51
|
Matt SM. Targeting neurotransmitter-mediated inflammatory mechanisms of psychiatric drugs to mitigate the double burden of multimorbidity and polypharmacy. Brain Behav Immun Health 2021; 18:100353. [PMID: 34647105 PMCID: PMC8495104 DOI: 10.1016/j.bbih.2021.100353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of multimorbidities and polypharmacy is a major concern, particularly in the growing aging population. While polypharmacy can be beneficial, in many cases it can be more harmful than no treatment, especially in individuals suffering from psychiatric disorders, who have elevated risks of multimorbidity and polypharmacy. Age-related chronic inflammation and immunopathologies might contribute to these increased risks in this population, but the optimal clinical management of drug-drug interactions and the neuro-immune mechanisms that are involved warrants further investigation. Given that neurotransmitter systems, which psychiatric medications predominantly act on, can influence the development of inflammation and the regulation of immune function, it is important to better understand these interactions to develop more successful strategies to manage these comorbidities and complicated polypharmacy. I propose that expanding upon research in translationally relevant human in vitro models, in tandem with other preclinical models, is critical to defining the neurotransmitter-mediated mechanisms by which psychiatric drugs alter immune function. This will define more precisely the interactions of psychiatric drugs and other immunomodulatory drugs, used in combination, enabling identification of novel targets to be translated into more efficacious diagnostic, preventive, and therapeutic interventions. This interdisciplinary approach will aid in better precision polypharmacy for combating adverse events associated with multimorbidity and polypharmacy in the future.
Collapse
Affiliation(s)
- Stephanie M. Matt
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, PA, USA
| |
Collapse
|
52
|
Kwon S, Cheon SY. Influence of the inflammasome complex on psychiatric disorders: clinical and preclinical studies. Expert Opin Ther Targets 2021; 25:897-907. [PMID: 34755582 DOI: 10.1080/14728222.2021.2005027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The innate immune complex, an inflammasome complex, has a role in the etiology of psychiatric disorders. Preclinical studies have demonstrated that the inflammasome activation leads to psychiatric disorders and clinical studies have proved that specific psychiatric illnesses are associated with aberrant levels of inflammatory cytokines and inflammasome. The inflammasome complex could be a major factor in the progression and pathology of psychiatric disorders. AREA COVERED We discuss the pathogenesis of psychiatric disorders with respect to the activation of the inflammasome complex. Inflammasome-associated inflammatory cytokines are observed in patients and animal models of psychiatric disorders. The article also reflects on inflammasome regulatory options for the prevention and treatment of psychiatric disorders. Relevant literature available on PubMed from 1992 to 2021 has been included in this review. EXPERT OPINION Modulating the inflammasome complex is a potential therapeutic strategy to treat symptom severity for patients with psychiatric disorders, particularly those with inflammasome-associated disorders. However, the nature of the psychiatric disorders should be considered when targeting inflammasome.
Collapse
Affiliation(s)
- Sunghark Kwon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea.,Research Institute for Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
53
|
Chauhan P, Kaur G, Prasad R, Singh H. Pharmacotherapy of schizophrenia: immunological aspects and potential role of immunotherapy. Expert Rev Neurother 2021; 21:1441-1453. [PMID: 34654348 DOI: 10.1080/14737175.2021.1994857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Schizophrenia is a complex disorder owing to diversity in clinical phenotypes, overlapping symptoms, and heterogeneous clinical presentation. Even after decades of research, the exact causative mechanisms of schizophrenia are not completely known. Recent evidence indicates the role of immune dysfunction in schizophrenia pathogenesis as observed from alteration in immune cells, increased activity of complement cascade, and development of autoantibodies against neurotransmitter receptors. Immunotherapy involving immunosuppressants and cytokine-targeting drugs, have shown promising results in several clinical studies and it demands further research in this area. AREAS COVERED Here, the authors review the immunopathogenesis of schizophrenia, limitations of conventional, and atypical antipsychotic drugs and the potential role and limitations of immunotherapeutic drugs in schizophrenia management. EXPERT OPINION Schizophrenia is a complex disorder and poses a challenge to the currently available treatment approaches. Nearly 30% schizophrenia patients exhibit minimal response toward conventional and atypical antipsychotic drugs. Immune system dysfunction plays an important part of schizophrenia pathophysiology and existing monoclonal antibody (mAb) drugs targeting specific components of the immune system are being repositioned in schizophrenia. The authors call upon public and private funders to facilitate urgent and rigorous research efforts in exploring potential role of immunotherapy in schizophrenia.
Collapse
Affiliation(s)
- Prerna Chauhan
- Multidisciplinary Research Unit, Government Medical College & Hospital, Chandigarh, India
| | - Gurjit Kaur
- Department of Physiology, Government Medical College & Hospital, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Ambala, Haryana, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College & Hospital, Chandigarh, India
| |
Collapse
|
54
|
Marazziti D, Torrigiani S, Carbone MG, Mucci F, Flamini W, Ivaldi T, Osso LD. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in mood disorders. Curr Med Chem 2021; 29:5758-5781. [PMID: 34551689 DOI: 10.2174/0929867328666210922160116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorders (BDs), the most severe types of mood disorders (MDs), are considered as among the most disabling illnesses worldwide. Several studies suggested that inflammatory neuroinflammation might be involved in the pathophysiology of MDs, while reporting increasing data on the relationships between these processes and classical neurotransmitters, hypothalamus-pituitary-adrenal axis (HPA), and neurotrophic factors. The assessment of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) in peripheral blood represents a simple method to evaluate the inflammatory status. The aim of the present paper was to review the literature on the possible relationships between NLR, PLR and MLR in MDs, and to comment on their possible wider use in clinical research. Thirty-five studies were included in the present review. The majority of them higher values of these parameters, particularly NLR values, in patients with MDs, when compared to healthy subjects. The increase would appear more robust in patients with BD during a manic episode, thus indicating that it could be considered as both state and trait markers. In addition, increased NLR and PLR levels seem to represent prognostic elements for the early discovery of post-stroke depression. The findings of the present review would indicate the need to carry our further studies in this field. In particular, NLR, PLR and MLR seem to be promising tools to detect economically and easily the activation of the inflammatory system, and to perhaps evaluate the etiology and course of MDs. Again, they could suggest some information to better understand the relationship between inflammatory and cardiovascular disease and MDs, and thus, to provide clinical implications in terms of management and treatment.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Samuele Torrigiani
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Federico Mucci
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Liliana Dell' Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
55
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
56
|
Effects of fingolimod, a sphingosine-1-phosphate (S1P) receptor agonist, on white matter microstructure, cognition and symptoms in schizophrenia. Brain Imaging Behav 2021; 15:1802-1814. [PMID: 32893328 DOI: 10.1007/s11682-020-00375-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several lines of evidence have implicated white matter (WM) deficits in schizophrenia, including microstructural alterations from diffusion tensor (DTI) brain imaging studies. It has been proposed that dysregulated inflammatory processes, including heightened activity of circulating lymphocytes, may contribute to WM pathology in this illness. Fingolimod is a sphingosine-1-phosphate (S1P) receptor agonist that is approved for the treatment of relapsing multiple sclerosis (MS). Fingolimod robustly decreases the number of circulating lymphocytes through sequestration of these cells in lymph tissue. In addition, this agent improved WM microstructure as shown by increases in DTI fractional anisotropy (FA). In this pilot study, we assessed the effects of fingolimod on WM microstructure, cognition and symptoms in an eight-week, double-blind trial. Forty subjects with schizophrenia or schizoaffective disorder were randomized 1:1 to fingolimod (0.5 mg/day) and placebo. Fingolimod caused significant reductions in circulating lymphocytes (p < .001). In addition, there was a statistically non-significant association (p = .089) between DTI-FA change in the WM skeleton and fingolimod. There were significant relationships between the degree of lymphocyte reductions and increases in FA in the corpus collosum (p = .004) and right superior longitudinal fasciculus ( p = .02), and a non-significant correlation with the WM skeleton. There were no significant fingolimod versus placebo interactions on cognitive or symptom measures. There were no serious adverse events related to fingolimod treatment. Future studies with larger samples and treatment durations are needed to further establish fingolimod's potential therapeutic effects in schizophrenia.
Collapse
|
57
|
Molinaro M, Adams HR, Mwanza-Kabaghe S, Mbewe EG, Kabundula PP, Mweemba M, Birbeck GL, Bearden DR. Evaluating the Relationship Between Depression and Cognitive Function Among Children and Adolescents with HIV in Zambia. AIDS Behav 2021; 25:2669-2679. [PMID: 33630200 PMCID: PMC8456506 DOI: 10.1007/s10461-021-03193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
Depression is common among people living with HIV. Multiple studies demonstrate a link between depression and cognitive dysfunction in adults with HIV, but the association has been minimally investigated in children and adolescents with HIV in Africa. We conducted a cross-sectional analysis as part of the HIV-associated Neurocognitive Disorders in Zambia study, a prospective cohort study in Lusaka, Zambia. We included 208 perinatally-infected children with HIV ages 8-17 taking antiretroviral therapy and 208 HIV-exposed uninfected (HEU) controls. Cognition was assessed with a comprehensive neuropsychological battery. Depressive symptoms were evaluated using self-report and parent-report versions of the NIH Toolbox Sadness module and the Patient Health Questionnaire-9 (PHQ-9). Risk factors for depression and associations between depressive symptoms and cognition were evaluated in bivariable and multivariable regression models. Participants with HIV demonstrated higher levels of depressive symptoms than controls (mean NIH Toolbox Sadness T-Score 50 vs. 44, p < 0.01; mean PHQ-9 score 2.0 vs. 1.5, p = 0.03), and were more likely to have cognitive impairment (30% vs. 13%, p < 0.001). Risk factors for depressed mood included self-reported poor health (OR 7.8, p < 0.001) and negative life events (OR 1.3, p = 0.004) Depressed mood was associated with cognitive impairment in participants with HIV (OR = 2.9, 95% CI 1.2-7.2, p = 0.02) but not in HEU participants (OR 1.7, 95% CI 0.18-15.7, p = 0.6). In conclusion, depressed mood is common among youth with HIV in Zambia, and is associated with cognitive impairment. Depression may be a result of HIV-related stress and stigma, or may be part of the spectrum of HIV-associated neurocognitive disorders. The causal relationship between depressed mood and cognitive impairment is unclear and should be evaluated in future longitudinal studies.
