51
|
Al‐Naggar IM, Antony M, Baker D, Wang L, Godoy LDC, Kuo C, Fraser MO, Smith PP, Xu M, Kuchel GA. Polyploid superficial uroepithelial bladder barrier cells express features of cellular senescence across the lifespan and are insensitive to senolytics. Aging Cell 2025; 24:e14399. [PMID: 39644167 PMCID: PMC11822673 DOI: 10.1111/acel.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 12/09/2024] Open
Abstract
Lower urinary tract dysfunction (LUTD) increases with aging. Ensuing symptoms including incontinence greatly impact quality of life, isolation, depression, and nursing home admission. The aging bladder is hypothesized to be central to this decline, however, it remains difficult to pinpoint a singular strong driver of aging-related bladder dysfunction. Many molecular and cellular changes occur with aging, contributing to decreased resilience to internal and external stressors, affecting urinary control and exacerbating LUTD. In this study, we examined whether cellular senescence, a cell fate involved in the etiology of most aging diseases, contributes to LUTD. We found that umbrella cells (UCs), luminal barrier uroepithelial cells in the bladder, show senescence features over the mouse lifespan. These polyploid UCs exhibit high cyclin D1 staining, previously reported to mediate tetraploidy-induced senescence in vitro. These senescent UCs were not eliminated by the senolytic combination of Dasatinib and Quercetin. We also tested the effect of a high-fat diet (HFD) and senescent cell transplantation on bladder function and showed that both models induce cystometric changes similar to natural aging in mice, with no effect of senolytics on HFD-induced changes. These findings illustrate the heterogeneity of cellular senescence in varied tissues, while also providing potential insights into the origin of urothelial cancer. We conclude that senescence of bladder uroepithelial cells plays a role in normal physiology, namely in their role as barrier cells, helping promote uroepithelial integrity and impermeability and maintaining the urine-blood barrier.
Collapse
Affiliation(s)
- Iman M. Al‐Naggar
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of Cell BiologyUniversity of Connecticut HealthFarmingtonConnecticutUSA
- Department of SurgeryUniversity of Connecticut HealthFarmingtonConnecticutUSA
| | - Maria Antony
- The University of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Dylan Baker
- Department of Genetics & Genome SciencesUniversity of Connecticut HealthFarmingtonConnecticutUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Lichao Wang
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Lucas Da Cunha Godoy
- The Cato T. Laurencin Institute for Regenerative EngineeringFarmingtonConnecticutUSA
| | - Chia‐Ling Kuo
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- The Cato T. Laurencin Institute for Regenerative EngineeringFarmingtonConnecticutUSA
| | - Matthew O. Fraser
- Department of Research & DevelopmentDurham Veterans Affairs Medical CentersDurhamNorth CarolinaUSA
| | - Phillip P. Smith
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of SurgeryUniversity of Connecticut HealthFarmingtonConnecticutUSA
- Connecticut Institute for Brain and Cognitive ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Ming Xu
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
- Department of Genetics & Genome SciencesUniversity of Connecticut HealthFarmingtonConnecticutUSA
| | - George A. Kuchel
- Center on AgingUniversity of ConnecticutFarmingtonConnecticutUSA
| |
Collapse
|
52
|
Tilton M, Liao J, Kim C, Shaygani H, Potes MA, Cordova D, Kirkland JL, Miller KM. Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.28.615585. [PMID: 39896626 PMCID: PMC11785097 DOI: 10.1101/2024.09.28.615585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on senescence-associated biophysical and biomolecular markers in osteocytes. We found significant cytoskeletal stiffening in irradiated osteocytes, accompanied by expansion of F-actin areas and a decline in dendritic integrity. These changes, correlating with alterations in pro-inflammatory cytokine levels and osteocyte-specific gene expression, support the reliability of biophysical markers for identifying senescent osteocytes. Notably, local accumulation of SASP factors had a more pronounced impact on osteocyte properties than paracrine effects, suggesting that the interplay between local and paracrine exposure could substantially influence cellular aging. This study underscores the importance of osteocyte mechanical and morphological properties as biophysical markers of senescence, highlighting their time-dependence and differential effects of local and paracrine SASP exposure. Collectively, our investigation into biophysical senescence markers offer unique and reliable functional hallmarks for non-invasive identification of senescent osteocytes, providing insights that could inform therapeutic strategies to mitigate aging-related bone loss.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chanul Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hossein Shaygani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Domenic Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
53
|
Raghavendra AS, Kettner NM, Kwiatkowski D, Damodaran S, Wang Y, Ramirez D, Gombos DS, Hunt KK, Shen Y, Keyomarsi K, Tripathy D. Phase I trial of hydroxychloroquine to enhance palbociclib and letrozole efficacy in ER+/HER2- breast cancer. NPJ Breast Cancer 2025; 11:7. [PMID: 39865083 PMCID: PMC11770068 DOI: 10.1038/s41523-025-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Endocrine therapy with CDK4/6 inhibitors is standard for estrogen receptor-positive, HER2-negative metastatic breast cancer (ER+/HER2- MBC), yet clinical resistance develops. Previously, we demonstrated that low doses of palbociclib activate autophagy, reversing initial G1 cell cycle arrest, while high concentrations induce off-target senescence. The autophagy inhibitor hydroxychloroquine (HCQ) induced on-target senescence at lower palbociclib doses. We conducted a phase I trial (NCT03774472 registered in ClinicalTrials.gov on 8/20/2018) of HCQ (400, 600, 800 mg/day) with palbociclib (75 mg/day continuous) and letrozole, using a 3 + 3 design. Primary objectives included safety, tolerability, and determining the recommended phase 2 dose (RP2D) of HCQ. Secondary objectives included tumor response and biomarker analysis. Fourteen ER+/HER2- MBC patients were evaluable [400 mg (n = 4), 600 mg (n = 4), 800 mg (n = 6)]. Grade 3 adverse events (AEs) included hematological (3 at 800 mg), skin rash (2 at 600 mg), and anorexia (1 at 400 mg), with no serious AEs. The best responses were partial (2), stable (11), and progression (1). Tumor reductions ranged from 11% to 30%, with one 55% increase. The two partial responders sustained tumor size reductions of 30% to 55% over an extended treatment period, lasting nearly 300 days. Biomarker analysis in responders demonstrated significant decreases in Ki67, Rb, and nuclear cyclin E levels and increases in autophagy markers p62 and LAMP1, suggesting a correlation between these biomarkers and treatment response. This phase I study demonstrated that HCQ is safe and well-tolerated and the RP2D was established at 800 mg/day with continuous low-dose palbociclib (75 mg/day) and letrozole (2.5 mg/day). These findings suggest that adding HCQ could potentially enhance the efficacy of low-dose palbociclib and standard letrozole therapy, pending verification in larger randomized studies.
Collapse
Affiliation(s)
| | - Nicole M Kettner
- Department of Experimental Radiation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danielle Kwiatkowski
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Experimental Radiation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan S Gombos
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
54
|
Sessions GA, Loops MV, Diekman BO, Purvis JE. Multiplexed single-cell imaging reveals diverging subpopulations with distinct senescence phenotypes during long-term senescence induction. GeroScience 2025:10.1007/s11357-024-01503-7. [PMID: 39849264 DOI: 10.1007/s11357-024-01503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP.
Collapse
Affiliation(s)
- Garrett A Sessions
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Madeline V Loops
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Brian O Diekman
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 4111-A Thurston, Campus Box #7280, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jeremy E Purvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, The University of North Carolina School of Medicine, 11018C Mary Ellen Jones, Campus Box #7264, Chapel Hill, NC, 27599, USA.
- Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
55
|
Cecati M, Fumarola S, Vaiasicca S, Cianfruglia L, Vignini A, Giannubilo SR, Emanuelli M, Ciavattini A. Preeclampsia as a Study Model for Aging: The Klotho Gene Paradigm. Int J Mol Sci 2025; 26:902. [PMID: 39940672 PMCID: PMC11817256 DOI: 10.3390/ijms26030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Aging and pregnancy are often considered opposites in a woman's biological timeline. Aging is defined by a gradual decline in the functional capabilities of an organism over its lifetime, while pregnancy is characterized by the presence of the transient placenta, which fosters the cellular fitness necessary to support fetal growth. However, in the context of preeclampsia, pregnancy and aging share common hallmarks, including clinical complications, altered cellular phenotypes, and heightened oxidative stress. Furthermore, women with pregnancies complicated by preeclampsia tend to experience age-related disorders earlier than those with healthy pregnancies. Klotho, a gene discovered fortuitously in 1997 by researchers studying aging mechanisms, is primarily expressed in the kidneys but also to a lesser extent in several other tissues, including the placenta. The Klotho protein is a membrane-bound protein that, upon cleavage by ADAM10/17, is released into the circulation as soluble Klotho (sKlotho) where it plays a role in modulating oxidative stress. This review focuses on the involvement of sKlotho in the development of preeclampsia and age-related disorders, as well as the expression of the recently discovered Mytho gene, which has been associated with skeletal muscle atrophy.
