51
|
Iribarren C, Maasfeh L, Öhman L, Simrén M. Modulating the gut microenvironment as a treatment strategy for irritable bowel syndrome: a narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e7. [PMID: 39295774 PMCID: PMC11406401 DOI: 10.1017/gmb.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 09/21/2024]
Abstract
Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction with a complex pathophysiology. Growing evidence suggests that alterations of the gut microenvironment, including microbiota composition and function, may be involved in symptom generation. Therefore, attempts to modulate the gut microenvironment have provided promising results as an indirect approach for IBS management. Antibiotics, probiotics, prebiotics, food and faecal microbiota transplantation are the main strategies for alleviating IBS symptom severity by modulating gut microbiota composition and function (eg. metabolism), gut barrier integrity and immune activity, although with varying efficacy. In this narrative review, we aim to provide an overview of the current approaches targeting the gut microenvironment in order to indirectly manage IBS symptoms.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lujain Maasfeh
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
52
|
Bracci EL, Milte R, Keogh JB, Murphy KJ. Developing and Piloting a Novel Ranking System to Assess Popular Dietary Patterns and Healthy Eating Principles. Nutrients 2022; 14:nu14163414. [PMID: 36014923 PMCID: PMC9415867 DOI: 10.3390/nu14163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
A multitude of weight loss diets exist. However, no one diet has been proven to be superior, despite their claims. Resultingly, this creates confusion amongst consumers and conflicting nutrition messages. The aim of the ranking system was to evaluate a range of dietary pattern’s nutrition profile and financial costs, as well as their potential long-term sustainability and associated adverse effects. Nutrition profile is typically the focal point of weight loss diets with less attention focused towards other factors that may affect their suitability. Five popular diets (Keto, Paleo, Intermittent Fasting, Optifast, and 8 Weeks to Wow) and two energy restricted healthy eating principles (Australian Guide to Healthy Eating and the Mediterranean Diet) were compared for diet quality, cost, adverse effects, and support for behaviour change. In general, healthy eating principles scored more favourably compared to popular weight loss diets in all categories. Lower carbohydrate diets tended to score lower for diet quality due to restricting multiple food groups, had more associated adverse effects and did not encourage behaviour change compared to the other weight loss diets. Optifast was the only weight loss diet to receive a negative score for cost. There should be considerations when undertaking a change to dietary patterns beyond nutrition profile. Diets indeed vary in terms of diet quality, and in addition can be costly, incur adverse effects, and disregard behaviour change which is important for sustainable weight loss and maintenance. This ranking system could create a reference point for future comparisons of diets.
Collapse
Affiliation(s)
- Ella L. Bracci
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
- Correspondence:
| | - Rachel Milte
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5042, Australia
| | - Jennifer B. Keogh
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Karen J. Murphy
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| |
Collapse
|
53
|
Liu Y, Zheng G, Jin X, Fan T, Chen Z, Sheng X. Influence of Gut Microbiota and Trimethylamine N-Oxide in Patients with Coronary Heart Disease. Int Heart J 2022; 63:683-691. [PMID: 35831155 DOI: 10.1536/ihj.22-070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current study, the gut microbiota of patients with and without coronary heart disease was compared and the relationship between gut microbiota distribution, intending to reveal the role of gut microbiota in the coronary atherosclerosis process, was investigated.This study included 50 patients diagnosed with coronary heart disease (CHD) who received conventional coronary angiography or computed tomography angiography and 50 patients with CHD at Changshu No. 2 People's Hospital, Suzhou, China, from May 2020 to January 2021. Trimethylamine N-oxide (TMAO) level was tested and feces were collected, the DNA of the gut microbiota was extracted, and the distribution by 16SrRNA gene sequencing was obtained from the two groups of patients.Plasma TMAO concentrations were significantly higher in patients with CHD (P < 0.001). In the CHD group, 22 patients with multivessel disease had a higher level of TMAO compared with the 28 patients who had the single-vessel disease (P < 0.001). No difference in the gut microbiota diversity was noted between the two groups (P < 0.001). Patients with CHD had a significantly lower proportion of Bacteroidetes phyla and more proportion of Epsilonbacteraeota phyla. At the genus level, patients with CHD had an increased abundance of Enterococcus, whereas healthy controls had significantly higher levels of Streptococcus. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 analysis found that, in the KEGG ORTHOLOGY, the level of choline trimethylamine-lyase gene expression correlated with TMAO production was higher in the fecal microbiome of the CHD group (P < 0.05).Gut microbiota and its product were expected to become a diagnostic marker and a new target for preventing CHD.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Cardiology, The Second People's Hospital of Changshu
| | - Guanqun Zheng
- Department of Cardiology, The Second People's Hospital of Changshu
| | - Xiaoqi Jin
- Department of Cardiology, The Second People's Hospital of Changshu
| | - Tao Fan
- Department of Cardiology, The Second People's Hospital of Changshu
| | - Zhixian Chen
- Department of Cardiology, The Second People's Hospital of Changshu
| | - Xiaodong Sheng
- Department of Cardiology, The Second People's Hospital of Changshu
| |
Collapse
|
54
|
Vacca M, Porrelli A, Calabrese FM, Lippolis T, Iacobellis I, Celano G, Pinto D, Russo F, Giannelli G, De Angelis M. How Metabolomics Provides Novel Insights on Celiac Disease and Gluten-Free Diet: A Narrative Review. Front Microbiol 2022; 13:859467. [PMID: 35814671 PMCID: PMC9260055 DOI: 10.3389/fmicb.2022.859467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) is an inflammatory autoimmune disorder triggered by the ingestion of gluten from wheat and other cereals. Nowadays, its positive diagnosis is based on invasive approaches such as the histological examination of intestinal biopsies and positive serology screening of antibodies. After proven diagnosis, the only admissible treatment for CD individuals is strict life-long adherence to gluten-free diet (GFD), although it is not a conclusive therapy. Acting by different mechanisms and with different etiologies, both CD and GFD have a great impact on gut microbiota that result in a different taxa composition. Altered production of specific metabolites reflects these microbiota changes. In this light, the currently available literature reports some suggestions about the possible use of specific metabolites, detected by meta-omics analyses, as potential biomarkers for a CD non-invasive diagnosis. To highlight insights about metabolomics application in CD study, we conducted a narrative dissertation of selected original articles published in the last decade. By applying a systematic search, it clearly emerged how the metabolomic signature appears to be contradictory, as well as poorly investigated.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Porrelli
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Francesco Maria Calabrese,
| | - Tamara Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project-HMPA, Giuliani SpA, Milan, Italy
| | - Francesco Russo
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
55
|
How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients 2022; 14:nu14122456. [PMID: 35745186 PMCID: PMC9227967 DOI: 10.3390/nu14122456] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the maintenance of physiological homeostasis, contributing to human health. Nevertheless, some factors (sex, age, lifestyle, physical activity, drug-based therapies, diet, etc.) affect its composition and functionality, linked to pathologies and immunological diseases. Concerning diet, it interacts with microorganisms, leading to beneficial or detrimental outcomes for the health of host. On the other hand, physical activity is known to be useful for preventing and, sometimes, treating several diseases of cardiovascular, neuroendocrine, respiratory, and muscular systems. This paper focuses on diet and physical activity presenting the current knowledge about how different diets (Western, ketogenic, vegan, gluten free, Mediterranean) as well as different types of exercise (intensive, endurance, aerobic) could shape gut microbiota.
Collapse
|
56
|
Haro C, Guzmán-López MH, Marín-Sanz M, Sánchez-León S, Vaquero L, Pastor J, Comino I, Sousa C, Vivas S, Landa BB, Barro F. Consumption of Tritordeum Bread Reduces Immunogenic Gluten Intake without Altering the Gut Microbiota. Foods 2022; 11:foods11101439. [PMID: 35627010 PMCID: PMC9142130 DOI: 10.3390/foods11101439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Gluten proteins are responsible for the wheat breadmaking quality. However, gluten is also related to human pathologies for which the only treatment is a gluten-free diet (GFD). GFD has gained popularity among individuals who want to reduce their gluten intake. Tritordeum is a cereal species that originated after crossing durum wheat with wild barley and differs from bread wheat in its gluten composition. In this work, we have characterized the immunogenic epitopes of tritordeum bread and results from a four-phase study with healthy adults for preferences of bread and alterations in the gut microbiota after consuming wheat bread, gluten-free bread, and tritordeum bread are reported. Tritordeum presented fewer peptides related to gluten proteins, CD-epitopes, and IgE binding sites than bread wheat. Participants rated tritordeum bread higher than gluten-free bread. Gut microbiota analysis revealed that the adherence to a strict GFD involves some minor changes, especially altering the species producing short-chain fatty acids. However, the short-term consumption of tritordeum bread does not induce significant changes in the diversity or community composition of the intestinal microbiota in healthy individuals. Therefore, tritordeum bread could be an alternative for healthy individuals without wheat-related pathologies who want to reduce their gluten consumption without harming their gut health.