Collapse
Affiliation(s)
| | - Heather R Adams
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, 601 Elmwood Ave, Box 631, Rochester, NY, 14642, USA
| | | | - Esau G Mbewe
- Department of Educational Psychology, University of Zambia, Lusaka, Zambia
| | | | - Milimo Mweemba
- University Teaching Hospital Neurology Research Office, Lusaka, Zambia
| | - Gretchen L Birbeck
- Division of Epilepsy, Department of Neurology, Rochester, NY, USA
- University of Zambia School of Medicine, Lusaka, Zambia
| | - David R Bearden
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, 601 Elmwood Ave, Box 631, Rochester, NY, 14642, USA.
- Department of Educational Psychology, University of Zambia, Lusaka, Zambia.
| |
Collapse
|
58
|
Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress. Mol Psychiatry 2021; 26:4770-4782. [PMID: 32444870 PMCID: PMC8730339 DOI: 10.1038/s41380-020-0788-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
Chronic stress contributes to the development of psychiatric disorders including anxiety and depression. Several inflammatory-related effects of stress are associated with increased interleukin-1 (IL-1) signaling within the central nervous system and are mediated by IL-1 receptor 1 (IL-1R1) on several distinct cell types. Neuronal IL-1R1 is prominently expressed on the neurons of the dentate gyrus, but its role in mediating behavioral responses to stress is unknown. We hypothesize that IL-1 acts on this subset of hippocampal neurons to influence cognitive and mood alterations with stress. Here, mice subjected to psychosocial stress showed reduced social interaction and impaired working memory, and these deficits were prevented by global IL-1R1 knockout. Stress-induced monocyte trafficking to the brain was also blocked by IL-1R1 knockout. Selective deletion of IL-1R1 in glutamatergic neurons (nIL-1R1-/-) abrogated the stress-induced deficits in social interaction and working memory. In addition, viral-mediated selective IL-1R1 deletion in hippocampal neurons confirmed that IL-1 receptor in the hippocampus was critical for stress-induced behavioral deficits. Furthermore, selective restoration of IL-1R1 on glutamatergic neurons was sufficient to reestablish the impairments of social interaction and working memory after stress. RNA-sequencing of the hippocampus revealed that stress increased several canonical pathways (TREM1, NF-κB, complement, IL-6 signaling) and upstream regulators (INFγ, IL-1β, NF-κB, MYD88) associated with inflammation. The inductions of TREM1 signaling, complement, and leukocyte extravasation with stress were reversed by nIL-1R1-/-. Collectively, stress-dependent IL-1R1 signaling in hippocampal neurons represents a novel mechanism by which inflammation is perpetuated and social interactivity and working memory are modulated.
Collapse
|
59
|
Ahmed A, Misrani A, Tabassum S, Yang L, Long C. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus. Brain Res Bull 2021; 174:41-52. [PMID: 34087360 DOI: 10.1016/j.brainresbull.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a hallmark of modern society and associated with many neuropsychiatric disorders, including depression and anxiety. However, the cellular and molecular mechanisms underlying SD-associated depression and anxiety remain elusive. Does the neuroinflammation play a role in mediating the effects of SD? In this study, we investigated SD-induced cellular and molecular alterations in the hippocampus and asked whether treatment with an anti-inflammatory drug, minocycline, could attenuate these alterations. We found that SD animals exhibit activated microglia and decreased levels of Keap1 and Nrf2 (antioxidant and anti-inflammatory factors) in the hippocampus. In vivo local field potential recordings show decreased theta and beta oscillations, but increased high gamma oscillations, as a result of SD. Behavioral analysis revealed increased immobility time in the forced swim and tail suspension tests, and decreased sucrose intake in SD mice, all indicative of depressive-like behavior. Moreover, open field test and elevated plus maze test results indicated that SD increases anxiety-like behavior. Interestingly, treatment with the microglial modulator minocycline prevented SD-induced microglial activation, restored Keap1 and Nrf2 levels, normalized neuronal oscillations, and alleviated depressive-like and anxiety-like behavior. The present study reveals that microglial activation and Keap1-Nrf2 signaling play a crucial role in SD-induced behavioral alteration, and that minocycline treatment has a protective effect on these alterations.
Collapse
Affiliation(s)
- Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China.
| |
Collapse
|
60
|
Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I, Badtke P, Wrona D. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2021; 16:454-469. [PMID: 32648088 PMCID: PMC8087570 DOI: 10.1007/s11481-020-09934-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (DBS-STN) is an effective treatment for advanced motor symptoms of Parkinson's disease (PD). Recently, a connection between the limbic part of the STN and side effects of DBS-STN has been increasingly recognized. Animal studies have shown that DBS-STN influences behavior and provokes neurochemical changes in regions of the limbic system. Some of these regions, which are activated during DBS-STN, are involved in neuroimmunomodulation. The therapeutic effects of DBS-STN in PD treatment are clear, but the influence of DBS-STN on peripheral immunity has not been reported so far. In this study, we examined the effects of unilateral DBS-STN applied in male Wistar rats with 6-hydroxydopamine PD model (DBS-6OHDA) and rats without nigral dopamine depletion (DBS) on corticosterone (CORT) plasma concentration, blood natural killer cell cytotoxicity (NKCC), leukocyte numbers, lymphocyte population and apoptosis numbers, plasma interferon gamma (IFN-γ), interleukin 6 (IL-6), and tumor necrosis factor (TNF-α) concentration. The same peripheral immune parameters we measured also in non-stimulated rats with PD model (6OHDA). We observed peripheral immunity changes related to PD model. The NKCC and percentage of T cytotoxic lymphocytes were enhanced, while the level of lymphocyte apoptosis was down regulated in 6OHDA and DBS-6OHDA groups. After DBS-STN (DBS-6OHDA and DBS groups), the plasma CORT and TNF-α were elevated, the number of NK cells and percentage of apoptosis were increased, while the number of B lymphocytes was decreased. We also found, changes in plasma IFN-γ and IL-6 levels in all the groups. These results suggest potential peripheral immunomodulative effects of DBS-STN in the rat model of PD. However, further studies are necessary to explain these findings and their clinical implication. Graphical Abstract Influence of deep brain stimulation of the subthalamic nucleus on peripheral immunity in rat model of Parkinson's disease.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland.
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Magdalena Listowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Grażyna Jerzemowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Karolina Plucińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Piotr Badtke
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| |
Collapse
|
61
|
ÇALIŞKAN AM, ÇOKÜNLÜ Y. Evaluation of monocyte to high-density lipoprotein cholesterol ratio in the manic state of bipolar disorder. FAMILY PRACTICE AND PALLIATIVE CARE 2021. [DOI: 10.22391/fppc.875674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
62
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
63
|
Zhang L, Liu F, Zheng H, Wu R, Zhao J. Serum Interleukin-1β and tumor necrosis factor-α in first-episode drug-naive and chronic schizophrenia patients: Associated with cognitive deficits. Asian J Psychiatr 2021; 58:102605. [PMID: 33636450 DOI: 10.1016/j.ajp.2021.102605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Lulu Zhang
- Department of Psychiatry, Guangzhou First People's Hospital, the Second Affiliated Hospital, South China University of Technology, 1 Panfu Road,Guangzhou, Guangdong, China.
| | - Fang Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongbo Zheng
- Guangzhou Baiyun Psychiatric Hospital, Guangzhou, Guangdong, China
| | - Rengrong Wu
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Chinese National Clinical Research Center on Mental Disorders,Changsha, Hunan, China; Chinese National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, Guangzhou First People's Hospital, the Second Affiliated Hospital, South China University of Technology, Guangzhou, Guangdong, China; Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Chinese National Clinical Research Center on Mental Disorders, Changsha, Hunan, China; Chinese National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| |
Collapse
|
64
|
Branchi I, Poggini S, Capuron L, Benedetti F, Poletti S, Tamouza R, Drexhage HA, Penninx BWJH, Pariante CM. Brain-immune crosstalk in the treatment of major depressive disorder. Eur Neuropsychopharmacol 2021; 45:89-107. [PMID: 33386229 DOI: 10.1016/j.euroneuro.2020.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
A growing number of studies are pointing out the need for a conceptual shift from a brain-centered to a body-inclusive approach in mental health research. In this perspective, the link between the immune and the nervous system, which are deeply interconnected and continuously interacting, is one of the most important novel theoretical framework to investigate the biological bases of major depressive disorder and, more in general, mental illness. Indeed, depressed patients show high levels of inflammatory markers, administration of pro-inflammatory drugs triggers a depressive symptomatology and antidepressant efficacy is reduced by excessive immune system activation. A number of molecular and cellular mechanisms have been hypothesized to act as a link between the immune and brain function, thus representing potential pharmacologically targetable processes for the development of novel and effective therapeutic strategies. These include the modulation of the kynurenine pathway, the crosstalk between metabolic and inflammatory processes, the imbalance in acquired immune responses, in particular T cell responses, and the interplay between neural plasticity and immune system activation. In the personalized medicine approach, the assessment and regulation of these processes have the potential to lead, respectively, to novel diagnostic approaches for the prediction of treatment outcome according to the patient's immunological profile, and to improved efficacy of antidepressant compounds through immune modulation.
