51
|
Umsza-Guez MA, Silva-Beltrán NP, Machado BAS, Balderrama-Carmona AP. Herbicide determination in Brazilian propolis using high pressure liquid chromatography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:507-517. [PMID: 31569968 DOI: 10.1080/09603123.2019.1670335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Propolis is a widely used medicinal product sourced by bees from vegetation that may be frequently irrigated with herbicides. Exposure to herbicides can affect bees' health and the quality of commercial propolis. The objective of this study was to calculate the concentrations of glyphosate, aminomethylphosphonic acid (AMPA), picloram and atrazine in different types of propolis from Brazil using high-performance liquid chromatography (HPLC). Four types of propolis (brown, green, red, and yellow) were evaluated for a total of 19 samples. Of these types of propolis, 47% tested positive for the herbicides atrazine (5 to 17.4 µg/g) and AMPA (10.2 to 11.3 µg/g). No samples were reported to be positive for glyphosate; however, the presence of AMPA indicates its existence. The concentrations observed in this study are less than international maximum-residue-level standards.
Collapse
Affiliation(s)
- M A Umsza-Guez
- Departamento de Biotecnologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - N P Silva-Beltrán
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. Obregón, México
| | - B A S Machado
- National Service of Industrial Learning-SENAI, Health Institute of Technology (ITS CIMATEC), University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - A P Balderrama-Carmona
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa, México
| |
Collapse
|
52
|
Battisti L, Potrich M, Sampaio AR, de Castilhos Ghisi N, Costa-Maia FM, Abati R, Dos Reis Martinez CB, Sofia SH. Is glyphosate toxic to bees? A meta-analytical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145397. [PMID: 33636765 DOI: 10.1016/j.scitotenv.2021.145397] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 05/26/2023]
Abstract
Glyphosate (GLY) is an herbicide widely used in agriculture. First considered as non-toxic or slightly toxic to bees, GLY and its different formulations have shown, more recently, to affect negatively the survival, development and behavior of these insects, even when used in doses and concentrations recommended by the manufacturer. Thus, the results of research on the toxicity of GLY to bees are often conflicting, which makes a meta-analysis interesting for data integration, generating a statistically reliable result. Therefore, this study aimed to evaluate the GLY effects on mortality of bees through a meta-analysis. For this, a search was carried out in the databases Web of Science, CAPES (Coordination for the Improvement of Higher Education Personnel - Brazil), Scopus, and PubMed. Papers that evaluated the effect of GLY on bee mortality published between 1945 and October 2020, were considered. After obtaining the data, R software was used to perform the meta-analytical tests. Sixteen papers on mortality were selected with 34 data sets. Most of the sets demonstrated differences between the control and experimental groups, showing that the treatments with GLY caused higher mortality of bees. The results considering the methodology used (ingestion or contact), the phase of the biological cycle (adults or larvae), and the dose (ecologically relevant dose and recommended by the manufacturer) were different when compared with their respective control groups. Therefore, GLY can be considered toxic to bees. It is important to emphasize that this meta-analysis identified that papers assessing the toxicity of GLY to bees are still scarce, for both lethal and sublethal effects, mainly for stingless and solitary bee species.
Collapse
Affiliation(s)
- Lucas Battisti
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil.