Collapse
Affiliation(s)
- Monia Cecati
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Stefania Fumarola
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Salvatore Vaiasicca
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Laura Cianfruglia
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (S.V.); (L.C.)
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Stefano Raffaele Giannubilo
- Department of Clinical Sciences, Clinic of Obstetrics and Gynaecology, Università Politecnica Delle Marche, 60123 Ancona, Italy;
| | - Monica Emanuelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Clinic of Obstetrics and Gynaecology, Università Politecnica Delle Marche, 60123 Ancona, Italy;
| |
Collapse
|
56
|
O’Reilly S. Senescence in diffuse systemic sclerosis is elevated and may play a role in fibrosis. Clin Exp Immunol 2025; 219:uxad077. [PMID: 37458231 PMCID: PMC11771193 DOI: 10.1093/cei/uxad077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 01/28/2025] Open
|
57
|
Patel S, Ellis K, Scipione CA, Fish JE, Howe KL. Epigallocatechin gallate (EGCG) modulates senescent endothelial cell-monocyte communication in age-related vascular inflammation. Front Cardiovasc Med 2025; 11:1506360. [PMID: 39906338 PMCID: PMC11790594 DOI: 10.3389/fcvm.2024.1506360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
Aging significantly affects intercellular communication between vascular endothelial cells (ECs) and hematopoietic cells, leading to vascular inflammation and age-associated diseases. This study determined how senescent ECs communicate with monocytes, whether extracellular vesicles (EVs) released from senescent ECs affect monocyte functions, and investigated the potential for epigallocatechin-3-gallate (EGCG), a flavonoid in green tea, to reverse these effects. Human umbilical vein endothelial cells (HUVECs) were treated with Etoposide (10 µM, 24 h) to induce senescence, followed by EGCG (100 µM, 24 h) treatment to evaluate its potential as a senotherapeutic agent. The interaction between ECs and monocytes was analyzed using a co-culture system and direct treatment of monocytes with EC-derived EVs. EGCG reduced senescence-associated phenotypes in ECs, as evidenced by decreased senescence-associated (SA)-β-Gal activity and reversal of Etoposide-induced senescence markers. Monocytes co-cultured with EGCG-treated senescent ECs showed decreased pro-inflammatory responses compared to those co-cultured with untreated senescent ECs. Additionally, senescent ECs produced more EVs than non-senescent ECs. EVs from senescent ECs enhanced lipopolysaccharide (LPS)-induced pro-inflammatory activation of monocytes, whereas EVs from EGCG-treated senescent ECs mitigated this activation, maintaining monocyte activation at normal levels. Our findings reveal that EGCG confers anti-senescent effects via modulation of the senescent EC secretome (including EVs) with the capacity to modify monocyte activation. These findings suggest that EGCG could act as a senotherapeutic agent to reduce vascular inflammation related to aging.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate stiffness dictates unique doxorubicin-induced senescence-associated secretory phenotypes and transcriptomic signatures in human pulmonary fibroblasts. GeroScience 2025:10.1007/s11357-025-01507-x. [PMID: 39826027 DOI: 10.1007/s11357-025-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21 + cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacob P Rose
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Fei Wu
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jordan B Burton
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, MA, USA
| | | | - Priya Makhijani
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, , Canada
| | - Judith Campisi
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - David Furman
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Birgit Schilling
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel A Winer
- Buck Institute for Research On Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
59
|
Poisa-Beiro L, Landry JJM, Yan B, Kardorff M, Eckstein V, Villacorta L, Krammer PH, Zaugg J, Gavin AC, Benes V, Zhou D, Raffel S, Ho AD. A Senescent Cluster in Aged Human Hematopoietic Stem Cell Compartment as Target for Senotherapy. Int J Mol Sci 2025; 26:787. [PMID: 39859500 PMCID: PMC11766015 DOI: 10.3390/ijms26020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+). Single-cell transcriptomic studies, functional clustering, and developmental trajectory analyses were performed. A significant increase in multipotent progenitor 2A (MPP2A) cluster is found in the early HSC trajectory in old human subjects. This cluster is enriched in senescence signatures (increased telomere attrition, DNA damage, activation of P53 pathway). In mouse models, the accumulation of an analogous subset was confirmed in the aged LT-HSC population. Elimination of this subset has been shown to rejuvenate hematopoiesis in mice. A significant activation of the P53-P21WAF1/CIP1 pathway was found in the MPP2A population in humans. In contrast, the senescent HSCs in mice are characterized by activation of the p16Ink4a pathway. Aging in the human HSC compartment is mainly caused by the clonal evolution and accumulation of a senescent cell cluster. A population with a similar senescence signature in the aged LT-HSCs was confirmed in the murine aging model. Clearance of this senescent population with senotherapy in humans is feasible and potentially beneficial.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany; (L.P.-B.); (M.K.); (V.E.); (S.R.)
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratories (EMBL) & Heidelberg University, 69117 Heidelberg, Germany
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratories (EMBL), 69117 Heidelberg, Germany; (J.J.M.L.); (L.V.); (V.B.)
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA;
| | - Michael Kardorff
- Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany; (L.P.-B.); (M.K.); (V.E.); (S.R.)
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany; (L.P.-B.); (M.K.); (V.E.); (S.R.)
| | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratories (EMBL), 69117 Heidelberg, Germany; (J.J.M.L.); (L.V.); (V.B.)
| | | | - Judith Zaugg
- European Molecular Biology Laboratories (EMBL), 69117 Heidelberg, Germany;
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland;
- Diabetes Center, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratories (EMBL), 69117 Heidelberg, Germany; (J.J.M.L.); (L.V.); (V.B.)
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Simon Raffel
- Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany; (L.P.-B.); (M.K.); (V.E.); (S.R.)
| | - Anthony D. Ho
- Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany; (L.P.-B.); (M.K.); (V.E.); (S.R.)
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratories (EMBL) & Heidelberg University, 69117 Heidelberg, Germany
| |
Collapse
|
60
|
Amato M, Polizzi A, Viglianisi G, Leonforte F, Mascitti M, Isola G. Impact of Periodontitis and Oral Dysbiosis Metabolites in the Modulation of Accelerating Ageing and Human Senescence. Metabolites 2025; 15:35. [PMID: 39852378 PMCID: PMC11767177 DOI: 10.3390/metabo15010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Periodontitis, a chronic multifactorial inflammatory condition of the periodontium, is originated by a dysbiotic oral microbiota and is negatively correlated with several systemic diseases. The low-chronic burden of gingival inflammation not only exacerbates periodontitis but also predisposes individuals to a spectrum of age-related conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic dysfunction, especially related to ageing. In this regard, over the local periodontal treatment, lifestyle modifications and adjunctive therapies may offer synergistic benefits in ameliorating both oral and systemic health in ageing populations. Elucidating the intricate connections between periodontitis and senescence is important for understanding oral health's systemic implications for ageing and age-related diseases. Effective management strategies targeting the oral microbiota and senescent pathways may offer novel avenues for promoting healthy ageing and preventing age-related morbidities. This review will analyze the current literature about the intricate interplay between periodontitis, oral dysbiosis, and the processes of senescence, shedding light on their collective impact on the modulation and accelerated ageing and age-related diseases. Lastly, therapeutic strategies targeting periodontitis and oral dysbiosis to mitigate senescence and its associated morbidities will be discussed.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Francesco Leonforte
- Hygiene Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95124 Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
61
|
Scherer B, Bogun L, Koch A, Jäger P, Maus U, Schmitt L, Krings KS, Wesselborg S, Haas R, Schroeder T, Geyh S. Antineoplastic therapy affects the in vitro phenotype and functionality of healthy human bone marrow-derived mesenchymal stromal cells. Arch Toxicol 2025; 99:393-406. [PMID: 39531065 PMCID: PMC11742341 DOI: 10.1007/s00204-024-03898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
While antineoplastic therapies aim to specifically target cancer cells, they may also exert adverse effects on healthy tissues, like healthy hematopoietic stem and progenitor cells (HSPC), leading to hematotoxicity as a common side effect. Mesenchymal stromal cells (MSC) are a major component of the bone marrow (BM) microenvironment, regulating normal hematopoiesis, while their susceptibility to anticancer therapies and contribution to therapy-related hematotoxicity remains largely unexplored. To address this, we investigated the effects of etoposide, temozolomide, 5-azacitidine, and venetoclax on healthy BM-derived MSC functionality. Doses below therapeutic effects of etoposide (0.1-0.25 µM) inhibited cellular growth and induced cellular senescence in healthy MSC, accompanied by an increased mRNA expression of CDKN1A, decreased trilineage differentiation capacity, and insufficient hematopoietic support. Pharmacological doses of 5-azacitidine (2.5 µM) shifted MSC differentiation capacity by inhibiting osteogenic capacity but enhancing the chondrogenic lineage, as demonstrated by histochemical staining and on mRNA level. At the highest clinically relevant dose, neither venetoclax (40 nM) nor temozolomide (100 µM) exerted any effects on MSC but clearly inhibited cellular growth of cancer cell lines and primary healthy HSPC, pointing to damage to hematopoietic cells as a major driver of hematotoxicity of these two compounds. Our findings show that besides HSPC, also MSC are sensitive to certain antineoplastic agents, resulting in molecular and functional alterations that may contribute to therapy-related myelosuppression. Understanding these interactions could be helpful for the development of strategies to preserve BM MSC functionality during different kinds of anticancer therapies.