Collapse
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Lucile Capuron
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Francesco Benedetti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, Université Paris Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Hemmo A Drexhage
- Department of Immunology, ErasmusMC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Department of Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carmine M Pariante
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | -
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, Université Paris Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| |
Collapse
|
65
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
66
|
Yun JA, Jeong KS, Ahn YS, Han Y, Choi KS. The Interaction of Inflammatory Markers and Alcohol-Use on Cognitive Function in Korean Male Firefighters. Psychiatry Investig 2021; 18:205-213. [PMID: 33685038 PMCID: PMC8016693 DOI: 10.30773/pi.2020.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Cognitive functions have been shown to become impaired due to alcoholism. Recently, neuroinflammation gained attention for playing a role in the neurotoxic effect of alcohol. However, there is limited data on the relationship between alcohol and cognitive function, based on the mechanism of inflammation. This study examined whether the interaction between alcohol use and pro-inflammatory biomarkers is related to cognitive function in Korean male firefighters. METHODS A total of 474 firefighters were assessed for alcohol-related problems using CAGE, cognitive functions, and pro-inflammatory biomarkers (CRP, IL-6, TNF-α). Sequential multiple regression analyses were conducted to determine if inflammatory markers moderate the relationship between alcohol use and cognitive function. RESULTS Only a decreased attentional function was associated with the interaction of alcohol use and inflammatory markers, after controlling for age, sex, body mass index, lipid profiles, smoking, depression, fatigue, self-reported hypertension, diabetes, and musculoskeletal problems. CONCLUSION This study revealed that the interaction between alcohol use and inflammation is related to attentional function in Korean male firefighters. Additionally, this cross-sectional study suggests that diminishing attention, related to alcohol use, may be based on the mechanism of inflammation.
Collapse
Affiliation(s)
- Ji-Ae Yun
- Department of Neuropsychiatry, Eulji University School of Medicine, Daejeon, Republic of Korea.,Department of Neuropsychiatry, Eulji University Hospital, Daejeon, Republic of Korea
| | - Kyoung Sook Jeong
- Department of Preventive Medicine, Institute Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine, Institute Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yuri Han
- Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyeong-Sook Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Daejeon, Republic of Korea.,Department of Neuropsychiatry, Eulji University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
67
|
Forner-Piquer I, Faucherre A, Byram J, Blaquiere M, de Bock F, Gamet-Payrastre L, Ellero-Simatos S, Audinat E, Jopling C, Marchi N. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. CHEMOSPHERE 2021; 267:128986. [PMID: 33359984 DOI: 10.1016/j.chemosphere.2020.128986] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The presence of glyphosate represents a debated ecotoxicological and health risk factor. Here, zebrafish larvae were exposed, from 1.5 to 120 h post-fertilization, to a broad concentration range (0.05-10.000 μg/L) of glyphosate to explore its impact on the brain. We evaluated morphology, tracked locomotor behavior and neurophysiological parameters, examined neuro-glio-vascular cell structures, and outlined transcriptomic outcomes by RNA sequencing. At the concentration range tested, glyphosate did not elicit gross morphological changes. Behavioral analysis revealed a significant decrease in locomotor activity following the exposure to 1000 μg/L glyphosate or higher. In parallel, midbrain electrophysiological recordings indicated abnormal, and variable, spike activity in zebrafish larvae exposed to 1000 μg/L glyphosate. Next, we asked whether the observed neurophysiological outcome could be secondary to brain structural modifications. We used transgenic zebrafish and in vivo 2-photon microscopy to examine, at the cellular level, the effects of the behavior-modifying concentration of 1000 μg/L, comparing to low 0.1 μg/L, and control. We ruled out the presence of cerebrovascular and neuronal malformations. However, microglia morphological modifications were visible at the two glyphosate concentrations, specifically the presence of amoeboid cells suggestive of activation. Lastly, RNAseq analysis showed the deregulation of transcript families implicated in neuronal physiology, synaptic transmission, and inflammation, as evaluated at the two selected glyphosate concentrations. In zebrafish larvae, behavioral and neurophysiological defects occur after the exposure to high glyphosate concentrations while cellular and transcript signatures can be detected in response to low dose. The prospective applicability to ecotoxicology and the possible extension to brain-health vulnerability are critically discussed.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Adèle Faucherre
- Molecular mechanisms of regeneration, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM LabEx ICST), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Julia Byram
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Marine Blaquiere
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Frederic de Bock
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Laurence Gamet-Payrastre
- Toxalim, Research Centre in Food Toxicology (Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS), 180 Chemin de tournefeuille, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim, Research Centre in Food Toxicology (Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS), 180 Chemin de tournefeuille, 31300, Toulouse, France
| | - Etienne Audinat
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France
| | - Chris Jopling
- Molecular mechanisms of regeneration, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM LabEx ICST), 141 rue de la Cardonille, 34094, Montpellier, France.
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute for Functional Genomics (University of Montpellier - UMR 5203 CNRS - U 1191 INSERM), 141 rue de la Cardonille, 34094, Montpellier, France.
| |
Collapse
|
68
|
Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, Corvin A, Curtis CJ, Dempster D, Di Forti M, Dinan TG, Donohoe G, Gaughran F, Gill M, Gillespie A, Gunasinghe C, Hulshoff HE, Hultman CM, Johansson V, Kahn RS, Kaprio J, Kenis G, Kowalec K, MacCabe J, McDonald C, McQuillin A, Morris DW, Murphy KC, Mustard CJ, Nenadic I, O'Donovan MC, Quattrone D, Richards AL, Rutten BPF, St Clair D, Therman S, Toulopoulou T, Van Os J, Waddington JL, Sullivan P, Vassos E, Breen G, Collier DA, Murray RM, Schalkwyk LS, Mill J. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. eLife 2021; 10:e58430. [PMID: 33646943 PMCID: PMC8009672 DOI: 10.7554/elife.58430] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Eilis Hannon
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Emma L Dempster
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Georgina Mansell
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Nick Bass
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Marc M Bohlken
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
| | - Charles J Curtis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | - David Dempster
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | | | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Fiona Gaughran
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
| | - Michael Gill
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
| | - Amy Gillespie
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
| | - Cerisse Gunasinghe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Hilleke E Hulshoff
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
| | - Gunter Kenis
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - Kaarina Kowalec
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- College of Pharmacy, University of ManitobaWinnipegCanada
| | - James MacCabe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
| | - Andrew McQuillin
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
| | - Colette J Mustard
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
| | - Alexander L Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Bart PF Rutten
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - David St Clair
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
| | - Sebastian Therman
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
| | - Timothea Toulopoulou
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
| | - Jim Van Os
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
| | - Wellcome Trust Case Control Consortium (WTCCC)
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
- APC Microbiome Ireland, University College CorkCorkIreland
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- College of Pharmacy, University of ManitobaWinnipegCanada
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
- Neuroscience Genetics, Eli Lilly and CompanySurreyUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
- School of Life Sciences, University of EssexColchesterUnited Kingdom
| | | | - Patrick Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | | | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| |
Collapse
|
69
|
Hughes HK, Mills-Ko E, Yang H, Lesh TA, Carter CS, Ashwood P. Differential Macrophage Responses in Affective Versus Non-Affective First-Episode Psychosis Patients. Front Cell Neurosci 2021; 15:583351. [PMID: 33716670 PMCID: PMC7943877 DOI: 10.3389/fncel.2021.583351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Increased innate immune activation and inflammation are common findings in psychotic and affective (mood) disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD), including increased numbers and activation of monocytes and macrophages. These findings often differ depending on the disorder, for example, we previously found increases in circulating inflammatory cytokines associated with monocytes and macrophages in SCZ, while BD had increases in anti-inflammatory cytokines. Despite these differences, few studies have specifically compared immune dysfunction in affective versus non-affective psychotic disorders and none have compared functional monocyte responses across these disorders. To address this, we recruited 25 first episode psychosis (FEP) patients and 23 healthy controls (HC). FEP patients were further grouped based on the presence (AFF) or absence (NON) of mood disorder. We isolated peripheral blood mononuclear cells and cultured them for 1 week with M-CSF to obtain monocyte-derived macrophages. These cells were then stimulated for 24 h to skew them to inflammatory and alternative phenotypes, in order to identify differences in these responses. Following stimulation with LPS and LPS plus IFNγ, we found that macrophages from the NON-group had diminished inflammatory responses compared to both HC and AFF groups. Interestingly, when skewing macrophages to an alternative phenotype using LPS plus IL-4, the AFF macrophages increased production of inflammatory cytokines. Receiver operating curve analysis showed predictive power of inflammatory cytokine concentrations after LPS stimulation in the AFF group versus NON-group. Our results suggest dysfunctional monocyte responses in both affective and non-affective psychotic disorder, with varying types of immune dysfunction depending on the presence or absence of a mood component.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Emily Mills-Ko