Collapse
Affiliation(s)
- Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (C.H.); (B.B.L.)
| | - María H. Guzmán-López
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
- Correspondence: (M.H.G.-L.); (F.B.)
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
| | - Luis Vaquero
- Department of Gastroenterology, Hospital of León, Biomedicine Institute, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | - Jorge Pastor
- Novapan, S.L., C/Chopo, 68-70, 50171 La Puebla de Alfinden, Spain;
| | - Isabel Comino
- Department of Microbiology and Parasitology, Pharmacy Faculty, University of Seville, 41004 Seville, Spain; (I.C.); (C.S.)
| | - Carolina Sousa
- Department of Microbiology and Parasitology, Pharmacy Faculty, University of Seville, 41004 Seville, Spain; (I.C.); (C.S.)
| | - Santiago Vivas
- Department of Gastroenterology, Hospital of León, Biomedicine Institute, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (C.H.); (B.B.L.)
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
- Correspondence: (M.H.G.-L.); (F.B.)
| |
Collapse
|
57
|
What about TSH and Anti-Thyroid Antibodies in Patients with Autoimmune Thyroiditis and Celiac Disease Using a Gluten-Free Diet? A Systematic Review. Nutrients 2022; 14:nu14081681. [PMID: 35458242 PMCID: PMC9028602 DOI: 10.3390/nu14081681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
The prevalence of celiac disease (CD) in patients with chronic autoimmune thyroiditis (CAIT) is estimated to be between 2 and 7.8%. A gluten-free diet (GFD) in patients with CD is suggested to have a beneficial effect on CAIT. Thus, the present systematic review was undertaken to achieve more robust evidence about the change in thyroid stimulating hormone (TSH) and thyroid-specific antibodies (T-Ab) levels obtained in CD patients following a GFD. A specific search strategy was planned. The last search was performed on March 2022. The following data were mainly searched for in order to be extracted: sample size, mean and/or median with standard deviation (SD), and error (SE), individually, of thyroid hormones and T-Ab at baseline and after GFD, and the duration of the study. The initial search retrieved 297 records and 6 articles met the inclusion criteria. In total, 50 patients with both CD and CAIT and 45 controls were reported. The effects of a GFD on the thyroid hormonal and immunological profile could be extracted only in a part of the studies. Two studies were case reports. A low risk of bias was observed. These findings advise further studies, ideally randomized, in order to better investigate the potential relationship between GFD and thyroid homeostasis. The level of evidence is not still sufficient to recommend GFD to patients with CAIT.
Collapse
|
58
|
He P, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Adv Nutr 2022; 13:1628-1651. [PMID: 35348593 PMCID: PMC9526834 DOI: 10.1093/advances/nmac029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
It is widely believed that diet and the gut microbiota are strongly related to the occurrence and progression of inflammatory bowel disease (IBD), but the effects of the interaction between dietary patterns and the gut microbiota on IBD have not been well elucidated. In this article, we aim to explore the complex relation between dietary patterns, gut microbiota, and IBD. We first comprehensively summarized the dietary patterns associated with IBD and found that dietary patterns can modulate the occurrence and progression of IBD through various signaling pathways, including mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription 3 (STAT3), and NF-κB. Besides, the gut microbiota performs a vital role in the progression of IBD, which can affect the expression of IBD susceptibility genes, such as dual oxidase 2 (DUOX2) and APOA-1 , the intestinal barrier (in particular, the expression of tight junction proteins), immune function (especially the homeostasis between effector and regulatory T cells) and the physiological metabolism, in particular, SCFAs, bile acids (BAs), and tryptophan metabolism. Finally, we reviewed the current knowledge on the interaction between dietary patterns and the gut microbiota in IBD and found that dietary patterns modulate the onset and progression of IBD, which is partly attributed to the regulation of the gut microbiota (especially SCFAs-producing bacteria and Escherichia coli). Faecalibacteria as "microbiomarkers" of IBD could be used as a target for dietary interventions to alleviate IBD. A comprehensive understanding of the interplay between dietary intake, gut microbiota, and IBD will facilitate the development of personalized dietary strategies based on the regulation of the gut microbiota in IBD and expedite the era of precision nutritional interventions for IBD.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | | |
Collapse
|
59
|
Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci Rep 2022; 12:1892. [PMID: 35115599 PMCID: PMC8814023 DOI: 10.1038/s41598-022-05817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.
Collapse
|
60
|
de Sousa Franckilin LR, Dos Santos ACPM, Freitas FEDA, Vieira IG, de Freitas Jorge CE, Neri DG, de Abreu MVC, Fonseca JK, Loffi RG, Foureaux G. Gluten: do only celiac patients benefit from its removal from the diet? FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Renato Guimarães Loffi
- Departamento de Ciência, Tecnologia e Inovação, Treini Biotecnologia Ltda, Belo Horizonte, Brazil
| | - Giselle Foureaux
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Nutrição, Angiogold: Medicina Integrativa, Belo Horizonte, Brazil
| |
Collapse
|
61
|
Das K, Mukherjee K, Ganguli S, Bagchi SS. Dietary Intake and Nutritional Status of the adult Kheria Sabar males of West Bengal, India. Ecol Food Nutr 2022; 61:367-384. [PMID: 35050800 DOI: 10.1080/03670244.2021.2018310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kheria Sabars are an indigenous community living in the rural areas of Purulia, West Bengal, India. This work aims to study dietary intake and its relation to nutritional status among adult Kheria Sabar males aged 18-60. The study entails the recording of anthropometric variables like height (cm) and weight (kg) as per the standard protocol and calculating body mass index (BMI). Dietary intake was recorded on the basis of the 24-h dietary recall method. The intake of different nutrients was computed and compared with the Recommended Dietary Allowances (RDA) for Indians by the Indian Council of Medical Research Expert Committee. Results revealed a paradox where undernutrition was prevalent (44.28%) despite balanced nutrient intake. This paradox creates scope for further exploratory research among other communities living in similar habitats.
Collapse
Affiliation(s)
- Kaustav Das
- Department of Anthropology, Bangabasi College, Kolkata, India
| | - Koel Mukherjee
- Physical Anthropology Division, Anthropological Survey of India, Andaman and Nicobar Regional Centre, Port Blair, India
| | - Sayak Ganguli
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | | |
Collapse
|
62
|
Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022; 10:microorganisms10010167. [PMID: 35056616 PMCID: PMC8780106 DOI: 10.3390/microorganisms10010167] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key environmental factor in inflammatory bowel disease (IBD) and, at the same time, represents one of the most promising therapies for IBD. Our daily diet often contains food additives present in numerous processed foods and even in dietary supplements. Recently, researchers and national authorities have been paying much attention to their toxicity and effects on gut microbiota and health. This review aims to gather the latest data focusing on the potential role of food additives in the pathogenesis of IBDs through gut microbiota modulation. Some artificial emulsifiers and sweeteners can induce the dysbiosis associated with an alteration of the intestinal barrier, an activation of chronic inflammation, and abnormal immune response accelerating the onset of IBD. Even if most of these results are retrieved from in vivo and in vitro studies, many artificial food additives can represent a potential hidden driver of gut chronic inflammation through gut microbiota alterations, especially in a population with IBD predisposition. In this context, pending the confirmation of these results by large human studies, it would be advisable that IBD patients avoid the consumption of processed food containing artificial food additives and follow a personalized nutritional therapy prescribed by a clinical nutritionist.