Collapse
Affiliation(s)
- Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Laura Schmitt
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
62
|
Liu Y, Ye J, Fan Z, Wu X, Zhang Y, Yang R, Jiang B, Wang Y, Wu M, Zhou J, Meng J, Ge Z, Zhou G, Zhu Y, Xiao Y, Zheng M, Zhang S. Ginkgetin Alleviates Inflammation and Senescence by Targeting STING. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407222. [PMID: 39558862 PMCID: PMC11727237 DOI: 10.1002/advs.202407222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Indexed: 11/20/2024]
Abstract
Ginkgo biloba extract is reported to have therapeutic effects on aging-related disorders. However, the specific component responsible for this biological function and its mechanism of action remain largely unknown. This study finds that Ginkgetin, an active ingredient of Ginkgo biloba extract, can alleviate cellular senescence and improve pathologies in multiple tissues of aging mice. To reveal the molecular mechanism of Ginkgetin's anti-aging effect, a graph convolutional network-based drug "on-target" pathway prediction algorithm for prediction is employed. The results indicate that the cGAS-STING pathway may be a potential target for Ginkgetin. Subsequent cell biological and biophysical data confirmed that Ginkgetin directly binds to the carboxy-terminal domain of STING protein, thereby inhibiting STING activation and signal transduction. Furthermore, in vivo pharmacodynamic data showed that Ginkgetin effectively alleviates systemic inflammation in Trex1-/- mice and inhibits the abnormally activated STING signaling in aging mouse model. In summary, this study, utilizing an artificial intelligence algorithm combined with pharmacological methods, confirms STING serves as a critical target for Ginkgetin in alleviating inflammation and senescence. Importantly, this study elucidates the specific component and molecular mechanism underlying the anti-aging effect of Ginkgo biloba extract, providing a robust theoretical basis for its therapeutic use.
Collapse
Affiliation(s)
- Yadan Liu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zisheng Fan
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Lingang LaboratoryShanghai200031China
| | - Xiaolong Wu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yinghui Zhang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ruirui Yang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Bing Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yajie Wang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Min Wu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jingyi Zhou
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jingyi Meng
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Zhiming Ge
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Guizhen Zhou
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yuan Zhu
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mingyue Zheng
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- University of Chinese Academy of SciencesBeijing100049China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Lingang LaboratoryShanghai200031China
- School of Pharmacology Science and TechnologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Sulin Zhang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
63
|
de Oliveira Silva T, Lunardon G, Lino CA, de Almeida Silva A, Zhang S, Irigoyen MCC, Lu YW, Mably JD, Barreto-Chaves MLM, Wang DZ, Diniz GP. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91:102065. [PMID: 39557194 PMCID: PMC11636344 DOI: 10.1016/j.molmet.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined. OBJECTIVE We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters. METHODS AND RESULTS We found that the increase in body weight and adiposity, glucose intolerance, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic disorders which were induced by an obesogenic diet were alleviated by senolytic cocktail treatment in mice. Treatment with senolytic compounds eliminated senescent cells, counteracting the activation of the senescence program and DNA damage in white adipose tissue (WAT) observed with an obesogenic diet. Moreover, the senolytic cocktail prevented the brown adipose tissue (BAT) whitening and increased the expression of the thermogenic gene profile in BAT and pWAT. In the hearts of obese mice, senolytic combination abolished myocardial maladaptation, reducing the senescence-associated secretory phenotype (SASP) and DNA damage, repressing cardiac hypertrophy, and improving diastolic dysfunction. Additionally, we showed that treatment with the senolytic cocktail corrected gene expression programs associated with fatty acid metabolism, oxidative phosphorylation, the P53 pathway, and DNA repair, which were all downregulated in obese mice. CONCLUSIONS Collectively, these data suggest that a senolytic cocktail can prevent the activation of the senescence program in the heart and WAT and activate the thermogenic program in BAT. Our results suggest that targeting senescent cells may be a novel therapeutic strategy for alleviating obesity-related metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tábatha de Oliveira Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amanda de Almeida Silva
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shiju Zhang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Yao Wei Lu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Mably
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Da-Zhi Wang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
64
|
Lee Y, Tassey J, Sarkar A, Levi JN, Lee S, Liu NQ, Drake AC, Nguyen F, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Yang J, Bian F, Shkhyan R, Bonaguidi MA, Evseenko D. Pharmacological inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. Sci Rep 2024; 14:31151. [PMID: 39732741 PMCID: PMC11682372 DOI: 10.1038/s41598-024-82414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Our recent studies identified a novel non-canonical signaling pathway that involves prolonged activation of SRC family of kinases (SFKs) by IL-6/gp130, where genetic or pharmacological inhibition of this pathway was protective in several acute injury models. This study was designed to assess the effect of a small molecule (R159) that inhibits the non-canonical signaling in a mouse model of multimorbidity induced by chronic inflammation. Aged mice were fed a high-fat diet (HFD) to exacerbate chronic inflammation and inflammaging-related conditions, and R159 significantly decreased systemic inflammatory responses in adipose tissue and liver. R159 was protective against trabecular bone and articular cartilage loss and markedly prevented neurogenesis decline. Moreover, R159 reduced weight gain induced by HFD and increased physical activity levels. These findings suggest that selective pharmacological inhibition of SFK signaling downstream of IL6/gp130 offers a promising strategy to alleviate systemic chronic inflammation and relevant multimorbidity.
Collapse
Affiliation(s)
- Youngjoo Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan N Levi
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew C Drake
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Falisha Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Una Stevic
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jinxiu Lu
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dawei Ge
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopedics Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hanhan Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tadiwanashe Mkaratigwa
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jichen Yang
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
65
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
66
|
Yu G, Wang Z, Gong A, Fu X, Chen N, Zhou D, Li Y, Liu Z, Tong X. Oligomeric Proanthocyanidins Ameliorate Cadmium-Induced Senescence of Osteocytes Through Combating Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1515. [PMID: 39765843 PMCID: PMC11727362 DOI: 10.3390/antiox13121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/15/2025] Open
Abstract
Osteocyte senescence is associated with skeletal dysfunction, but how to prevent bone loss and find the effective therapeutic targets is a potential scientific concern. Cadmium (Cd) is a widespread environmental contaminant that causes substantial bone damage in both animals and humans. Oligomeric proanthocyanidins (OPC) are naturally polyphenolic substances found in various plants and demonstrate significant anti-senescence potential. Here, we investigated the protective effects of OPC against Cd-induced senescence of osteocytes and identify potential regulatory mechanisms. OPC alleviated Cd-induced senescence of osteocytes by attenuating cell cycle arrest, reducing ROS accumulation, and suppressing pro-inflammatory responses in vitro. Furthermore, OPC effectively prevented the Cd-induced breakdown of dendritic synapses in osteocytes in vitro. Correspondingly, OPC ameliorated Cd-induced damage of osteocytes through anti-senescence activity in vivo. Taken together, our results establish OPC as a promising therapeutic agent that ameliorates Cd-induced osteocyte senescence by mitigating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zehao Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Dehui Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yawen Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
- Donghai County Animal Husbandry and Veterinarian Station, Lianyungang 222399, China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Y.); (Z.W.); (A.G.); (X.F.); (N.C.); (D.Z.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
67
|
Lv D, Ren Y, Chen J, Pang Z, Tang Y, Zhang L, Yan L, Ai X, Xv X, Wang D, Cai Z. Protective Effects of Exogenous Melatonin Administration on White Fat Metabolism Disruption Induced by Aging and a High-Fat Diet in Mice. Antioxidants (Basel) 2024; 13:1500. [PMID: 39765828 PMCID: PMC11672923 DOI: 10.3390/antiox13121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism independently, research on their combined effects is limited. In the present study, the protective action against white fat accumulation after a high-fat diet (HFD) exerted by exogenous melatonin, a circadian hormone endowed with antioxidant properties also involved in fat metabolism, was investigated in a mouse model. For this purpose, a battery of tests was applied before and after the dietary and melatonin treatments of the animals, including epididymal white adipose tissue (eWAT) histological evaluations, transcriptomic and lipidomic analyses, real-time PCR tests, immunofluorescence staining, Western blot, the appraisal of serum melatonin levels, and transmission electron microscopy. This study found that aged mice on a high-fat diet (HFD) showed increased lipid deposition, inflammation, and reduced antioxidant glutathione (GSH) levels compared to younger mice. Lipidomic and transcriptomic analyses revealed elevated triglycerides, diglycerides, ceramides, and cholesterol, along with decreased sphingomyelin and fatty acids in eWAT. The genes linked to inflammation, NF-κB signaling, autophagy, and lipid metabolism, particularly the melatonin and glutathione pathways, were significantly altered. The aged HFD mice also exhibited reduced melatonin levels in serum and eWAT. Melatonin supplementation reduced lipid deposition, increased melatonin and GSH levels, and upregulated AANAT and MTNR1A expression in eWAT, suggesting that melatonin alleviates eWAT damage via the MTNR1A pathway. It also suppressed inflammatory markers (e.g., TNF-α, NLRP3, NF-κB, IL-1β, and CEBPB) and preserved mitochondrial function through enhanced mitophagy. This study highlights how aging and HFD affect lipid metabolism and gene expression, offering potential intervention strategies. These findings provide important insights into the mechanisms of fat deposition associated with aging and a high-fat diet, suggesting potential intervention strategies.