| | - Amanda Roberta Sampaio
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Nédia de Castilhos Ghisi
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, UTFPR, Programa de Pós-Graduação em Biotecnologia, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Fabiana Martins Costa-Maia
- Universidade Tecnológica Federal do Paraná, UFTPR, Campus Dois Vizinhos, UNEPE Apicultura, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Raiza Abati
- Universidade Tecnológica Federal do Paraná, UTFPR, Campus Dois Vizinhos, LABCON, Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, 86660-000 Dois Vizinhos, PR, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Silvia Helena Sofia
- Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445 km 380, Campus Universitário, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
53
|
Kassahun T, Pavlů K, Pavlů V, Pavlů L, Novak J, Blažek P. Restoration management of cattle resting place in mountain grassland. PLoS One 2021; 16:e0249445. [PMID: 33793653 PMCID: PMC8016235 DOI: 10.1371/journal.pone.0249445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 11/27/2022] Open
Abstract
This study investigated the effect of restoration management of a weed-infested area, previously used as cattle resting place, on herbage production and nutrient concentrations in the soil and herbage. The experiment was undertaken from 2004 to 2011 at the National Park of Nízké Tatry, Slovakia. Three treatments were applied: (i) cutting twice per year, (ii) herbicide application, followed after three weeks by reseeding with a mixture of vascular plant species and then cut twice per year, and (iii) unmanaged. Treatments had significant effect on biomass production and concentration of nutrients in the soil and in herbage. Nutrient concentrations in herbage and in soil declined progressively under the cutting treatments and reached optimum ranges for dairy cattle at the end of the experiment when herbage N was less than 15 g kg-1 and herbage P was 3.4 g kg-1. There was also a strong positive relationship under the cutting treatments between soil nutrient concentrations and herbage nutrient concentrations for N, P, K, Mg and Ca. Although the cutting management as well as the combination of herbicide application with cutting management reduced nutrient concentrations in the soil and in herbage, the nutrient concentrations remained relatively high. We can conclude that restoration of grassland covered with weedy species like Urtica dioica and Rumex obtusifolius, with excessive levels of soil nutrients, cannot be achieved just by cutting and herbicide application.
Collapse
Affiliation(s)
- Teowdroes Kassahun
- Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Klára Pavlů
- Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Vilem Pavlů
- Department of Ecology, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Weeds and Vegetation of Agroecosystems, Crop Research Institute, Prague, Czech Republic
| | - Lenka Pavlů
- Department of Weeds and Vegetation of Agroecosystems, Crop Research Institute, Prague, Czech Republic
| | - Jan Novak
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Petr Blažek
- Faculty of Science, Department of Botany, University of South Bohemia, České Budějovice, Czechia
- Institute of Entomology, Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| |
Collapse
|
54
|
A Qualitative Analysis of Beekeepers' Perceptions and Farm Management Adaptations to the Impact of Climate Change on Honey Bees. INSECTS 2021; 12:insects12030228. [PMID: 33800740 PMCID: PMC7998300 DOI: 10.3390/insects12030228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary This paper addresses climate change effects on honey bees and beekeeping, as observed by the beekeepers. Focus groups were used to identify the perceptions, thoughts and impressions of two groups of beekeepers, regarding their viewpoints and direct observations on the effects of climate change on honey bees and management strategies. Beekeepers reported several consequences related to severe weather events (weakening or loss of colonies; scarcity of nectar, pollen, and honeydew; decrease or lack of honey and other bee products; intensive transhumance; greater infestation by varroa; decline in pollination), making it necessary to provide supplemental sugar feeding, more effective and sustainable techniques for varroa control, and increased production of nuclei. Thanks to their strong motivation and collaborative attitude, beekeepers succeed in adopting strategies that are able to limit the climatic adverse effects. However, the institutional and financial support for the beekeeping sector should be strengthened and better targeted in order to help beekeepers to cope with the specific issues arising due to climatic stresses. Abstract (1) Background: Bees are the primary animal pollinators in most ecosystems, and honey bees (Apis mellifera L.) are important providers of pollination ecosystem services and products. Climate change is one of the major threats for honey bees. (2) Objectives and methods: Qualitative research using focus group discussions was carried out in northwestern Italy, to investigate the beekeepers’ perceptions of climate change effects, the relevant management adaptations, and the main issues affecting the sector. (3) Results: Beekeepers reported several consequences related to severe weather events (weakening or loss of colonies; scarcity of nectar, pollen, and honeydew; decrease or lack of honey and other bee products; greater infestation by varroa; decline in pollination), making it necessary to provide supplemental sugar feeding, intensive transhumance, more effective and sustainable techniques for varroa control, and increased production of nuclei. A strengths, weaknesses, opportunities, and threats (SWOT) analysis was completed, displaying the factors able to strengthen or weaken the resilience of the beekeeping sector to climate change. (4) Conclusions: Thanks to their strong motivation and collaborative attitude, beekeepers succeed in adopting farm and bee hive adaptation strategies that are able to limit the climatic adverse effects. However, these findings highlight how the institutional and financial support for the beekeeping sector should be strengthened and better targeted.
