51
|
Nason SR, Antipenko J, Presedo N, Cunningham SE, Pierre TH, Kim T, Paul JR, Holleman C, Young ME, Gamble KL, Finan B, DiMarchi R, Hunter CS, Kharitonenkov A, Habegger KM. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight 2021; 6:141323. [PMID: 33411693 PMCID: PMC7934938 DOI: 10.1172/jci.insight.141323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon’s weight loss effects. FGF21 signaling requires an obligate coreceptor (β-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Natalie Presedo
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Stephen E Cunningham
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA.,Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | | | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
52
|
Gariani K, Jornayvaz FR. Pathophysiology of NASH in endocrine diseases. Endocr Connect 2021; 10:R52-R65. [PMID: 33449917 PMCID: PMC7983516 DOI: 10.1530/ec-20-0490] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Collapse
Affiliation(s)
- Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence should be addressed to F R Jornayvaz:
| |
Collapse
|
53
|
Armandi A, Rosso C, Caviglia GP, Ribaldone DG, Bugianesi E. The Impact of Dysmetabolic Sarcopenia Among Insulin Sensitive Tissues: A Narrative Review. Front Endocrinol (Lausanne) 2021; 12:716533. [PMID: 34858322 PMCID: PMC8631324 DOI: 10.3389/fendo.2021.716533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is a common muscular affection among elderly individuals. More recently, it has been recognized as the skeletal muscle (SM) expression of the metabolic syndrome. The prevalence of sarcopenia is increasing along with visceral obesity, to which it is tightly associated. Nonetheless, it is a still underreported entity by clinicians, despite the worsening in disease burden and reduced patient quality of life. Recognition of sarcopenia is clinically challenging, and variability in study populations and diagnostic methods across the clinical studies makes it hard to reach a strong evidence. Impaired insulin activity in SM is responsible for the altered molecular pathways and clinical manifestations of sarcopenia, which is morphologically expressed by myosteatosis. Lipotoxicity, oxidative stress and adipose tissue-derived inflammation lead to both alterations in glucose disposal and protein synthesis in SM, with raising insulin resistance (IR) and SM atrophy. In particular, hyperleptinemia and leptin resistance interfere directly with SM activity, but also with the release of Growth Hormone from the hypohysis, leading to a lack in its anabolic effect on SM. Moreover, sarcopenia is independently associated to liver fibrosis in Non-Alcoholic Fatty Liver Disease (NAFLD), which in turn worsens SM functionality through the secretion of proinflammatory heptokines. The cross-talk between the liver and SM in the IR setting is of crucial relevance, given the high prevalence of NAFLD and the reciprocal impact of insulin-sensitive tissues on the overall disease burden. Along with the efforts of non-invasive diagnostic approaches, irisin and myostatin are two myokines currently evaluated as potential biomarkers for diagnosis and prognostication. Decreased irisin levels seem to be potentially associated to sarcopenia, whereas increased myostatin has shown to negatively impact on sarcopenia in pre-clinical studies. Gene variants in irisin have been explored with regard to the impact on the liver disease phenotype, with conflicting results. The gut-muscle axis has gain relevance with the evidence that insulin resistance-derived gut dysbiosis is responsible for increased endotoxemia and reduction in short-chain free fatty acids, directly affecting and predisposing to sarcopenia. Based on the current evidence, more efforts are needed to increase awareness and improve the management of sarcopenic patients.
Collapse
|
54
|
Bazhan NM, Iakovleva TV, Dubinina AD, Makarova EN. Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet. Vavilovskii Zhurnal Genet Selektsii 2020; 24:844-852. [PMID: 35087997 PMCID: PMC8763717 DOI: 10.18699/vj20.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
In rodents, the most adequate model of human diet-induced obesity is obesity caused by the consumption of a sweet-fat diet (SFD), which causes more pronounced adiposity in females than in males. The aim of this work was to determine the sex-associated effect of SFD on the expression of genes related to carbohydrate-lipid metabolism in adult mice. For 10 weeks, male and female С57Bl mice were fed a standard laboratory chow (Control group) or a diet, which consisted of laboratory chow supplemented with sweet cookies, sunflower seeds and lard (SFD group). Weights of body, liver and fat depots, blood concentrations of hormones and metabolites, liver fat, and mRNA levels of genes involved in regulation of energy metabolism in the liver, perigonadal and subcutaneous white adipose tissue (pgWAT, scWAT) and brown adipose tissue (BAT) were measured. SFD increased body weight and insulin resistance in mice of both sexes. Female mice that consumed SFD (SFD females) had a greater increase in adiposity than SFD males. SFD females showed a decreased expression of genes related to lipogenesis (Lpl) and glucose metabolism (G6pc, Pklr) in liver, as well as lipogenesis (Lpl, Slca4) and lipolysis (Lipe) in pgWAT, suggesting reduced energy expenditure. In contrast, SFD males showed increased lean mass gain, plasma insulin and FGF21 levels, expressions of Cpt1α gene in pgWAT and scWAT and Pklr gene in liver, suggesting enhanced lipid and glucose oxidation in these organs. Thus, in mice, there are sex-dependent differences in adaptation to SFD at the transcriptional level, which can help to explain higher adiposity in females under SFD consumtion.
Collapse
Affiliation(s)
- N. M. Bazhan
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences;
Novosibirsk State University
| | - T. V. Iakovleva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. D. Dubinina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. N. Makarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
55
|
Han MS, Perry RJ, Camporez JP, Scherer PE, Shulman GI, Gao G, Davis RJ. A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes Dev 2020; 35:133-146. [PMID: 33334822 PMCID: PMC7778269 DOI: 10.1101/gad.344556.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
In this study, Han et al. demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues. The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.
Collapse
Affiliation(s)
- Myoung Sook Han
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - João-Paulo Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
56
|
da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep 2020; 8:e14607. [PMID: 33038072 PMCID: PMC7547588 DOI: 10.14814/phy2.14607] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a metabolic disorder affecting multiple tissues and is a precursor event to type 2 diabetes (T2D). As T2D affects over 425 million people globally, there is an imperative need for research into insulin resistance to better understand the underlying mechanisms. The proposed mechanisms involved in insulin resistance include both whole body aspects, such as inflammation and metabolic inflexibility; as well as cellular phenomena, such as lipotoxicity, ER stress, and mitochondrial dysfunction. Despite numerous studies emphasizing the role of lipotoxicity in the pathogenesis of insulin resistance, an understanding of the interplay between tissues and these proposed mechanisms is still emerging. Furthermore, the tissue-specific and unique responses each of the three major insulin target tissues and how each interconnect to regulate the whole body insulin response has become a new priority in metabolic research. With an emphasis on skeletal muscle, this mini-review highlights key similarities and differences in insulin signaling and resistance between different target-tissues, and presents the latest findings related to how these tissues communicate to control whole body metabolism.