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| | - Tyler A. Lesh
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, United States
| | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, United States
- MIND Institute, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
70
|
Amiri S, Dizaji R, Momeny M, Gauvin E, Hosseini MJ. Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology 2021; 187:108503. [PMID: 33636190 DOI: 10.1016/j.neuropharm.2021.108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Beyond abnormalities in the neurotransmitter hypothesis, recent evidence suggests that mitochondrial dysfunction and immune-inflammatory responses contribute to the pathophysiology of schizophrenia. The prefrontal cortex (PFC) undergoes maturation and development during adolescence, which is a critical time window in life that is vulnerable to environmental adversities and the development of psychiatric disorders such as schizophrenia. Applying eight weeks of post-weaning social isolation stress (PWSI) to rats, as an animal model of schizophrenia, we decided to investigate the effects of PWSI on the mitochondrial function and expression of immune-inflammatory genes in the PFC of normal and stressed rats. To do this, control and PWSI rats were divided into treatment (clozapine; CLZ, 2.5 mg/kg/day for 28 days) and non-treatment sub-groups. Our results showed PWSI caused schizophrenic-like behaviors in rats and induced mitochondrial dysfunction as well as upregulation of genes associated with innate immunity in the PFC. Chronic treatment with CLZ attenuated the effects of PWSI on behavioral abnormalities, mitochondrial dysfunction, and immune-inflammatory responses in the PFC of rats. These results may advance our understanding about the mechanism of action of CLZ that targets mitochondrial dysfunction and immune-inflammatory responses as factors involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Pharmacology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Evan Gauvin
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
71
|
Russell AE, Mars B, Wen CP, Chang SS, Gunnell D. Evidence for an association between inflammatory markers and suicide: a cohort study based on 359,849 to 462,747 Taiwanese adults. J Affect Disord 2021; 281:967-971. [PMID: 33250203 DOI: 10.1016/j.jad.2020.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/05/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biological markers of suicide risk have the potential to inform prevention and treatment efforts. It has recently been hypothesised that inflammation may influence mood and in turn suicide risk. We investigated the association between indicators of systemic inflammation and suicide in a large cohort of Taiwanese adults. METHODS White blood cell (WBC) count and levels of C-reactive protein (CRP) were measured in 462,747 and 359,849 adults in the Taiwan MJ cohort, respectively. The associations between WBC, CRP and suicide risk were investigated using Cox proportional hazards models adjusting for a range of potential confounding factors. RESULTS During a mean 15.1 and 15.8 years of follow-up, 687 and 605 suicides were identified in participants who had information on WBC and CRP respectively. There was an association of suicide with WBC count (adjusted hazard ratio [aHR] = 1.13 per 1 standard deviation increase of log-transformed WBC, 95% confidence interval [CI] 1.05, 1.22). The association was driven by the highest quintile of WBC count (aHR = 1.39, 95% CI 1.09, 1.77; reference: the lowest quintile). No association between CRP and suicide was found. LIMITATIONS Our cohort was from a privately-run health check-up programme and had a lower suicide rate than that in the general population. CONCLUSIONS Individuals with the highest WBC counts may have increased risk of suicide. Peripheral markers of inflammation are potential biomarkers of suicide risk; however, this seems to vary by population and the marker investigated and could be influenced by a range of confounding factors.
Collapse
Affiliation(s)
- Abigail Emma Russell
- Institute for Health Research, University of Exeter College of Medicine and Health, UK
| | - Becky Mars
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, UK; National Institute of Health Research Biomedical Research Centre at the University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol UK
| | - Chi Pang Wen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan; China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| | - Shu-Sen Chang
- Institute of Health Behaviors and Community Sciences and Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.
| | - David Gunnell
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, UK; National Institute of Health Research Biomedical Research Centre at the University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol UK
| |
Collapse
|
72
|
Abstract
BACKGROUND Given the wide implications of cognitive impairment for prognosis and outcome in schizophrenia, the research on pharmacological approaches aimed at addressing dysfunctional cognition has been extensive; nevertheless, there are no currently available licensed drugs, and the evidence in this field is still unimpressive. Vortioxetine is a multimodal antidepressant, which has been proposed as a suitable treatment option for cognitive symptoms in depression. METHODS Twenty schizophrenia outpatients (mean age ± SD, 40.7 ±10.6 years) on stable clozapine treatment, assessed by neuropsychological (Wisconsin Card Sorting Test, Verbal Fluency, and Stroop task) and psychodiagnostic instruments (Positive and Negative Syndrome Scale [PANSS] and Calgary Depression Scale for Schizophrenia), received vortioxetine at the single daily dose of 10 mg/d until week 12; the dose was increased at 20 mg/d afterward, and this dosage was maintained unchanged until week 24. A physical examination, electrocardiogram with QTc measurement, and laboratory tests were also performed. RESULTS Vortioxetine supplementation significantly improved Stroop test (P = 0.013) at week 12 and Stroop test (P = 0.031) and Semantic Fluency (P = 0.002) at end point. Moreover, a significantly reduction of PANSS domains "positive" (P = 0.019) at week 12 and of PANSS domains positive (P = 0.019) and total score (P = 0.041) and of depressive symptoms (Calgary Depression Scale for Schizophrenia, P = 0.032) at end point. There was no significant change in clinical, metabolic, and safety parameters, and no subject spontaneously reported adverse effects. CONCLUSIONS Despite the limitations (open design, lack of a control group, small sample size, and short intervention period), our findings suggest for the first time that vortioxetine augmentation of clozapine may be a promising therapeutic strategy for addressing cognitive deficits in patients with schizophrenia.
Collapse
|
73
|
Lu Y, Qian S, Chen H, Yuan P, Zhang R, Wang A, Zhang J, Ju Z, Zhang Y, Xu T, Zhong C. Plasma soluble suppression of tumorigenicity 2 and depression after acute ischemic stroke. Eur J Neurol 2021; 28:868-876. [PMID: 33368822 DOI: 10.1111/ene.14699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Soluble suppression of tumorigenicity 2 (sST2) might be related to stroke and depression, but the association of sST2 with poststroke depression (PSD) is unclear. The study aimed to prospectively assess the association between plasma sST2 levels and PSD. METHODS A total of 635 acute ischemic stroke patients with sST2 measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Rating Scale for Depression to assess depression at 3 months, and PSD was defined as a score of ≥8. Logistic regression analysis was performed to estimate the risk of PSD associated with sST2, and net reclassification index (NRI) and integrated discrimination improvement (IDI) were calculated to assess the predictive value of sST2. RESULTS Two hundred fifty (39.4%) patients developed depression at 3 months after ischemic stroke. Patients with PSD had higher sST2 levels than patients without PSD (172.7 vs. 153.8 pg/ml; p = 0.003). After adjustment for age, sex, education, National Institutes of Health Stroke Scale score, and other covariates, the odds ratio for the highest quartile of sST2 compared with the lowest quartile was 1.84 (95% confidence interval, 1.10-3.08) for PSD. Adding sST2 to a conventional model notably improved risk prediction for PSD (category-free NRI = 19.34%, 95% confidence interval = 4.39%-34.28%, p = 0.017; IDI = 1.20%, 95% confidence interval = 0.25%-2.15%, p = 0.014). CONCLUSIONS Increased plasma sST2 levels in the acute phase of ischemic stroke were significantly associated with the increased risk of PSD, independently of conventional risk factors.
Collapse
Affiliation(s)
- Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Sifan Qian
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Haichang Chen
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Pengcheng Yuan
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jintao Zhang
- Department of Neurology, 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
74
|
Fusar-Poli L, Natale A, Amerio A, Cimpoesu P, Grimaldi Filioli P, Aguglia E, Amore M, Serafini G, Aguglia A. Neutrophil-to-Lymphocyte, Platelet-to-Lymphocyte and Monocyte-to-Lymphocyte Ratio in Bipolar Disorder. Brain Sci 2021; 11:brainsci11010058. [PMID: 33418881 PMCID: PMC7825034 DOI: 10.3390/brainsci11010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Several inflammatory hypotheses have been suggested to explain the etiopathogenesis of bipolar disorder (BD) and its different phases. Neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), and monocyte-to-lymphocyte (MLR) ratios have been proposed as potential peripheral biomarkers of mood episodes. Methods: We recruited 294 patients affected by BD, of which 143 were experiencing a (hypo)manic episode and 151 were in a depressive phase. A blood sample was drawn to perform a complete blood count. NLR, PLR, and MLR were subsequently calculated. A t-test was performed to evaluate differences in blood cell counts between depressed and (hypo)manic patients and a regression model was then computed. Results: Mean values of neutrophils, platelets, mean platelet volume, NLR, PLR, and MLR were significantly higher in (hypo)manic than depressed individuals. Logistic regression showed that PLR may represent an independent predictor of (hypo)mania. Conclusions: Altered inflammatory indexes, particularly PLR, may explain the onset and recurrence of (hypo)manic episodes in patients with BD. As inflammatory ratios represent economical and accessible markers of inflammation, further studies should be implemented to better elucidate their role as peripheral biomarkers of BD mood episodes.
Collapse
Affiliation(s)
- Laura Fusar-Poli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (L.F.-P.); (A.N.); (E.A.)
| | - Antimo Natale
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (L.F.-P.); (A.N.); (E.A.)
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Boston, MA 02110, USA
| | - Patriciu Cimpoesu
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Pietro Grimaldi Filioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eugenio Aguglia
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (L.F.-P.); (A.N.); (E.A.)