Collapse
|
63
|
Tan IL, Coutinho de Almeida R, Modderman R, Stachurska A, Dekens J, Barisani D, Meijer CR, Roca M, Martinez-Ojinaga E, Shamir R, Auricchio R, Korponay-Szabó IR, Castillejo G, Szajewska H, Koletzko S, Zhernakova A, Kumar V, Li Y, Visschedijk MC, Weersma RK, Troncone R, Mearin ML, Wijmenga C, Jonkers I, Withoff S. Circulating miRNAs as Potential Biomarkers for Celiac Disease Development. Front Immunol 2021; 12:734763. [PMID: 34950132 PMCID: PMC8688806 DOI: 10.3389/fimmu.2021.734763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background & Aims Celiac disease (CeD), an immune-mediated disease with enteropathy triggered by gluten, affects ~1% of the general European population. Currently, there are no biomarkers to predict CeD development. MicroRNAs (miRNAs) are short RNAs involved in post-transcriptional gene regulation, and certain disease- and stage-specific miRNA profiles have been found previously. We aimed to investigate whether circulating miRNAs can predict the development of CeD. Methods Using next-generation miRNA-sequencing, we determined miRNAs in >200 serum samples from 53 participants of the PreventCD study, of whom 33 developed CeD during follow-up. Following study inclusion at 3 months of age, samples were drawn at predefined ages, diagnosis (first anti-transglutaminase antibody (TGA) positivity or diagnostic biopsy) and after the start of a gluten-free diet (GFD). This allowed identification of circulating miRNAs that are deregulated before TGA positivity. For validation of the biomarkers for CeD and GFD response, two additional cohorts were included in subsequent meta-analyses. Additionally, miRNAs were measured in duodenal biopsies in a case-control cohort. Results 53 circulating miRNAs were increased (27) or decreased (26) in CeD versus controls. We assessed specific trends in these individual miRNAs in the PreventCD cohort by grouping the pre-diagnostic samples of the CeD patients (all had negative TGA) by how close to seroconversion (first sample positive TGA) the samples were taken. 8/53 miRNAs differed significantly between controls and samples taken <1 year before TGA positivity: miR-21-3p, miR-374a-5p, 144-3p, miR-500a-3p, miR-486-3p let-7d-3p, let-7e-5p and miR-3605-3p. 6/26 downregulated miRNAs reconstituted upon GFD, including miR-150-5p/-3p, whereas no upregulated miRNAs were downregulated upon GFD. 15/53 biomarker candidates also differed between CeD biopsies and controls, with a concordant direction, indicating that these circulating miRNAs might originate from the intestine. Conclusions We identified 53 circulating miRNAs that are potential early biomarkers for CeD, of which several can be detected more than a year before TGA positivity and some start to normalize upon GFD.
Collapse
Affiliation(s)
- Ineke L Tan
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.,Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Anna Stachurska
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jackie Dekens
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.,Center of Development and Innovation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Caroline R Meijer
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - María Roca
- Celiac Disease and Digestive Immunopathology Unit, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia, Spain
| | - Eva Martinez-Ojinaga
- Celiac Disease and Digestive Immunopathology Unit, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Madrid, Spain
| | - Raanan Shamir
- Institute of Pediatric Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Renata Auricchio
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - Ilma R Korponay-Szabó
- Coeliac Disease Center, Heim Pál National Paediatric Institute, Budapest, Hungary and Dept. of Paediatrics, Faculty of Medicine and Clinical Center, University of Debrecen, Debrecen, Hungary
| | - Gemma Castillejo
- Unitat de gastroenterologia pediàtrica, Hospital Universitari Sant Joan de Reus, Universitat Rovira i virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München (LMU) Klinikum Munich, Munich, Germany.,Department of Pediatric Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Yang Li
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.,Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Riccardo Troncone
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Iris Jonkers
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
64
|
Nobel YR, Rozenberg F, Park H, Freedberg DE, Blaser MJ, Green PH, Uhlemann AC, Lebwohl B. Lack of Effect of Gluten Challenge on Fecal Microbiome in Patients With Celiac Disease and Non-Celiac Gluten Sensitivity. Clin Transl Gastroenterol 2021; 12:e00441. [PMID: 34928868 PMCID: PMC8691493 DOI: 10.14309/ctg.0000000000000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Celiac disease (CD) may be associated with gut microbial dysbiosis. Whether discrete gluten exposure in subjects with well-controlled disease on a gluten-free diet impacts the gut microbiome is unknown and may have implications for understanding disease activity and symptoms. We conducted a prospective study to evaluate the impact of gluten exposure on the gut microbiome in patients with CD and nonceliac gluten sensitivity (NCGS). METHODS Subjects with CD (n = 9) and NCGS (n = 8) previously on a gluten-free diet were administered a 14-day gluten challenge (5 g of gluten per day) and compared with controls (n = 8) on a usual gluten-containing diet. Stool was collected for fecal microbiome analysis using 16S rRNA gene and metagenomic sequencing before, during, and after the gluten challenge. Symptoms were assessed using 2 validated clinical scales. RESULTS Among subjects with CD and NCGS, there were no significant fecal microbial changes in response to gluten challenge. Gut microbiome composition differed among controls, subjects with CD, and subjects with NCGS at baseline, and these differences persisted despite gluten exposure. Gastrointestinal and general health symptoms reported by subjects with CD and NCGS were worst in the middle of gluten challenge and lessened by its end, with no consistent associations with gut microbiome composition. DISCUSSION Pre-existing fecal microbiome diversity was unaffected by gluten challenge in adult subjects with CD and NCGS. These findings suggest that current microbiome status is unrelated to current disease activity and disease severity.
Collapse
Affiliation(s)
- Yael R. Nobel
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Felix Rozenberg
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Heekuk Park
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Daniel E. Freedberg
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, USA;
| | - Peter H.R. Green
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA;
| | - Anne-Catrin Uhlemann
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| | - Benjamin Lebwohl
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA;
| |
Collapse
|
65
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
66
|
Wu X, Qian L, Liu K, Wu J, Shan Z. Gastrointestinal microbiome and gluten in celiac disease. Ann Med 2021; 53:1797-1805. [PMID: 34647492 PMCID: PMC8519548 DOI: 10.1080/07853890.2021.1990392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/30/2021] [Indexed: 01/11/2023] Open
Abstract
Coeliac disease (CD), also known as gluten sensitive enteropathy, is an autoimmune intestinal disease induced by gluten in genetically susceptible individuals. Gluten is a common ingredient in daily diet and is one of the main environmental factors to induce coeliac disease. Adhering to gluten free diet (GFD) is an effective method for treating CD. Microbiota plays an extremely important role in maintaining human health, and diet is the main factor to regulate the composition and function of gut microbiota. Recent studies have shown that gluten metabolism is closely related to gastrointestinal tract (GIT) microbiota. With the increasing prevalence of coeliac disease, there is a need for alternative treatments to GFD. In this review, biological medication of gluten, relationship between gluten and gut microflora, effect of GFD on GIT microflora, and effect of probiotics on CD were reviewed. By analysing the research progress on relationship between gluten and gastrointestinal microbiome in coeliac disease, this review tried to explore the prospective and potential mechanism of microecological agents in treating coeliac disease.
Collapse
Affiliation(s)
- Xingxing Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kexin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowei Shan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
67
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
68
|
Sample D, Fouhse J, King S, Huynh HQ, Dieleman LA, Willing BP, Turner J. Baseline Fecal Microbiota in Pediatric Patients With Celiac Disease Is Similar to Controls But Dissimilar After 1 Year on the Gluten-Free Diet. JPGN REPORTS 2021; 2:e127. [PMID: 37206457 PMCID: PMC10191547 DOI: 10.1097/pg9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
The objectives of this pilot study were to examine fecal microbiota composition of pediatric patients with celiac disease (CD) before and after a 1-year gluten-free diet (GFD) and to determine the association with symptoms and anti-tissue transglutaminase (aTTG) antibody. Methods Stool samples were obtained from pediatric patients with CD and from healthy controls. Patients were classified by the presence (diarrhea, abdominal pain, weight loss) or absence (asymptomatic, headache, fatigue, etc.) of typical CD gastrointestinal symptoms and by aTTG normalization post-GFD intervention (< 7 U/mL). Fecal microbial composition was measured using 16S ribosomal RNA gene amplicon sequencing of the V3-V4 region. Results At diagnosis, 13 of 22 patients with CD had typical gastrointestinal symptoms, the remaining patients having atypical or asymptomatic presentations. After a 1-year GFD, all symptomatic patients improved and 9 of 19 had normalized aTTG. Prior to GFD, no distinct microbial signature was observed between patients and controls (P = 0.39). Post-GFD, patients with CD had a unique microbial signature with reductions in known fiber-degrading bacteria, including Blautia, Dorea, Lactobacillus, and Prevotella compared with controls. Within the patients with CD, microbial composition was not associated with reported symptom presentation or aTTG normalization. Conclusions Pediatric patients with CD only had a unique microbial signature compared with healthy controls when placed on the GFD. These results suggest that pediatric patients with CD may not have a unique fecal microbial signature indicative of inherent dysbiosis, in contrast to that suggested for older patients. In children with CD, diet may play a role in shaping microbial composition more so than disease status.
