51
|
Robertson RC, Seira Oriach C, Murphy K, Moloney GM, Cryan JF, Dinan TG, Paul Ross R, Stanton C. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav Immun 2017; 59:21-37. [PMID: 27423492 DOI: 10.1016/j.bbi.2016.07.145] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurodevelopment is strongly influenced by maternal and early-postnatal diet. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are vital structural and functional components of the developing brain. The gut microbiota is also influenced by n-3 PUFA status, however, little is known about the role of maternal and early-life n-3 PUFA intake on offspring gut microbiota development and subsequent interactions with central nervous system functioning and behavioural outcomes. METHODS Pregnant female C57BL/6 mice and their male offspring were fed a control (CON), omega-3 deficient (O3-) or omega-3 supplemented (O3+) diet. Cognitive, depressive and social behaviours were assessed through a battery of behaviour tests in the male offspring at both adolescence (week 4-5) and adulthood (week 11-13). Hypothalamic-pituitary-adrenal axis (HPA) activation was assessed by analysis of stress-induced corticosterone production. Fecal microbiota composition was analysed by 16S sequencing at both adolescent and adulthood. In addition, stimulated spleen cytokine levels were assessed. RESULTS n-3 PUFA interventions induced subtle changes in offspring early-life and adolescent behaviours, which were further evident in adulthood, such that O3- animals displayed impaired communication, social and depression-related behaviours and O3+ animals displayed enhanced cognition. O3- mice displayed an elevated Firmicutes:Bacteroidetes ratio and blunted systemic LPS responsiveness. Contrastingly, O3+ mice displayed greater fecal Bifidobacterium and Lactobacillus abundance and dampened HPA-axis activity. CONCLUSIONS Neurobehavioural development related to cognitive, anxiety and social behaviours, is highly dependent upon in utero and lifelong n-3 PUFA availability. In addition, neurobehavioural changes induced by altering n-3 PUFA status are closely associated with comprehensive alterations in gut microbiota composition, HPA-axis activity and inflammation.
Collapse
Affiliation(s)
- Ruairi C Robertson
- School of Microbiology, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Clara Seira Oriach
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - Kiera Murphy
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - R Paul Ross
- School of Science Engineering and Food Science, University College Cork, Ireland
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland.
| |
Collapse
|
52
|
Pusceddu MM, Kelly P, Stanton C, Cryan JF, Dinan TG. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology. Int J Neuropsychopharmacol 2016; 19:pyw078. [PMID: 27608809 PMCID: PMC5203760 DOI: 10.1093/ijnp/pyw078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer's disease. DESIGN Relevant literature was identified through a search of MEDLINE via PubMed using the following words, "n-3 PUFAs," "EPA," and "DHA" in combination with "stress," "cognition," "ADHD," "anxiety," "depression," "bipolar disorder," "schizophrenia," and "Alzheimer." The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. RESULTS The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. CONCLUSIONS Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Philip Kelly
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland (Drs Pusceddu, Cryan, and Dinan); Teagasc, Moorepark, Cork, Ireland (Drs Kelly and Stanton); Department of Anatomy and Neuroscience (Dr Cryan), and Department of Psychiatry and Neurobehavioural Science (Dr Dinan), University College Cork, Cork, Ireland.
| |
Collapse
|
53
|
Zamberletti E, Piscitelli F, De Castro V, Murru E, Gabaglio M, Colucci P, Fanali C, Prini P, Bisogno T, Maccarrone M, Campolongo P, Banni S, Rubino T, Parolaro D. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system. J Lipid Res 2016; 58:301-316. [PMID: 27903595 DOI: 10.1194/jlr.m068387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Busto Arsizio (VA), Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Valentina De Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Busto Arsizio (VA), Italy
| | - Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Chiara Fanali
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Busto Arsizio (VA), Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Busto Arsizio (VA), Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Busto Arsizio (VA), Italy .,Zardi Gori Foundation, Milan, Italy
| |
Collapse
|
54
|
Shi Z, Ren H, Huang Z, Peng Y, He B, Yao X, Yuan TF, Su H. Fish Oil Prevents Lipopolysaccharide-Induced Depressive-Like Behavior by Inhibiting Neuroinflammation. Mol Neurobiol 2016; 54:7327-7334. [PMID: 27815837 DOI: 10.1007/s12035-016-0212-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
Abstract
Depression is associated with somatic immune changes, and neuroinflammation is now recognized as hallmark for depressive disorders. N-3 (or omega-3) polyunsaturated fatty acids (PUFAs) are well known to suppress neuroinflammation, reduce oxidative stress, and protect neuron from injury. We pretreated animals with fish oil and induced acute depression-like behaviors with systemic lipopolysaccharide (LPS) injection. The levels of cytokines and stress hormones were determined from plasma and different brain areas. The results showed that fish oil treatment prevent LPS-induce depressive behavior by suppression of neuroinflammation. LPS induced acute neuroinflammation in different brain regions, which were prevented in fish oil fed mice. However, neither LPS administration nor fish oil treatment has strong effect on stress hormone secretion in the hypothalamus and adrenal. Fish oil might provide a useful therapy against inflammation-associated depression.
Collapse
Affiliation(s)
- Zhe Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhijian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Baixuan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
55
|
Axelsen PH, Murphy RC, Igarashi M, Rapoport SI. Increased ω6-Containing Phospholipids and Primary ω6 Oxidation Products in the Brain Tissue of Rats on an ω3-Deficient Diet. PLoS One 2016; 11:e0164326. [PMID: 27788153 PMCID: PMC5082804 DOI: 10.1371/journal.pone.0164326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/25/2016] [Indexed: 02/04/2023] Open
Abstract
Polyunsaturated fatty acyl (PUFA) chains in both the ω3 and ω6 series are essential for normal animal brain development, and cannot be interconverted to compensate for a dietary deficiency of one or the other. Paradoxically, a dietary ω3-PUFA deficiency leads to the accumulation of docosapentaenoate (DPA, 22:5ω6), an ω6-PUFA chain that is normally scarce in the brain. We applied a high-precision LC/MS method to characterize the distribution of DPA chains across phospholipid headgroup classes, the fatty acyl chains with which they were paired, and the extent to which they were oxidatively damaged in the cortical brain of rats on an ω3-deficient diet. Results indicate that dietary ω3-PUFA deficiency markedly increased the concentrations of phospholipids with DPA chains across all headgroup subclasses, including plasmalogen species. The concentrations of phospholipids containing docosahexaenoate chains (22:6ω3) decreased 20-25%, while the concentrations of phospholipids containing arachidonate chains (20:4ω6) did not change significantly. Although DPA chains are more saturated than DHA chains, a larger fraction of DPA chains were monohydroxylated, particularly among diacyl-phosphatidylethanolamines and plasmalogen phosphatidylethanolamines, suggesting that they were disproportionately subjected to oxidative stress. Differences in the pathological significance of ω3 and ω6 oxidation products suggest that greater oxidative damage among the ω6 PUFAs that increase in response to dietary ω3 deficiency may have pathological significance in Alzheimer's disease.