Collapse
Affiliation(s)
- Dongying Lv
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Jiayan Chen
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Ziyao Pang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Yaxuan Tang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Lizong Zhang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Laiqing Yan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiufeng Ai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Xiaoping Xv
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Dejun Wang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
68
|
Wang S, Zhai J, Heng K, Sha L, Song X, Zhai H, Dai C, Li J, Teng F, Huang J, Wang G, Geng Y, Geng R, Lu Q, Nie X, Xue K, Wang Q, Huang W, Zhang H, Yang Y, Lan J, Yu D, Liu Y, Guo Y, Geng Q. Senolytic cocktail dasatinib and quercetin attenuates chronic high altitude hypoxia associated bone loss in mice. Sci Rep 2024; 14:30417. [PMID: 39638948 PMCID: PMC11621334 DOI: 10.1038/s41598-024-82262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic high-altitude hypoxia (CHH) induces irreversible abnormalities in various organisms. Emerging evidence indicates that CHH markedly suppresses bone mass and bone strength. Targeting senescent cells and the consequent senescence-associated secretory phenotype (SASP) with senolytics is a recently developed novel therapy for multiple age-related diseases. The combination of dasatinib and quercetin (DQ) has been proven to selectively target senescent cells and attenuate SASP in multiple tissues. In this study, experimental mice were subjected to an environment simulating 5,000 m above sea level for 8 weeks to induce CHH conditions. Our results indicated that DQ supplementation was well-tolerated with negligible toxicity. In vivo, DQ prevented reductions in BMD and BMC and improved bone microarchitecture against CHH-induced changes. Biomechanical testing demonstrated that DQ significantly improved the mechanical properties of femoral bones in CHH-exposed mice. Furthermore, DQ mitigated senescence in LepR + BMSCs and decreased the population of senescent cells, as evidenced by reduced senescence markers and SA-β-Gal staining. An analysis of serum and bone marrow aspirates showed that DQ treatment preserved angiogenic and osteogenic coupling in the bone marrow microenvironment by maintaining type H vessels and angiogenic growth factors. The results suggest that DQ has significant anti-senescence effects on BMSCs and a positive impact on the bone marrow microenvironment, supporting its clinical investigation as a therapeutic agent for CHH-related osteoporosis.
Collapse
Affiliation(s)
- Shen Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Juan Zhai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Ke Heng
- Department of Orthopedics, Changzhou Second Hospital, Nanjing Medical University, Changzhou, 213000, China
| | - Liangwei Sha
- Department of Traditional Chinese Medicine, Pizhou Hospital of Traditional Chinese Medicine, Xuzhou, 221300, China
| | - Xingchen Song
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Huaiyuan Zhai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Chengbai Dai
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Jian Li
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Fei Teng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Junli Huang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Guoqiang Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yinuo Geng
- Xuzhou Vocational College of Bioengineering, Xuzhou, 221300, China
| | - Rui Geng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Qingguo Lu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Xinfa Nie
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Kui Xue
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Qilong Wang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Wanying Huang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Huanyu Zhang
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yuanji Yang
- Department of Surgery, Xinghai People's Hospital, Xinghai, 813300, Qinghai, China
| | - Junyun Lan
- Department of Surgery, Xinghai People's Hospital, Xinghai, 813300, Qinghai, China
| | - Dehong Yu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yanhong Liu
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China
| | - Yilong Guo
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China.
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China.
| | - Qinghe Geng
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, 221300, China.
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, 221300, China.
| |
Collapse
|
69
|
Saleh T, Himsawi N, Al Rousan A, Alhesa A, El-Sadoni M, Khawaldeh S, Shahin NA, Ghalioun AA, Shawish B, Friehat K, Alotaibi MR, Abu Al Karsaneh O, Abu-Humaidan A, Khasawneh R, Khasawneh AI, Al Shboul S. Variable Expression of Oncogene-Induced Senescence/SASP Surrogates in HPV-Associated Precancerous Cervical Tissue. Curr Issues Mol Biol 2024; 46:13696-13712. [PMID: 39727946 PMCID: PMC11727613 DOI: 10.3390/cimb46120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) is a form of cellular senescence triggered by oncogenic signaling and, potentially, by infection with oncogenic viruses. The role of senescence, along with its associated secretory phenotype, in the development of cervical cancer remains unclear. Additionally, the expression of the senescence-associated secretory phenotype (SASP) has not yet been explored in cervical premalignant lesions infected by the Human Papilloma Virus (HPV). This study aimed to investigate the expression of OIS and SASP markers in HPV-infected cervical precancerous lesions. We used a set of patient-derived precancerous (n = 32) and noncancerous (chronic cervicitis; n = 10) tissue samples to investigate the gene expression of several OIS (LMNB1, CDKN2A, CDKN2B, and CDKN1A), and SASP (IL1A, CCL2, TGFB1, CXCL8, and MMP9) biomarkers using qRT-PCR. OIS status was confirmed in precancerous lesions based on Lamin B1 downregulation by immunohistochemical staining. HPV status for all precancerous lesions was tested. Most of the noncancerous samples showed high Lamin B1 expression, however, precancerous lesions exhibited significant Lamin B1 downregulation (p < 0.001). Fifty-five percent of the precancerous samples were positive for HPV infection, with HPV-16 as the dominant genotype. Lamin B1 downregulation coincided with HPV E6 positive expression. CDKN2A and CDKN2B expression was higher in precancerous lesions compared to noncancerous tissue, while LMNB1 was downregulated. The SASP profile of premalignant lesions included elevated CXCL8 and TGFB1 and reduced IL1A, CCL2, and MMP9. this work shall provide an opportunity to further examine the role of OIS and the SASP in the process of malignant cervical transformation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ala’ Abu Ghalioun
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Kholoud Friehat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12271, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Anas Abu-Humaidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
70
|
Guo S, Fu L, Yin C, Shao W, Sun Q, Chen L, Xia T, Wang M, Xia H. ROS-Induced Gingival Fibroblast Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease. Inflammation 2024; 47:1918-1935. [PMID: 38630168 DOI: 10.1007/s10753-024-02014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 11/30/2024]
Abstract
Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1β, IL-6, TGF-β, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.