Collapse
|
55
|
Kanabar M, Bauer S, Ezedum ZM, Dwyer IP, Moore WS, Rodriguez G, Mall A, Littleton AT, Yudell M, Kanabar J, Tucker WJ, Daniels ER, Iqbal M, Khan H, Mirza A, Yu JC, O'Neal M, Volkenborn N, Pochron ST. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13021-6. [PMID: 33635453 DOI: 10.1007/s11356-021-13021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is the active ingredient in Roundup formulations. Glyphosate-based herbicides are used globally in agriculture, forestry, horticulture, and in urban settings. Glyphosate can persist for years in our soil, potentially impacting the soil-dwelling arthropods that are primary drivers of a suite of ecosystem services. Furthermore, although glyphosate is not generally classified as neurotoxic to insects, evidence suggests that it may cause nerve damage in other organisms. In a series of experiments, we used food to deliver environmentally realistic amounts of Roundup ready-to-use III, a common 2% glyphosate-based herbicide formulation that lists isopropylamine salt as its active ingredient, to Madagascar hissing cockroaches. We then assessed the impact of contamination on body mass, nerve health, and behavior. Contaminated food contained both 30.6 mg glyphosate and so-called inert ingredients. Food was refreshed weekly for 26-60 days, depending on the experiment. We found that consumption of contaminated food did not impact adult and juvenile survivorship or body weight. However, consumption of contaminated food decreased ventral nerve cord action-potential velocity by 32%, caused a 29% increase in respiration rate, and caused a 74.4% decrease in time spent on a motorized exercise wheel. Such changes in behavior may make cockroaches less capable of fulfilling their ecological service, such as pollinating or decomposing litter. Furthermore, their lack of coordination may make them more susceptible to predation, putting their population at risk. Given the decline of terrestrial insect abundance, understanding common risks to terrestrial insect populations has never been more critical. Results from our experiments add to the growing body of literature suggesting that this popular herbicide can act as a neurotoxin.
Collapse
Affiliation(s)
- Megha Kanabar
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Samuel Bauer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Zimuzo M Ezedum
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ian P Dwyer
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - William S Moore
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Gabriella Rodriguez
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Aditya Mall
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Anne T Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | | | - Wade J Tucker
- Miller Place High School, Miller Place, NY, 11764, USA
| | - Emily R Daniels
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Mohima Iqbal
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Hira Khan
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Joshua C Yu
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Marvin O'Neal
- Department of Biology, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Nils Volkenborn
- Marine Sciences Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA
| | - Sharon T Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, USA.
| |
Collapse
|
56
|
Evaluating the Impact of Post-Emergence Weed Control in Honeybee Colonies Located in Different Agricultural Surroundings. INSECTS 2021; 12:insects12020163. [PMID: 33672824 PMCID: PMC7918372 DOI: 10.3390/insects12020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
The honeybee Apis mellifera is exposed to agricultural intensification, which leads to an improved reliance upon pesticide use and the reduction of floral diversity. In the present study, we assess the changes in the colony activity and the expression profile of genes involved in xenobiotic detoxification in larvae and adult honeybees from three apiaries located in agricultural environments that differ in their proportion of the crop/wild flora. We evaluated these variables before and after the administration of a mixture of three herbicides during the summer season. The expression of several cytochrome P450 monooxygenases decreased significantly in larvae after post-emergence weed control and showed significant differences between apiaries in the case of honeybee workers. Principal component analysis (PCA) revealed that colonies located in the plot near to a wetland area exhibited a different relative gene expression profile after herbicide application compared with the other plots. Moreover, we found significant positive correlations between pollen collection and the pesticide detoxification genes that discriminated between plots in the PCA. Our results suggest that nutrition may modify herbicide impact on honeybees and that larvae are more harmed than adults in agroecosystems, a factor that will alter the colonies' population growth at the end of the blooming period.