Collapse
Affiliation(s)
- Paul H. Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104–6084, United States of America
- * E-mail:
| | - Robert C. Murphy
- Department of Pharmacology, Mail Stop 8303, University of Colorado at Denver Health Sciences Center, Aurora, CO, 80045–0511, United States of America
| | - Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, United States of America
| |
Collapse
|
56
|
Nemeth M, Millesi E, Puehringer-Sturmayr V, Kaplan A, Wagner KH, Quint R, Wallner B. Sex-specific effects of dietary fatty acids on saliva cortisol and social behavior in guinea pigs under different social environmental conditions. Biol Sex Differ 2016; 7:51. [PMID: 27688870 PMCID: PMC5034672 DOI: 10.1186/s13293-016-0107-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unbalanced dietary intakes of saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can profoundly influence the hypothalamic-pituitary-adrenal (HPA)-axis and glucocorticoid secretions in relation to behavioral performances. The beneficial effects of higher dietary PUFA intakes and PUFA:SFA ratios may also affect social interactions and social-living per se, where adequate physiological and behavioral responses are essential to cope with unstable social environmental conditions. METHODS Effects of diets high in PUFAs or SFAs and a control diet were investigated in male and female guinea pigs after 60 days of supplementation. Plasma fatty acid patterns served as an indicator of the general fatty acid status. HPA-axis activities, determined by measuring saliva cortisol concentrations, social behaviors, and hierarchy ranks were analyzed during group housing of established single-sexed groups and during challenging social confrontations with unfamiliar individuals of the other groups. RESULTS The plasma PUFA:SFA ratio was highest in PUFA supplemented animals, with female levels significantly exceeding males, and lowest in SFA animals. SFA males and females showed increased saliva cortisol levels and decreased aggressiveness during group housing, while sociopositive behaviors were lowest in PUFA males. Males generally showed higher cortisol increases in response to the challenging social confrontations with unfamiliar individuals than females. While increasing cortisol concentrations were detected in control and PUFA animals, no such effect was found in SFA animals. During social confrontations, PUFA males showed higher levels of agonistic and sociopositive behaviors and also gained higher dominance ranks among males, which was not detected for females. CONCLUSIONS While SFAs seemingly impaired cortisol responses and social behaviors, PUFAs enabled adequate behavioral responses in male individuals under stressful new social environmental conditions. This sex-specific effect was possibly related to a general sex difference in the n-3 PUFA bioavailability and cortisol responses, which may indicate that males are more susceptible to changing environmental conditions, and shows how dietary fatty acids can shape social systems.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Arthur Kaplan
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
57
|
Dinel AL, Rey C, Bonhomme C, Le Ruyet P, Joffre C, Layé S. Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice. Prostaglandins Leukot Essent Fatty Acids 2016; 109:29-38. [PMID: 27269711 DOI: 10.1016/j.plefa.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022]
Abstract
Mimicking the breast milk lipid composition appears to be necessary for infant formula to cover the brain's needs in n-3 PUFA. In this study, we evaluated the impact of partial replacement of vegetable oil (VL) in infant formula by dairy fat (DL) on docosahexaenoic acid (DHA) brain level, neuroplasticity and corticosterone in mice. Mice were fed with balanced VL or balanced DL diets enriched or not in DHA and arachidonic acid (ARA) from the first day of gestation. Brain DHA level, microglia number, neurogenesis, corticosterone and glucocorticoid receptor expression were measured in the offsprings. DL diet increased DHA and neuroplasticity in the brain of mice at postnatal day (PND) 14 and at adulthood compared to VL. At PND14, ARA and DHA supplementation increased DHA in VL but not in DL mice brain. Importantly, DHA and ARA supplementation further improved neurogenesis and decreased corticosterone level in DL mice at adulthood. In conclusion, dairy lipids improve brain DHA level and neuroplasticity.
Collapse
Affiliation(s)
- A L Dinel
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - C Rey
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France; ITERG, Institut des Corps Gras, 33600 Pessac, France
| | - C Bonhomme
- Lactalis Nutrition Europe, Torce F-35370, France
| | | | - C Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - S Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
58
|
McNamara RK. Role of Omega-3 Fatty Acids in the Etiology, Treatment, and Prevention of Depression: Current Status and Future Directions. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016; 5:96-106. [PMID: 27766299 DOI: 10.1016/j.jnim.2016.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past three decades a body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of major depressive disorder (MDD). Cross-national and cross-sectional data suggest that greater habitual intake of preformed EPA+DHA is associated with reduced risk for developing depressive symptoms and syndromal MDD. Erythrocyte EPA and DHA composition is highly correlated with habitual fish or fish oil intake, and case-control studies have consistently observed lower erythrocyte EPA and/or DHA levels in patients with MDD. Low erythrocyte EPA+DHA composition may also be associated with increased risk for suicide and cardiovascular disease, two primary causes of excess premature mortality in MDD. While controversial, dietary EPA+DHA supplementation may have antidepressant properties and may augment the therapeutic efficacy of antidepressant medications. Neuroimaging and rodent neurodevelopmental studies further suggest that low LCn-3 fatty acid intake or biostatus can recapitulate central pathophysiological features associated with MDD. Prospective findings suggest that low LCn-3 fatty acid biostatus increases risk for depressive symptoms in part by augmenting pro-inflammatory responsivity. When taken collectively, these translational findings provide a strong empirical foundation in support of dietary LCn-3 fatty acid deficiency as a modifiable risk factor for MDD. This review provides an overview of this translational evidence and then discusses future directions including strategies to translate this evidence into routine clinical screening and treatment algorithms.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0516
| |
Collapse
|
59
|
Tang M, Zhang M, Cai H, Li H, Jiang P, Dang R, Liu Y, He X, Xue Y, Cao L, Wu Y. Maternal diet of polyunsaturated fatty acid altered the cell proliferation in the dentate gyrus of hippocampus and influenced glutamatergic and serotoninergic systems of neonatal female rats. Lipids Health Dis 2016; 15:71. [PMID: 27048382 PMCID: PMC4822267 DOI: 10.1186/s12944-016-0236-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Background Long-chain polyunsaturated fatty acids (PUFAs) are major components of the phospholipids that forming the cell membrane. Insufficient availability of PUFAs during prenatal period decreases accretion of docosahexaenoic acid (DHA) in the developing brain. DHA deficiency is associated with impaired attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies on the potential benefits of dietary DHA supplementation to neural development have yielded conflicting results. Methods To further investigate the neurochemical influence of maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of neonatal female rats by HPLC-MS/MS. Meanwhile, the cell proliferation of neonatal rats was investigated using immunefluorescence. Results Different maternal n-3 PUFAs dietary influenced the FA composition, cell proliferation in the dentate gyrus of hippocampus and the contents of γ-aminobutyric acid (GABA), glutamine (GLN), dopamine (DA) and its metabolites [3,4- dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA)], norepinephrine (NE), vanilmandelic acid (VMA) and 5-HT turnover in the brain of neonatal rats. However, the mRNA expression of key synthase of neurotransmitters remains stable. Conclusions Our study showed that maternal deficiency of n-3 PUFAs might play an important role in central nervous system of neonatal female rats mainly through impairing the normal neurogenesis and influencing glutamatergic system and 5-HT turnover. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0236-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lingjuan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