Collapse
Affiliation(s)
- Simone C. da Silva Rosa
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Nichole Nayak
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| | - Andrei Miguel Caymo
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| |
Collapse
|
57
|
Carroll HA, Chen YC, Templeman I, James LJ, Betts JA, Trim WV. The effect of hydration status on plasma FGF21 concentrations in humans: A subanalysis of a randomised crossover trial. PLoS One 2020; 15:e0235557. [PMID: 32756564 PMCID: PMC7406048 DOI: 10.1371/journal.pone.0235557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
Aim Fibroblast growth factor 21 (FGF21) has recently been implicated in thirst in rodent models. The mechanisms for this are currently uncertain, and it is unclear whether hydration status can alter FGF21 concentrations, potentially providing an additional mechanism by which hypohydration induces thirst. The aim of this study is therefore to understand whether hydration status can alter circulating FGF21 in humans. Methods Using a heat tent and fluid restriction, we induced hypohydration (1.9% body mass loss) in 16 healthy participants (n = 8 men), and compared their glycaemic regulation to a rehydration protocol (heat tent and fluid replacement) in a randomised crossover design. Results After the hypohydration procedure, urine specific gravity, urine and serum osmolality, and plasma copeptin (as a marker for arginine vasopressin) increased as expected, with no change after the rehydration protocol. In the fasted state, the median paired difference in plasma FGF21 concentrations from the rehydrated to hypohydrated trial arm was -37 (interquartile range -125, 10) pg∙mL-1(P = 0.278), with average concentrations being 458 ± 462 pg∙mL-1 after hypohydration and 467 ± 438 pg∙mL-1 after rehydration; mean difference -9 ± 173 pg∙mL-1. Conclusion To our knowledge, these are the first causal data in humans investigating hydration and FGF21, demonstrating that an acute bout of hypohydration does not impact fasted plasma FGF21 concentrations. These data may suggest that whilst previous research has found FGF21 administration can induce thirst and drinking behaviours, a physiological state implicated in increased thirst (hypohydration) does not appear to impact plasma FGF21 concentrations in humans.
Collapse
Affiliation(s)
- Harriet A. Carroll
- Department for Health, University of Bath, Bath, United Kingdom
- Cardiovascular Research–Hypertension, Clinical Research Centre, Lund University, Malmö, Sweden
- * E-mail:
| | - Yung-Chih Chen
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| | - Iain Templeman
- Department for Health, University of Bath, Bath, United Kingdom
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - James A. Betts
- Department for Health, University of Bath, Bath, United Kingdom
| | - William V. Trim
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
58
|
Keinicke H, Sun G, Mentzel CMJ, Fredholm M, John LM, Andersen B, Raun K, Kjaergaard M. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr Connect 2020; 9:755-768. [PMID: 32688339 PMCID: PMC7424338 DOI: 10.1530/ec-20-0152] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).
Collapse
Affiliation(s)
- Helle Keinicke
- Insulin and Device Trial Operations, Novo Nordisk A/S, Søborg, Denmark
| | - Gao Sun
- Pharmacology and Histopathology, Novo Nordisk A/S, China
| | - Caroline M Junker Mentzel
- Department of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Linu Mary John
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Birgitte Andersen
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Kirsten Raun
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Marina Kjaergaard
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
- Correspondence should be addressed to M Kjaergaard:
| |
Collapse
|
59
|
Cui A, Li J, Ji S, Ma F, Wang G, Xue Y, Liu Z, Gao J, Han J, Tai P, Wang T, Chen J, Ma X, Li Y. The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates. Diabetes 2020; 69:1611-1623. [PMID: 32354858 DOI: 10.2337/db20-0209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022]
Abstract
Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting polyethylene glycolylated (PEGylated) fibroblast growth factor 21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease (NAFLD), administration of B1344 via subcutaneous injection for 11 weeks caused a profound reduction of hepatic steatosis, inflammation, and fibrosis, along with amelioration of liver injury and hepatocyte death, as evidenced by liver biopsy specimen and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkeys, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, B1344 was administered to mice fed a methionine- and choline-deficient diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis in a dose-dependent manner. These results provide preclinical validation for an innovative therapeutic approach to NAFLD and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Li
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Shaohui Ji
- Kunming Biomed International, Yunnan, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genbei Wang
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Han
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Ping Tai
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Tony Wang
- Kunming Biomed International, Yunnan, China
| | | | - Xiaohui Ma
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
60
|
Ruiz-Padilla AJ, Ruiz-Noa Y, Del Rocio Ibarra-Reynoso L, Lazo-de-la-Vega-Monroy ML, Alonso-Castro AJ, Sánchez-Barajas M, Alvarez-Alvarez RM, Del Carmen Preciado-Puga M. FGF21 and its Relationship with Inflammatory and Metabolic Parameters in HIV Patients after Antiretroviral Treatment. Curr HIV Res 2020; 18:308-314. [PMID: 32684151 DOI: 10.2174/1570162x18666200719235625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fibroblast Growth Factor 21 (FGF21) serum levels are associated with insulin resistance and metabolic syndrome in HIV patients. OBJECTIVE To quantify FGF21 levels in HIV patients using antiretroviral therapy (ART) and to analyze a possible association between serum FGF21 levels and lipid profile, levels of proinflammatory cytokines, and atherogenic risk factors. MATERIALS AND METHODS Twenty patients with HIV infection, who received ART in a scheme consisting of Tenofovir/Emtricitabine+Lopinavir/Ritonavir, were enrolled in this study. The serum levels of FGF21, inflammatory parameters (IL-6 and IL-1β), glucose, cholesterol, triglycerides, and insulin were determined at baseline and after 36 weeks of treatment. The homeostatic model assessment for insulin resistance (HOMA-IR) and the atherogenic risk factor were also calculated. RESULTS After 36 weeks, serum FGF21 levels decreased significantly (p=0.011), whereas IL-6 levels (r=0.821, p=0.0001) and the CD4+ T cell count (r=0.446, p=0.048), showed a positive correlation with the decrease in FGF21 levels. There was an increase in total cholesterol (r=-0.483, p=0.031), LDL (r=-0.496, p=0.026), VLDL (r=-0.320, p=0.045), and the atherogenic index factor (r=-0.539, p=0.014), these values showed a negative correlation with FGF21 levels. CONCLUSION The decrease of serum FGF21 levels due to ART is associated with the alteration in lipid profile and an increased risk for cardiovascular diseases. These variations are predictors of inflammatory status in HIV patients using antiretroviral therapy.