Collapse
Affiliation(s)
- Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chenghu Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenjun Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Quan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
71
|
Deng Y, Liu T, Scifo E, Li T, Xie K, Taschler B, Morsy S, Schaaf K, Ehninger A, Bano D, Ehninger D. Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets. Aging Cell 2024; 23:e14312. [PMID: 39228130 PMCID: PMC11634743 DOI: 10.1111/acel.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of the cell surface proteome, or "surfaceome", in senescent cells, spanning various senescence induction regimes and encompassing both murine and human cell types. Utilizing quantitative mass spectrometry, we investigated enriched cell surface proteins across eight distinct models of senescence. Our results uncover significant changes in surfaceome expression profiles during senescence, highlighting extensive modifications in cell mechanics and extracellular matrix remodeling. Our research also reveals substantive heterogeneity of senescence, predominantly influenced by cell type and senescence inducer. A key discovery of our study is the identification of four unique cell surface proteins with extracellular epitopes. These proteins are expressed in senescent cells, absent or present at low levels in their proliferating counterparts, and notably upregulated in tissues from aged mice and an Alzheimer's disease mouse model. These proteins stand out as promising candidates for senotherapeutic targeting, offering potential pathways for the detection and strategic targeting of senescent cell populations in aging and age-related diseases.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Ting Liu
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Enzo Scifo
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/NeurologyUniversity of Bonn Medical CenterBonnGermany
| | - Kan Xie
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Sarah Morsy
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- AvenCell Europe GmbHDresdenGermany
| | - Kristina Schaaf
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Daniele Bano
- Aging and Neurodegeneration LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dan Ehninger
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
72
|
Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev 2024; 102:102581. [PMID: 39557300 DOI: 10.1016/j.arr.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The conception of coffee consumption has undergone a profound modification, evolving from a noxious habit into a safe lifestyle actually preserving human health. The last 20 years also provided strikingly consistent epidemiological evidence showing that the regular consumption of moderate doses of coffee attenuates all-cause mortality, an effect observed in over 50 studies in different geographic regions and different ethnicities. Coffee intake attenuates the major causes of mortality, dampening cardiovascular-, cerebrovascular-, cancer- and respiratory diseases-associated mortality, as well as some of the major causes of functional deterioration in the elderly such as loss of memory, depression and frailty. The amplitude of the benefit seems discrete (17 % reduction) but nonetheless corresponds to an average increase in healthspan of 1.8 years of lifetime. This review explores evidence from studies in humans and human tissues supporting an ability of coffee and of its main components (caffeine and chlorogenic acids) to preserve the main biological mechanisms responsible for the aging process, namely genomic instability, macromolecular damage, metabolic and proteostatic impairments with particularly robust effects on the control of stress adaptation and inflammation and unclear effects on stem cells and regeneration. Further studies are required to detail these mechanistic benefits in aged individuals, which may offer new insights into understanding of the biology of aging and the development of new senostatic strategies. Additionally, the safety of this lifestyle factor in the elderly prompts a renewed attention to recommending the maintenance of coffee consumption throughout life as a healthy lifestyle and to further exploring who gets the greater benefit with what schedules of which particular types and doses of coffee.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal; MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, Portugal; Centro de Medicina Digital P5, Escola de Medicina da Universidade do Minho, Braga, Portugal.
| |
Collapse
|
73
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
74
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
75
|
Zhu Z, Li L, Ye Y, Zhong Q. Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. Cell Oncol (Dordr) 2024; 47:2183-2199. [PMID: 39414741 DOI: 10.1007/s13402-024-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
PURPOSE Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment. METHODS Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches. RESULTS Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging. CONCLUSION This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
76
|
Laumann M, Palombo P, Fieres J, Thomas M, Saretzki G, Bürkle A, Moreno-Villanueva M. Senescence-like Phenotype After Chronic Exposure to Isoproterenol in Primary Quiescent Immune Cells. Biomolecules 2024; 14:1528. [PMID: 39766235 PMCID: PMC11673961 DOI: 10.3390/biom14121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence. Peripheral blood mononuclear cells were isolated from whole blood. After repeated ex vivo treatment with isoproterenol, an epinephrine analog, well-established senescence biomarkers were assessed. We found (i) DNA double-strand break induction, (ii) telomere shortening, (iii) failure to proliferate, (iv) higher senescence-associated β-galactosidase activity, (v) decreases in caspases 3 and 7 activity, and (vi) strong upregulation of the proteoglycan versican accompanied by increased cellular adhesion suggesting the induction of a senescence-like phenotype. These results emphasize the complexity of the effect of isoproterenol on multiple cellular processes and provide insights into the molecular mechanisms of stress leading to immunosenescence.
Collapse
Affiliation(s)
- Michael Laumann
- Electron Microscopy Center, University of Konstanz, 78457 Konstanz, Germany;
| | - Philipp Palombo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Judy Fieres
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Mara Thomas
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
77
|
Shen X, Wu J, Zhang F, Bi Q, Sun Z, Wang W. Deciphering the impact of senescence in kidney transplant rejection: An integrative machine learning and multi-omics analysis via bulk and single-cell RNA sequencing. PLoS One 2024; 19:e0312272. [PMID: 39602449 PMCID: PMC11602102 DOI: 10.1371/journal.pone.0312272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The demographic shift towards an older population presents significant challenges for kidney transplantation (KTx), particularly due to the vulnerability of aged donor kidneys to ischemic damage, delayed graft function, and reduced graft survival. KTx rejection poses a significant threat to allograft function and longevity of the kidney graft. The relationship between senescence and rejection remains elusive and controversial. METHODS Gene Expression Omnibus (GEO) provided microarray and single-cell RNA sequencing datasets. After integrating Senescence-Related Genes (SRGs) from multiple established databases, differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were applied to identify predictive SRGs (pSRGs). A cluster analysis of rejection samples was conducted using the consensus clustering algorithm. Subsequently, we utilized multiple machine learning methods (RF, SVM, XGB, GLM and LASSO) based on pSRGs to develop the optimal Acute Rejection (AR) diagnostic model and long-term graft survival predictive signatures. Finally, we validated the role of pSRGs and senescence in kidney rejection through the single-cell landscape. RESULTS Thirteen pSRGs were identified, correlating with rejection. Two rejection clusters were divided (Cluster C1 and C2). GSVA analysis of two clusters underscored a positive correlation between senescence, KTx rejection occurrence and worse graft survival. A non-invasive diagnostic model (AUC = 0.975) and a prognostic model (1- Year AUC = 0.881; 2- Year AUC = 0.880; 3- Year AUC = 0.883) for graft survival were developed, demonstrating significant predictive capabilities to early detect acute rejection and long-term graft outcomes. Single-cell sequencing analysis provided a detailed cellular-level landscape of rejection, supporting the conclusions drawn from above. CONCLUSION Our comprehensive analysis underscores the pivotal role of senescence in KTx rejection, highlighting the potential of SRGs as biomarkers for diagnosing rejection and predicting graft survival, which may enhance personalized treatment strategies and improve transplant outcomes.
Collapse
Affiliation(s)
- Xihao Shen
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
78
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
79
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
80
|
Bej E, Cesare P, d’Angelo M, Volpe AR, Castelli V. Neuronal Cell Rearrangement During Aging: Antioxidant Compounds as a Potential Therapeutic Approach. Cells 2024; 13:1945. [PMID: 39682694 PMCID: PMC11639796 DOI: 10.3390/cells13231945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a natural process that leads to time-related changes and a decrease in cognitive abilities, executive functions, and attention. In neuronal aging, brain cells struggle to respond to oxidative stress. The structure, function, and survival of neurons can be mediated by different pathways that are sensitive to oxidative stress and age-related low-energy states. Mitochondrial impairment is one of the most noticeable signs of brain aging. Damaged mitochondria are thought to be one of the main causes that feed the inflammation related to aging. Also, protein turnover is involved in age-related impairments. The brain, due to its high oxygen usage, is particularly susceptible to oxidative damage. This review explores the mechanisms underlying neuronal cell rearrangement during aging, focusing on morphological changes that contribute to cognitive decline and increased susceptibility to neurodegenerative diseases. Potential therapeutic approaches are discussed, including the use of antioxidants (e.g., Vitamin C, Vitamin E, glutathione, carotenoids, quercetin, resveratrol, and curcumin) to mitigate oxidative damage, enhance mitochondrial function, and maintain protein homeostasis. This comprehensive overview aims to provide insights into the cellular and molecular processes of neuronal aging and highlight promising therapeutic avenues to counteract age-related neuronal deterioration.
Collapse
Affiliation(s)
- Erjola Bej
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (M.d.)
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
81
|
Chithanathan K, Jürgenson M, Ducena K, Remm A, Kask K, Rebane A, Tian L, Zharkovsky A. Elocalcitol mitigates high-fat diet-induced microglial senescence via miR-146a modulation. Immun Ageing 2024; 21:82. [PMID: 39578804 PMCID: PMC11583547 DOI: 10.1186/s12979-024-00485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in regulating inflammation and cellular senescence. Among them, miR-146a has emerged as a key modulator of inflammation, but its role in obesity-induced senescence remains unexplored. This study investigates the involvement of miR-146a in high-fat diet (HFD)-induced hypothalamic senescence and in protective effects of elocalcitol (Elo), a non-hypercalcemic, fluorinated vitamin D analog on HFD-induced senescence. RESULTS Wild-type (WT) HFD-fed mice exhibited increased body weight, impaired locomotor activity, and cognitive decline compared to low-fat diet (LFD) controls. In the brain, HFD induced senescence markers (p16, p21), β-galactosidase activity (β-gal) of microglia, and increased expression of senescence associated secretory phenotype (SASP) cytokines (Il1b, Il18, Tnf, Il6) in activated hypothalamic microglia. In the liver, increased p21 and SASP cytokines were detected, although p16 and β-gal levels remained unchanged. Importantly, miR-146a expression was significantly downregulated in the hypothalamus following HFD exposure in WT mice, while miR-146a knockout (Mir146a-/-) mice subjected to HFD showed augmented hypothalamic senescence characterized by higher levels of p16, p21, and β-gal + microglial cells as compared to WT mice. The SASP profile remained similar between Mir146a-/- HFD and WT HFD mice. Among miR-146a target genes, smad4 was upregulated the hypothalamus of HFD-fed mice, with a more pronounced increase in the hypothalamus of HFD-fed Mir146a-/- mice. Further, treatment with Elo upregulated miR-146a expression in both the hypothalamus and the liver, lowered body weight and improved cognitive function, while reducing senescence markers and SASP cytokines in WT HFD mice. These effects were absent in Mir146a-/- HFD mice when treated with Elo, indicating the dependence of Elo's therapeutic efficacy on miR-146a. CONCLUSION Elocalcitol prevents development of senescence in microglia via modulation of miR-146a expression, while miR-146a provides protection against HFD-induced cellular senescence in the hypothalamus most probably via inhibition of TGF/Smad4 pathway. These findings highlight Elo and miR-146a as promising therapeutic candidates for ameliorating obesity-related neuroinflammation and senescence.