60
|
Malki K, Tosto MG, Pain O, Sluyter F, Mineur YS, Crusio WE, de Boer S, Sandnabba KN, Kesserwani J, Robinson E, Schalkwyk LC, Asherson P. Comparative mRNA analysis of behavioral and genetic mouse models of aggression. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:427-36. [PMID: 26888158 DOI: 10.1002/ajmg.b.32424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022]
Abstract
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Maria G Tosto
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom.,Laboratory for Cognitive Investigations and Behavioral Genetics, Tomsk State University, Tomsk, Russia
| | - Oliver Pain
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frans Sluyter
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Yann S Mineur
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Wim E Crusio
- Aquitaine Institute for Cognitive and Integrative Neuroscience, University of Bordeaux, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Sietse de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth N Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Jad Kesserwani
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Edward Robinson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
61
|
Ramsden CE, Ringel A, Majchrzak-Hong SF, Yang J, Blanchard H, Zamora D, Loewke JD, Rapoport SI, Hibbeln JR, Davis JM, Hammock BD, Taha AY. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids: Implications for idiopathic pain syndromes? Mol Pain 2016; 12:1744806916636386. [PMID: 27030719 PMCID: PMC4955998 DOI: 10.1177/1744806916636386] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. RESULTS Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. CONCLUSIONS The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA Department of Physical Medicine and Rehabilitation, University of North Carolina-Chapel Hill, NC, USA
| | - Amit Ringel
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sharon F Majchrzak-Hong
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, USA UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | | | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - James D Loewke
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I Rapoport
- UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | - Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - John M Davis
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, USA UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | - Ameer Y Taha
- National Institute on Aging, Bethesda, MD, USA Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis, CA, USA
| |
Collapse
|
62
|
Non-targeted metabolite profiling reveals changes in oxidative stress, tryptophan and lipid metabolisms in fearful dogs. Behav Brain Funct 2016; 12:7. [PMID: 26867941 PMCID: PMC4751666 DOI: 10.1186/s12993-016-0091-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
Background Anxieties, such as shyness, noise phobia and separation anxiety, are common but poorly understood behavioural problems in domestic dogs, Canis familiaris. Although studies have demonstrated genetic and environmental contributions to anxiety pathogenesis, better understanding of the molecular underpinnings is needed to improve diagnostics, management and treatment plans. As a part of our ongoing canine anxiety genetics efforts, this study aimed to pilot a metabolomics approach in fearful and non-fearful dogs to identify candidate biomarkers for more objective phenotyping purposes and to refer to potential underlying biological problem. Methods We collected whole blood samples from 10 fearful and 10 non-fearful Great Danes and performed a liquid chromatography combined with mass spectrometry (LC–MS)-based non-targeted metabolite profiling. Results Non-targeted metabolomics analysis detected six 932 metabolite entities in four analytical modes [RP and HILIC; ESI(−) and ESI(+)], of which 239 differed statistically between the test groups. We identified changes in 13 metabolites (fold change ranging from 1.28 to 2.85) between fearful and non-fearful dogs, including hypoxanthine, indoxylsulfate and several phospholipids. These molecules are involved in oxidative stress, tryptophan and lipid metabolisms. Conclusions We identified significant alterations in the metabolism of fearful dogs, and some of these changes appear relevant to anxiety also in other species. This pilot study demonstrates the feasibility of the non-targeted metabolomics and warrants a larger replication study to confirm the role of the identified biomarkers and pathways in canine anxiety.
Collapse
|
63
|
Messamore E, McNamara RK. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation. Lipids Health Dis 2016; 15:25. [PMID: 26860589 PMCID: PMC4748485 DOI: 10.1186/s12944-016-0196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case–control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice.
Collapse
Affiliation(s)
- Erik Messamore
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.,Lindner Center of HOPE, Mason, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.
| |
Collapse
|
64
|
Taha AY, Chang L, Chen M. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid. Prostaglandins Leukot Essent Fatty Acids 2016; 105:26-34. [PMID: 26869088 PMCID: PMC4752724 DOI: 10.1016/j.plefa.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) required to maintain brain (14)C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. METHODS Fischer-344 (CDF) male rat pups (18-21 days old) were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% ("n-3 adequate"), 3.6%, 2.7%, 0.9% or 0.2% ("n-3 deficient") α-LNA for 15 weeks. Rats were intravenously infused with (14)C-DHA to steady state for 5 min, serial blood samples collected to obtain plasma, and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, J(in). RESULTS Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (J(in)) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. CONCLUSION Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
65
|
Hamer M, Dye L, Siobhan Mitchell E, Layé S, Saunders C, Boyle N, Schuermans J, Sijben J. Examining techniques for measuring the effects of nutrients on mental performance and mood state. Eur J Nutr 2016; 55:1991-2000. [PMID: 26744300 PMCID: PMC5009169 DOI: 10.1007/s00394-015-1143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
Abstract
Purpose Intake of specific nutrients has been linked to mental states and various indices of cognitive performance although the effects are often subtle and difficult to interpret. Measurement of so-called objective variables (e.g. reaction times) is often considered to be the gold standard for assessing outcomes in this field of research. It can, however, be argued that data on subjective experience (e.g. mood) are also important and may enrich existing objective data. The aim of this review is to evaluate methods for measuring mental performance and mood, considering the definition of subjective mood and the validity of measures of subjective experience. Methods A multi-stakeholder expert group was invited by ILSI Europe to come to a consensus around the utility of objective and subjective measurement in this field, which forms the basis of the paper. Therefore, the present review reflects a succinct overview of the science but is not intended to be a systematic review. Results The proposed approach extends the traditional methodology using standard ‘objective’ measurements to also include the consumers’ subjective experiences in relation to food. Specific recommendations include 1) using contemporary methods to capture transient mood states; 2) using sufficiently sensitive measures to capture effects of nutritional intervention; 3) considering the possibility that subjective and objective responses will occur over different time frames; and 4) recognition of the importance of expectancy and placebo effects for subjective measures. Conclusions The consensus reached was that the most informative approach should involve collection and consideration of both objective and subjective data.