Collapse
|
57
|
Review on Sublethal Effects of Environmental Contaminants in Honey Bees ( Apis mellifera), Knowledge Gaps and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041863. [PMID: 33672936 PMCID: PMC7918799 DOI: 10.3390/ijerph18041863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Honey bees and the pollination services they provide are fundamental for agriculture and biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and polycyclic aromatic hydrocarbons, contribute to the general decline of bees' populations. For this reason, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting information about regions, methodological approaches, the type of contaminants, and honey bees' life stages. Europe and North America are the regions in which A. mellifera biological responses were mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more in the laboratory than in field conditions. Through the observation of the different responses examined, we found that there were several knowledge gaps that should be addressed, particularly within enzymatic and molecular responses, such as those regarding the immune system and genotoxicity. The importance of developing an integrated approach that combines responses at different levels, from molecular to organism and population, needs to be highlighted in order to evaluate the impact of anthropogenic contamination on this pollinator species.
Collapse
|
58
|
Luo QH, Gao J, Guo Y, Liu C, Ma YZ, Zhou ZY, Dai PL, Hou CS, Wu YY, Diao QY. Effects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours. Sci Rep 2021; 11:2115. [PMID: 33483522 PMCID: PMC7822899 DOI: 10.1038/s41598-020-80445-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Glyphosate, the active ingredient of the most widely used commercial herbicide formulation, is extensively used and produced in China. Previous studies have reported sublethal effects of glyphosate on honeybees. However, the effects of commercially formulated glyphosate (CFG) at the recommended concentration (RC) on the chronic toxicity of honeybees, especially on their behaviours, remain unknown. In this study, a series of behavioural experiments were conducted to investigate the effects of CFG on honeybees. The results showed that there was a significant decline in water responsiveness at 1/2 × , 1 × and 2 × the RC after 3 h of exposure to CFG for 11 days. The CFG significantly reduced sucrose responsiveness at 1/2 × and 1 × the RC. In addition, CFG significantly affected olfactory learning ability at 1/2 × , 1 × , and 2 × the RC and negatively affected memory ability at 1/2 × and 1 × the RC. The climbing ability of honeybees also significantly decreased at 1/2 × , 1 × and 2 × the RC. Our findings indicated that, after they were chronically exposed to CFG at the RC, honeybees exhibited behavioural changes. These results provide a theoretical basis for regulating field applications of CFG, which is necessary for establishing an early warning and notification system and for protecting honeybees.
Collapse
Affiliation(s)
- Qi-Hua Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Jing Gao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yi Guo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chang Liu
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Yu-Zhen Ma
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Zhi-Yong Zhou
- Bureau of Landscape and Forestry, Mi Yun District, Beijing, 101500, China
| | - Ping-Li Dai
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chun-Sheng Hou
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
59
|
Rodríguez-Gil JL, Prosser RS, Duke SO, Solomon KR. Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:129-205. [PMID: 34104986 DOI: 10.1007/398_2020_56] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.
Collapse
Affiliation(s)
- Jose Luis Rodríguez-Gil
- IISD - Experimental Lakes Area, Winnipeg, MB, Canada.