Collapse
Affiliation(s)
- Keerthana Chithanathan
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrina Ducena
- Institute of Science and Technology, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalev Kask
- Adge Pharmaceuticals Inc, Mountain View, CA, USA
| | - Ana Rebane
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
82
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate Stiffness Dictates Unique Doxorubicin-induced Senescence-associated Secretory Phenotypes and Transcriptomic Signatures in Human Pulmonary Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623471. [PMID: 39605579 PMCID: PMC11601487 DOI: 10.1101/2024.11.18.623471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21+ cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | | | | | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, CA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
83
|
Wang Z, Lian W, Chen C, Dai Q, Liu Z, Liu J, Zhang Y, Zhou M, Wang X. Network pharmacology and experimental verification revealing valnemulin alleviates DSS-induced ulcerative colitis by inhibiting intestinal senescence. Int Immunopharmacol 2024; 141:112810. [PMID: 39151382 DOI: 10.1016/j.intimp.2024.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease that is increasing in prevalence globally. Senescence is characterized by a specific chronic, low-grade, "sterile" inflammatory state known as inflammaging, suggesting that senescence may exacerbate the severity of UC. However, the link between UC and senescence remains unclear. Valnemulin (VAL) is a semi-synthetic derivative of a naturally occurring diterpenoid antibiotic (pleuromutilin), which can inhibit peptidyl transferase. Studies investigating the potential of valnemulin to inhibit senescence and alleviate colitis are currently limited. In this study, we revealed that dextran sulfate sodium (DSS), an inducer of UC, induces senescence in both colon epithelial NCM460 cells and colon tissues. Additionally, VAL, identified from a compound library, exhibited robust anti-senescence activity in DSS-treated NCM460 cells. Identified in our study as an anti-senescence agent, VAL effectively mitigated DSS-induced UC and colonic senescence in mice. Through network pharmacology analysis and experimental validation, the potential signaling pathway (AMPK/NF-κB) for VAL in treating UC was identified. We discovered that DSS significantly inhibited the AMPK signaling pathway and activated the NF-κB signaling pathway. However, supplementation with VAL remarkably restored AMPK activity and inhibited the NF-κB signaling pathway, which led to the inhibition of senescence. In summary, our study demonstrated that DSS-induced UC stimulates the senescence of colonic tissues, and VAL can effectively alleviate DSS-induced colonic damage and reduce colonic senescence. Our research findings provide a new perspective for targeting anti-senescence in the treatment of UC.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Wei Lian
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Cui Chen
- Qujing Medical College, Qujing, Yunnan, 655011, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Zhenlin Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Jiayu Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yuanyuan Zhang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, China.
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
84
|
Fu M, Zhang Y, Peng B, Luo N, Zhang Y, Zhu W, Yang F, Chen Z, Zhang Q, Li Q, Chen X, Liu Y, Long G, Hu G, Peng X. All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury. JCI Insight 2024; 9:e179530. [PMID: 39513361 PMCID: PMC11601587 DOI: 10.1172/jci.insight.179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Radiotherapy (RT) remains a primary treatment modality for glioblastoma (GBM), but it induces cellular senescence and is strongly implicated in GBM progression and RT-related injury. Recently, eliminating senescent cells has emerged as a promising strategy for treating cancer and for mitigating radiation-induced brain injury (RBI). Here, we investigated the impact of all-trans retinoic acid (RA) on radiation-induced senescence. The findings of this study revealed that RA effectively eliminated astrocytes, which are particularly prone to senescence after radiation, and that the removal of senescence-associated secretory phenotype factor-producing astrocytes inhibited GBM cell proliferation in vitro. Moreover, RA-mediated clearance of senescent cells improved survival in GBM-bearing mice and alleviated radiation-induced cognitive impairment. Through RNA sequencing, we found that the AKT/mTOR/PPARγ/Plin4 signaling pathway is involved in RA-mediated clearance of senescent cells. In summary, these results suggest that RA could be a potential senolytic drug for preventing GBM progression and improving RBI.
Collapse
Affiliation(s)
- Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
85
|
Terry AV, Beck WD, Zona V, Itokazu Y, Tripathi A, Madeshiya AK, Pillai A. Acute exposure to diisopropylfluorophosphate in mice results in persistent cognitive deficits and alterations in senescence markers in the brain. Front Neurosci 2024; 18:1498350. [PMID: 39575097 PMCID: PMC11578986 DOI: 10.3389/fnins.2024.1498350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Organophosphates (OPs) are found in hundreds of important products used worldwide; however, they have been associated with adverse long-term health consequences ranging from neurodevelopmental deficits to age-related neurological diseases. OP exposure has also been implicated in Gulf War Illness; a cluster of medically unexplained chronic symptoms estimated to affect 25-32% of veterans of the Persian Gulf war in 1991. The development of multiple types of chronic illnesses in these veterans at an early age compared to the general population has led to the suggestion that they are experiencing signs of premature or accelerated aging. The process of cellular senescence and the development of the senescence-associated secretory phenotype (SASP) is believed to lead to chronic inflammation, chronic illnesses, as well as accelerated biological aging, and a role of environmental exposures in these processes has been suggested, but not extensively studied to date. In the studies described here, we evaluated the persistent effects of a single (acute) exposure of a representative nerve agent OP, diisopropylfluorophosphate (DFP) 4.0 mg/kg on cognitive function, noncognitive behaviors, cellular senescence markers and proinflammatory cytokines in the mouse brain. The results indicated modest, but persistent DFP-related impairments in spatial learning and working memory, but not contextual or cued fear conditioning. DFP exposure was also not associated with negative effects on weight or impairments of the various noncognitive (e.g., motor function or exploratory activity) behavioral assessments. Both histology and quantitative PCR experiments indicated that DFP was associated with persistent alterations in several senescence markers and proinflammatory cytokines in brain regions that are relevant to the performance of the memory-related tasks (e.g., hippocampus, prefrontal cortex). The results thus suggest that single acute exposures to OPs like DFP can lead to persistent impairments in specific domains of cognition that may be related to alterations in cellular senescence and inflammaging in the brain.