Collapse
Affiliation(s)
- Mark Hamer
- Department Epidemiology and Public Health, Psychobiology Group, University College London, 1 - 19 Torrington Place, London, WC1E 7HB, UK
| | - Louise Dye
- Human Appetite Research Unit, Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | | | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, 33000, Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Université Bordeaux, 33000, Bordeaux, France
| | - Caroline Saunders
- PepsiCo, 450 South Oak Way, Green Park, Reading, RG2 6UW, UK.,Lucozade Ribena Suntory Ltd, 2 Longwalk Road, Stockley Park, Uxbridge, UB11 1BA, UK
| | - Neil Boyle
- Human Appetite Research Unit, Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | - Jeroen Schuermans
- ILSI Europe, Brussels, Belgium, International Life Sciences Institute, Europe, 83 Avenue E. Mounier, B6, Brussels, BE, 1200, USA.
| | - John Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| |
Collapse
|
66
|
Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits. Neural Plast 2015; 2016:8574830. [PMID: 27057368 PMCID: PMC4710953 DOI: 10.1155/2016/8574830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.
Collapse
|
67
|
Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, Yamada T, Arai H, Kang JX, Katagiri H, Shibata H, Innis SM, Arita M, Osumi N. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells 2015; 34:470-82. [DOI: 10.1002/stem.2246] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Nobuyuki Sakayori
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Emiko Kiryu
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Kaichi Yoshizaki
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroyuki Arai
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Jing X. Kang
- Department of Medicine; Massachusetts General Hospital and Harvard Medical School; Massachusetts USA
| | - Hideki Katagiri
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Sheila M. Innis
- Department of Paediatrics; Child and Family Research Institute, University of British Columbia; Vancouver Canada
| | - Makoto Arita
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
- Laboratory for Metabolomics, Center for Integrative Medical Sciences, RIKEN; Kanagawa Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| |
Collapse
|
68
|
Jin Y, Park Y. N-3 polyunsaturated fatty acids and 17β-estradiol injection induce antidepressant-like effects through regulation of serotonergic neurotransmission in ovariectomized rats. J Nutr Biochem 2015; 26:970-7. [DOI: 10.1016/j.jnutbio.2015.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
69
|
Smith JM. Breastfeeding and language outcomes: A review of the literature. JOURNAL OF COMMUNICATION DISORDERS 2015; 57:29-40. [PMID: 26028604 DOI: 10.1016/j.jcomdis.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 05/15/2023]
Abstract
UNLABELLED Many researchers have investigated the potential impact of breastfeeding in infancy on a child's subsequent development, but only a small subset of these studies considers language development and impairment. This paper reviews that literature, discussing postnatal neurodevelopment, potential mechanisms for dietary influences on communication outcomes, studies of typically developing children, and studies of children with communication concerns. For population based studies of language development, a modest but statistically robust relationship is seen across large samples that account for breastfeeding exclusivity. A similar protective relationship is seen in studies that evaluate the relationship between breastfeeding and language disorders; effect sizes are typically larger in these papers. Implications for researchers and service providers are reviewed. LEARNING OUTCOMES Readers will be able to describe possible mechanisms by which early diet might influence neurodevelopment. They will be able to describe the relationships observed between diet in infancy and language outcomes in large population-based studies, as well as the trends observed in studies of the relationship between infant diet and communication impairment.
Collapse
|
70
|
Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1052-65. [DOI: 10.1016/j.bbalip.2014.12.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/06/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022]
|
71
|
Patients undergoing elective coronary artery bypass grafting exhibit poor pre-operative intakes of fruit, vegetables, dietary fibre, fish and vitamin D. Br J Nutr 2015; 113:1466-76. [PMID: 25827177 DOI: 10.1017/s0007114515000434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CHD may ensue from chronic systemic low-grade inflammation. Diet is a modifiable risk factor for both, and its optimisation may reduce post-operative mortality, atrial fibrillation and cognitive decline. In the present study, we investigated the usual dietary intakes of patients undergoing elective coronary artery bypass grafting (CABG), emphasising on food groups and nutrients with putative roles in the inflammatory/anti-inflammatory balance. From November 2012 to April 2013, we approached ninety-three consecutive patients (80% men) undergoing elective CABG. Of these, fifty-five were finally included (84% men, median age 69 years; range 46-84 years). The median BMI was 27 (range 18-36) kg/m(2). The dietary intake items were fruits (median 181 g/d; range 0-433 g/d), vegetables (median 115 g/d; range 0-303 g/d), dietary fibre (median 22 g/d; range 9-45 g/d), EPA+DHA (median 0.14 g/d; range 0.01-1.06 g/d), vitamin D (median 4.9 μg/d; range 1.9-11.2 μg/d), saturated fat (median 13.1% of energy (E%); range 9-23 E%) and linoleic acid (LA; median 6.3 E%; range 1.9-11.3 E%). The percentages of patients with dietary intakes below recommendations were 62% (fruits; recommendation 200 g/d), 87 % (vegetables; recommendation 150-200 g/d), 73% (dietary fibre; recommendation 30-45 g/d), 91% (EPA+DHA; recommendation 0.45 g/d), 98% (vitamin D; recommendation 10-20 μg/d) and 13% (LA; recommendation 5-10 E%). The percentages of patients with dietary intakes above recommendations were 95% (saturated fat; recommendation < 10 E%) and 7% (LA). The dietary intakes of patients proved comparable with the average nutritional intake of the age- and sex-matched healthy Dutch population. These unbalanced pre-operative diets may put them at risk of unfavourable surgical outcomes, since they promote a pro-inflammatory state. We conclude that there is an urgent need for intervention trials aiming at rapid improvement of their diets to reduce peri-operative risks.
Collapse
|
72
|
Harauma A, Tomita M, Muto D, Moriguchi T. Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice. Prostaglandins Leukot Essent Fatty Acids 2015; 95:41-5. [PMID: 25650363 DOI: 10.1016/j.plefa.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Abstract
The effect of long-term oral administration of arachidonic acid (ARA, 240 mg/kg/day) on brain function was assessed for mice maintained on an n-3 fatty acid adequate or deficient diet. The administration of ARA for 13 weeks resulted in an elevation of spontaneous motor activity, or the tendency thereof, in both the n-3 fatty acid adequate and deficient groups. However, the n-3 fatty acid deficient mice that were administered with ARA revealed marked deterioration in motor function in a motor coordination test. In the experiment to investigate changes over time, the motor activity of the ARA-administered group continued to increase mildly in n-3 deficient mice, although that of the control group showed a decrease involving habituation for both diet groups from the second week. The fatty acid composition of the brain at the end of the behavioral experiments indicated an increase in the levels of ARA and other n-6 fatty acids, as well as a decrease in the levels of docosahexaenoic acid. These results suggest that long-term administration of ARA causes an increase of futile spontaneous motor activity and the diminution of motor function by aggravation of n-3 fatty acid deficiency.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Makiko Tomita
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Daiki Muto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
73
|
Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 2015; 113:739-48. [PMID: 25704496 DOI: 10.1017/s0007114514004346] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Revealing the expression patterns of fatty acid and amino acid transporters as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the importance of the balance between n-6 and n-3 PUFA. A total of ninety-six finishing pigs were fed one of four diets with the ratio of 1:1, 2·5:1, 5:1 and 10:1. Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest (P< 0·05) daily weight gain, and those fed the dietary n-6:n-3 PUFA ratio of 1:1 had the largest loin muscle area (P< 0·01). The concentration of n-3 PUFA was raised as the ratio declined (P< 0·05) in the longissimus dorsi and subcutaneous adipose tissue. The contents of tryptophan, tasty amino acids and branched-chain amino acids in the longissimus dorsi were enhanced in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1. The mRNA expression level of the fatty acid transporter fatty acid transport protein-1 (FATP-1) was declined (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1, and increased (P< 0·05) in the subcutaneous adipose tissue of pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1. The expression profile of FATP-4 was similar to those of FATP-1 in the adipose tissue. The mRNA expression level of the amino acid transceptors LAT1 and SNAT2 was up-regulated (P< 0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1 and 2·5:1. In conclusion, maintaining the dietary n-6:n-3 PUFA ratios of 1:1-5:1 would facilitate the absorption and utilisation of fatty acids and free amino acids, and result in improved muscle and adipose composition.