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
60
|
Malfatti ADLR, Mallmann GC, Oliveira Filho LCI, Carniel LSC, Cruz SP, Klauberg-Filho O. Ecotoxicological test to assess effects of herbicides on spore germination of Rhizophagus clarus and Gigaspora albida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111599. [PMID: 33254424 DOI: 10.1016/j.ecoenv.2020.111599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Given the essential role of arbuscular mycorrhizal fungi (AMF) in soil systems and agriculture, their use as biological indicators has risen in all fields of microbiology research. However, AMF sensitivity to chemical pesticides is poorly understood in field conditions, and not explored in ecotoxicology protocols. Hence, the goal of this study was to evaluate the effects of different concentrations of glyphosate (Roundup®) and diuron+paraquat (Gramocil®) on the germination of spores of Gigaspora albida and Rhizophagus clarus in a tropical artificial soil. This study was conducted in 2019 at the Soil Ecology and Ecotoxicology Laboratory of the Universidade do Estado de Santa Catarina. The nominal concentrations of glyphosate were 0, 10, 50, 100, 250, 500, 750 and 1000 mg a.i. kg-1. For diuron+paraquat, the concentrations tested were 0, 10 + 20, 50 + 100, 100 + 200, 250 + 500, 500 + 1000, 750 + 1500 and 1000 + 2000 mg a.i. kg-1. Glyphosate did not alter germination of G. albida, but germination inhibition of R. clarus spores was of 30.8% at 1000 mg kg-1. Diuron+paraquat inhibited by 8.0% germination of G. albida, but only at the highest concentration tested. On the other hand, effects on R. clarus were detected at 50 + 100 mg kg-1 concentration and above, and inhibition was as high as 57.7% at the highest concentration evaluated. These results suggest distinct response mechanisms of Rhizophagus and Gigaspora when exposed to herbicides, with the former being more sensitive than the later.
Collapse
Affiliation(s)
| | - Gilvani Carla Mallmann
- Department of Soil Science, Universidade do Estado de Santa Catarina (UDESC Lages), Lages, SC, Brazil
| | - Luís Carlos Iuñes Oliveira Filho
- Universidade do Estado de Santa Catarina (UDESC Oeste), Chapecó, SC, Brazil; Department of Soils, Universidade Federal de Pelotas (UFPel), Capão do Leão, RS, Brazil
| | | | - Sonia Purin Cruz
- Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC, Brazil
| | - Osmar Klauberg-Filho
- Department of Soil Science, Universidade do Estado de Santa Catarina (UDESC Lages), Lages, SC, Brazil.
| |
Collapse
|
61
|
Zhao H, Li G, Guo D, Wang Y, Liu Q, Gao Z, Wang H, Liu Z, Guo X, Xu B. Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140819. [PMID: 32693280 DOI: 10.1016/j.scitotenv.2020.140819] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/24/2023]
Abstract
Understanding the causes of the decline in bee population has attracted intensive attention worldwide. The indiscriminate use of agrochemicals is a persistent problem due to their physiological and behavioural damage to bees. Glyphosate and its commercial formulation stand out due to their wide use in agricultural areas and non-crop areas, such as parks, railroads, roadsides, industrial sites, and recreational and residential areas, but the mode of action of glyphosate on bees at the molecular level remains largely unelucidated. Here, we found that the numbers of differentially expressed genes and metabolites under glyphosate commercial formulation (GCF) stress were significantly higher in Apis cerana cerana than in Apis mellifera ligustica. Despite these differences, the number of differentially expressed transcripts increased following an increase in the GCF treatment time in both A. cerana cerana and A. mellifera ligustica. GCF exerted adverse impacts on the immune system, digestive system, nervous system, amino acid metabolism, carbohydrate metabolism, growth and development of both bee species by influencing their key genes and metabolites to some extent. The expression of many genes involved in immunity, agrochemical detoxification and resistance, such as antimicrobial peptides, cuticle proteins and cytochrome P450 families, was upregulated by GCF in both bee species. Collectively, our results indicate that both A. cerana cerana and A. mellifera ligustica strive to mitigate the pernicious effects caused by GCF by regulating detoxification and immune systems. Moreover, A. cerana cerana might be better able to withstand the toxic effects of GCF with lower fitness costs than A. mellifera ligustica. Our work will contribute to elucidating the deleterious physiological and behavioural impacts of GCF on bees.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
62
|
Rossini C, Rodrigo F, Davyt B, Umpiérrez ML, González A, Garrido PM, Cuniolo A, Porrini LP, Eguaras MJ, Porrini MP. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS One 2020; 15:e0241666. [PMID: 33147299 PMCID: PMC7641371 DOI: 10.1371/journal.pone.0241666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