Collapse
Affiliation(s)
- Alan Joel Ruiz-Padilla
- Departamento de Farmacia, División de Ciencias Exactas e Ingenierías, Universidad de Guanajuato, Campus
Guanajuato- Guanajuato, Guanajuato, México
| | - Yeniley Ruiz-Noa
- Departamento de Ciencias Médicas División de Ciencias de la Salud, Universidad de Guanajuato, Campus León, León, Guanajuato, México
| | - Lorena Del Rocio Ibarra-Reynoso
- Departamento de Ciencias Médicas División de Ciencias de la Salud, Universidad de Guanajuato, Campus León, León, Guanajuato, México
| | | | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Exactas e Ingenierías, Universidad de Guanajuato, Campus
Guanajuato- Guanajuato, Guanajuato, México
| | - Mauricio Sánchez-Barajas
- Departamento de Ciencias Médicas División de Ciencias de la Salud, Universidad de Guanajuato, Campus León, León, Guanajuato, México,Departamento de Medicina Interna, Hospital General de Zona/MF 21, León, Guanajuato, México
| | | | | |
Collapse
|
61
|
Guo C, Zhao L, Li Y, Deng X, Yuan G. Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. J Cell Physiol 2020; 236:55-67. [PMID: 32583417 DOI: 10.1002/jcp.29879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Sedentary and high-calorie diets are associated with increased risk of obesity and type 2 diabetes mellitus, while exercise and diet control are also important nondrug treatments for diabetes. Fibroblast growth factor 21 (FGF21) is an important cytokine, which is mainly expressed in liver, fat and muscle tissue responding to nutrition and exercise, and plays an important role in the improvement of glucose and lipid metabolism. Due to the increasing serum FGF21 level in obesity and diabetes, FGF21 can be used as a predictor or biomarker of diabetes. A variety of clinical antidiabetic drugs can reduce the content of FGF21, possibly for the improvement of FGF21 sensitivity. In this paper, we reviewed the interactions between FGF21 and nondrug therapy (diet and exercise) for diabetes and explored the potential value of the combined application of clinical antidiabetic drugs and FGF21.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
62
|
Fibroblast growth factor 21 protects against lipotoxicity-induced pancreatic β-cell dysfunction via regulation of AMPK signaling and lipid metabolism. Clin Sci (Lond) 2020; 133:2029-2044. [PMID: 31654570 DOI: 10.1042/cs20190093] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is known as a potent metabolic regulator but its protective mechanisms against lipotoxicity-induced β-cell dysfunction and apoptosis remain elusive. Here, we aimed to examine the regulatory pathways whereby FGF21 mediates islet lipid metabolism in lipotoxicity-treated cells and animal models. Rat β-cell line (INS-1E cells) and islets isolated from C57/BL6J mice were exposed to palmitic acid (PA) with/without FGF21, mimicking lipotoxic conditions. Resultant insulin secretion and intracellular signaling were analyzed with Western blotting and RNA-seq. C57/BL6J and global FGF21 knockout (KO) mice were fed with a high-fat diet (HFD) to induce lipotoxicity and given with a long-acting mimetic of FGF21. Insulin resistance and β-cell function were then assessed using homeostasis model assessment of insulin resistance (HOMA-IR) and insulinogenic index. FGF21 ameliorated PA-induced lipid accumulation, reversed cell apoptosis, and enhanced glucose-stimulated insulin secretion (GSIS) as impaired by lipotoxicity in islet β-cells. Mechanistically, FGF21 exerted its beneficial effects through activation of AMPK-ACC (acetyl-CoA carboxylase) pathway and peroxisome proliferation-activated receptors (PPARs) δ/γ signaling, thus increasing the levels of carnitine palmitoyltransferase-1A (CPT1A) and leading to increased fatty acid (FA) oxidation and reduced lipid deposition in β-cells. Interestingly, FGF21 reduced PA-induced cell death via restoration of the expression of apoptosis inhibitor Birc3. In vivo studies further showed that FGF21 is critical for islet insulinogenic capacity and normal function in the context of HFD-treated animals. FGF21 down-regulates islet cell lipid accumulation, probably via activation of AMPK-ACC and PPARδ/γ signaling, and reduces cell death under lipotoxicity, indicating that FGF21 is protective against lipotoxicity-induced β-cell dysfunction and apoptosis.
Collapse
|
63
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
64
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
65
|
Taliyan R, Chandran SK, Kakoty V. Therapeutic Approaches to Alzheimer's Type of Dementia: A Focus on FGF21 Mediated Neuroprotection. Curr Pharm Des 2020; 25:2555-2568. [PMID: 31333086 DOI: 10.2174/1381612825666190716101411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer's Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Sarathlal K Chandran
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
66
|
Fibroblast Growth Factor 21 Is Elevated in HIV and Associated With Interleukin-6. J Acquir Immune Defic Syndr 2020; 83:e30-e33. [PMID: 31913998 DOI: 10.1097/qai.0000000000002285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, Rabin-Court A, Wang Y, Peng L, Dufour S, Zhang Y, Zhang XM, Butrico GM, Toussaint K, Nozaki Y, Cline GW, Petersen KF, Nathanson MH, Ehrlich BE, Shulman GI. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 2020; 579:279-283. [PMID: 32132708 PMCID: PMC7101062 DOI: 10.1038/s41586-020-2074-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
While it is well-established that alterations in the portal vein insulin/glucagon ratio play a major role in causing dysregulated hepatic glucose metabolism in type 2 diabetes (T2D)1–3, the mechanisms by which glucagon alters hepatic glucose production and mitochondrial oxidation remain poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing hepatic adipose triglyceride lipase activity, intrahepatic lipolysis, hepatic acetyl-CoA content, and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation, mediated by stimulation of the inositol triphosphate receptor-1 (InsP3R-I). Chronic physiological increases in plasma glucagon concentrations increased mitochondrial hepatic fat oxidation and reversed diet-induced hepatic steatosis and insulin resistance in rats and mice; however, the effect of chronic glucagon treatment to reverse hepatic steatosis and glucose intolerance was abrogated in InsP3R-I knockout mice. These results provide new insights into glucagon biology and suggest that InsP3R-I may be a novel therapeutic target to reverse nonalcoholic fatty liver disease and T2D.
Collapse
Affiliation(s)
- Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mateus T Guerra
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali R Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aviva Rabin-Court
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yongliang Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Liang Peng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ye Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gina M Butrico
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Keshia Toussaint
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yuichi Nozaki
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael H Nathanson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. .,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
68
|
Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nat Commun 2020; 11:624. [PMID: 32005798 PMCID: PMC6994690 DOI: 10.1038/s41467-019-14069-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023] Open
Abstract
Uncoupling protein 1 (UCP1) executes thermogenesis in brown adipose tissue, which is a major focus of human obesity research. Although the UCP1-knockout (UCP1 KO) mouse represents the most frequently applied animal model to judge the anti-obesity effects of UCP1, the assessment is confounded by unknown anti-obesity factors causing paradoxical obesity resistance below thermoneutral temperatures. Here we identify the enigmatic factor as endogenous FGF21, which is primarily mediating obesity resistance. The generation of UCP1/FGF21 double-knockout mice (dKO) fully reverses obesity resistance. Within mild differences in energy metabolism, urine metabolomics uncover increased secretion of acyl-carnitines in UCP1 KOs, suggesting metabolic reprogramming. Strikingly, transcriptomics of metabolically important organs reveal enhanced lipid and oxidative metabolism in specifically white adipose tissue that is fully reversed in dKO mice. Collectively, this study characterizes the effects of endogenous FGF21 that acts as master regulator to protect from diet-induced obesity in the absence of UCP1. Brown adipose thermogenesis increases energy expenditure and relies on uncoupling protein 1 (UCP1), however, UCP1 knock-out mice show resistance to diet-induced obesity at room temperature. Here, the authors show that this resistance relies on FGF21-signaling, inducing the browning of white adipose tissue.