Collapse
|
74
|
Nemeth M, Millesi E, Wagner KH, Wallner B. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs. PLoS One 2014; 9:e116292. [PMID: 25551380 PMCID: PMC4281161 DOI: 10.1371/journal.pone.0116292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/06/2014] [Indexed: 02/01/2023] Open
Abstract
Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope with social stressors, but at the expense of plasma derived omega-3 fatty acids.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
- Cognitive Science Research Platform, University of Vienna, Vienna, Austria
| |
Collapse
|
75
|
Weiser MJ, Wynalda K, Salem N, Butt CM. Dietary DHA during development affects depression-like behaviors and biomarkers that emerge after puberty in adolescent rats. J Lipid Res 2014; 56:151-66. [PMID: 25411442 DOI: 10.1194/jlr.m055558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DHA is an important omega-3 PUFA that confers neurodevelopmental benefits. Sufficient omega-3 PUFA intake has been associated with improved mood-associated measures in adult humans and rodents, but it is unknown whether DHA specifically influences these benefits. Furthermore, the extent to which development and puberty interact with the maternal diet and the offspring diet to affect mood-related behaviors in adolescence is poorly understood. We sought to address these questions by 1) feeding pregnant rats with diets sufficient or deficient in DHA during gestation and lactation; 2) weaning their male offspring to diets that were sufficient or deficient in DHA; and 3) assessing depression-related behaviors (forced swim test), plasma biomarkers [brain-derived neurotrophic factor (BDNF), serotonin, and melatonin], and brain biomarkers (BDNF) in the offspring before and after puberty. No dietary effects were detected when the offspring were evaluated before puberty. In contrast, after puberty depressive-like behavior and its associated biomarkers were worse in DHA-deficient offspring compared with animals with sufficient levels of DHA. The findings reported here suggest that maintaining sufficient DHA levels throughout development (both pre- and postweaning) may increase resiliency to emotional stressors and decrease susceptibility to mood disorders that commonly arise during adolescence.
Collapse
Affiliation(s)
- Michael J Weiser
- Human Nutrition and Health (HNH)-Biological Models, DSM Nutritional Products, Boulder, CO 80301
| | - Kelly Wynalda
- Human Nutrition and Health (HNH)-Biological Models, DSM Nutritional Products, Boulder, CO 80301
| | - Norman Salem
- Nutritional Lipids, DSM Nutritional Products, Columbia, MD 21045
| | - Christopher M Butt
- Human Nutrition and Health (HNH)-Biological Models, DSM Nutritional Products, Boulder, CO 80301
| |
Collapse
|
76
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 979] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
77
|
Omega-3 fatty acids improve behavioral coping to stress in multiparous rats. Behav Brain Res 2014; 279:129-38. [PMID: 25446767 DOI: 10.1016/j.bbr.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 12/24/2022]
Abstract
Behavioral coping refers to the ability to modify behavior to escape from stress, and is protective against the development of depressive disorders. Omega-3 fatty acid (n-3 FA) intake is inversely correlated with anxiety and depression in humans. The objective of this study was to determine if consumption of n-3 FAs promotes adaptive coping behaviors in a multiparous rat model. Twenty female rats were randomly assigned to diets with or without n-3 FA containing menhaden oil or sunflower oil as the fat source, respectively. Rats experienced two cycles of gestation and lactation. Behavioral testing began on the second day after the last parturition. Rats consuming n-3 FAs displayed improved escape learning in the shuttle box test. Specifically, rats consuming n-3 FAs escaped footshock more quickly and had a greater number of successful escapes in the shuttle box than rats not consuming n-3 FAs. Diet did not affect general activity in the open field, but rats consuming n-3 FAs showed less reactivity and habituation to novelty in the open field than rats not consuming n-3 FAs. Immobility and swimming in the forced swim test, risk-taking assessed by the light/dark test, sucrose drinking, and motor coordination were not significantly affected by diet. A diet enriched with n-3 FAs promoted behavioral escape changes consistent with increased adaptive coping to stressful events, suggesting that n-3 FAs may help prevent the development of stress-related depressive disorders.
Collapse
|
78
|
Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder. J Psychiatr Res 2014; 57:133-40. [PMID: 25017608 PMCID: PMC4204478 DOI: 10.1016/j.jpsychires.2014.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n = 48) and healthy volunteers (HV, n = 35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n = 39; HV, n = 33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76 = 12.493, p = 0.001), and impulsivity (F1,65 = 5.598, p = 0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76 = 7.941, p = 0.001) and impulsivity (F1,65 = 3.485, p = 0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission.
Collapse
|
79
|
Antidepressant-like effects of omega-3 fatty acids in postpartum model of depression in rats. Behav Brain Res 2014; 271:65-71. [DOI: 10.1016/j.bbr.2014.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|
80
|
Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl Psychiatry 2014; 4:e437. [PMID: 25203168 PMCID: PMC4203007 DOI: 10.1038/tp.2014.77] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
Understanding how malnutrition contributes to depression is building momentum. In the present study we unravel molecular and cellular mechanisms by which nutritional disturbances lead to impaired emotional behaviour in mice. Here we report that nutritional n-3 polyunsaturated fatty acids (PUFA) deficiency induces a chronic stress state reflected by disrupted glucocorticoid receptor (GR)-mediated signalling pathway along with hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. This hyperactivity in turn resulted in neuronal atrophy in the dorsolateral (dl)- and dorsomedial (dm)- prefrontal cortex (PFC) and subsequent mood-related behaviour alterations, similarly to chronic social defeat stress. Supplementation of n-3 PUFA prevented detrimental chronic social defeat stress-induced emotional and neuronal impairments by impeding HPA axis hyperactivity. These results indicate a role for dietary n-3 PUFA in the prevention of HPA axis dysfunction associated with the development of some neuropsychiatric disorders including depression.
