion pathway (i.e., MTP), lipogenesis de novo (i.e., SREBP1c), and oxidation (i.e., PPARα) were altered in PCB126-treated rats. In addition, a state of inflammation measured by higher TNFα plasma levels was present in contaminated rats. These data indicate that a single injection of PCB126-modulated expression of GRP78 associated with hepatic ER stress and systemic inflammation in rats.
Collapse
Affiliation(s)
- Natalie A Chapados
- Institut de recherche de l'Hôpital Montfort, Institut du savoir Montfort, 713 Montreal Road, Pavillon E, Ottawa, Ontario, K1K 0T2, Canada.
- Shcool of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
99
|
Munkacsi AB, Hammond N, Schneider RT, Senanayake DS, Higaki K, Lagutin K, Bloor SJ, Ory DS, Maue RA, Chen FW, Hernandez-Ono A, Dahlson N, Repa JJ, Ginsberg HN, Ioannou YA, Sturley SL. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat. J Biol Chem 2016; 292:4395-4410. [PMID: 28031458 DOI: 10.1074/jbc.m116.770578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.
Collapse
Affiliation(s)
- Andrew B Munkacsi
- From the School of Biological Sciences and .,Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | | | | | - Katsumi Higaki
- the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | | | | | - Daniel S Ory
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert A Maue
- the Department of Physiology and Neurobiology and the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Fannie W Chen
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | | | - Nicole Dahlson
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Joyce J Repa
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Yiannis A Ioannou
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Stephen L Sturley
- the Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
100
|
Abstract
Hepatic steatosis, the first step in the progression of nonalcoholic fatty liver disease, is characterized by triglyceride accumulation in hepatocytes and is highly prevalent in people with obesity. Although initially asymptomatic, hepatic steatosis is an important risk factor for the development of hepatic insulin resistance and type 2 diabetes mellitus and can also progress to more severe pathologies such as nonalcoholic steatohepatitis, liver fibrosis and cirrhosis; hepatic steatosis has, therefore, received considerable research interest in the past 20 years. The lipid accumulation that defines hepatic steatosis disturbs the function of the endoplasmic reticulum (ER) in hepatocytes, thereby generating chronic ER stress that interferes with normal cellular function. Although ubiquitous stress response mechanisms (namely, ER-associated degradation, unfolded protein response and autophagy) are the main processes for restoring cellular proteostasis, these mechanisms are unable to alleviate ER stress in the context of the fatty liver. Furthermore, ER stress and ER stress responses can promote lipid accumulation in hepatocytes in a counter-productive manner and could, therefore, be the origin of a vicious pathological cycle.
Collapse
Affiliation(s)
- Andrei Baiceanu
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'école de médecine, F-75006, Paris, France
- University of Medicine and Pharmacy Iuliu Hat¸ieganu, Faculty of Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Pierre Mesdom
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'école de médecine, F-75006, Paris, France
| | - Marie Lagouge
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'école de médecine, F-75006, Paris, France
| | - Fabienne Foufelle
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, 15 rue de l'école de médecine, F-75006, Paris, France
| |
Collapse
|