Collapse
|
69
|
Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of Sodium-Glucose Co-transporter 2 Inhibitors Combined With Insulin for the Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:190. [PMID: 32351447 PMCID: PMC7174744 DOI: 10.3389/fendo.2020.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new family of antidiabetic drugs that reduce blood glucose independent of insulin. In this review, we present the advantages and adverse effects of SGLT2 inhibitors plus insulin therapy as a treatment regimen for patients with type 2 diabetes (T2D). Compared with placebo, SGLT2 inhibitors plus insulin therapy could significantly decrease fasting blood glucose and HbA1c, thereby reducing the daily required dose of insulin. A reduction in body weight and improvements in insulin resistance and β-cell function have also been widely reported with this therapy, and other potential advantages, including the reduction in blood pressure, adverse cardiovascular outcomes, and visceral adipose tissue volume, have been revealed. SGLT2 inhibitors cause a greater reduction than dipeptidyl peptidase-4 (DPP-4) inhibitors in body weight and the risk of cardiovascular disease. Furthermore, compared with glucagon-like peptide-1 (GLP-1) agonists, SGLT2 inhibitors reduce blood pressure, and heart failure. As this therapy is an oral preparation, an improvement in patient compliance is also achieved. Despite these advantages, however, combination therapy with SGLT2 inhibitors and insulin has several risks. Although no difference has been found in the incidence of hypoglycemic events and urinary tract infection between the administration of this combination and that of placebo, the risk of genital tract infections was reported to increase with the combination therapy. Additionally, bone adverse effects, euglycemic diabetic ketoacidosis, and volume depletion-and osmotic diuresis-related adverse effects have been observed. Altogether, we could conclude that SGLT2 inhibitors plus insulin therapy is an efficient treatment option for patients with T2D, especially those requiring high daily insulin doses and those with insulin resistance, obesity, and a high risk of cardiovascular events. However, careful monitoring of the adverse effects of this combination is also warranted.
Collapse
Affiliation(s)
- Yinqiu Yang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenhe Zhao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangli Ye
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Yu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Mingxiang Yu
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Xinhua Qu
| |
Collapse
|
70
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
71
|
Watanabe M, Singhal G, Fisher FM, Beck TC, Morgan DA, Socciarelli F, Mather ML, Risi R, Bourke J, Rahmouni K, McGuinness OP, Flier JS, Maratos-Flier E. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine 2020; 67:95-108. [PMID: 31728756 PMCID: PMC7948212 DOI: 10.1007/s12020-019-02124-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is expressed in several metabolically active tissues, including liver, fat, and acinar pancreas, and has pleiotropic effects on metabolic homeostasis. The dominant source of FGF21 in the circulation is the liver. OBJECTIVE AND METHODS To analyze the physiological functions of hepatic FGF21, we generated a hepatocyte-specific knockout model (LKO) by mating albumin-Cre mice with FGF21 flox/flox (fl/fl) mice and challenged it with different nutritional models. RESULTS Mice fed a ketogenic diet typically show increased energy expenditure; this effect was attenuated in LKO mice. LKO on KD also developed hepatic pathology and altered hepatic lipid homeostasis. When evaluated using hyperinsulinemic-euglycemic clamps, glucose infusion rates, hepatic glucose production, and glucose uptake were similar between fl/fl and LKO DIO mice. CONCLUSIONS We conclude that liver-derived FGF21 is important for complete adaptation to ketosis but has a more limited role in the regulation of glycemic homeostasis.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thomas C Beck
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Fabio Socciarelli
- Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Marie L Mather
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - Jared Bourke
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
72
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
73
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
74
|
Sex Differences in Liver, Adipose Tissue, and Muscle Transcriptional Response to Fasting and Refeeding in Mice. Cells 2019; 8:cells8121529. [PMID: 31783664 PMCID: PMC6953068 DOI: 10.3390/cells8121529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Fasting is often used for obesity correction but the “refeeding syndrome” limits its efficiency, and molecular mechanisms underlying metabolic response to different food availability are under investigation. Sex was shown to affect hormonal and metabolic reactions to fasting/refeeding. The aim of this study was to evaluate hormonal and transcriptional responses to fasting and refeeding in male and female C57Bl/6J mice. Sex asymmetry was observed both at the hormonal and transcriptional levels. Fasting (24 h) induced increase in hepatic Fgf21 gene expression, which was associated with elevation of plasma FGF21 and adiponectin levels, and the upregulation of expression of hepatic (Pparα, Cpt1α) and muscle (Cpt1β, Ucp3) genes involved in fatty acid oxidation. These changes were more pronounced in females. Refeeding (6 h) evoked hyperinsulinemia and increased hepatic expression of gene related to lipogenesis (Fasn) only in males and hyperleptinemia and increase in Fgf21 gene expression in muscles and adipose tissues only in females. The results suggest that in mice, one of the molecular mechanisms underlying sex asymmetry in hepatic Pparα, Cpt1α, muscle Cpt1β, and Ucp3 expression during fasting is hepatic Fgf21 expression, and the reason for sex asymmetry in hepatic Fasn expression during refeeding is male-specific hyperinsulinemia.
Collapse
|
75
|
Pedroso JA, Camporez JP, Belpiede LT, Pinto RS, Cipolla-Neto J, Donato J. Evaluation of Hepatic Steatosis in Rodents by Time-Domain Nuclear Magnetic Resonance. Diagnostics (Basel) 2019; 9:diagnostics9040198. [PMID: 31756971 PMCID: PMC6963644 DOI: 10.3390/diagnostics9040198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Devices that analyze body composition of rodents by time-domain nuclear magnetic resonance (TD-NMR) are becoming popular in research centers that study metabolism. Theoretically, TD-NMR devices can also evaluate lipid content in isolated tissues. However, the accuracy of TD-NMR to determine hepatic steatosis in the liver of small laboratory animals has not been evaluated in detail. We observed that TD-NMR was able to detect increased lipid content in the liver of rats consuming high-fat diet (HFD) for 12 weeks and in genetically obese (Lepob/ob and Leprdb/db) mice. The lipid content determined by TD-NMR showed a positive correlation with triglyceride content measured by colorimetric assays. In contrast, TD-NMR did not detect hepatic steatosis in C57BL/6 mice consuming HFD for 4 or 12 weeks, despite their obesity and increased liver triglyceride content. These findings indicate that tissue mass and the severity of hepatic steatosis affect the sensitivity of TD-NMR to detect liver lipid content.
Collapse
|
76
|
Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH. Nutrients 2019; 11:nu11112709. [PMID: 31717358 PMCID: PMC6893460 DOI: 10.3390/nu11112709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.
Collapse
|
77
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease which may progress to non-alcoholic steatohepatitis. The prevalence of sarcopenia, which is the loss of muscle mass and strength, is increasing in the aging society. Recent studies reported the relationship between NAFLD and sarcopenia. The skeletal muscle is the primary organ for glucose disposal. Loss of muscle mass can cause insulin resistance, which is an important risk factor for NAFLD. Moreover, obesity, chronic low-grade inflammation, vitamin D deficiency, physical inactivity, hepatokines, and myokines might be involved in the pathophysiologic mechanism of sarcopenia and NAFLD. Although most of the previous studies have demonstrated the positive correlation between sarcopenia and NAFLD, the difference in diagnostic methods of sarcopenia and NAFLD leads to difficulties in interpretation and application. This review discusses the concept and diagnosis of sarcopenia and NAFLD, common pathophysiology, and clinical studies linking sarcopenia to NAFLD. The presentation of the association between sarcopenia and NAFLD may provide an opportunity to prevent the deterioration of fatty liver disease.