Collapse
Affiliation(s)
- Dory Sample
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Janelle Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Seema King
- Department of Medicine, Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Hien Q. Huynh
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Levinus A. Dieleman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Justine Turner
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
69
|
Toribio-Mateas MA, Bester A, Klimenko N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods 2021; 10:2040. [PMID: 34574149 PMCID: PMC8465665 DOI: 10.3390/foods10092040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Eating less meat is increasingly seen as a healthier, more ethical option. This is leading to growing numbers of flexitarian consumers looking for plant-based meat alternatives (PBMAs) to replace at least some of the animal meat they consume. Popular PBMA products amongst flexitarians, including plant-based mince, burgers, sausages and meatballs, are often perceived as low-quality, ultra-processed foods. However, we argue that the mere industrial processing of ingredients of plant origin does not make a PBMA product ultra-processed by default. To test our hypothesis, we conducted a randomised controlled trial to assess the changes to the gut microbiota of a group of 20 participants who replaced several meat-containing meals per week with meals cooked with PBMA products and compared these changes to those experienced by a size-matched control. Stool samples were subjected to 16S rRNA sequencing. The resulting raw data was analysed in a compositionality-aware manner, using a range of innovative bioinformatic methods. Noteworthy changes included an increase in butyrate metabolising potential-chiefly in the 4-aminobutyrate/succinate and glutarate pathways-and in the joint abundance of butyrate-producing taxa in the intervention group compared to control. We also observed a decrease in the Tenericutes phylum in the intervention group and an increase in the control group. Based on our findings, we concluded that the occasional replacement of animal meat with PBMA products seen in flexitarian dietary patterns can promote positive changes in the gut microbiome of consumers.
Collapse
Affiliation(s)
- Miguel A. Toribio-Mateas
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK;
- School of Health and Education, Middlesex University, London SE1 0AA, UK
| | - Adri Bester
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK;
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Research and Development Department, Knomics LLC, Skolkovo Innovation Center, 121205 Moscow, Russia
| |
Collapse
|
70
|
Friesen C, Colombo JM, Deacy A, Schurman JV. An Update on the Assessment and Management of Pediatric Abdominal Pain. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2021; 12:373-393. [PMID: 34393542 PMCID: PMC8354769 DOI: 10.2147/phmt.s287719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Chronic abdominal pain is very common in children and adolescent and results in high personal and social costs. Most youth with chronic abdominal pain fulfill criteria for a functional abdominal pain disorder (FAPD) as defined by Rome criteria. These are complex conditions with a wide array of biological, psychological, and social factors contributing to the experience of pain. The purpose of the current review is to provide an overview of the pathophysiology of FAPDs and an up-to-date summary of the literature related to FAPDs in children and adolescents, with additional focus on several areas (eg, diet and probiotics) where patients and families frequently have questions or implement self-directed care. We also provide an approach to the assessment and treatment of pediatric FAPDs focusing on the robust literature regarding psychological interventions and much sparser literature regarding medication treatment.
Collapse
Affiliation(s)
- Craig Friesen
- Division of Gastroenterology, Hepatology, and Nutrition; Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jennifer M Colombo
- Division of Gastroenterology, Hepatology, and Nutrition; Children's Mercy Kansas City, Kansas City, MO, USA
| | - Amanda Deacy
- Division of Gastroenterology, Hepatology, and Nutrition; Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jennifer V Schurman
- Division of Gastroenterology, Hepatology, and Nutrition; Children's Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
71
|
Valenzuela-Gutiérrez R, Lago-Lestón A, Vargas-Albores F, Cicala F, Martínez-Porchas M. Exploring the garlic (Allium sativum) properties for fish aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1179-1198. [PMID: 34164770 DOI: 10.1007/s10695-021-00952-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry's rapid growth to meet commercial demand can trigger an outbreak of infectious diseases due to high-density farming. Antibiotic overuse and misuse in fish farming and its global health consequences have led to searching for more natural alternatives such as medicinal plants. In this sense, garlic (Allium sativum) has different bioactive compounds with biological properties for animal health. Among them are the ajoene, alliin, and allicin, which confer biological properties such as growth promotion, antimicrobial, antiviral, antioxidant, and antiparasitic. Ways to use garlic in aquaculture include oil, fresh mash, aqueous extract, and garlic powder. The powder presentation is the most used in aquaculture; it is generally applied by oral administration, adding to the feed, and the dose used ranges from 0.05 to 40 g/kg of feed. Garlic has been used in the aquaculture of different species such as rainbow trout (Oncorhynchus mykiss), spotted grouper (Epinephelus coioides), catfish (Clarias gariepinus), tilapia (Oreochromis niloticus), guppy fish (Poecilia reticulata), goldfish (Carassius auratus), and barramundi (Lates calcarifer). In addition to its properties, garlic's usage became popular, thanks to its low cost, easy incorporation into food, and little environmental impact. Therefore, its application can be an effective solution to combat diseases, improve organisms' health using natural supplies, and as an alternative to antibiotics. This review reports and discusses plant-derived products' beneficial properties, emphasizing garlic and its usages in fish aquaculture.
Collapse
Affiliation(s)
- Rocío Valenzuela-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Asunción Lago-Lestón
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Francesco Cicala
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México.
| |
Collapse
|
72
|
Abstract
The salient rise of chronic disease from the mid-twentieth century threatens to overwhelm public health systems in an increasing number of countries and is now considered an epidemic. Dry eye disease is an underappreciated disorder that bears all the hallmarks of chronic disease. Preventative health care seeks improved and sustainable patient engagement in the self-management of health to limit the progress and extent of chronic disease. Anthropogenic environments engendering lifestyles and behaviours that can be detrimental to human health, can be considered as direct or indirect threats to successful preventative health strategies. Chronic disease can be viewed as the result of physiological responses of the human body to the modern environment. The quest for an increasingly convenient, global, and disease-free lifestyle is ironically threatening to undo the gains in health and quality of life made over the last one hundred years. Considering dry eye disease as an anthropogenic chronic disease, contributions of diet (food and beverages consumed) and nutrition (extending to relationships with self, community, and nature) to development of dry eye disease are explored in this review. Evidence of environmental and behavioural instigators of chronic disease with an emphasis on production, disbursement, and preservation of food, is presented. Furthermore, evidence of traditional food practices that offer resistance to the development of chronic systemic inflammatory disorders are reviewed as an exemplar of potential strategies that can be put into practice by individuals and communities to reinstate a balanced life, community and planet.
Collapse
Affiliation(s)
- Azadeh Tavakoli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Judith Louise Flanagan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
73
|
Bouferraa Y, Chedid A, Amhaz G, El Lakkiss A, Mukherji D, Temraz S, Shamseddine A. The Role of Gut Microbiota in Overcoming Resistance to Checkpoint Inhibitors in Cancer Patients: Mechanisms and Challenges. Int J Mol Sci 2021; 22:ijms22158036. [PMID: 34360802 PMCID: PMC8347208 DOI: 10.3390/ijms22158036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The introduction of immune checkpoint inhibitors has constituted a major revolution in the treatment of patients with cancer. In contrast with the traditional cytotoxic therapies that directly kill tumor cells, this treatment modality enhances the ability of the host’s immune system to recognize and target cancerous cells. While immune checkpoint inhibitors have been effective across multiple cancer types, overcoming resistance remains a key area of ongoing research. The gut microbiota and its role in cancer immunosurveillance have recently become a major field of study. Gut microbiota has been shown to have direct and systemic effects on cancer pathogenesis and hosts anti-tumor immune response. Many studies have also shown that the host microbiota profile plays an essential role in the response to immunotherapy, especially immune checkpoint inhibitors. As such, modulating this microbial environment has offered a potential path to overcome the resistance to immune checkpoint inhibitors. In this review, we will talk about the role of microbiota in cancer pathogenesis and immune-system activity. We will also discuss preclinical and clinical studies that have increased our understanding about the roles and the mechanisms through which microbiota influences the response to treatment with immune checkpoint inhibitors.