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16126 Genoa, Italy; (A.A.); (P.C.); (P.G.F.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
75
|
De Haan P, Van Diemen FR, Toscano MG. Viral gene delivery vectors: the next generation medicines for immune-related diseases. Hum Vaccin Immunother 2021; 17:14-21. [PMID: 32412865 PMCID: PMC7872028 DOI: 10.1080/21645515.2020.1757989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development of effective cancer treatments. Replication-defective (RD) viral vectors encoding self-proteins are non-immunogenic when introduced in a host naïve for the cognate virus. RD viral vectors can be used to develop gene replacement therapies for genetic disorders and tolerization therapies for autoimmune diseases and allergies. Degenerative/inflammatory diseases are associated with chronic inflammation and immune responses that damage the tissues involved. These diseases therefore strongly resemble autoimmune diseases. This review deals with the use of RC and RD viral vectors for unraveling the pathogenesis of immune-related diseases and their application to the development of the next generation prophylactics and therapeutics for todays' major diseases.
Collapse
Affiliation(s)
- Peter De Haan
- Department of R&D, Amarna Therapeutics B.V, Leiden, The Netherlands
| | | | | |
Collapse
|
76
|
Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum. Brain Behav Immun 2021; 91:673-682. [PMID: 32898636 DOI: 10.1016/j.bbi.2020.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy.
Collapse
|
77
|
Simon MS, Burger B, Weidinger E, Arteaga-Henríquez G, Zill P, Musil R, Drexhage HA, Müller N. Efficacy of Sertraline Plus Placebo or Add-On Celecoxib in Major Depressive Disorder: Macrophage Migration Inhibitory Factor as a Promising Biomarker for Remission After Sertraline-Results From a Randomized Controlled Clinical Trial. Front Psychiatry 2021; 12:615261. [PMID: 34646168 PMCID: PMC8504576 DOI: 10.3389/fpsyt.2021.615261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: Previous research delivers strong indications that inflammatory activation leads to treatment resistance in a subgroup of patients with Major Depressive Disorder (MDD). Thus, tailored interventions are needed. The present study aimed to find potential biomarkers that may enable patients to be stratified according to immune activation. Methods: A phase IIa randomized placebo-controlled trial was performed to assess levels of inflammatory compounds in responders/remitters and non-responders/non-remitters to sertraline plus celecoxib (n = 20) and sertraline plus placebo (n = 23). Levels of macrophage migration inhibitory factor, neopterin, and tumor necrosis factor alpha were determined by enzyme-linked immunosorbent assay; response and remission were measured by reduction of the Montgomery Åsberg Depression Rating Scale score. Results: Both treatment groups showed a significant decline in depression symptoms, but no difference was found between groups. A clear pattern emerged only for macrophage migration inhibitory factor: placebo remitters showed significantly lower baseline levels than non-remitters (a similar trend was seen in responders and non-responders) while celecoxib responders showed a trend for higher baseline levels than non-responders. Conclusion: Small subsample sizes are a notable limitation, wherefore results are preliminary. However, the present study provides novel insights by suggesting macrophage migration inhibitory factor as a promising biomarker for treatment choice. The trial was registered in EU Clinical Trials Register (EU-CTR): https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-011990-34/DE, EudraCT-No.: 2009-011990-34.
Collapse
Affiliation(s)
- Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Elif Weidinger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
78
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
79
|
Evrensel A, Tarhan N. Inflammation Biomarkers in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216999200625115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
There has long been a need for diagnostic, theragnostic, and prognostic
biomarkers for psychiatric disorders. Biomarkers help in reducing ambiguity and arbitrariness and
increase objectivity. In this context, many candidates for hormonal, immunological, serological, and
neuroimaging markers have been proposed, but none of these marker candidates alone nor a biomarker
panel has been approved for any disease. The fact that almost all psychiatric disorders are
heterogeneous makes this process challenging. However, strong biomarker candidates have been
identified, especially in light of the large number of clinical and preclinical studies conducted within
the last five years.
Objective:
The aim of this article was to compile and discuss the current information on immune
biomarkers in major psychiatric disorders, such as schizophrenia, depression, bipolar disorder, and
anxiety disorders.
Methods:
In this study, respected scientific databases were searched using key terms related to the
subject, and the related literature was examined in detail.
Results:
There are many relationships between psychiatric disorders and immune system parameters.
Evidence also suggests that neuroinflammation is involved in the etiopathogenesis of psychiatric
disorders. Markers, such as proinflammatory cytokines, tumor necrosis factor alpha, and C-reactive
protein have been associated with psychiatric disorders in numerous studies.
Conclusions:
The neuroinflammation hypothesis has an important place in the etiopathogenesis of
psychiatric disorders. Uncertainty remains as to whether neuroinflammation is a cause or consequence
of psychiatric disorders. Some researchers have indicated that intestinal microbiota composition
disorders and dysbiosis are sources of neuroinflammation. Immune marker studies are of
great importance in terms of eliminating this uncertainty and overcoming diagnostic and treatment
difficulties in the clinic. In this review, biomarker studies on psychiatric disorders were examined
from the viewpoint of the immune system and discussed in light of the current studies.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Saray Mah. Ahmet Tevfik IleriCad. Umraniye, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Saray Mah. Ahmet Tevfik IleriCad. Umraniye, Istanbul, Turkey
| |
Collapse
|
80
|
Rana T, Behl T, Sehgal A, Srivastava P, Bungau S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J Mol Neurosci 2020; 71:2008-2021. [PMID: 33230708 DOI: 10.1007/s12031-020-01754-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Depression is a well-known disabling mental illness characterized by sadness, loss of interest in activities, and decreased energy. The symptoms of depression are usually recurrent in vulnerable individuals, and persistence of symptoms significantly impairs individuals' quality of life. The exact pathophysiology of depression remains ambiguous, though many hypotheses have been proposed. Brain-derived neurotrophic factor (BDNF) has recently been reported to play a vital role in the pathophysiology of depression. BDNF is an important neurotrophic factor found in the human brain and is involved in neuronal growth and proliferation, synaptic neurotransmission, and neuroplasticity. The neurotrophic theory of depression proposes that depression results from reduced BDNF levels in the brain, which can be treated with antidepressants to alleviate depressive behavior and increase BDNF levels. The aim of this review is to provide broad insight into the role of BDNF in the pathogenesis of depression and in antidepressant therapy. The studies mentioned in this review article greatly support the role of BDNF in the pathogenesis of depression and treatment of this disorder with antidepressants. Since abnormalities in BDNF levels lead to the production of diverse insults that amplify the development or progression of depression, it is important to study and explore BDNF impairment in relation to depression, neuroplasticity, and neurogenesis, and increasing BDNF levels through antidepressant therapy, showing positive response in the management of depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | | | - Simona Bungau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
81
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
82
|
Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol Rep 2020; 73:31-42. [PMID: 33015736 DOI: 10.1007/s43440-020-00163-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.
Collapse
|
83
|
Toxoplasma gondii: AnUnderestimated Threat? Trends Parasitol 2020; 36:959-969. [PMID: 33012669 DOI: 10.1016/j.pt.2020.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the protozoan parasite Toxoplasma gondii has been thought of as relevant to public health primarily within the context of congenital toxoplasmosis or postnatally acquired disease in immunocompromised patients. However, latent T.gondii infection has been increasingly associated with a wide variety of neuropsychiatric disorders and, more recently, causal frameworks for these epidemiological associations have been proposed. We present assimilated evidence on the associations between T.gondii and various human neuropsychiatric disorders and outline how these may be explained within a unifying causal framework. We argue that the occult effects of latent T.gondii infection likely outweigh the recognised overt morbidity caused by toxoplasmosis, substantially raising the public health importance of this parasite.
Collapse
|
84
|
Abstract
OBJECTIVE Increasing evidence suggests that immunological and inflammatory dysfunctions may play an important role in predisposition, onset, and progression of schizophrenia and related psychosis. The activation of cells of the mononuclear phagocyte system, especially microglia and monocytes, has been reported in schizophrenia. We carried out this systematic review and meta-analysis to investigate if there are significant differences in monocyte count comparing healthy controls with people suffering from schizophrenia and related disorders. METHODS We searched main electronic databases; nine records met all our criteria and were included in the meta-analysis. Meta-analyses based on random effects models have been carried out generating pooled standardised mean differences (SMDs) of monocyte count in peripheral blood between schizophrenia and related psychosis and healthy controls. Heterogeneity was estimated. Relevant sensitivity and subgroup analyses were conducted. RESULTS Patients showed higher monocyte count as compared with healthy control (SMD = 0.393; p = 0.001). Heterogeneity across studies was from moderate to high (I2 = 65.952%); sensitivity analysis leaving out two studies responsible for most of the heterogeneity showed a slightly higher SMD. Subgroup analyses confirmed this result, showing no significant differences in the effect size across different study characteristics. CONCLUSIONS Monocyte count can be considered an indirect marker of microglia activation in the central nervous system. Thus, the observed higher monocyte count in patients could be considered as a possible peripheral marker of microglia's activation in schizophrenia disorder.