Collapse
Affiliation(s)
- Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, 148 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, 148 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea.
| |
Collapse
|
78
|
Martínez-Fernández L, González-Muniesa P, Sáinz N, Laiglesia LM, Escoté X, Martínez JA, Moreno-Aliaga MJ. Maresin 1 Regulates Hepatic FGF21 in Diet-Induced Obese Mice and in Cultured Hepatocytes. Mol Nutr Food Res 2019; 63:e1900358. [PMID: 31576649 DOI: 10.1002/mnfr.201900358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/19/2019] [Indexed: 12/15/2022]
Abstract
SCOPE To study the effects of Maresin 1 (MaR1), a docosahexaenoic-acid-derived lipid mediator, on fibroblast growth factor 21 (FGF21) production and to characterize the tissue-specific regulation of Fgf21 and its signaling pathway in liver, skeletal muscle, and white adipose tissue (WAT). METHODS AND RESULTS Diet-induced obese (DIO) mice are treated with MaR1 (50 µg kg-1 , 10 days, oral gavage) and serum FGF21 levels and liver, muscle and WAT Fgf21, β-Klotho, Fgfr1, Egr1, and cFos mRNA expression are evaluated. Additionally, MaR1 effects are tested in mouse primary hepatocytes, HepG2 human hepatocytes, C2C12 myotubes, and 3T3-L1 adipocytes. In DIO mice, MaR1 decreases circulating FGF21 levels and HFD-induced hepatic Fgf21 mRNA expression. MaR1 increases hepatic β-Klotho, Egr1, and cFos in DIO mice. In WAT, MaR1 counteracts the HFD-induced downregulation of Fgf21, Fgfr1, and β-Klotho. In muscle, MaR1 does not modify Fgf21 but promoted Fgfr1 expression. In mouse primary hepatocytes, MaR1 decreases Fgf21 expression and downregulated Pparα mRNA levels. In HepG2 cells, MaR1 reverses the increased production of FGF21 and the downregulation of FGFR1, Β-KLOTHO, EGR1, and cFOS induced by palmitate. Preincubation with a PPARα antagonist prevents MaR1 effects on FGF21 secretion. CONCLUSION The ability of MaR1 to modulate FGF21 can contribute to its beneficial metabolic effects.
Collapse
Affiliation(s)
- L Martínez-Fernández
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - P González-Muniesa
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, 31008, Pamplona, Spain
| | - N Sáinz
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - L M Laiglesia
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - X Escoté
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - J A Martínez
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, 31008, Pamplona, Spain
| | - M J Moreno-Aliaga
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, 31008, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, 31008, Pamplona, Spain
| |
Collapse
|
79
|
Effect of resveratrol on adipokines and myokines involved in fat browning: Perspectives in healthy weight against obesity. Pharmacol Res 2019; 148:104411. [PMID: 31449976 DOI: 10.1016/j.phrs.2019.104411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Obesity is a globally widespread metabolic disorder, characterized by immoderate fat accumulation in the body. There are different types of body fats such as white adipose tissue (WAT), which stores surplus energy in the body, and brown adipose tissue (BAT) which utilize energy to produce heat during metabolism. BAT acts many beneficial functions in metabolic disorders including type 2 diabetes and obesity. Recent studies have investigated methods for promoting the fat browning process of WAT in obesity because of various reasons such as the improvement of insulin resistance, and weight loss. Among natural polyphenolic compounds, resveratrol has been highlighted due to its anti-oxidant and anti-obesity as well as anti-inflammation and anti-cancer properties. Recent studies have paid a lot of attention to that resveratrol may act as a fat browning activator, involved in the secretion of many myokines and adipokines. Here, we reviewed the role of resveratrol in fat browning and also the association between resveratrol and adipokines/myokines in the fat browning process. Our review may provide novel insight into the role of resveratrol in fat browning, leading to the maintenance of a healthy weight against obesity.
Collapse
|
80
|
Lewis JE, Ebling FJP, Samms RJ, Tsintzas K. Going Back to the Biology of FGF21: New Insights. Trends Endocrinol Metab 2019; 30:491-504. [PMID: 31248786 DOI: 10.1016/j.tem.2019.05.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a protein highly synthesized in the liver that exerts paracrine and endocrine control of many aspects of energy homeostasis in multiple tissues. In preclinical models of obesity and type 2 diabetes, treatment with FGF21 improves glucose homeostasis and promotes weight loss, and, as a result, FGF21 has attracted considerable attention as a therapeutic agent for the treatment of metabolic syndrome in humans. An improved understanding of the biological role of FGF21 may help to explain why its therapeutic potential in humans has not been fully realized. This review will cover the complexities in FGF21 biology in rodents and humans, with emphasis on its role in protection from central and peripheral facets of obesity.
Collapse
Affiliation(s)
- Jo E Lewis
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, CB0 0QQ, UK
| | - Francis J P Ebling
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | - Kostas Tsintzas
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
81
|
Sharma S, Dixon T, Jung S, Graff EC, Forney LA, Gettys TW, Wanders D. Dietary Methionine Restriction Reduces Inflammation Independent of FGF21 Action. Obesity (Silver Spring) 2019; 27:1305-1313. [PMID: 31207147 PMCID: PMC6656589 DOI: 10.1002/oby.22534] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Methionine restriction (MR) decreases inflammation and improves markers of metabolic disease in rodents. MR also increases hepatic and circulating concentrations of fibroblast growth factor 21 (FGF21). Emerging evidence has suggested that FGF21 exerts anti-inflammatory effects. The purpose of this study was to determine the role of FGF21 in mediating the MR-induced reduction in inflammation. METHODS Wild-type and Fgf21-/- mice were fed a high-fat (HF) control or HF-MR diet for 8 weeks. In a separate experiment, mice were fed a HF diet (HFD) for 10 weeks. Vehicle or recombinant FGF21 (13.6 µg/d) was administered via osmotic minipump for an additional 2 weeks. Inflammation and metabolic parameters were measured. RESULTS Fgf21-/- mice were more susceptible to HFD-induced inflammation, and MR reduced inflammation in white adipose tissue (WAT) and liver of Fgf21-/- mice. MR downregulated activity of signal transducer and activator of transcription 3 in WAT of both genotypes. FGF21 administration reduced hepatic lipids and blood glucose concentrations. However, there was little effect of FGF21 on inflammatory gene expression in liver or adipose tissue or circulating cytokines. CONCLUSIONS MR reduces inflammation independent of FGF21 action. Endogenous FGF21 is important to protect against the development of HFD-induced inflammation in liver and WAT, yet administration of low-dose FGF21 has little effect on markers of inflammation.