Collapse
Affiliation(s)
- Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Wayne D. Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Victoria Zona
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
| | - Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Medical Research Service, Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
86
|
Libby P, Smith R, Rubin EJ, Glassberg MK, Farkouh ME, Rosenson RS. Inflammation unites diverse acute and chronic diseases. Eur J Clin Invest 2024; 54:e14280. [PMID: 39046830 DOI: 10.1111/eci.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation and immunity contribute pivotally to diverse acute and chronic diseases. Inflammatory pathways have become increasingly targets for therapy. Yet, despite substantial similarity in mechanisms and pathways, the scientific, medical, pharma and biotechnology sectors have generally focused programs finely on a single disease entity or organ system. This insularity may impede progress in innovation and the harnessing of powerful new insights into inflammation biology ripe for clinical translation. METHODS A multidisciplinary thinktank reviewed highlights how inflammation contributes to diverse diseases, disturbed homeostasis, ageing and impaired healthspan. We explored how common inflammatory and immune mechanisms that operate in key conditions in their respective domains. This consensus review highlights the high degree of commonality of inflammatory mechanisms in a diverse array of conditions that together contribute a major part of the global burden of morbidity and mortality and present an enormous challenge to public health and drain on resources. RESULTS We demonstrate how that shared inflammatory mechanisms unite many seemingly disparate diseases, both acute and chronic. The examples of infection, cardiovascular conditions, pulmonary diseases, rheumatological disorders, dementia, cancer and ageing illustrate the overlapping pathogenesis. We outline opportunities to synergize, reduce duplication and consolidate efforts of the clinical, research and pharmaceutical communities. Enhanced recognition of these commonalties should promote cross-fertilization and hasten progress in this rapidly moving domain. CONCLUSIONS Greater appreciation of the shared mechanisms should simplify understanding seemingly disparate diseases for clinicians and help them to recognize inflammation as a therapeutic target which the development of novel therapies is rendering actionable.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Michael E Farkouh
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- Peter Munk Centre of Excellence in Multinational Clinical Trials, University Health Network, Toronto, Ontario, Canada
| | - Robert S Rosenson
- Cardiometabolics Unit, Mount Sinai Icahn School of Medicine, Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
87
|
Hu M, Liu R, Chen X, Yan S, Gao J, Zhang Y, Wu D, Sun L, Jia Z, Sun G, Liu D. Metabolomics Dysfunction in Replicative Senescence of Periodontal Ligament Stem Cells Regulated by AMPK Signaling Pathway. Stem Cells Dev 2024; 33:607-615. [PMID: 39302052 DOI: 10.1089/scd.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLSCs) are a promising cell resource for stem cell-based regenerative medicine in dentistry, but they inevitably acquire a senescent phenotype after prolonged in vitro expansion. The key regulators of PDLSCs during replicative senescence remain unclear. Here, we sought to elucidate the role of metabolomic changes in determining the cellular senescence of PDLSCs. PDLSCs were cultured to passages 4, 10, and 20. The senescent phenotypes of PDLSCs were detected, and metabolomics analysis was performed. We found that PDLSCs manifested senescence phenotype during passaging. Metabolomics analysis showed that the metabolism of replicative senescence in PDLSCs varied significantly. The AMP-activated protein kinase (AMPK) signaling pathway was closely related to adenosine monophosphate (AMP) levels. The AMP:ATP ratio increased in senescent PDLSCs; however, the levels of p-AMPK, FOXO1 and FOXO3a decreased with senescence. We treated PDLSCs with an activator of the AMPK pathway (AICAR) and observed that the phosphorylated AMPK level at P20 PDLSCs was partially restored. These data delineate that the metabolic process of PDLSCs is active in the early stage of senescence and attenuated in the later stages of senescence; however, the sensitivity of AMPK phosphorylation sites is impaired, causing senescent PDLSCs to fail to respond to changes in energy metabolism.
Collapse
Affiliation(s)
- Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Ruiqi Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Xiaoyu Chen
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Shen Yan
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Jian Gao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Yao Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Zhi Jia
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Guangyunhao Sun
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, China
| |
Collapse
|
88
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
89
|
Yang C, Qiao W, Xue Q, Goltzman D, Miao D, Dong Z. The senolytic agent ABT263 ameliorates osteoporosis caused by active vitamin D insufficiency through selective clearance of senescent skeletal cells. J Orthop Translat 2024; 49:107-118. [PMID: 39430127 PMCID: PMC11490840 DOI: 10.1016/j.jot.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background/Objective Active vitamin D insufficiency accelerates the development of osteoporosis, with senescent bone cells and the senescence-associated secretory phenotype (SASP) playing crucial roles. This study aimed to investigate whether the senolytic agent ABT263 could correct osteoporosis caused by active vitamin D insufficiency by selectively clearing senescent cells. Methods Bone marrow mesenchymal stem cells (BM-MSCs) from young and aged mice were treated with ABT263 in vitro, and 1,25(OH)2D-insufficient (Cyp27b1+/-) mice were administered ABT263 in vivo. Cellular, molecular, imaging, and histopathological analyses were performed to compare treated cells and mice with control groups. Results ABT263 induced apoptosis in senescent BM-MSCs by downregulating Bcl2 and upregulating Bax expression. It also induced apoptosis in senescent BM-MSCs from 1,25(OH)2D-insufficient mice. ABT263 administration corrected bone loss caused by 1,25(OH)2D insufficiency by increasing bone density, bone volume, trabecular number, trabecular thickness, and collagen synthesis. It also enhanced osteoblastic bone formation and reduced osteoclastic bone resorption in vivo. ABT263 treatment corrected the impaired osteogenic action of BM-MSCs by promoting their proliferation and osteogenic differentiation. Furthermore, it corrected oxidative stress and DNA damage caused by 1,25(OH)2D insufficiency by increasing SOD-2 and decreasing γ-H2A.X expression. Finally, ABT263 corrected bone cell senescence and SASP caused by 1,25(OH)2D insufficiency by reducing the expression of senescence and SASP-related genes and proteins. Conclusion ABT263 can correct osteoporosis caused by active vitamin D insufficiency by selectively clearing senescent skeletal cells, reducing oxidative stress, DNA damage, and SASP, and promoting bone formation while inhibiting bone resorption. These findings provide new insights into the potential therapeutic application of senolytic agents in the treatment of osteoporosis associated with active vitamin D insufficiency. The translational potential of this article This study highlights the therapeutic potential of ABT263, a senolytic compound, in treating osteoporosis caused by active vitamin D insufficiency. By selectively eliminating senescent bone cells and their associated SASP, ABT263 intervention demonstrates the ability to restore bone homeostasis, prevent further bone loss, and promote bone formation. These findings contribute to the growing body of research supporting the use of senolytic therapies for the prevention and treatment of age-related bone disorders. The translational potential of this study lies in the development of novel therapeutic strategies targeting cellular senescence to combat osteoporosis, particularly in cases where vitamin D insufficiency is a contributing factor. Further clinical studies are warranted to validate the efficacy and safety of ABT263 and other senolytic agents in the treatment of osteoporosis in humans.
Collapse
Affiliation(s)
- Cuicui Yang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wanxin Qiao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qi Xue
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhan Dong
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
90
|
Whytock KL, Divoux A, Sun Y, Pino MF, Yu G, Jin CA, Robino JJ, Plekhanov A, Varlamov O, Smith SR, Walsh MJ, Sparks LM. Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell 2024; 23:e14287. [PMID: 39141531 PMCID: PMC11561672 DOI: 10.1111/acel.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq and histology to characterize the cellular landscape of human abdominal subcutaneous WAT in a prospective cohort of 10 younger (≤30 years) and 10 older individuals (≥65 years) balanced for sex and body mass index (BMI). The older group had greater cholesterol, very-low-density lipoprotein, triglycerides, thyroid stimulating hormone, and aspartate transaminase compared to the younger group (p < 0.05). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of lipid-associated macrophages and mast cells, an upregulation of immune responses linked to fibrosis in pre-adipocyte, adipocyte, and vascular populations, and highlight CXCL14 as a biomarker of these processes. We show that older WAT has elevated levels of senescence marker p16 in adipocytes and identify the adipocyte subpopulation driving this senescence profile. We confirm that these transcriptional and phenotypical changes occur without overt fibrosis and in older individuals that have comparable WAT insulin sensitivity to the younger individuals.
Collapse
Affiliation(s)
- K. L. Whytock
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - A. Divoux
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - Y. Sun
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - M. F. Pino
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - G. Yu
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - C. A. Jin
- Department of Genetics, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - J. J. Robino
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - A. Plekhanov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - O. Varlamov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - S. R. Smith
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - M. J. Walsh
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - L. M. Sparks
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| |
Collapse
|
91
|
Gwak E, Shin JW, Kim SY, Lee JT, Jeon OH, Choe SA. Exposure to ambient air pollution mixture and senescence-associated secretory phenotype proteins among middle-aged and older women. ENVIRONMENTAL RESEARCH 2024; 260:119642. [PMID: 39029725 DOI: 10.1016/j.envres.2024.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Our study aimed to investigate the impact of environmental exposures, such as ambient air pollutants, on systemic inflammation and cellular senescence in middle-aged and older women. We utilized epidemiological data linked with exposure data of six air pollutants (particulate matters [PM10, PM2.5], sulphur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO], and ozone [O3]) and blood samples of 380 peri- and postmenopausal women participants of the Korean Genome and Epidemiology Study. We measured blood high-sensitivity C-reactive protein (hsCRP) and age-related 27 circulatory senescence-associated secretory phenotypes (SASP) produced by senescent cells. We employed single exposure models to explore the general pattern of association between air pollution exposure and proteomic markers. Using quantile g-computation models, we assessed the association of six air pollutant mixtures with hsCRP and SASP proteins. In single-exposure, single-period models, nine out of the 27 SASP proteins including IFN-γ (β = 0.04, 95% CI: 0.01, 0.07 per interquartile range-increase), IL-8 (0.15, 95% CI: 0.09, 0.20), and MIP1α (0.11, 95% CI: 0.04, 0.18) were positively associated with the average level of O3 over one week. Among the age-related SASP proteins, IFN-γ (0.11, 95% CI: 0.03, 0.20) and IL-8 (0.22, 95% CI: 0.05, 0.39) were positively associated with exposure to air pollutant mixture over one week. The MIP1β was higher with an increasing one-month average concentration of the air pollutant mixture (0.11, 95% CI: 0.00, 0.21). The IL-8 showed consistently positive association with the ambient air pollutant mixture for the exposure periods ranging from one week to one year. O3 predominantly showed positive weights in the associations between air pollutant mixtures and IL-8. These findings underscore the potential of proteomic indicators as markers for biological aging attributed to short-term air pollution exposure.