Collapse
|
85
|
Reduced plasma Fetuin-A is a promising biomarker of depression in the elderly. Eur Arch Psychiatry Clin Neurosci 2020; 270:901-910. [PMID: 31863164 DOI: 10.1007/s00406-019-01090-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Depression affects 7% of the elderly population, and it often remains misdiagnosed or untreated. Peripheral biomarkers might aid clinicians by allowing more accurate and well-timed recognition of the disease. We sought to determine if plasma protein levels predict the severity of depressive symptomatology or distinguish patients from healthy individuals. The severity of depressive symptoms and global cognitive functioning were assessed by the Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE) in 152 elderly subjects, 76 of which with major depressive disorder (MDD). Plasma levels of 24 proteins were measured by multiplexing and analyzed as continuous predictors or dichotomized using the median value. The association between individual plasma proteins and MDD risk or depressive symptoms severity was investigated using multiple logistic and linear regressions including relevant covariates. Sensitivity analyses were performed excluding cognitively impaired individuals or non-acute patients with MDD. After adjusting for possible confounders and false discovery rate (FDR) correction, we found lower Fetuin-A levels in MDD patients vs. controls (pFDR = 1.95 × 10-6). This result was confirmed by the sensitivity and dichotomized analyses. Lower prolactin (PRL) levels predicted more severe depressive symptoms in acute MDD patients (pFDR = 0.024). Fetuin-A is a promising biomarker of MDD in the elderly as this protein was negatively associated with the disorder in our sample, regardless of the global cognitive functioning. Lower PRL levels may be a peripheral signature of impaired neuroprotective processes and serotoninergic neurotransmission in more severely depressed patients.
Collapse
|
86
|
Thion MS, Mosser CA, Férézou I, Grisel P, Baptista S, Low D, Ginhoux F, Garel S, Audinat E. Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Rep 2020; 28:1119-1126.e4. [PMID: 31365857 PMCID: PMC6685496 DOI: 10.1016/j.celrep.2019.06.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Coralie-Anne Mosser
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Isabelle Férézou
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Département de Neurosciences Intégratives et Computationnelles (ICN), CNRS, Université Paris Sud, UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Grisel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sofia Baptista
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Etienne Audinat
- Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France; Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, 34094 Montpellier, France.
| |
Collapse
|
87
|
Hanger B, Couch A, Rajendran L, Srivastava DP, Vernon AC. Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Front Psychiatry 2020; 11:789. [PMID: 32848951 PMCID: PMC7433763 DOI: 10.3389/fpsyt.2020.00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Microglia, the resident tissue macrophages of the brain, are increasingly implicated in the pathophysiology of psychiatric disorders with a neurodevelopmental origin, including schizophrenia. To date, however, our understanding of the potential role for these cells in schizophrenia has been informed by studies of aged post-mortem samples, low resolution in vivo neuroimaging and rodent models. Whilst these have provided important insights, including signs of the heterogeneous nature of microglia, we currently lack a validated human in vitro system to characterize microglia in the context of brain health and disease during neurodevelopment. Primarily, this reflects a lack of access to human primary tissue during developmental stages. In this review, we first describe microglia, including their ontogeny and heterogeneity and consider their role in brain development. We then provide an evaluation of the potential for differentiating microglia from human induced pluripotent stem cells (hiPSCs) as a robust in vitro human model system to study these cells. We find the majority of protocols for hiPSC-derived microglia generate cells characteristically similar to foetal stage microglia when exposed to neuronal environment-like cues. This may represent a robust and relevant model for the study of cellular and molecular mechanisms in schizophrenia. Each protocol however, provides unique benefits as well as shortcomings, highlighting the need for context-dependent protocol choice and cross-lab collaboration and communication to identify the most robust and translatable microglia model.
Collapse
Affiliation(s)
- Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Lawrence Rajendran
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
88
|
Mazza MG, Lucchi S, Rossetti A, Clerici M. Neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio and platelet-lymphocyte ratio in non-affective psychosis: A meta-analysis and systematic review. World J Biol Psychiatry 2020; 21:326-338. [PMID: 30806142 DOI: 10.1080/15622975.2019.1583371] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objectives: Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR, MLR and PLR in non-affective psychosis.Methods: Eight studies have been identified from the main electronic databases. Meta-analyses based on random-effects models have been carried out generating pooled standardised mean differences (SMDs) between non-affective psychotic patients and healthy controls (HCs).Results: Subjects with non-affective psychosis had a significant higher NLR and MLR as compared with HC (respectively SMD = 0.715; P < 0.001; I2=57.565% and SMD = 0.417; P = 0.001; I2=65.754%), confirmed by heterogeneity-based sensitivity analysis. Subgroup analyses showed no differences in effect size across different study characteristics, including drug treatment status, diagnosis, and setting. Meta-regression showed that age influenced the relationship between non-affective psychosis and MLR. A trend of significance, not confirmed by heterogeneity-based sensitivity analysis, was observed in PLR with patients showing higher PLR than HC.Conclusions: Our meta-analysis supports the hypothesis that an inflammatory activation occurs in non-affective psychosis and inflammatory ratios, especially NLR and MLR, may be useful to detect this activation.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Sara Lucchi
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Aurora Rossetti
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Massimo Clerici
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
89
|
Sahpolat M, Ari M, Kokacya MH. Plasma Apelin, Visfatin and Resistin Levels in Patients with First Episode Psychosis and Chronic Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:109-115. [PMID: 31958911 PMCID: PMC7006973 DOI: 10.9758/cpn.2020.18.1.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023]
Abstract
Objective This study aims to investigate the possible relationship between plasma concentrations of apelin, visfatin and resistin levels of first episode psychosis patients and chronic schizophrenia patients. Methods A total number of 29 untreated patients with first episode psychosis, 30 chronic schizophrenia and 29 randomly selected weight- and body mass index-matched healthy volunteers were included. The Diagnostic and Statistical Manual of Mental Disorders 4th edition, Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale were applied to the patient groups. The enzyme-linked immunosorbent assay method was used to measure plasma apelin, visfatin and resistin levels. Results There was no difference in age, marital status, occupation, and BMI between the groups. Plasma apelin levels were significantly higher in first episode psychosis group than chronic schizophrenia and control group. There was no statistically significant difference in plasma visfatin levels between the groups: first episode psychosis group, chronic schizophrenia and control group. Plasma resistin levels were higher in both first episode psychosis group and chronic schizophrenia group than the control group. There was no statistically significant correlation between plasma apelin and resistin levels and total PANSS scores in the group of patients. Conclusion To our knowledge, this study is the first which investigates the plasma apelin, visfatin and resistin levels in patients with first episode psychosis and chronic schizophrenia. Based on the results of this study, apelin and resistin may be related with some central nervous system pathologies, including the severity of a psychiatric disorder.
Collapse
Affiliation(s)
- Musa Sahpolat
- Department of Psychiatry, Kilis State Hospital, Kilis, Turkey
| | - Mustafa Ari
- eparment of Psychiatry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Hanifi Kokacya
- eparment of Psychiatry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
90
|
Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS, Guest PC, Meyer-Lotz G, Borucki K, Bahn S, Bogerts B, Falkai P, Bernstein HG. Innate Immune Cells and C-Reactive Protein in Acute First-Episode Psychosis and Schizophrenia: Relationship to Psychopathology and Treatment. Schizophr Bull 2020; 46:363-373. [PMID: 31504969 PMCID: PMC7442383 DOI: 10.1093/schbul/sbz068] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity has been linked to initiation of Alzheimer's disease and multiple sclerosis. Moreover, risk of first-episode psychosis (FEP) and schizophrenia (Sz) is increased after various infections in predisposed individuals. Thus, we hypothesized an analogous role of innate immunity with increased C-reactive protein (CRP) in non-affective psychosis. Differential blood count, CRP, neutrophil and monocyte-macrophage activation markers, cortisol and psychotic symptoms (Positive and Negative Syndrome Scale [PANSS]) were assessed in controls (n = 294) and acutely ill unmedicated FEP (n = 129) and Sz (n = 124) patients at baseline and after 6 weeks treatment. Neutrophils, monocytes, and CRP were increased in patients vs controls at baseline (P < .001), and neutrophil and monocyte counts correlated positively with activation markers. Eosinophils were lower at baseline in FEP (P < .001) and Sz (P = .021) vs controls. Differences in neutrophils (P = .023), eosinophils (P < .001), and CRP (P < .001) were also present when controlling for smoking and cortisol, and partially remitted after antipsychotic treatment. FEP patients with high neutrophils (P = .048) or monocytes (P = .021) had higher PANSS-P scores at baseline but similar disease course. CRP correlated with PANSS-P at baseline (ρ = 0.204, P = .012). Improvement of positive symptoms after treatment correlated with declining neutrophils (ρ = 0.186, P = .015) or CRP (ρ = 0.237, P = .002) and rising eosinophils (ρ = -0.161, P = .036). In FEP, normalization of neutrophils (ρ = -0.231, P = .029) and eosinophils (ρ = 0.209, P = .048) correlated with drug dosage. In conclusion, innate immune system activation correlated with PANSS-P, supporting the immune hypothesis of psychosis. Neutrophil and monocyte counts and CRP levels may be useful markers of disease acuity, severity, and treatment response.