Collapse
Affiliation(s)
- Shaligram Sharma
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Taylor Dixon
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Sean Jung
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Emily C. Graff
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Laura A. Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
82
|
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid-induced insulin resistance. J Physiol 2019; 597:3885-3903. [PMID: 31206703 DOI: 10.1113/jp277270] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Oestrogen has been shown to play an important role in the regulation of metabolic homeostasis and insulin sensitivity in both human and rodent studies. Insulin sensitivity is greater in premenopausal women compared with age-matched men, and metabolism-related cardiovascular diseases and type 2 diabetes are less frequent in these same women. Both female and male mice treated with oestradiol are protected against obesity-induced insulin resistance. The protection against obesity-induced insulin resistance is associated with reduced ectopic lipid content in liver and skeletal muscle. These results were associated with increased insulin-stimulated suppression of white adipose tissue lipolysis and reduced inflammation. ABSTRACT Oestrogen has been shown to play an important role in the regulation of metabolic homeostasis and insulin sensitivity in both human and rodent studies. Overall, females are protected against obesity-induced insulin resistance; yet, the mechanisms responsible for this protection are not well understood. Therefore, the aim of the present work was to evaluate the underlying mechanism(s) by which female mice are protected against obesity-induced insulin resistance compared with male mice. We studied male and female mice in age-matched or body weight-matched conditions. They were fed a high-fat diet (HFD) or regular chow for 4 weeks. We also studied HFD male mice treated with oestradiol or vehicle. Both HFD female and HFD male mice treated with oestradiol displayed increased whole-body insulin sensitivity, associated with reduction in ectopic hepatic and muscle lipid content compared to HFD male mice. Reductions in ectopic lipid content in these mice were associated with increased insulin-stimulated suppression of white adipose tissue (WAT) lipolysis. Both HFD female and HFD male mice treated with oestradiol also displayed striking reductions in WAT inflammation, represented by reductions in plasma and adipose tissue tumour necrosis factor α and interleukin 6 concentrations. Taken together these data support the hypothesis that HFD female mice are protected from obesity-induced insulin resistance due to oestradiol-mediated reductions in WAT inflammation, leading to improved insulin-mediated suppression of WAT lipolysis and reduced ectopic lipid content in liver and skeletal muscle.
Collapse
Affiliation(s)
- João Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil, 05508-000
| | - Kun Lyu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Emily L Goldberg
- Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michael J Jurczak
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Vishwa Deep Dixit
- Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
83
|
Abstract
Because of the shortage of liver grafts available for transplantation, the restrictions on graft quality have been relaxed, and marginal grafts, such as steatotic livers, are now accepted. However, this policy change has not solved the problem, because steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly. Adipocytokines differentially modulate steatosis, inflammation, and fibrosis and are broadly present in hepatic resections and transplants. The potential use of adipocytokines as biomarkers of the severity of steatosis and liver damage to aid the identification of high-risk steatotic liver donors and to evaluate hepatic injury in the postoperative period are discussed. The hope of finding new therapeutic strategies aimed specifically at protecting steatotic livers undergoing surgery is a strong impetus for identifying the mechanisms responsible for hepatic failure after major surgical intervention. Hence, the most recently described roles of adipocytokines in steatotic livers subject to I/R injury are discussed, the conflicting results in the literature are summarized, and reasons are offered as to why strategic pharmacologic control of adipocytokines has yet to yield clinical benefits. After this, the next steps needed to transfer basic knowledge about adipocytokines into clinical practice to protect marginal livers subject to I/R injury are presented. Recent strategies based on adipocytokine regulation, which have shown efficacy in various pathologies, and hold promise for hepatic resection and transplantation are also outlined.
Collapse
|
84
|
Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EB, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M, Haendeler J, Fischer JW. 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 2019; 1:546-559. [PMID: 31602424 PMCID: PMC6786893 DOI: 10.1038/s42255-019-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes.
Collapse
Affiliation(s)
- Maria Grandoch
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- corresponding author: Dr. Maria Grandoch, Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sam Virtue
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Julia K. Maier
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Christina Kohlmorgen
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kathrin Feldmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yanina Ostendorf
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tamara R. Castañeda
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zhou Zhou
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emmani B.M. Nascimento
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine Goy
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina Kinzig
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Susanne Keipert
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Martin Jastroch
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Judith Haendeler
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- IUF - Leibniz Research Institute for Environmental Medicine, Heisenberg Group - Environmentally-induced Cardiovascular Degeneration, Düsseldorf, Germany
| | - Jens W. Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
85
|
Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, Marcó S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferré T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2019; 10:emmm.201708791. [PMID: 29987000 PMCID: PMC6079533 DOI: 10.15252/emmm.201708791] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Darriba
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Rodó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sandra Motas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Francisca Mulero
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marc Navarro
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain .,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
86
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
87
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
88
|
Inducible Loss of the Aryl Hydrocarbon Receptor Activates Perigonadal White Fat Respiration and Brown Fat Thermogenesis via Fibroblast Growth Factor 21. Int J Mol Sci 2019; 20:ijms20040950. [PMID: 30813227 PMCID: PMC6412252 DOI: 10.3390/ijms20040950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor highly expressed in hepatocytes. Researchers have employed global and liver-specific conditional Ahr knockout mouse models to characterize the physiological roles of the AHR; however, the gestational timing of AHR loss in these models can complicate efforts to distinguish the direct and indirect effects of post-gestational AHR deficiency. Utilizing a novel tamoxifen-inducible AHR knockout mouse model, we analyzed the effects of hepatocyte-targeted AHR loss in adult mice. The data demonstrate that AHR deficiency significantly reduces weight gain and adiposity, and increases multilocular lipid droplet formation within perigonadal white adipose tissue (gWAT). Protein and mRNA expression of fibroblast growth factor 21 (FGF21), an important hepatokine that activates thermogenesis in brown adipose tissue (BAT) and gWAT, significantly increases upon AHR loss and correlates with a significant increase of BAT and gWAT respiratory capacity. Confirming the role of FGF21 in mediating these effects, this phenotype is reversed in mice concomitantly lacking AHR and FGF21 expression. Chromatin immunoprecipitation analyses suggest that the AHR may constitutively suppress Fgf21 transcription through binding to a newly identified xenobiotic response element within the Fgf21 promoter. The data demonstrate an important AHR-FGF21 regulatory axis that influences adipose biology and may represent a “druggable” therapeutic target for obesity and its related metabolic disorders.