Collapse
|
74
|
The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients 2021; 13:nu13072125. [PMID: 34206152 PMCID: PMC8308385 DOI: 10.3390/nu13072125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal symptoms in Crohn’s disease (CD) are common and affect the quality of life of patients; consequently, a growing number of studies have been published on diet interventions in this group. The role of the gut microbiota in the pathogenesis and the progression of inflammatory bowel diseases (IBD), including CD, has been widely discussed. Mainly, a decreased abundance of Firmicutes, species of the Bifidobacterium genus, and the Faecalibacterium prausnitzii species as well as a reduced general diversity have been described. In this review article, we summarize available data on the influence of reduction diets on the microbiome of patients with CD. One of the most frequently used elimination diets in CD patients is the low-FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) diet. Although many papers show it may reduce abdominal pain, diarrhea, or bloating, it also reduces the intake of prebiotic substances, which can negatively affect the gut microbiota composition, decreasing the abundance of Bifidobacterium species and Faecalibacterium prausnitzii. Other elimination diets used by IBD patients, such as lactose-free or gluten-free diets, have also been shown to disturb the microbial diversity. On the other hand, CDED (Crohn’s disease exclusion diet) with partial enteral nutrition not only induces the remission of CD but also has a positive influence on the microbiota. The impact of diet interventions on the microbiota and, potentially, on the future course of the disease should be considered when nutritional guidelines for IBD patients are designed. Dietetic recommendations should be based not only on the regulation of the symptoms but also on the long-term development of the disease.
Collapse
|
75
|
Ma X, Zhang Y, Xu T, Qian M, Yang Z, Zhan X, Han X. Early-Life Intervention Using Exogenous Fecal Microbiota Alleviates Gut Injury and Reduce Inflammation Caused by Weaning Stress in Piglets. Front Microbiol 2021; 12:671683. [PMID: 34177852 PMCID: PMC8222923 DOI: 10.3389/fmicb.2021.671683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could shape the structure of intestinal microbiota in animals. This study was conducted to explore the changes that happen in the structure and function of microbiota caused by weaning stress, and whether early-life FMT could alleviate weaning stress through modifying intestinal microbiota in weaned piglets. Diarrheal (D) and healthy (H) weaned piglets were observed, and in the same farm, a total of nine litters newborn piglets were randomly allocated to three groups: sucking normally (S), weaned at 21 d (W), and early-life FMT + weaned at 21 d (FW). The results demonstrated that differences of fecal microbiota existed in group D and H. Early-life FMT significantly decreased diarrhea incidence of weaned piglets. Intestinal morphology and integrity were improved in the FW group. Both ZO-1 and occludin (tight junction proteins) of jejunum were greatly enhanced, while the zonulin expression was significantly down-regulated through early-life FMT. The expression of IL-6 and TNF-α (intestinal mucosal inflammatory cytokines) were down-regulated, while IL-10 (anti-inflammatory cytokines) was up-regulated by early-life FMT. In addition, early-life FMT increased the variety of the intestinal microbial population and the relative amounts of some beneficial bacteria such as Spirochaetes, Akkermansia, and Alistipes. Functional alteration of the intestinal microbiota revealed that lipid biosynthesis and aminoacyl-tRNA biosynthesis were enriched in the FW group. These findings suggested that alteration of the microbiota network caused by weaning stress induced diarrhea, and early-life FMT alleviated weaning stress in piglets, which was characterized by decreased diarrhea incidence, improved intestinal morphology, reduced intestinal inflammation, and modified intestinal bacterial composition and function.
Collapse
Affiliation(s)
- Xin Ma
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Tingting Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengqi Qian
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiren Yang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| | - Xiuan Zhan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| |
Collapse
|
76
|
Martinez JE, Kahana DD, Ghuman S, Wilson HP, Wilson J, Kim SCJ, Lagishetty V, Jacobs JP, Sinha-Hikim AP, Friedman TC. Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Front Endocrinol (Lausanne) 2021; 12:667066. [PMID: 34168615 PMCID: PMC8218903 DOI: 10.3389/fendo.2021.667066] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The study of the intestinal or gut microbiome is a newer field that is rapidly gaining attention. Bidirectional communication between gut microbes and the host can impact numerous biological systems regulating immunity and metabolism to either promote or negatively impact the host's health. Habitual routines, dietary choices, socioeconomic status, education, host genetics, medical care and environmental factors can all contribute to the composition of an individual's microbiome. A key environmental factor that may cause negative outcomes is the consumption of nicotine products. The effects of nicotine on the host can be exacerbated by poor dietary choices and together can impact the composition of the gut microbiota to promote the development of metabolic disease including non-alcoholic fatty liver disease. This review explores the contribution of nicotine, poor dietary choices and other unhealthy lifestyle factors to gut dysbiosis.
Collapse
Affiliation(s)
- Jason E. Martinez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Doron D. Kahana
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Simran Ghuman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Haley P. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Julian Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Samuel C. J. Kim
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, UCLA Microbiome Center, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, UCLA Microbiome Center, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
77
|
Yang L, Huang W, Yang C, Ma T, Hou Q, Sun Z, Zhang H. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
78
|
Vander Wyst KB, Ortega-Santos CP, Toffoli SN, Lahti CE, Whisner CM. Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review. Obes Rev 2021; 22:e13175. [PMID: 33590719 PMCID: PMC10762698 DOI: 10.1111/obr.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Early life gut microbiota are affected by several factors that make identification of microbial-adiposity relationships challenging. This review evaluates studies that have investigated the gut microbiota composition associated with adiposity in infants, children, and adolescents and provides evidence-based nutrition recommendations that address microbiota-adiposity links. Electronic databases were systematically searched through January 2020. Eligible studies were published in English and analyzed gut microbiota and adiposity among individuals aged birth to 18 years. Abstracts and full-text articles were reviewed by three independent reviewers. Of 45 full-text articles reviewed, 33 were included. No difference in abundance was found for Bacteroidetes (n = 7/15 articles), Firmicutes (n = 10/17), Actinobacteria (n = 8/12), Proteobacteria (n = 8/12), Tenericutes (n = 4/5), and Verrucomicrobia (n = 4/6) with adiposity. Lower abundance of Christensenellaceae (n = 3/5) and Rikenellaceae (n = 6/8) but higher abundance of F. prausnitzii (n = 3/5) and Prevotella (n = 5/7) were associated with adiposity. A lack of consensus exists for gut microbial composition associations with adiposity. A healthy gut microbiota is associated with a diet rich in fruits and vegetables with moderate consumption of animal fat and protein. Future research should use more robust sequencing technologies to identify all bacterial taxa associated with adiposity and evaluate how diet effects these adiposity-associated microbes.
Collapse
Affiliation(s)
- Kiley B Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, Arizona, USA
| | | | - Samantha N Toffoli
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Caroline E Lahti
- College of Liberal Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
79
|
Garmaeva S, Gulyaeva A, Sinha T, Shkoporov AN, Clooney AG, Stockdale SR, Spreckels JE, Sutton TDS, Draper LA, Dutilh BE, Wijmenga C, Kurilshikov A, Fu J, Hill C, Zhernakova A. Stability of the human gut virome and effect of gluten-free diet. Cell Rep 2021; 35:109132. [PMID: 34010651 DOI: 10.1016/j.celrep.2021.109132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.
Collapse
Affiliation(s)
- Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Andrey N Shkoporov
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Johanne E Spreckels
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Thomas D S Sutton
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands.
| |
Collapse
|
80
|
Altomare A, Di Rosa C, Imperia E, Emerenziani S, Cicala M, Guarino MPL. Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2021; 13:1506. [PMID: 33946961 PMCID: PMC8146452 DOI: 10.3390/nu13051506] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., traditional nutritional advice, low-FODMAP diet, gluten-free diet, etc.) on IBS-D symptoms and on intestinal microbiota variations in both IBS-D patients and healthy subjects. To date, an ideal nutritional protocol does not exist for IBS-D patients but it seems crucial to consider the effect of the different nutritional approaches on the intestinal microbiota composition to better define an efficient strategy to manage this functional disorder.