When developing new products to be used in honeybee colonies, further than acute toxicity, it is imperative to perform an assessment of risks, including various sublethal effects. The long-term sublethal effects of xenobiotics on honeybees, more specifically of acaricides used in honeybee hives, have been scarcely studied, particularly so in the case of essential oils and their components. In this work, chronic effects of the ingestion of Eupatorium buniifolium (Asteraceae) essential oil were studied on nurse honeybees using laboratory assays. Survival, food consumption, and the effect on the composition of cuticular hydrocarbons (CHC) were assessed. CHC were chosen due to their key role as pheromones involved in honeybee social recognition. While food consumption and survival were not affected by the consumption of the essential oil, CHC amounts and profiles showed dose-dependent changes. All groups of CHC (linear and branched alkanes, alkenes and alkadienes) were altered when honeybees were fed with the highest essential oil dose tested (6000 ppm). The compounds that significantly varied include n-docosane, n-tricosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, tritriacontene, pentacosadiene, hentriacontadiene, tritriacontadiene and all methyl alkanes. All of them but pentacosadiene were up-regulated. On the other hand, CHC profiles were similar in healthy and Nosema-infected honeybees when diets included the essential oil at 300 and 3000 ppm. Our results show that the ingestion of an essential oil can impact CHC and that the effect is dose-dependent. Changes in CHC could affect the signaling process mediated by these pheromonal compounds. To our knowledge this is the first report of changes in honeybee cuticular hydrocarbons as a result of essential oil ingestion.
Collapse
Affiliation(s)
- Carmen Rossini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- * E-mail:
| | - Federico Rodrigo
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Belén Davyt
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - María Laura Umpiérrez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Antonella Cuniolo
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Leonardo P. Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Martín P. Porrini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República de Uruguay, Montevideo, Uruguay
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
63
|
Santovito A, Audisio M, Bonelli S. A micronucleus assay detects genotoxic effects of herbicide exposure in a protected butterfly species. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1390-1398. [PMID: 32880882 PMCID: PMC7581572 DOI: 10.1007/s10646-020-02276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Lycaena dispar Hawort (Lepidoptera: Lycaenidae), a protected butterfly, is declining in Europe, but it thrives in rice fields in northern Italy. Here, agrochemical usage could threaten its long-term survival. We investigated, by micronucleus (MN) assay, the genotoxic effect of glyphosate, a common herbicide, on L. dispar larvae. Micronuclei (MNi) are DNA fragments separated from the main nucleus and represent the result of genomic damage that has been transmitted to daughter cells. In a control/treatment experiment, we extracted epithelial cells from last-instar larvae fed with Rumex spp. plants sprayed with a solution containing 3.6 g/L of glyphosate, and from larvae fed with unsprayed plants. MNi and other chromosomal aberrations-nuclear buds (NBUDs) and bi-nucleated cells-were then scored in 1000 cells/subject. Significant differences were found between glyphosate-exposed and control groups in terms of MNi and total genomic damage, but not in terms of NBUDs or bi-nucleated cells. We reported a possible genomic damage induced by glyphosate on larvae of L. dispar. For the first time, a MN assay was used in order to evaluate the genomic damage on a phytophagous invertebrate at the larval stage. Increased levels of MNi reflect a condition of genomic instability that can result in reduced vitality and in an increased risk of local extinction. Therefore, farmland management compatible with wildlife conservation is needed.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Michela Audisio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
64
|
Delkash-Roudsari S, Chicas-Mosier AM, Goldansaz SH, Talebi-Jahromi K, Ashouri A, Abramson CI. Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111108. [PMID: 32798750 DOI: 10.1016/j.ecoenv.2020.111108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Honeybees (Apis mellifera) play an important role in agriculture worldwide. Several factors including agrochemicals can affect honey bee health including habitat fragmentation, pesticide application, and pests. The growing human population and subsequent increasing crop production have led to widespread use of agrochemicals and there is growing concern that pollinators are being negatively impacted by these pesticides. The present study compares acute exposure to imidacloprid (0.2 and 0.4 mgL-1), ethion (80 and 106.7 mgL-1) or glyphosate (0.12 and 0.24 mgL-1) on aversive learning and movement, to chronic exposure at these and higher concentrations on movement, circadian rhythms, and survival in honey bee foragers. For acute learning studies, a blue/yellow shuttle box experiment was conducted; we observed