Collapse
Affiliation(s)
- Johann Steiner
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,To whom correspondence should be addressed; tel: 49-391-67 15019, fax: 49-391-67 15223, e-mail:
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,German Center for Neurogenerative Diseases (DZNE), Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Henrik Dobrowolny
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School (MHH), Hannover, Germany
| | | | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Meyer-Lotz
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany,Salus Institute, Magdeburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Gert Bernstein
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
91
|
Bondy SC. Aspects of the immune system that impact brain function. J Neuroimmunol 2020; 340:577167. [PMID: 32000018 DOI: 10.1016/j.jneuroim.2020.577167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
The conditions required for effective immune responses to viral or bacterial organisms and chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly outlined. This is followed by a discussion of endocrine and environmental factors that can lead to excessive continuation of immune activity and persistent elevation of inflammatory responses. Such disproportionate activity becomes increasingly pronounced with aging and some possible reasons for this are considered. The specific vulnerability of the nervous system to prolonged immune events is involved in several disorders frequently found in the aging brain. In addition of being a target for inflammation associated with neurodegenerative disease, the nervous system is also seriously impacted by systemically widespread immune disturbances since there are several means by which immune information can access the CNS. The activation of glial cells and cells of non-nervous origin that form the basis of immune responses within the brain, can occur in differing modes resulting in widely differing consequences. The events underlying the relatively frequent occurrence of derangement and hyperreactivity of the immune system are considered, and a few potential ways of addressing this common condition are described.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, School of Medicine, University of California, Irvine, CA 92617-1830, USA.
| |
Collapse
|
92
|
Zhang L, Zheng H, Wu R, Kosten TR, Zhang XY, Zhao J. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res 2019; 212:92-98. [PMID: 31416745 DOI: 10.1016/j.schres.2019.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive deficits of schizophrenia are predictors of poor function, but antipsychotic medication has limited efficacy for cognitive deficits. These deficits in learning and memory may result from activity of pro-inflammatory cytokines, which microglia produce. The microglia inhibitor minocycline might arrest this cytokine damage to the hippocampus and reverse the cognitive deficits of schizophrenia. METHODS A double-blind, placebo-controlled study involved 75 patients with schizophrenia who randomly received low dose (100 mg/day) or high dose minocycline (200 mg/day) or placebo added to risperidone. MATRICS Consensus Cognitive Battery (MCCB) was used to assess the cognitive functioning, and serum levels of Interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) were assessed. RESULTS Minocyclinehigh dose group was significantly superior to minocyclinelow dose or placebo group not only for the improvements in cognitive tests' scores as well (P < 0.05), but for IL-1β and IL-6 serum levels reduction (P < 0.01). The amelioration of cognitive deficits with minocycline correlated not only with the remission of negative symptoms, but also with the reduction in serum levels of IL-1β and IL-6. CONCLUSIONS Minocycline adjunctive treatment was effective in improving cognitive deficits of patients with schizophrenia. The beneficial effect of minocycline may be related to reducing pro-inflammatory cytokines through microglia inhibition.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University; Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Department of Psychiatry, Guangzhou First People's Hospital, the Second Affiliated Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hongbo Zheng
- GuangzhouBaiyun Psychiatric Hospital, Guangzhou, Guangdong, China
| | - Rengrong Wu
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University; Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xiang-Yang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, TX, USA
| | - Jingping Zhao
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University; Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
93
|
Zhu Y, Strachan E, Fowler E, Bacus T, Roy-Byrne P, Zhao J. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A Monozygotic Discordant Twin Study. Transl Psychiatry 2019; 9:215. [PMID: 31477685 PMCID: PMC6718674 DOI: 10.1038/s41398-019-0550-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation plays an important role in major depressive disorder (MDD), but the specific genes and genomic regions associated with MDD remain largely unknown. Here we conducted genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) and gene expression (RNA-seq) in peripheral blood monocytes from 79 monozygotic twin pairs (mean age 38.2 ± 15.6 years) discordant on lifetime history of MDD to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with MDD, followed by replication in brain tissue samples. Integrative DNA methylome and transcriptome analysis and network analysis was performed to identify potential functional epigenetic determinants for MDD. We identified 39 DMRs and 30 DEGs associated with lifetime history of MDD. Some genes were replicated in postmortem brain tissue. Integrative DNA methylome and transcriptome analysis revealed both negative and positive correlations between DNA methylation and gene expression, but the correlation pattern varies greatly by genomic locations. Network analysis revealed distinct gene modules enriched in signaling pathways related to stress responses, neuron apoptosis, insulin receptor signaling, mTOR signaling, and nerve growth factor receptor signaling, suggesting potential functional relevance to MDD. These results demonstrated that altered DNA methylation and gene expression in peripheral blood monocytes are associated with MDD. Our results highlight the utility of using peripheral blood epigenetic markers and demonstrate that a monozygotic discordant co-twin control design can aid in the discovery of novel genes associated with MDD. If validated, the newly identified genes may serve as novel biomarkers or druggable targets for MDD and related disorders.
Collapse
Affiliation(s)
- Yun Zhu
- 0000 0004 1936 8091grid.15276.37Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL USA
| | - Eric Strachan
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Emily Fowler
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Tamara Bacus
- 0000000122986657grid.34477.33Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Peter Roy-Byrne
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
94
|
Zhang H, Ding L, Shen T, Peng D. HMGB1 involved in stress-induced depression and its neuroinflammatory priming role: a systematic review. Gen Psychiatr 2019; 32:e100084. [PMID: 31552388 PMCID: PMC6738663 DOI: 10.1136/gpsych-2019-100084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Evidence from clinical and preclinical studies has demonstrated that stress can cause depressive-like symptoms including anhedonia and psychomotor retardation, namely, the manifestation of motivational deficits in depression. The proximate mediator of linking social-environmental stress with internal motivational deficits remains elusive, although substantial studies proposed neural endocrine mechanisms. As an endogenous danger-associated molecule, high mobility group box-1 (HMGB1) is necessary and sufficient for stress-induced sensitization of innate immune cells and subsequent (neuro)inflammation. Aim This review aims to provide evidence to unveil the potential mechanism of the relationship between motivational deficits and stress in depression. Methods We reviewed original case-control studies investigating the association between HMGB1-mediated inflammation and stress-induced depression. The literature search of Pubmed and Web of Science electronic database from inception up to March 28th, 2019 were conducted by two independent authors. We performed a qualitative systematic review approach to explore the correlation between HMGB1-mediated inflammation and anhedonia/psychomotor retardation in depression. Results A total of 69 studies based on search strategy were retrieved and seven eligible studies met the inclusion criteria. Studies showed that HMGB1 was implicated with depressive-like behaviors, which are similar with motivational deficits. Furthermore, HMGB1-mediated inflammation in depressive-like behaviors may be involved in Nod-like receptor family pyrin domain containing three (NLRP3) inflammasome and proinflammatory cytokines, abnormal kynurenine pathway and imbalance between neuroprotective and neurotoxic factors. Conclusions We found that stress-induced inflammation mediated by HMGB1 may affect motivational deficits through regulating dopamine pathway in corticostriatal neurocircuitry. The systematic review may shed light on the novel neurobiological underpinning for treatment of motivation deficits in depression.
Collapse
Affiliation(s)
- Huifeng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
95
|
Inanli I, Aydin M, Çaliskan AM, Eren I. Neutrophil/lymphocyte ratio, monocyte/lymphocyte ratio, and mean platelet volume as systemic inflammatory markers in different states of bipolar disorder. Nord J Psychiatry 2019; 73:372-379. [PMID: 31304832 DOI: 10.1080/08039488.2019.1640789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Currently, increasing evidence supports the hypothesis that alterations in the immune-inflammatory system are critical for the pathophysiology of bipolar disorder (BD). Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), and mean platelet volume (MPV) have recently been investigated as inexpensive and simple inflammatory markers. Aims: The aim of this study is to compare NLR, PLR, MLR, and MPV in depressive, manic, and euthymic patients with BD and healthy controls, and to evaluate whether values of NLR, PLR, MLR, and MPV are possible state or trait biomarkers in BD. Methods: This retrospective study was conducted with 341 patients with BD (100 patients in a depressive state, 141 patients in a manic state, and 100 patients in a euthymic state) and 114 healthy controls. Results: We found that patients with BD in manic states had higher levels of MPV, NLR, and MLR, and patients with BD in depressive states had higher levels of MPV than the controls. Moreover, MPV predicted all states of BD, while NLR and MLR predicted the manic state of BD. Conclusions: NLR, MLR, and MPV obtained from simple and inexpensive blood tests were significantly higher in patients with BD than in healthy controls, which each imply low-grade inflammation. MPV may serve as a possible trait biomarker of BD, while NLR and MLR may both serve as possible state biomarkers of the manic state.
Collapse
Affiliation(s)
- Ikbal Inanli
- a Clinic of Psychiatry, University of Health Sciences, Konya Research and Training Hospital , Konya , Turkey
| | - Memduha Aydin
- b Faculty of Medicine, Clinic of Psychiatry, Selcuk University , Konya , Turkey
| | - Ali Metehan Çaliskan
- a Clinic of Psychiatry, University of Health Sciences, Konya Research and Training Hospital , Konya , Turkey
| | - Ibrahim Eren
- a Clinic of Psychiatry, University of Health Sciences, Konya Research and Training Hospital , Konya , Turkey
| |
Collapse
|
96
|
Total and Differential White Blood Cell Counts, Cocaine, and Marijuana Use in Patients With Schizophrenia. J Nerv Ment Dis 2019; 207:633-636. [PMID: 31232907 DOI: 10.1097/nmd.0000000000001019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is associated with blood inflammatory marker abnormalities. Illicit drug use, which is common in schizophrenia, may modulate inflammatory marker levels. We examined effects of marijuana and cocaine use on white blood cell (WBC) counts in acutely ill, hospitalized patients with schizophrenia using a within-subjects and between-groups design. Mean total and differential WBC counts were first compared in acutely ill patients with schizophrenia for hospitalizations with and without either marijuana (n = 18) or cocaine (n = 24) use. Mean total and differential WBC counts were then compared between patients with schizophrenia with either marijuana or cocaine use and patients with a negative urine drug screen (UDS; n = 43). Patients with schizophrenia had significantly higher total WBC, lymphocytes, and monocytes during hospitalizations with (vs. without) cocaine use. Patients with cocaine use also had significantly higher monocytes and eosinophils than those with a negative UDS. Our findings suggest that substance use, particularly of cocaine, may modulate inflammatory marker levels in acutely ill, hospitalized patients with schizophrenia.