Collapse
|
81
|
van Hees NJM, Giltay EJ, Geleijnse JM, Janssen N, van der Does W. DHA serum levels were significantly higher in celiac disease patients compared to healthy controls and were unrelated to depression. PLoS One 2014; 9:e97778. [PMID: 24841484 PMCID: PMC4026409 DOI: 10.1371/journal.pone.0097778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
Objectives Celiac disease (CD), a genetically predisposed intolerance for gluten, is associated with an increased risk of major depressive disorder (MDD). We investigated whether dietary intake and serum levels of the essential n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) found in fatty fish play a role in this association. Methods Cross-sectional study in 71 adult CD patients and 31 healthy volunteers, matched on age, gender and level of education, who were not using n-3 PUFA supplements. Dietary intake, as assessed using a 203-item food frequency questionnaire, and serum levels of EPA and DHA were compared in analyses of covariance, adjusting for potential confounders. Serum PUFA were determined using gas chromatography. Results Mean serum DHA was significantly higher in CD patients (1.72 mass%) than controls (1.28 mass%) after multivariable adjustment (mean diff. 0.45 mass%; 95% CI: 0.22–0.68; p = 0.001). The mean intake of EPA plus DHA did not differ between CD patients and controls after multivariable adjustment (0.15 and 0.22 g/d, respectively; p = 0.10). There were no significant differences in intake or serum levels of EPA and DHA between any of the CD patient groups (never depressed, current MDD, minor/partially remitted MDD, remitted MDD) and controls. Conclusions Patients on a long term gluten-free diet had similar intakes of EPA plus DHA compared to controls. Contrary to expectations, DHA serum levels were significantly higher in CD patients compared to healthy controls and were unrelated to MDD status.
Collapse
Affiliation(s)
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nadine Janssen
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Willem van der Does
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
82
|
Keleshian VL, Kellom M, Kim HW, Taha AY, Cheon Y, Igarashi M, Rapoport SI, Rao JS. Neuropathological responses to chronic NMDA in rats are worsened by dietary n-3 PUFA deprivation but are not ameliorated by fish oil supplementation. PLoS One 2014; 9:e95318. [PMID: 24798187 PMCID: PMC4010416 DOI: 10.1371/journal.pone.0095318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline. METHODS Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured. RESULTS Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups. CONCLUSIONS N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content.
Collapse
Affiliation(s)
- Vasken L. Keleshian
- Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States of America
| | - Matthew Kellom
- School of Earth and Space Exploration, Arizona State University, Phoenix, Arizona, United States of America
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-Gu, Seoul, Korea
| | - Ameer Y. Taha
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Miki Igarashi
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
83
|
Environmental enrichment induces changes in brain monoamine levels in gilthead seabream Sparus aurata. Physiol Behav 2014; 130:85-90. [DOI: 10.1016/j.physbeh.2014.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/30/2013] [Accepted: 03/20/2014] [Indexed: 12/19/2022]
|
84
|
Genetic risk prediction and neurobiological understanding of alcoholism. Transl Psychiatry 2014; 4:e391. [PMID: 24844177 PMCID: PMC4035721 DOI: 10.1038/tp.2014.29] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/18/2014] [Indexed: 01/08/2023] Open
Abstract
We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) was used to generate a genetic risk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress-reactive animal model cross-validation. We also tested this small panel of genes in two other independent test cohorts from the United States, one with alcohol dependence (P=0.00012) and one with alcohol abuse (a less severe form of alcoholism; P=0.0094). SNCA by itself was able to separate alcoholics from controls in the alcohol-dependent cohort (P=0.000013) and the alcohol abuse cohort (P=0.023). So did eight other genes from the panel of 11 genes taken individually, albeit to a lesser extent and/or less broadly across cohorts. SNCA, GRM3 and MBP survived strict Bonferroni correction for multiple comparisons. Taken together, these results suggest that our stress-reactive DBP animal model helped to validate and prioritize from the CFG-discovered genes some of the key behaviorally relevant genes for alcoholism. These genes fall into a series of biological pathways involved in signal transduction, transmission of nerve impulse (including myelination) and cocaine addiction. Overall, our work provides leads towards a better understanding of illness, diagnostics and therapeutics, including treatment with omega-3 fatty acids. We also examined the overlap between the top candidate genes for alcoholism from this work and the top candidate genes for bipolar disorder, schizophrenia, anxiety from previous CFG analyses conducted by us, as well as cross-tested genetic risk predictions. This revealed the significant genetic overlap with other major psychiatric disorder domains, providing a basis for comorbidity and dual diagnosis, and placing alcohol use in the broader context of modulating the mental landscape.
Collapse
|
85
|
McNamara RK, Strimpfel J, Jandacek R, Rider T, Tso P, Welge JA, Strawn JR, Delbello MP. Detection and Treatment of Long-Chain Omega-3 Fatty Acid Deficiency in Adolescents with SSRI-Resistant Major Depressive Disorder. PHARMANUTRITION 2014; 2:38-46. [PMID: 24772386 DOI: 10.1016/j.phanu.2014.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Residual depressive symptoms are commonly observed in adolescents with major depressive disorder (MDD) following treatment with selective serotonin reuptake inhibitors (SSRIs). This study combined a case-control analysis and an open-label fish oil (FO) trial to investigate the relationship between long-chain omega-3 (LCn-3) fatty acid status and residual depressive symptoms in SSRI-resistant adolescent MDD patients. Baseline erythrocyte docosahexaenoic acid (DHA)(-28%, p=0.0003), but not eicosapentaenoic acid (EPA)(-18%, p=0.2), was significantly lower in patients (n=20) compared with healthy controls (n=20). Patients receiving 10-week low-dose (2.4 g/d, n=7) and high-dose (16.2 g/d, n=7) FO exhibited significant increases in erythrocyte EPA and DHA composition. In the intent-to-treat sample, depressive symptoms decreased significantly in the high-dose group (n=7, -40%, p<0.0001), and there was a trend in the low-dose group (n=10, -20%, p=0.06). Symptom remission was observed in 40% of patients in the low-dose group and 100% of patients in the high-dose group. There were no significant changes in vital signs and adverse events were rated as mild or moderate in severity. These preliminary findings demonstrate that adolescents with SSRI-resistant depression exhibit robust DHA deficits, and suggest that adjunctive FO supplementation is well-tolerated and effective for increasing LCn-3 fatty acid status and augmenting SSRI antidepressant effects.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219
| | - Jennifer Strimpfel
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219
| | - Melissa P Delbello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH 45219
| |
Collapse
|
86
|
Pase CS, Teixeira AM, Dias VT, Quatrin A, Emanuelli T, Bürger ME. Prolonged consumption of trans fat favors the development of orofacial dyskinesia and anxiety-like symptoms in older rats. Int J Food Sci Nutr 2014; 65:713-9. [PMID: 24625052 DOI: 10.3109/09637486.2014.898255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyunsaturated fatty acids (FAs) are cell membrane components involved in brain functions. We hypothesized that long-term trans fat consumption is able to modify the membrane FAs composition impairing behavioral parameters related to aging. In this study, a comparison of behavioral parameters at 10 and 15 months of trans fat consumption by male Wistar rats was made. Animals were fed for 10 and 15 months from weaning with diets containing either 20% w/w soybean oil (SO), rich in n-6 PUFA, hydrogenated vegetable fat (HVF), rich in trans FAs, or a standard diet (control - C). At both evaluation times, HVF-fed rats showed progressively increased parameters of orofacial dyskinesia, fear and anxiety-like symptoms. The HVF diet reduced locomotor and exploratory activities progressively over 10 and 15 months of supplementation, while the standard and SO diets did not. In this study, we showed that chronic trans FAs consumption from weaning is able to favor the development of neuromotor and neuropsychiatric diseases, whose intensity was time dependent.