honey bee choice following aversive and neutral stimuli. In learning studies, control bees spent >50% of the time on yellow which is not consistent with previous color bias literature in the subspecies or region of the study. The learning apparatus was also used to estimate mobility effects within 20 min of exposure. Chronic exposure (up to 2 weeks) with the above metrics was recorded by an automated monitoring system. In chronic exposure experiments, RoundUp®, was also tested to compare to its active ingredient, glyphosate. We found that imidacloprid and ethion have negative impacts on aversive learning and movement following a single-dose and that chronic exposure effects were dose-dependent for these two insecticides. In contrast, glyphosate had no effect on learning and less of an effect on movement; RoundUp® showed dose-dependent results on circadian rhythmicity. Overall, the results suggest that short-term exposure to imidacloprid and ethion adversely affect honey bee foragers and chronic exposure to glyphosate may affect pollination success.
Collapse
Affiliation(s)
- Sahar Delkash-Roudsari
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Department of Psychology, Oklahoma State University, Stillwater, OK, USA
| | - Ana M Chicas-Mosier
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; Department of Entomology and Plant Pathology, Auburn University, Auburn AL, USA
| | - Seyed Hossein Goldansaz
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi-Jahromi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Charles I Abramson
- Department of Psychology, Oklahoma State University, Stillwater, OK, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
65
|
Almasri H, Tavares DA, Pioz M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111013. [PMID: 32888588 DOI: 10.1016/j.ecoenv.2020.111013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 05/21/2023]
Abstract
Multiple pesticides originating from plant protection treatments and the treatment of pests infecting honey bees are frequently detected in beehive matrices. Therefore, winter honey bees, which have a long life span, could be exposed to these pesticides for longer periods than summer honey bees. In this study, winter honey bees were exposed through food to the insecticide imidacloprid, the fungicide difenoconazole and the herbicide glyphosate, alone or in binary and ternary mixtures, at environmental concentrations (0 (controls), 0.1, 1 and 10 μg/L) for 20 days. The survival of the honey bees was significantly reduced after exposure to these 3 pesticides individually and in combination. Overall, the combinations had a higher impact than the pesticides alone with a maximum mortality of 52.9% after 20 days of exposure to the insecticide-fungicide binary mixture at 1 μg/L. The analyses of the surviving bees showed that these different pesticide combinations had a systemic global impact on the physiological state of the honey bees, as revealed by the modulation of head, midgut and abdomen glutathione-S-transferase, head acetylcholinesterase, abdomen glucose-6-phosphate dehydrogenase and midgut alkaline phosphatase, which are involved in the detoxification of xenobiotics, the nervous system, defenses against oxidative stress, metabolism and immunity, respectively. These results demonstrate the importance of studying the effects of chemical cocktails based on low realistic exposure levels and developing long-term tests to reveal possible lethal and adverse sublethal interactions in honey bees and other insect pollinators.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | | | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France.
| |
Collapse
|
66
|
Odemer R, Alkassab AT, Bischoff G, Frommberger M, Wernecke A, Wirtz IP, Pistorius J, Odemer F. Chronic High Glyphosate Exposure Delays Individual Worker Bee ( Apis mellifera L.) Development under Field Conditions. INSECTS 2020; 11:E664. [PMID: 32992639 PMCID: PMC7600025 DOI: 10.3390/insects11100664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
The ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods gives rise to controversy. This research was carried out to cover possible sublethal GBH effects on the brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices, such as nectar, pollen, and plants, were additionally measured. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the "Kieler mating-nuc" system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over a period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from control and exposed colonies and introduced them into non-contaminated mini-hives to monitor their life span for 25 consecutive days. The results from these experiments showed a trivial effect of GBH on colony conditions and the survival of individual workers, even though the hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating an equal performance. Obviously, the brood development in T2 was not "terminated" as expected by the OECD method terminology, but rather "slowed down" for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of significantly delaying worker brood development, while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health.