Collapse
Affiliation(s)
- Annamaria Altomare
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Elena Imperia
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Sara Emerenziani
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Cicala
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| |
Collapse
|
81
|
Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A Triple Threat? The Role of Diet, Nutrition, and the Microbiota in T1D Pathogenesis. Front Nutr 2021; 8:600756. [PMID: 33869260 PMCID: PMC8046917 DOI: 10.3389/fnut.2021.600756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years the role of the intestinal microbiota in health and disease has come to the forefront of medical research. Alterations in the intestinal microbiota and several of its features have been linked to numerous diseases, including type 1 diabetes (T1D). To date, studies in animal models of T1D, as well as studies in human subjects, have linked several intestinal microbiota alterations with T1D pathogenesis. Features that are most often linked with T1D pathogenesis include decreased microbial diversity, the relative abundance of specific strains of individual microbes, and altered metabolite production. Alterations in these features as well as others have provided insight into T1D pathogenesis and shed light on the potential mechanism by which the microbiota plays a role in T1D pathogenesis, yet the underlying factors leading to these alterations remains unknown. One potential mechanism for alteration of the microbiota is through diet and nutrition. Previous studies have shown associations of diet with islet autoimmunity, but a direct contributing factor has yet to be identified. Diet, through introduction of antigens and alteration of the composition and function of the microbiota, may elicit the immune system to produce autoreactive responses that result in the destruction of the beta cells. Here, we review the evidence associating diet induced changes in the intestinal microbiota and their contribution to T1D pathogenesis. We further provide a roadmap for determining the effect of diet and other modifiable factors on the entire microbiota ecosystem, including its impact on both immune and beta cell function, as it relates to T1D. A greater understanding of the complex interactions between the intestinal microbiota and several interacting systems in the body (immune, intestinal integrity and function, metabolism, beta cell function, etc.) may provide scientifically rational approaches to prevent development of T1D and other childhood immune and allergic diseases and biomarkers to evaluate the efficacy of interventions.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
82
|
Effect of xylanase and xylo-oligosaccharide supplementation on growth performance and faecal bacterial community composition in growing pigs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
83
|
Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021; 13:nu13041067. [PMID: 33806061 PMCID: PMC8064481 DOI: 10.3390/nu13041067] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays a pivotal role in the onset and course of inflammatory bowel disease (IBD). Patients are keen to know what to eat to reduce symptoms and flares, but dietary guidelines are lacking. To advice patients, an overview of the current evidence on food (group) level is needed. This narrative review studies the effects of food (groups) on the onset and course of IBD and if not available the effects in healthy subjects or animal and in vitro IBD models. Based on this evidence the Groningen anti-inflammatory diet (GrAID) was designed and compared on food (group) level to other existing IBD diets. Although on several foods conflicting results were found, this review provides patients a good overview. Based on this evidence, the GrAID consists of lean meat, eggs, fish, plain dairy (such as milk, yoghurt, kefir and hard cheeses), fruit, vegetables, legumes, wheat, coffee, tea and honey. Red meat, other dairy products and sugar should be limited. Canned and processed foods, alcohol and sweetened beverages should be avoided. This comprehensive review focuses on anti-inflammatory properties of foods providing IBD patients with the best evidence on which foods they should eat or avoid to reduce flares. This was used to design the GrAID.
Collapse
|
84
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
85
|
Supplementation of tuna hydrolysate and insect larvae improves fishmeal replacement efficacy of poultry by-product in Lates calcarifer (Bloch, 1790) juveniles. Sci Rep 2021; 11:4997. [PMID: 33654188 PMCID: PMC7925588 DOI: 10.1038/s41598-021-84660-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
The effects of feeding different levels of poultry by-product meal (PBM) replacing fishmeal (FM) protein, supplemented with tuna hydrolysate (TH) and Hermetia illucens (HI) larvae, on the growth, fillet quality, histological traits, immune status, oxidative biomarker levels and gut microbiota of juvenile barramundi, Lates calcarifer were investigated for six weeks. Barramundi were fed four isonitrogenous and isolipidic diets in which a FM based diet was used as the Control diet (Diet1) and compared with other non-FM diets containing 80%, 85% and 90% PBM along with the concurrent supplementation of 5% and/or 10% TH and HI larvae meal. These treatment diets were designated as 80PBM10TH+10HI (Diet2), 85PBM5TH+10HI (Diet3) and 90PBM5TH+5HI (Diet4). The growth and condition factor of fish fed 80PBM10TH+10HI and 85PBM5TH+10HI were significantly higher than the Control. Total saturated, monounsaturated and polyunsaturated fatty acid retention in the fish muscle increased in fish fed PBM-based diets, supplemented with TH and HI larvae meal, with no adverse effect on post-harvest characteristics such as texture and colour of fish fillets. Improvement in serum total bilirubin and total protein content was found in all fish fed TH and HI larvae supplemented PBM. Similarly, immune response showed a significant increase in fish fed non-FM test diets than the Control. In the distal intestine, supplementation of any quantities of TH and HI larvae to PBM led to an increase in the microvilli density and neutral mucins while the number of goblet cells in the skin were unchanged. Liver, kidney, and spleen histology demonstrated a normal structure with no obvious changes in response to all test diets. Bacterial diversity increased in fish fed Diets 2 and 3 with a high abundance of Proteobacteria in Diets 1 and 4 and Firmicutes in Diets 2 and 3. The fish on test diets showed a lower abundance of genus Vibrio. Fish fed TH and HI larvae supplemented PBM diets showed lower infection rate to V. harveyi than the Control. Collectively, concurrent supplementation of TH and HI larvae could improve the quality of PBM diets with positive effects on growth, fillet quality, intestinal health, immunity, and disease resistance.
Collapse
|
86
|
Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, de Bortoli N, Marchi S, Bellini M. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients 2020; 12:E3785. [PMID: 33321805 PMCID: PMC7762999 DOI: 10.3390/nu12123785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an "umbrella term" including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory.
Collapse
Affiliation(s)
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.M.); (S.M.); (F.C.); (A.R.); (L.C.); (N.d.B.); (S.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Volkmann ER, Hoffmann-Vold AM, Chang YL, Lagishetty V, Clements PJ, Midtvedt Ø, Molberg Ø, Braun J, Jacobs JP. Longitudinal Characterisation of the Gastrointestinal Tract Microbiome in Systemic Sclerosis. EUROPEAN MEDICAL JOURNAL (CHELMSFORD, ENGLAND) 2020; 7:110-118. [PMID: 36711108 PMCID: PMC9881192 DOI: 10.33590/emj/20-00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives To evaluate changes in microbial composition and the evolution of gastrointestinal tract (GIT) symptoms in systemic sclerosis (SSc). Methods Adult SSc patients provided stool specimens every 3 months over the course of 1 year. Participants completed the University of California, Los Angeles (UCLA) GIT 2.0 questionnaire to assess GIT symptom severity at each stool collection. The microbiota from these samples were determined by Illumina HiSeq 2500 16S ribosomal RNA sequencing (Illumina, Inc., San Diego, California, USA). Mixed effect models evaluated changes in GIT symptoms and microbial composition over time. Results Among 19 patients with SSc (female; 89.5%; median age: 51.3 years), the median disease duration was 7 years and the baseline total GIT 2.0 score was 0.7 (standard deviation: 0.6). The majority of participants (63%) provided at least four stool samples over the course of the 12-month study. Patients with longer disease durations had increased GIT symptoms over the course of the study. There was no difference in the course of GIT symptoms over time between patients with limited versus diffuse cutaneous disease. The relative abundances of specific genera did not change over time within individual subjects. After controlling for age, sex, ethnicity, disease duration, and SSc subtype (i.e., limited versus diffuse), low abundance of Bacteroides was associated with increased GIT symptoms over time. Conclusion This study is the first to have longitudinally characterised the lower GIT microbiome in SSc patients and demonstrated relative stability of genera abundance over the course of 1 year. The findings provide additional evidence that specific genera are associated with SSc-GIT symptoms and warrant further evaluation in larger SSc studies.