Collapse
Affiliation(s)
- Eunseon Gwak
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ji-Won Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jong Tae Lee
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
92
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
93
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
94
|
Huang M, Liu Y, Zhang L, Wang S, Wang X, He Z. Advancements in Research on Mesenchymal Stem-Cell-Derived Exosomal miRNAs: A Pivotal Insight into Aging and Age-Related Diseases. Biomolecules 2024; 14:1354. [PMID: 39595531 PMCID: PMC11592330 DOI: 10.3390/biom14111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into various cell types and play a crucial role in repairing aging tissues and diseased organs. Aging manifests as a gradual loss of cellular, tissue, and organ function, leading to the progression of pathologies. Exosomes (Exos) are extracellular vesicles secreted by cells, which maintain cellular homeostasis, clear cellular debris, and facilitate communication between cells and organs. This review provides a comprehensive summary of the mechanisms for the synthesis and sorting of MSC-Exo miRNAs and summarizes the current research status of MSCs-Exos in mitigating aging and age-related diseases. It delves into the underlying molecular mechanisms, which encompass antioxidative stress, anti-inflammatory response, and the promotion of angiogenesis. Additionally, this review also discusses potential challenges in and future strategies for advancing MSC-Exo miRNA-based therapies in the treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Ye Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Longze Zhang
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China;
| | - Shuangmin Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; (M.H.); (Y.L.); (S.W.)
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
95
|
Silva M, Wacker DA, Driver BE, Staugaitis A, Niedernhofer LJ, Schmidt EL, Kirkland JL, Tchkonia T, Evans T, Serrano CH, Ventz S, Koopmeiners JS, Puskarich MA. Senolytics To slOw Progression of Sepsis (STOP-Sepsis) in elderly patients: Study protocol for a multicenter, randomized, adaptive allocation clinical trial. Trials 2024; 25:698. [PMID: 39434114 PMCID: PMC11492760 DOI: 10.1186/s13063-024-08474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Senescent immune cells exhibit altered gene expression and resistance to apoptosis. The prevalence of these cells increases with age and emerging data implicate senescence-associated maladaptive signaling as a potential contributor to sepsis and septic shock. The senolytic drug fisetin promotes clearance of senescent cells and is hypothesized to mitigate septic responses to infection. METHODS We are conducting a multi-center, randomized, double-blinded, adaptive allocation phase 2 clinical trial to assess the efficacy of the senolytic drug fisetin in preventing clinical deterioration of elderly patients diagnosed with sepsis. We intend to enroll and randomize 220 elderly patients (age > 65) with the clinical diagnosis of sepsis to receive either fisetin as a single oral dose of 20 mg/kg, fisetin in two oral doses of 20 mg/kg each spaced 1 day apart, or placebo. The primary outcome will be changed in the composite of cardiovascular, respiratory, and renal sequential organ failure assessment scores at 7 days from enrollment. Secondary outcomes include quantification of senescent CD3 + cells at 7 days, and 28-day assessments of organ failure-free days, days in an intensive care unit, and all-cause mortality. DISCUSSION This multi-center, randomized, double-blinded trial will assess the efficacy of fisetin in preventing clinical deterioration in elderly patients with sepsis and measure the effects of this drug on the prevalence of senescent immune cells. We intend that the results of this phase 2 trial will inform the design of a larger phase 3 study. TRIAL REGISTRATION This trial is registered to ClinicalTrials.gov under identifier NCT05758246, first posted on March 7, 2023.
Collapse
Affiliation(s)
- Milena Silva
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David A Wacker
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Brian E Driver
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, 55415, USA
| | - Abbey Staugaitis
- Department of Emergency Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55414, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elizabeth L Schmidt
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - James L Kirkland
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - Tamara Evans
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - Carlos Hines Serrano
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steffen Ventz
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph S Koopmeiners
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, University of Minnesota School of Medicine and Hennepin Healthcare, Minneapolis, MN, 55455, USA.
| |
Collapse
|
96
|
Chen X, Yu T, Li S, Fang H. Inhibition of bromodomain regulates cellular senescence in pancreatic adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:360-370. [PMID: 39544715 PMCID: PMC11558316 DOI: 10.62347/bknq9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bromodomain and extra terminal domain (BET) proteins are important epigenetic regulators that promote the transcription of genes in the chromatin region associated with acetylated histones. Small molecule BET inhibitor JQ1 suppresses the biologic function of BET proteins in a variety of tumors and inhibits their proliferation. METHODS We investigated the effect of JQ1 in the treatment of pancreatic cancer. In addition, we evaluated the expression level of BRD4 protein in pancreatic cancer tissues using the Gene Expression Profiling Interactive Analysis (GEPIA) and the Human protein Altas databases and analyzed the correlation between BRD4 and the clinicopathologic features and immune checkpoints of pancreatic adenocarcinoma using UALACN and TIMER databases. RESULTS JQ1 significantly inhibited the proliferation of pancreatic adenocarcinoma (PAAD) cells and induced cell senescence but had little effect on Senescence-associated secretory phenotype (SASP). Interestingly, JQ1 inhibited the epithelial-mesenchymal transition (EMT) and Wnt signaling pathways. CONCLUSIONS These results provide a theoretical basis for new targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Tao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Shu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| | - Hongcai Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiujiang University Jiujiang 332000, Jiangxi, China
| |
Collapse
|
97
|
Sessions GA, Loops MV, Diekman BO, Purvis JE. Multiplexed single-cell imaging reveals diverging subpopulations with distinct senescence phenotypes during long-term senescence induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618296. [PMID: 39463936 PMCID: PMC11507663 DOI: 10.1101/2024.10.14.618296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP.
Collapse
Affiliation(s)
- Garrett A Sessions
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, Unites States of America
| | - Madeline V Loops
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, Unites States of America
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Brian O Diekman
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Jeremy E Purvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
98
|
Tavenier J, Nehlin JO, Houlind MB, Rasmussen LJ, Tchkonia T, Kirkland JL, Andersen O, Rasmussen LJH. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev 2024; 222:111995. [PMID: 39384074 DOI: 10.1016/j.mad.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Fisetin, a flavonoid naturally occurring in plants, fruits, and vegetables, has recently gained attention for its potential role as a senotherapeutic agent for the treatment of age-related chronic diseases. Senotherapeutics target senescent cells, which accumulate with age and disease, in both circulating immune cell populations and solid organs and tissues. Senescent cells contribute to development of many chronic diseases, primarily by eliciting systemic chronic inflammation through their senescence-associated secretory phenotype. Here, we explore whether fisetin as a senotherapeutic can eliminate senescent cells, and thereby alleviate chronic diseases, by examining current evidence from in vitro studies and animal models that investigate fisetin's impact on age-related diseases, as well as from phase I/II trials in various patient populations. We discuss the application of fisetin in humans, including challenges and future directions. Our review of available data suggests that targeting senescent cells with fisetin offers a promising strategy for managing multiple chronic diseases, potentially transforming future healthcare for older and multimorbid patients. However, further studies are needed to establish the safety, pharmacokinetics, and efficacy of fisetin as a senotherapeutic, identify relevant and reliable outcome measures in human trials, optimize dosing, and better understand the possible limitations of fisetin as a senotherapeutic agent.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; The Hospital Pharmacy, Marielundsvej 25, Herlev 2730, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Tamara Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark; The Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 West Main Street Suite 201, Durham, NC 27708, USA.
| |
Collapse
|
99
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
100
|
Rubino G, Yörük E. Immunosenescence, immunotolerance and rejection: clinical aspects in solid organ transplantation. Transpl Immunol 2024; 86:102068. [PMID: 38844001 DOI: 10.1016/j.trim.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
As a consequence of increased lifespan and rising number of elderly individuals developing end-stage organ disease, the higher demand for organs along with a growing availability for organs from older donors pose new challenges for transplantation. During aging, dynamic adaptations in the functionality and structure of the biological systems occur. Consistently, immunosenescence (IS) accounts for polydysfunctions within the lymphocyte subsets, and the onset of a basal but persistent systemic inflammation characterized by elevated levels of pro-inflammatory mediators. There is an emerging consensus about a causative link between such hallmarks and increased susceptibility to morbidities and mortality, however the role of IS in solid organ transplantation (SOT) remains loosely addressed. Dissecting the immune-architecture of immunologically-privileged sites may prompt novel insights to extend allograft survival. A deeper comprehension of IS in SOT might unveil key standpoints for the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Graziella Rubino
- University Hospital Tübingen, Department of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; Institute for Transfusion Medicine, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany.
| | - Efdal Yörük
- Berit Klinik, Gastrointestinal Center, Florastrasse 1, 9403 Goldach, Switzerland; University Hospital Tübingen, Department of Ophthalmology, Elfriede-Alhorn-Straße 7, 72076 Tübingen, Germany
| |
Collapse
|