Collapse
|
89
|
Yuan D, Wu BJ, Henry A, Rye KA, Ong KL. Role of fibroblast growth factor 21 in gestational diabetes mellitus: A mini-review. Clin Endocrinol (Oxf) 2019; 90:47-55. [PMID: 30346647 DOI: 10.1111/cen.13881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first diagnosis during pregnancy, but not to the level of being diagnostic for diabetes in a nonpregnant adult. In GDM, whole-body insulin-dependent glucose disposal decreases by 40%-60% which necessitates a 200%-250% increase in insulin secretion to maintain normoglycaemia. GDM develops when a pregnant woman does not produce sufficient insulin to compensate for the reduced glucose disposal. Fibroblast growth factor 21 (FGF21) is a hormone that is expressed predominantly in the liver, but also in other metabolically active tissues such as pancreas, skeletal muscle and adipose tissue. In animals, FGF21 lowers blood glucose levels and inhibits glucagon secretion. In humans, circulating FGF21 levels are increased in insulin-resistant morbidities such as obesity and type 2 diabetes mellitus (T2DM). An elevated FGF21 level is also an independent predictor of T2DM. GDM and T2DM are proposed to have similar underlying pathophysiologies, raising the question of whether a similar relationship exists between FGF21 and GDM as it does with T2DM. There are a limited number of studies investigating FGF21 levels in patients with GDM. Moreover, recent clinical trials investigating the therapeutic potential of FGF21 have highlighted a major gap in our understanding of the biology of FGF21. This review evaluates what is currently known about FGF21 and GDM and highlights important gaps that warrant further research.
Collapse
Affiliation(s)
- Daniel Yuan
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ben J Wu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Henry
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Women's and Children's Health, St George Hospital, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kwok Leung Ong
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
90
|
Sutton EF, Morrison CD, Stephens JM, Redman LM. Fibroblast growth factor 21, adiposity, and macronutrient balance in a healthy, pregnant population with overweight and obesity. Endocr Res 2018; 43:275-283. [PMID: 29768065 PMCID: PMC6215499 DOI: 10.1080/07435800.2018.1473421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY The regulation and actions of fibroblast growth factor 21 (FGF21) are responsive to energy status and macronutrient balance, and investigations of FGF21 in normal pregnancy, which could be informative for FGF21 biology, are seldom. The goal of our study was to examine FGF21 levels in a contemporary healthy, pregnant population. METHODS We phenotyped 43 women with overweight and obesity during pregnancy for weight, body composition, and fasting blood. Serum FGF21 was measured during the first and third trimesters. Placentas were collected at delivery. RESULTS Maternal FGF21 concentrations were positively correlated with body mass index and adiposity, but not lean mass or glucose homeostasis. FGF21 concentrations significantly increased from the first to third trimester of pregnancy (0.105 vs. 0.256 ng/mL, p < 0.0001). Changes in FGF21 concentrations across pregnancy were not associated with changes in body weight or composition but inversely with the change in fasting glucose. FGF21 mRNA levels in placenta were very low and do not likely contribute to FGF21 in the maternal circulation. CONCLUSIONS FGF21 increases throughout pregnancy in our healthy cohort with overweight and obesity, independent of the placenta, and does not appear to be sensing the changes in energy balance (reflected in the change in maternal energy stores), but changes in macronutrient status. Thus, we propose FGF21 may be a potential signal of maternal nutrient status in pregnancy.
Collapse
Affiliation(s)
- Elizabeth F Sutton
- a Reproductive Endocrinology and Women's Health Laboratory , Pennington Biomedical Research Center-Louisiana State University , Baton Rouge , LA , USA
| | - Christopher D Morrison
- b Neurosignaling Laboratory , Pennington Biomedical Research Center-Louisiana State University , Baton Rouge , LA , USA
| | - Jacqueline M Stephens
- c Adipocyte Biology Laboratory , Pennington Biomedical Research Center-Louisiana State University , Baton Rouge , LA , USA
| | - Leanne M Redman
- a Reproductive Endocrinology and Women's Health Laboratory , Pennington Biomedical Research Center-Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
91
|
Pei E, Liu Y, Jiang W, Lin S, Huang L, Lin M, Cai L. Sleeve gastrectomy attenuates high fat diet-induced non-alcoholic fatty liver disease. Lipids Health Dis 2018; 17:243. [PMID: 30355361 PMCID: PMC6201512 DOI: 10.1186/s12944-018-0875-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background A high-fat diet (HFD) is known to lead to obesity, and contributes to the progression of non-alcoholic fatty liver disease. The objective of this study was to evaluate the effects of sleeve gastrectomy (SG) on the progression of HFD-induced hepatic steatosis. Methods Fifteen 4-week-old, male Wistar rats were randomly assigned into three groups: NC, HFD + SHAM and HFD + SG. Their body weight, glucose-lipid metabolism, inflammation indices, hepatic steatosis and fibroblast growth factor 21 (FGF21) levels were measured. Results Postoperatively, body weights in the HFD + SHAM and HFD + SG group rats decreased during the first week. Thereafter, HFD + SG rats regained their body weight. Differences in insulin, homeostasis model assessment of insulin resistance, triglyceride, free fatty acid, tumor necrosis factor-α and monocyte chemotactic protein-1 levels were statistically significant across the three groups (all P < 0.05). Interestingly, FGF21 levels in the HFD + SG group were markedly lower than in the HFD + SHAM group (P = 0.015), however, there were no differences in the NC group. Hematoxylin and eosin staining demonstrated that more vacuoles were present in the HFD + SHAM liver when compared to the HFD + SG liver. Oil-red O staining showed less red dots in the HFD + SG liver. Conclusions Despite eating, surgical re-routing of the gut may prevent weight accumulation, regulate glucose-lipid metabolism and insulin sensitivity, control a chronic inflammatory state, change the secretion pattern of FGF21 and alleviate the severity of fatty liver.
Collapse
Affiliation(s)
- Erli Pei
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yang Liu
- Department of Gerontology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weiqing Jiang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Songruo Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lei Huang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Li Cai
- Department of Science and Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
92
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
93
|
FGF21 increases water intake, urine output and blood pressure in rats. PLoS One 2018; 13:e0202182. [PMID: 30106981 PMCID: PMC6091943 DOI: 10.1371/journal.pone.0202182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/29/2018] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone secreted by the liver in response to metabolic stress. In addition to its well-characterized effects on energy homeostasis, FGF21 has been shown to increase water intake in animals. In this study, we sought to further explore the effects of FGF21 on fluid homeostasis in rats. A single dose of a long-acting FGF21 analog, PF-05231023, significantly increased water consumption, which was accompanied by an elevation in urine output that appeared prior to a significant change in water intake. We observed that FGF21 rapidly and significantly increased heart rate and blood pressure in telemeter-implanted rats, before changes in urine output and water intake were observed. Our data suggest that sympathetic activation may contribute to the pathogenesis by which FGF21 increases blood pressure as the baroreceptor unloading induced reflex tachycardia was significantly elevated in FGF21-treated animals. However, FGF21 was still capable of causing hypertension in animals in which approximately 40% of the sympathetic post-ganglionic neurons were ablated. Our data suggest that FGF21-induced water intake is in fact secondary to diuresis, which we propose to be a compensatory mechanism engaged to alleviate the acute hypertension caused by FGF21.
Collapse
|
94
|
The Hormone FGF21 Stimulates Water Drinking in Response to Ketogenic Diet and Alcohol. Cell Metab 2018; 27:1338-1347.e4. [PMID: 29657029 PMCID: PMC5990458 DOI: 10.1016/j.cmet.2018.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/02/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
Alcohol and ketogenic diets increase water consumption. Here, we show that the hormone FGF21 is required for this drinking response in mice. Circulating levels of FGF21 are increased by alcohol consumption in humans and by both alcohol and ketogenic diets in mice. Pharmacologic administration of FGF21 stimulates water drinking behavior in mice within 2 hr. Concordantly, mice lacking FGF21 fail to increase water intake in response to either alcohol or a ketogenic diet. The effect of FGF21 on drinking is mediated in part by SIM1-positive neurons of the hypothalamus and is inhibited by β-adrenergic receptor antagonists. Given that FGF21 also is known to suppress alcohol intake in favor of pure water, this work identifies FGF21 as a fundamental neurotropic hormone that governs water balance in response to specific nutrient stresses that can cause dehydration.