Collapse
Affiliation(s)
- Elizabeth R. Volkmann
- Department of Medicine, University of California, David
Geffen School of Medicine, Los Angeles, California, USA,Correspondence to
| | | | - Yu-Ling Chang
- Department of Pathology and Laboratory Medicine,
University of California, David Geffen School of Medicine, Los Angeles, California,
USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive
Diseases, Department of Medicine, University of California, David Geffen School of
Medicine, Los Angeles, California, USA
| | - Philip J. Clements
- University of California, David Geffen School of Medicine,
Los Angeles, California, USA
| | - Øyvind Midtvedt
- Department of Rheumatology, Oslo University Hospital,
Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine,
University of Oslo, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital,
Oslo, Norway
| | - Jonathan Braun
- Department of Medicine, Cedars Sinai Medical Center, Los
Angeles, California, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive
Diseases, Department of Medicine, University of California, David Geffen School of
Medicine, Los Angeles, California, USA,Division of Gastroenterology, Hepatology, and Parenteral
Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California,
USA
| |
Collapse
|
88
|
Kim EJ, Seo SH, Park SE, Lim YW, Roh SW, Son HS. Initial storage of kimchi at room temperature alters its microbial and metabolite profiles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
89
|
Di Liberto D, Carlisi D, D’Anneo A, Emanuele S, Giuliano M, De Blasio A, Calvaruso G, Lauricella M. Gluten Free Diet for the Management of Non Celiac Diseases: The Two Sides of the Coin. Healthcare (Basel) 2020; 8:healthcare8040400. [PMID: 33066519 PMCID: PMC7712796 DOI: 10.3390/healthcare8040400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
A lifelong adherence to a gluten-free (GF) diet is currently the only treatment for Celiac disease (CD), an autoimmune disorder that arises after gluten ingestion in individuals who are genetically predisposed. The gluten intake exerts toxic effects through several pathways involving gut barrier integrity, intestinal microbiota composition and immune system stimulation. However, despite the great benefit of GF diet for CD patients, its use has been debated. Indeed, individuals who adopt this diet regime may be at risk of nutrient deficiencies. Emerging evidence supports a beneficial effect of a GF diet also for other pathological conditions, including gluten-related disorders (GRD) often associated to CD, such as Non celiac gluten sensitivity (NCGS) and Dermatitis Herpetiforme (DH) as well as Irritable bowel syndrome (IBS) and Diabetes. This suggests a pathogenic role of gluten in these conditions. Despite the growing popularity of GF diet among consumers, to date, there are limited evidences supporting its use for the management of non-celiac diseases. Therefore, in this review, we discuss whether the GF diet could really improve the general quality of life of patients with GRD and non-GRD conditions, keeping in mind its sensorial limitations and nutritional inadequacies. In addition, we discuss the current motivations, leading to the use of a GF diet, despite the inferior quality of GF products respect to those containing gluten.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), CLADIBIOR, University of Palermo, 90127 Palermo, Italy
- Correspondence: (D.D.L.); (A.D.); Tel.: +39-09123865854 (D.D.L.); +39-09123890650 (A.D.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.); (M.L.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (M.G.); (A.D.B.); (G.C.)
- Correspondence: (D.D.L.); (A.D.); Tel.: +39-09123865854 (D.D.L.); +39-09123890650 (A.D.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.); (M.L.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (M.G.); (A.D.B.); (G.C.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (M.G.); (A.D.B.); (G.C.)
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (M.G.); (A.D.B.); (G.C.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.); (M.L.)
| |
Collapse
|
90
|
Wagner BA, Zork N, Blackett JW, Green PHR, Lebwohl B. Characteristics and Maternal-Fetal Outcomes of Pregnant Women Without Celiac Disease Who Avoid Gluten. Dig Dis Sci 2020; 65:2970-2978. [PMID: 32239378 DOI: 10.1007/s10620-020-06232-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gluten avoidance among patients without celiac disease has become increasingly popular, especially among young and female demographics; however, no research has explored gluten avoidance during pregnancy, when nutrition is particularly important. AIMS To determine whether avoiding gluten in pregnancy is associated with any medical, obstetric, or neonatal characteristics. METHODS In this single-center retrospective cohort study, we identified women with singleton pregnancies who avoid gluten based on antenatal intake questionnaire responses and inpatient dietary orders, excluding those with celiac disease. Certain demographic, medical, obstetric, and neonatal characteristics were compared to matched controls who do not avoid gluten. RESULTS From July 1, 2011 to July 1, 2019, 138 pregnant women who avoid gluten were admitted for delivery of singleton gestations. Compared to controls, gluten-avoidant women had fewer prior pregnancies (p = 0.005), deliveries (p < 0.0005), and living children (p < 0.0005), higher rates of hypothyroidism (OR = 3.22; p = 0.001) and irritable bowel syndrome (OR = 6.00; p = 0.019), higher second trimester hemoglobin (p = 0.018), and lower body mass index at delivery (p = 0.045). Groups did not differ in any obstetric or fetal characteristics. CONCLUSIONS Gluten avoidance in pregnancy is common and, in women without celiac disease, is associated with higher rates of hypothyroidism and irritable bowel syndrome, fewer pregnancies, term births, and living children, and lower peripartum BMI, but is not associated with any obstetric or neonatal comorbidities. Avoiding gluten does not appear to adversely affect maternal or fetal health, but reasons for gluten avoidance, as well as long-term maternal and pediatric outcomes after gluten avoidance in pregnancy, warrant further study.
Collapse
Affiliation(s)
- Benjamin A Wagner
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Noelia Zork
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - John W Blackett
- Division of Digestive and Liver Diseases, Department of Medicine, Celiac Disease Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Peter H R Green
- Division of Digestive and Liver Diseases, Department of Medicine, Celiac Disease Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Benjamin Lebwohl
- Division of Digestive and Liver Diseases, Department of Medicine, Celiac Disease Center, Columbia University Vagelos College of Physicians and Surgeons, New York, USA. .,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.
| |
Collapse
|
91
|
Casein glycomacropeptide is well tolerated in healthy adults and changes neither high-sensitive C-reactive protein, gut microbiota nor faecal butyrate: a restricted randomised trial. Br J Nutr 2020; 125:1374-1385. [PMID: 32967742 DOI: 10.1017/s0007114520003736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Casein glycomacropeptide (CGMP) is a bioactive milk-derived peptide with potential anti-inflammatory effects. Animal studies suggest that CGMP may work by altering gut microbiota composition and enhancing butyrate production. Its effects on intestinal homoeostasis, microbiota and metabolites in humans are unknown. The aim of the present study was to assess both the intestinal and systemic immunomodulatory effects of orally ingested CGMP. We hypothesised that daily oral CGMP intake would reduce high-sensitive C-reactive protein (hsCRP) in healthy adults. In a single-centre limited but randomised, double-blinded, reference-controlled study, we compared the effects of a 4-week intervention of either 25 g of oral powder-based chocolate-flavoured CGMP or a reference drink. We included twenty-four healthy adults who all completed the study. CGMP had no systemic or intestinal immunomodulatory effects compared with a reference drink, with regard to either hsCRP or faecal calprotectin level, faecal microbiota composition or faecal SCFA content. CGMP ingestion did not affect satiety or body weight, and it caused no severe adverse events. The palatability of CGMP was acceptable, and adherence was high. CGMP did not induce or change gastrointestinal symptoms. In conclusion, we found no immunomodulatory effects of CGMP in healthy adults. In a minor group of healthy adults, oral ingestion of 25 g of CGMP during 4 weeks was safe, well tolerated, had acceptable palatability and was without any effects on body weight.
Collapse
|
92
|
A Gluten Free Diet in the Management of Epilepsy in People with Coeliac Disease or Gluten Sensitivity. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this review was to assess the effects of a gluten free diet (GFD) in the management of epilepsy in people with coeliac disease (CD) or gluten sensitivity (GS). A systematic approach was used to undertake a literature review. Five electronic databases (PubMed; Scopus; Google Scholar; Cochrane Epilepsy Group specialised register; Cochrane Register of Controlled Trails (CENTRAL) via the Cochrane Register of Online Trials) were searched using predetermined relevant search terms. In total, 668 articles were identified. Duplicates were removed and predefined inclusion and exclusion criteria were applied, and a PRISMA flow chart was produced. Data was extracted using Covidence software. Twelve studies on Epilepsy and CD involving a total of 70 participants were selected for analysis; narrative synthesis was used owing to the small sample sizes in the selected studies. None of the 12 studies meeting inclusion criteria investigated gluten sensitivity and epilepsy. All the included studies support a link between epilepsy and CD. GFD was effective in 44 out of 70 participants across the studies in terms of a reduction of seizures, reduction of antiepileptic drugs (AEDs) or normalisation of EEG pattern. A total of 44 participants showed a reduction in seizures (across eight studies) and complete cessation of seizures was reported in 22 participants. In general, the earlier the GFD is implemented after the onset of seizures, the better the likelihood of the GFD being successful in supporting control of seizures. Mechanisms linking gluten with epilepsy are not fully understood; possible hypotheses include gluten mediated toxicity, immune-induced cortical damage and malabsorption. Evidence suggests the effectiveness of a GFD in supporting the management of epilepsy in patients with CD, although the quality of evidence is low. There appears to be a growing number of neurologists who are prepared to advocate the use of a GFD. A multidisciplinary approaches and further research are recommended. It could be argued that when balancing potential treatments such as AEDs or surgery, a GFD has a low likelihood of harm.