Collapse
Affiliation(s)
- Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria-UFSM-RS, Centro de Ciências da Saúde , Santa Maria, RS , Brazil
| | | | | | | | | | | |
Collapse
|
87
|
Able JA, Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression. J Psychiatr Res 2014; 50:42-50. [PMID: 24360505 PMCID: PMC3904789 DOI: 10.1016/j.jpsychires.2013.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/01/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022]
Abstract
Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.
Collapse
Affiliation(s)
- Jessica A. Able
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yanhong Liu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267,Corresponding author: Robert K. McNamara, Ph.D. Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine 260 Stetson Street Cincinnati, OH 45219-0516 PH: 513-558-5601 FAX: 513-558-4805
| |
Collapse
|
88
|
Desai A, Kevala K, Kim HY. Depletion of brain docosahexaenoic acid impairs recovery from traumatic brain injury. PLoS One 2014; 9:e86472. [PMID: 24475126 PMCID: PMC3903526 DOI: 10.1371/journal.pone.0086472] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023] Open
Abstract
Omega-3 fatty acids are crucial for proper development and function of the brain where docosahexaenoic acid (DHA), the primary omega-3 fatty acid in the brain, is retained avidly by the neuronal membranes. We investigated the effect of DHA depletion in the brain on the outcome of traumatic brain injury (TBI). Pregnant mice were put on an omega-3 fatty acid adequate or deficient diet from gestation day 14 and the pups were raised on the respective diets. Continuation of this dietary regime for three generations resulted in approximately 70% loss of DHA in the brain. Controlled cortical impact was delivered to both groups of mice to produce severe TBI and the functional recovery was compared. Compared to the omega-3 adequate mice, the DHA depleted mice exhibited significantly slower recovery from motor deficits evaluated by the rotarod and the beam walk tests. Furthermore, the DHA deficient mice showed greater anxiety-like behavior tested in the open field test as well as cognitive deficits evaluated by the novel object recognition test. The level of alpha spectrin II breakdown products, the markers of TBI, was significantly elevated in the deficient mouse cortices, indicating that the injury is greater in the deficient brains. This observation was further supported by the reduction of NeuN positive cells around the site of injury in the deficient mice, indicating exacerbated neuronal death after injury. These results suggest an important influence of the brain DHA status on TBI outcome.
Collapse
Affiliation(s)
- Abhishek Desai
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
89
|
Domenichiello AF, Chen CT, Trepanier MO, Stavro PM, Bazinet RP. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J Lipid Res 2013; 55:62-74. [PMID: 24212299 PMCID: PMC3927474 DOI: 10.1194/jlr.m042275] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is important for brain function, however, the exact
amount required for the brain is not agreed upon. While it is believed that the
synthesis rate of DHA from α-linolenic acid (ALA) is low, how this
synthesis rate compares with the amount of DHA required to maintain brain DHA
levels is unknown. The objective of this work was to assess whether DHA
synthesis from ALA is sufficient for the brain. To test this, rats consumed a
diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15
weeks, whole body and brain DHA accretion was measured, while at the end of the
study, whole body DHA synthesis rates, brain gene expression, and DHA uptake
rates were measured. Despite large differences in body DHA accretion, there was
no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed
ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of
rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than
the DHA uptake rate into the brain. This work indicates that DHA synthesis from
ALA may be sufficient to supply the brain.
Collapse
|
90
|
Lotrich FE, Sears B, McNamara RK. Anger induced by interferon-alpha is moderated by ratio of arachidonic acid to omega-3 fatty acids. J Psychosom Res 2013; 75:475-83. [PMID: 24182638 PMCID: PMC3817416 DOI: 10.1016/j.jpsychores.2013.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Anger worsens in some patients during interferon-alpha (IFN-α) therapy. Elevated anger has also been associated with lower long-chain omega-3 (LCn-3) fatty acid levels. We examined whether fatty acids could influence vulnerability to anger during IFN-α exposure. METHODS Plasma arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels were determined prior to IFN-α therapy by mass spectroscopy. Repeated-measure analyses examined the relationship between AA/EPA+DHA and the subsequent development of labile anger and irritability in 82 subjects who prospectively completed the Anger, Irritability, and Assault Questionnaire (AIAQ) during the first eight weeks of IFN-α therapy. RESULTS Prior to IFN-α therapy, AA/EPA+DHA did not correlate with either labile anger or irritability. Pre-treatment AA/EPA+DHA did correlate with the subsequent maximal increase in labile anger during IFN-α therapy (r=0.33; p=0.005). Over time, labile anger increased more in subjects with above median AA/EPA+DHA ratios (p<0.05). Of the 17 subjects ultimately requiring psychiatric intervention for anger, 14/17 had above-median AA/EPA+DHA ratios (p=0.009). There was also an interaction with the tumor necrosis factor-alpha (TNF-α) promoter polymorphism (A-308G), such that only those with both elevated AA/EPA+DHA and the A allele had increased labile anger (p=0.001). In an additional 18 subjects, we conversely observed that selective serotonin reuptake inhibitor treatment was associated with increased irritability during IFN-α therapy. CONCLUSION LCn-3 fatty acid status may influence anger development during exposure to elevated inflammatory cytokines, and may interact with genetic risk for increased brain TNF-α. LCn-3 supplements may be one strategy for minimizing this adverse side effect of IFN-α.