Collapse
|
97
|
Novel Treatment Targets Based on Insights in the Etiology of Depression: Role of IL-6 Trans-Signaling and Stress-Induced Elevation of Glutamate and ATP. Pharmaceuticals (Basel) 2019; 12:ph12030113. [PMID: 31362361 PMCID: PMC6789839 DOI: 10.3390/ph12030113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation and psychological stress are risk factors for major depression and suicide. Both increase central glutamate levels and activate the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Both factors also affect the function of the chloride transporters, Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2), and provoke interleukin-6 (IL-6) trans-signaling. This leads to measurable increases in circulating corticosteroids, catecholamines, anxiety, somatic and psychological symptoms, and a decline in cognitive functions. Recognition of the sequence of pathological events allows the prediction of novel targets for therapeutic intervention. Amongst others, these include blockade of the big-K potassium channel, blockade of the P2X4 channel, TYK2-kinase inhibition, noradrenaline α2B-receptor antagonism, nicotinic α7-receptor stimulation, and the Sgp130Fc antibody. A better understanding of downstream processes evoked by inflammation and stress also allows suggestions for tentatively better biomarkers (e.g., SERPINA3N, MARCKS, or 13C-tryptophan metabolism).
Collapse
|
98
|
Wang L, Wang R, Liu L, Qiao D, Baldwin DS, Hou R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav Immun 2019; 79:24-38. [PMID: 30797959 DOI: 10.1016/j.bbi.2019.02.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Peripheral levels of inflammatory markers are elevated in major depressive disorder (MDD). Selective serotonin reuptake inhibitors (SSRIs) affect levels of inflammatory markers in patients with MDD, but studies have reported inconsistent findings. This systematic review and meta-analysis aims to investigate the effects of SSRI treatment on peripheral levels of a range of inflammatory markers in MDD patients. METHODS Systematic literature search (Pubmed, Web of Science, Embase, Cochrane) for studies published before November 2018. Studies were included if they used SSRI monotherapy and peripheral levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ were measured before and after treatment in patients with MDD. Meta-analysis was conducted using Comprehensive Meta-analysis (version 2). Effect sizes were calculated using bias-corrected standardized mean difference (Hedges' g) between pre- and post-treatment. Sub-group analyses, meta-regression and publication bias estimates were undertaken; sensitivity analyses were performed using different estimated pre- and post-treatment correlations and after removing poor quality studies. RESULTS Twenty two eligible studies including 827 MDD patients were included in the meta-analysis: fifteen studies for IL-6; eleven for TNF-α; eight for IL-10; seven for IL-1β; six for IL-4; five for IL-2; and four for IFN-γ. The pooled effect estimate indicates SSRI treatment decreased levels of pro-inflammatory markers IL-6 (Hedges' g, -0.418; 95%CI, -0.663 to -0.174; I2 = 89.412), TNF-α (Hedges' g, -0.554; 95%CI, -0.990 to -0.118; I2 = 95.438) and IL-1β (Hedges' g = -0.574; 95%CI, -1.014 to -0.135; I2 = 91.622), and anti-inflammatory marker IL-10 (Hedges' g = -0.615; 95%CI, -0.989 to -0.242; I2 = 90.406). There were no significant treatment effects on levels of IL-2, IL-4, or IFN-γ. There was a high level of heterogeneity between studies. Sensitivity analyses indicated the robustness of the primary analyses. CONCLUSIONS The current review and meta-analysis indicates moderate immunomodulating effects of SSRI treatment for MDD, which suggests SSRIs may owe some of their therapeutic effect to their anti-inflammatory properties. High heterogeneity across studies may limit interpretation of the findings and larger randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Lina Wang
- Department of Psychiatry, Shandong Mental Health Centre, Jinan, Shandong 250014 China
| | - Ruzhan Wang
- Department of Psychiatry, Shandong Mental Health Centre, Jinan, Shandong 250014 China
| | - Lanfen Liu
- Department of Psychiatry, Shandong Mental Health Centre, Jinan, Shandong 250014 China
| | - Dongdong Qiao
- Department of Psychiatry, Shandong Mental Health Centre, Jinan, Shandong 250014 China
| | - David S Baldwin
- Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruihua Hou
- Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
99
|
Ascoli BM, Parisi MM, Bristot G, Antqueviezc B, Géa LP, Colombo R, Kapczinski F, Guma FTCR, Brietzke E, Barbé-Tuana FM, Rosa AR. Attenuated inflammatory response of monocyte-derived macrophage from patients with BD: a preliminary report. Int J Bipolar Disord 2019; 7:13. [PMID: 31152269 PMCID: PMC6544740 DOI: 10.1186/s40345-019-0148-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Innate immune system dysfunction has been recognized as an important element in the pathophysiology of bipolar disorder (BD). We aimed to investigate whether there are differences in the response of macrophages derived from patients in the early stages and late stages of BD and healthy subjects. METHODS Human monocytes purified from peripheral blood mononuclear cells (PBMCs) of patients with BD type I (n = 18)-further classified into early- and late stage BD patients according to their functioning- and from healthy individuals (n = 10) were differentiated into macrophages in vitro. Monocyte-derived macrophages (M) were exposed to IFNγ plus LPS-M(IFNγ + LPS)- or IL-4-M(IL-4)-to induce their polarization into the classical (also called M1) or alternative (also called M2) activation phenotypes, respectively; or either Mψ were not exposed to any stimuli characterizing the resting state (denominated M0). In vitro secretion of cytokines, such as IL-1β, IL-6, IL-10, and TNF-α, was used as an index of macrophage activity. RESULTS M(IFNγ + LPS) from late-stage BD patients produced less amount of IL-1β, IL-6, and IL-10 when compared to early-stage BD patients and healthy controls. Following alternative activation, M(IL-4) derived from late-stage patients secreted less IL-6 compared to the other groups. TNFα was less secreted by all macrophage phenotypes derived from late-stage patients when compared to healthy controls only (p < 0.005). Mψ from late-stage patients exhibited lower production of IL-1β and IL-10 compared to macrophages from healthy subjects and early-stage patients respectively. Interestingly, cytokines secretion from M(IFNγ + LPS), M(IL-4) and Mψ were similar between early-stage patients and healthy controls. CONCLUSION Our results suggest a progressive dysfunction in the response of peripheral innate immune cells of BD patients in the late stages of the illness. This failure in the regulation of the immune system function may be implicated in the multisystemic progression of BD.
Collapse
Affiliation(s)
- Bruna M Ascoli
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil.,Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil
| | - Mariana M Parisi
- Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil.,Postgraduate Program in Biological Sciences: Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil
| | - Bárbara Antqueviezc
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil
| | - Luiza P Géa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil.,Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratory of Pharmacology and Physiology, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, RS, Brazil
| | - Flávio Kapczinski
- Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.,St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON, Canada
| | - Fátima Theresinha Costa Rodrigues Guma
- Postgraduate Program in Biological Sciences: Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil.,Laboratory of Biochemistry and Cellular Biology of Lipids, Department of Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, Brazil
| | - Elisa Brietzke
- Mood Disorders Molecular and Behavioral Neurosciences Research Group, Department of Psychiatry, Universidade Federal de São Paulo (USP), Rua Sena Madureira, 1500, São Paulo, SP, Brazil
| | - Florencia M Barbé-Tuana
- Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil.,Postgraduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, Brazil
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, Brazil. .,Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil. .,Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rua Sarmento Leite 500, Porto Alegre, RS, Brazil.
| |
Collapse
|
100
|
Sneeboer MAM, Snijders GJLJ, Berdowski WM, Fernández-Andreu A, van Mierlo HC, Berdenis van Berlekom A, Litjens M, Kahn RS, Hol EM, de Witte LD. Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry 2019; 9:153. [PMID: 31127084 PMCID: PMC6534632 DOI: 10.1038/s41398-019-0490-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic, epidemiological, and biomarker studies suggest that the immune system is involved in the pathogenesis of bipolar disorder (BD). It has therefore been hypothesized that immune activation of microglia, the resident immune cells of the brain, is associated with the disease. Only a few studies have addressed the involvement of microglia in BD so far and a more detailed immune profiling of microglial activation is lacking. Here, we applied a multi-level approach to determine the activation state of microglia in BD post-mortem brain tissue. We did not find differences in microglial density, and mRNA expression of microglial markers in the medial frontal gyrus (MFG) of patients with BD. Furthermore, we performed in-depth characterization of human primary microglia isolated from fresh brain tissue of the MFG, superior temporal gyrus (STG), and thalamus (THA). Similarly, these ex vivo isolated microglia did not show elevated expression of inflammatory markers. Finally, challenging the isolated microglia with LPS did not result in an increased immune response in patients with BD compared to controls. In conclusion, our study shows that microglia in post-mortem brain tissue of patients with BD are not immune activated.
Collapse
Affiliation(s)
- Marjolein A M Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands.
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Woutje M Berdowski
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Alba Fernández-Andreu
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Hans C van Mierlo
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Manja Litjens
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, an Institute of The Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|