Collapse
|
95
|
BonDurant LD, Potthoff MJ. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu Rev Nutr 2018; 38:173-196. [PMID: 29727594 DOI: 10.1146/annurev-nutr-071816-064800] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine hormone derived from the liver that exerts pleiotropic effects on the body to maintain overall metabolic homeostasis. During the past decade, there has been an enormous effort made to understand the physiological roles of FGF21 in regulating metabolism and to identify the mechanism for its potent pharmacological effects to reverse diabetes and obesity. Through both human and rodent studies, it is now evident that FGF21 levels are dynamically regulated by nutrient sensing, and consequently FGF21 functions as a critical regulator of nutrient homeostasis. In addition, recent studies using new genetic and molecular tools have provided critical insight into the actions of this endocrine factor. This review examines the numerous functions of FGF21 and highlights the therapeutic potential of FGF21-targeted pathways for treating metabolic disease.
Collapse
Affiliation(s)
- Lucas D BonDurant
- Department of Pharmacology and Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| | - Matthew J Potthoff
- Department of Pharmacology and Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
96
|
Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance. J Nutr Biochem 2018; 57:189-196. [PMID: 29751292 DOI: 10.1016/j.jnutbio.2018.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 01/13/2023]
Abstract
Recent studies have demonstrated that dietary protein dilution (PD) can promote metabolic inefficiency and improve glucose metabolism. However, whether PD can promote other aspects of metabolic health, such as improve systemic lipid metabolism, and mechanisms therein remains unknown. Mouse models of obesity, such as high-fat-diet-fed C57Bl/6 N mice, and New Zealand Obese mice were fed normal (i.e., 20%P) and protein-dilute (i.e., 5%EP) diets. FGF21-/- and Cd36-/- and corresponding littermate +/+ controls were also studied to examine gene-diet interactions. Here, we show that chronic PD retards the development of hypertrigylceridemia and fatty liver in obesity and that this relies on the induction of the hepatokine fibroblast growth factor 21 (FGF21). Furthermore, PD greatly enhances systemic lipid homeostasis, the mechanisms by which include FGF21-stimulated, and cluster of differentiation 36 (CD36) mediated, fatty acid clearance by oxidative tissues, such as heart and brown adipose tissue. Taken together, our preclinical studies demonstrate a novel nutritional strategy, as well as highlight a role for FGF21-stimulated systemic lipid metabolism, in combating obesity-related dyslipidemia.
Collapse
|
97
|
|
98
|
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 2018; 27:22-41. [PMID: 28867301 PMCID: PMC5762395 DOI: 10.1016/j.cmet.2017.08.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
NAFLD is closely linked with hepatic insulin resistance. Accumulation of hepatic diacylglycerol activates PKC-ε, impairing insulin receptor activation and insulin-stimulated glycogen synthesis. Peripheral insulin resistance indirectly influences hepatic glucose and lipid metabolism by increasing flux of substrates that promote lipogenesis (glucose and fatty acids) and gluconeogenesis (glycerol and fatty acid-derived acetyl-CoA, an allosteric activator of pyruvate carboxylase). Weight loss with diet or bariatric surgery effectively treats NAFLD, but drugs specifically approved for NAFLD are not available. Some new pharmacological strategies act broadly to alter energy balance or influence pathways that contribute to NAFLD (e.g., agonists for PPAR γ, PPAR α/δ, FXR and analogs for FGF-21, and GLP-1). Others specifically inhibit key enzymes involved in lipid synthesis (e.g., mitochondrial pyruvate carrier, acetyl-CoA carboxylase, stearoyl-CoA desaturase, and monoacyl- and diacyl-glycerol transferases). Finally, a novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
99
|
Ryan KK, Packard AEB, Larson KR, Stout J, Fourman SM, Thompson AMK, Ludwick K, Habegger KM, Stemmer K, Itoh N, Perez-Tilve D, Tschöp MH, Seeley RJ, Ulrich-Lai YM. Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21. Endocrinology 2018; 159:400-413. [PMID: 29077838 PMCID: PMC5761593 DOI: 10.1210/en.2017-00486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
Abstract
In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect.
Collapse
Affiliation(s)
- Karen K. Ryan
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, California 95616
| | - Amy E. B. Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Karlton R. Larson
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, California 95616
| | - Jayna Stout
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Sarah M. Fourman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Abigail M. K. Thompson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Kristen Ludwick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Kirk M. Habegger
- Department of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich & Division of Metabolic Diseases, Technische Universität München, D-85748 Munich, Germany
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich & Division of Metabolic Diseases, Technische Universität München, D-85748 Munich, Germany
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Yvonne M. Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| |
Collapse
|
100
|
Mashili FL, Ramaiya K, Lutale J, Njelekela M, Francis F, Zierath J, Krook A. Adiposity Is a Key Correlate of Circulating Fibroblast Growth Factor-21 Levels in African Males with or without Type 2 Diabetes Mellitus. J Obes 2018; 2018:7461903. [PMID: 30298107 PMCID: PMC6157203 DOI: 10.1155/2018/7461903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fibroblast growth factor-21 is an endocrine regulator with therapeutic and diagnostic potential. The levels and pattern of circulating FGF-21 have been described mainly in European and Asian populations. Given its strong association with adiposity, and the reported ethnic variabilities in body composition, examining FGF-21 in an African population is crucial. METHODS We measured levels of circulating FGF-21 in 207 overweight and obese Tanzanian males with or without type 2 diabetes mellitus (T2DM), and using statistical approaches, we explored their relationship with anthropometric and biochemical parameters. RESULTS Consistent with previous reports from European and Asian populations, we found higher levels of FGF-21 in people with T2DM compared to those without the disease. Based on statistical models, measures of adiposity explained up to 59% of the variability in FGF-21 levels in the circulation. CONCLUSION Levels of circulating FGF-21 in overweight and obese African males are higher in T2DM and strongly correlate with measures of adiposity.
Collapse
Affiliation(s)
- Fredirick L. Mashili
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Box 65001, Dar es Salaam, Tanzania
| | - Kaushik Ramaiya
- Tanzania Diabetes Association, Box 65201, Dar Es Salaam, Tanzania
| | - Janet Lutale
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Box 65001, Dar es Salaam, Tanzania
| | - Marina Njelekela
- Tanzania Diabetes Association, Box 65201, Dar Es Salaam, Tanzania
| | - Filbert Francis
- National Institute of Medical Research, Box 5004, Tanga, Tanzania
| | - Juleen Zierath
- Department of Physiology and Pharmacology, SE-17177 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, SE-17177 Stockholm, Sweden
| |
Collapse
|