Collapse
Affiliation(s)
- Francis E. Lotrich
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA,All correspondence concerning this manuscript should be addressed to Francis E. Lotrich, Department of Psychiatry, Western Psychiatric Institute and Clinic, 3811 O’Hara Street, Pittsburgh, PA 15213. Tel: (412) 246-6267;
| | - Barry Sears
- Inflammation Research Foundation, Marblehead, Massachusetts
| | - Robert K. McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
91
|
Igarashi M, Chang L, Ma K, Rapoport SI. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. Prostaglandins Leukot Essent Fatty Acids 2013; 89:403-12. [PMID: 24209500 PMCID: PMC5861380 DOI: 10.1016/j.plefa.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/06/2023]
Abstract
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
92
|
Liu J, Richmond TS, Raine A, Cheney R, Brodkin ES, Gur RC, Gur RE. The Healthy Brains and Behavior Study: objectives, design, recruitment, and population coverage. Int J Methods Psychiatr Res 2013; 22:204-16. [PMID: 25931327 PMCID: PMC5667643 DOI: 10.1002/mpr.1394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/08/2012] [Accepted: 11/06/2012] [Indexed: 11/11/2022] Open
Abstract
Violence is increasingly viewed as a public health issue that may be ameliorated by health-based interventions. The Healthy Brains and Behavior Study (HBBS) aims to identify environmental and biological risk factors for aggression in late childhood and to reduce aggression through psychological and nutritional treatments. Utilizing a cross-disciplinary collaborative research approach, the HBBS has both human and animal components. The human component has two stages consisting of risk assessment followed by treatment. The risk assessment is based on 451 community-residing children aged 11-12 years and their caregivers, during which genetic, brain imaging, neuroendocrine, psychophysiology, environment toxicology, neurocognitive, nutrition, psychological, social and demographic risk variables are collected. Children who met criteria (N = 219) for problematic aggressive behaviors were assigned to one of four treatment groups: cognitive-behavior therapy (CBT) alone, nutritional supplements alone, both CBT and nutrition, or treatment-as-usual. Treatment duration was 12 weeks and all children whether in treatment or not were followed-up at three, six, and 12 months. The animal component assessed the effects of dietary omega-3 fatty acids on the development of aggression. This study contributes knowledge on how biological factors interact with social factors in shaping proactive and reactive aggression and assesses the efficacy of treatment approaches to reduce childhood aggression.
Collapse
Affiliation(s)
- Jianghong Liu
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Ota KT, Duman RS. Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 2013; 57:28-37. [PMID: 22691453 PMCID: PMC3458126 DOI: 10.1016/j.nbd.2012.05.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/05/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
Atrophy of neurons and gross structural alterations of limbic brain regions, including the prefrontal cortex (PFC) and hippocampus, have been reported in brain imaging and postmortem studies of depressed patients. Preclinical findings have suggested that prolonged negative stress can induce changes comparable to those seen in major depressive disorder (MDD), through dendritic retraction and decreased spine density in PFC and hippocampal CA3 pyramidal neurons. Interestingly, recent studies have suggested that environmental and pharmacological manipulations, including antidepressant medication, exercise, and diet, can block or even reverse many of the molecular changes induced by stress, providing a clear link between these factors and susceptibility to MDD. In this review, we will discuss the environmental and pharmacological factors, as well as the contribution of genetic polymorphisms, involved in the regulation of neuronal morphology and plasticity in MDD and preclinical stress models. In particular, we will highlight the pro-depressive changes incurred by stress and the reversal of these changes by antidepressants, exercise, and diet.
Collapse
Affiliation(s)
- Kristie T Ota
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, USA
| | | |
Collapse
|
94
|
Kuratko CN, Barrett EC, Nelson EB, Norman S. The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: a review. Nutrients 2013; 5:2777-810. [PMID: 23877090 PMCID: PMC3738999 DOI: 10.3390/nu5072777] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/04/2013] [Accepted: 06/08/2013] [Indexed: 12/13/2022] Open
Abstract
Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA), is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance.
Collapse
Affiliation(s)
- Connye N. Kuratko
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-443-542-2552; Fax: +1-410-740-2985
| | - Erin Cernkovich Barrett
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-443-542-2552; Fax: +1-410-740-2985
| | - Edward B. Nelson
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-443-542-2552; Fax: +1-410-740-2985
| | - Salem Norman
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-443-542-2552; Fax: +1-410-740-2985
| |
Collapse
|
95
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
96
|
McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother 2013; 12:1143-61. [PMID: 23039393 DOI: 10.1586/ern.12.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
97
|
Wibrand K, Berge K, Messaoudi M, Duffaud A, Panja D, Bramham CR, Burri L. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis 2013; 12:6. [PMID: 23351783 PMCID: PMC3618203 DOI: 10.1186/1476-511x-12-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/19/2013] [Indexed: 01/18/2023] Open
Abstract
Background The purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats. Methods Cognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO. Imipramine (IMIP) was used as the antidepressant reference substance. Results After 7 weeks of KO intake, both males and females treated with KO were significantly better in discriminating between the active and the inactive levers in the ALSAT from day 1 of training (p<0.01). Both KO and IMIP prevented resignation/depression on the third day in the UALST. Similarly, a shorter immobility time was observed for the KO and IMIP groups compared to the control in the FST (p<0.001). These data support a robust antidepressant-like potential and beneficial cognitive effect of KO. Changes in expression of synaptic plasticity-related genes in the prefrontal cortex and hippocampus were also investigated. mRNA for brain-derived neurotrophic factor (Bdnf) was specifically upregulated in the hippocampus of female rats receiving 7 weeks of KO supplementation (p=0.04) and a similar trend was observed in males (p=0.08). Males also exhibited an increase in prefrontal cortex expression of Arc mRNA, a key protein in long-term synaptic plasticity (p=0.05). IMIP induced clear effects on several plasticity related genes including Bdnf and Arc. Conclusions These results indicate that active components (eicosapentaenoic acid, docosahexaenoic acid and astaxanthin) in KO facilitate learning processes and provide antidepressant-like effects. Our findings also suggest that KO might work through different physiological mechanisms than IMIP.
Collapse
Affiliation(s)
- Karin Wibrand
- Department of Biomedicine and KG Jebsen Centre for Research onNeuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, BergenNO-5009, Norway
| | | | | | | | | | | | | |
Collapse
|
98
|
McNamara RK. Deciphering the role of docosahexaenoic acid in brain maturation and pathology with magnetic resonance imaging. Prostaglandins Leukot Essent Fatty Acids 2013; 88:33-42. [PMID: 22521863 PMCID: PMC3458176 DOI: 10.1016/j.plefa.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 01/11/2023]
Abstract
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
99
|
Rapoport SI. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot Essent Fatty Acids 2013; 88:79-85. [PMID: 22766388 PMCID: PMC3467358 DOI: 10.1016/j.plefa.2012.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 01/30/2023]
Abstract
One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics on this role. This review discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metabolism is influenced by graded reductions in dietary n-3 PUFA content in unanesthetized rats. We also show how kinetic tracer techniques in rodents have helped to identify mechanisms of action of mood stabilizers used in bipolar disorder, how DHA participates in neurotransmission, and how brain DHA metabolism is regulated by calcium-independent iPLA₂β. In humans, regional rates of brain DHA metabolism can be quantitatively imaged with positron emission tomography following intravenous injection of [1-¹¹C]DHA.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S128, Bethesda, MD 20892, USA.
| |
Collapse
|
100
|
Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, Taha AY. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA(2)β)-knockout mice. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:1278-86. [PMID: 22349267 PMCID: PMC3393806 DOI: 10.1016/j.bbalip.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/25/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.
Collapse
Affiliation(s)
- Yewon Cheon
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|