Collapse
|
93
|
|
94
|
Nylund L, Hakkola S, Lahti L, Salminen S, Kalliomäki M, Yang B, Linderborg KM. Diet, Perceived Intestinal Well-Being and Compositions of Fecal Microbiota and Short Chain Fatty Acids in Oat-Using Subjects with Celiac Disease or Gluten Sensitivity. Nutrients 2020; 12:nu12092570. [PMID: 32854216 PMCID: PMC7551214 DOI: 10.3390/nu12092570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
A gluten-free diet may result in high fat and low fiber intake and thus lead to unbalanced microbiota. This study characterized fecal microbiota profiles by 16S MiSeq sequencing among oat-using healthy adult subjects (n = 14) or adult subjects with celiac disease (CeD) (n = 19) or non-celiac gluten sensitivity (NCGS) (n = 10). Selected microbial metabolites, self-reported 4d food diaries and perceived gut symptoms were compared. Subjects with NCGS experienced the highest amount of gut symptoms and received more energy from fat and less from carbohydrates than healthy and CeD subjects. Oat consumption resulted in reaching the lower limit of the recommended fiber intake. Frequent consumption of gluten-free pure oats did not result in microbiota dysbiosis in subjects with CeD or NCGS. Thus, the high number of gut symptoms in NCGS subjects was not linked to the microbiota. The proportion of fecal acetate was higher in healthy when compared to NCGS subjects, which may be linked to a higher abundance of Bifidobacterium in the control group compared to NCGS and CeD subjects. Propionate, butyrate and ammonia production and β-glucuronidase activity were comparable among the study groups. The results suggest that pure oats have great potential as the basis of a gluten-free diet and warrant further studies in minor microbiota disorders.
Collapse
Affiliation(s)
- Lotta Nylund
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Salla Hakkola
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Leo Lahti
- Department of Future Technologies, University of Turku, 20520 Turku, Finland;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20520 Turku, Finland;
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, 20500 Turku, Finland;
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, 20521 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
| | - Kaisa M. Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20520 Turku, Finland; (L.N.); (S.H.); (B.Y.)
- Correspondence:
| |
Collapse
|
95
|
Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut 2020; 69:1510-1519. [PMID: 32409589 PMCID: PMC7398478 DOI: 10.1136/gutjnl-2019-320204] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
The human gut microbiome is a complex ecosystem that can mediate the interaction of the human host with their environment. The interaction between gut microbes and commonly used non-antibiotic drugs is complex and bidirectional: gut microbiome composition can be influenced by drugs, but, vice versa, the gut microbiome can also influence an individual's response to a drug by enzymatically transforming the drug's structure and altering its bioavailability, bioactivity or toxicity (pharmacomicrobiomics). The gut microbiome can also indirectly impact an individual's response to immunotherapy in cancer treatment. In this review we discuss the bidirectional interactions between microbes and drugs, describe the changes in gut microbiota induced by commonly used non-antibiotic drugs, and their potential clinical consequences and summarise how the microbiome impacts drug effectiveness and its role in immunotherapy. Understanding how the microbiome metabolises drugs and reduces treatment efficacy will unlock the possibility of modulating the gut microbiome to improve treatment.
Collapse
Affiliation(s)
- Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands,Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
96
|
Bajinka O, Tan Y, Abdelhalim KA, Özdemir G, Qiu X. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 2020; 10:130. [PMID: 32710186 PMCID: PMC7381537 DOI: 10.1186/s13568-020-01066-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
From the emerging studies, the more diverse the microbial population in the gut, the healthier the gut. Health benefits are associated with the functional characteristics of these diverse microbial genes. Extrinsic factors causing dysbiosis are extensively studied however, linking the varying degree of consequences to the respective factors and therapeutic possibilities are not explored at length. This review aims to examine from previous studies and put forward the types of dysbiosis, the immediate consequences and the scientific approaches to restore disrupted microbiota. Dietary supplements are found to be one of the factors contributing profoundly to the alteration of gut microbiota. While diet rich in fibre and fermented food established a diverse microbiome and produce vital metabolites, high fat, animal proteins and high caloric carbohydrate are as well relative to dysbiosis among infants, adult or diseases individuals. The intermittent fasting, feeding methods, the pH and water quality are among the factors associated with dysbiosis. Prebiotics and Probiotics maintain and restore gut homeostasis. Antibiotic-induced dysbiosis are relatively on the spectrum of activity, the pharmacokinetics properties, the dose taken during the treatment route of administration and the duration of drug therapy. The higher the altitude, the lesser the diversity. Extreme temperatures as well are related to reduced microbial activity and metabolism. Delivery through caserium-section deprived the newborn from restoring valuable vaginal bacterial species and the baby will instead assumed intestinal microbiota-like. While exercise and oxidative stress contribute even though moderately, fecal microbial transfer (FMT) also influence gut microbiota.
Collapse
|
97
|
Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2020; 12:nu12061832. [PMID: 32575561 PMCID: PMC7353361 DOI: 10.3390/nu12061832] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) and non-celiac gluten/wheat sensitivity (NCG/WS) are the two most frequent conditions belonging to gluten-related disorders (GRDs). Both these diseases are triggered and worsened by gluten proteins ingestion, although other components, such as amylase/trypsin inhibitors (ATI) and fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), seem to be involved in the NCG/WS onset. Therefore, the only effective treatment to date is the long-life adherence to a strictly gluten-free diet. Recently, increasing attention has been paid to the intestinal barrier, a dynamic system comprising various components, which regulate the delicate crosstalk between metabolic, motor, neuroendocrine and immunological functions. Among the elements characterizing the intestinal barrier, the microbiota plays a key role, modulating the gut integrity maintenance, the immune response and the inflammation process, linked to the CD and NCG/WS outbreak. This narrative review addresses the most recent findings on the gut microbiota modulation induced by the gluten-free diet (GFD) in healthy, CD and NCG/WS patients.
Collapse
|
98
|
Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Sci Rep 2020; 10:9624. [PMID: 32541680 PMCID: PMC7295773 DOI: 10.1038/s41598-020-66598-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an ever-increasing number of overweight and obese individuals. The precise links between T2DM and gut microbiome composition remain elusive in these populations. Here, we performed 16 S rRNA and ITS2- gene based microbial profiling of 50 stool samples from Emirati adults with or without T2DM. The four major enterotypes initially described in westernized cohorts were retrieved in this Emirati population. T2DM and non-T2DM healthy controls had different microbiome compositions, with an enrichment in Prevotella enterotype in non-T2DM controls whereas T2DM individuals had a higher proportion of the dysbiotic Bacteroides 2 enterotype. No significant differences in microbial diversity were observed in T2DM individuals after controlling for cofounding factors, contrasting with reports from westernized cohorts. Interestingly, fungal diversity was significantly decreased in Bacteroides 2 enterotype. Functional profiling from 16 S rRNA gene data showed marked differences between T2DM and non-T2DM controls, with an enrichment in amino acid degradation and LPS-related modules in T2DM individuals, whereas non-T2DM controls had increased abundance of carbohydrate degradation modules in concordance with enterotype composition. These differences provide an insight into gut microbiome composition in Emirati population and its potential role in the development of diabetes mellitus.
Collapse
|
99
|
Haudum C, Lindheim L, Ascani A, Trummer C, Horvath A, Münzker J, Obermayer-Pietsch B. Impact of Short-Term Isoflavone Intervention in Polycystic Ovary Syndrome (PCOS) Patients on Microbiota Composition and Metagenomics. Nutrients 2020; 12:E1622. [PMID: 32492805 PMCID: PMC7656308 DOI: 10.3390/nu12061622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide and is associated with disorders of glucose metabolism. Hormone and metabolic signaling may be influenced by phytoestrogens, such as isoflavones. Their endocrine effects may modify symptom penetrance in PCOS. Equol is one of the most active isoflavone metabolites, produced by intestinal bacteria, and acts as a selective estrogen receptor modulator. METHOD In this interventional study of clinical and biochemical characterization, urine isoflavone levels were measured in PCOS and control women before and three days after a defined isoflavone intervention via soy milk. In this interventional study, bacterial equol production was evaluated using the log(equol: daidzein ratio) and microbiome, metabolic, and predicted metagenome analyses were performed. RESULTS After isoflavone intervention, predicted stool metagenomic pathways, microbial alpha diversity, and glucose homeostasis in PCOS improved resembling the profile of the control group at baseline. In the whole cohort, larger equol production was associated with lower androgen as well as fertility markers. CONCLUSION The dynamics in our metabolic, microbiome, and predicted metagenomic profiles underline the importance of external phytohormones on PCOS characteristics and a potential therapeutic approach or prebiotic in the future.
Collapse
Affiliation(s)
- Christoph Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Lisa Lindheim
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angelo Ascani
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, 8010 Graz, Austria;
| | - Julia Münzker
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
100
|
Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf 2020; 19:1268-1298. [PMID: 33337077 DOI: 10.1111/1541-4337.12563] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long-term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long-term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short-term consumption of solely animal- or plant-based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food-derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber-rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yit Tao Loo
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Howell
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Miin Chan
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ken Ng
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|