Collapse
Affiliation(s)
- Richard Odemer
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | - Abdulrahim T. Alkassab
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | - Gabriela Bischoff
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 14195 Berlin, Germany;
| | - Malte Frommberger
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | - Anna Wernecke
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | - Ina P. Wirtz
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany; (A.T.A.); (M.F.); (A.W.); (I.P.W.); (J.P.)
| | | |
Collapse
|
67
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
68
|
Frizzi F, Masoni A, Balzani P, Frasconi Wendt C, Palchetti V, Santini G. Palatability of glyphosate in ants: a field experiment reveals broad acceptance of highly polluted solutions in a Mediterranean ant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29666-29671. [PMID: 32468371 DOI: 10.1007/s11356-020-09420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate is a systemic herbicide still used in many countries, though there are several known detrimental effects on animals. Previous studies concerning its effects on social insects are available, but they are primarily focused on honeybees; little is known about the interactions of this compound with ants. Here, we assessed whether different concentrations of glyphosate can be perceived by ant workers and to what extent. As a model species, we used the Mediterranean ant Crematogaster scutellaris, commonly found in agroecosystems. We performed 3000 individual tests of acceptance using ten different solutions of various concentrations of the herbicide. Half of the solutions contained added sucrose in order to test the possible masking effect of the sugar taste on glyphosate. We used comparable glyphosate concentrations to those previously used in other studies on social insects or suggested by the producer. We found that the acceptance of the solutions decreased as the concentration of the herbicide increased. However, a significant percentage of ants drank the solutions with concentrations up to dozens of times higher than those inducing toxic effects in bees. In light of these results, we urge further assessment of the effects of glyphosate on ants, particularly because the food ingested by workers is transferred to the brood and queens, posing a potential threat to the health of the entire colony. Surprisingly, we did not record any difference in acceptance between solutions with and without sugar; this point is discussed regarding drought stress.
Collapse
Affiliation(s)
- Filippo Frizzi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Alberto Masoni
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paride Balzani
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Clara Frasconi Wendt
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Science, University of Lisbon, Campo Grande, C2, 1749-016, Lisbon, Portugal
| | - Valeria Palchetti
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Giacomo Santini
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
69
|
Impact of Glyphosate on the Honey Bee Gut Microbiota: Effects of Intensity, Duration, and Timing of Exposure. mSystems 2020; 5:5/4/e00268-20. [PMID: 32723788 PMCID: PMC7394351 DOI: 10.1128/msystems.00268-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure to anthropogenic chemicals may indirectly compromise animal health by perturbing the gut microbiota. For example, the widely used herbicide glyphosate can affect the microbiota of honey bees, reducing the abundance of beneficial bacterial species that contribute to immune regulation and pathogen resistance. Previous studies have not addressed how this impact depends on concentration, duration of exposure, or stage of microbiota establishment. Worker bees acquire their microbiota from nestmates early in adult life, when they can also be exposed to chemicals collected by foragers or added to the hives. Here, we investigated how the gut microbiota of honey bees is affected by different concentrations of glyphosate and compared the effects with those caused by tylosin, an antibiotic commonly used to treat hives. We treated newly emerged workers at the stage at which they acquire the microbiota and also workers with established gut microbiota. Treatments consisted of exposure to sucrose syrup containing glyphosate in concentrations ranging from 0.01 mM to 1.0 mM or tylosin at 0.1 mM. Based on 16S rRNA amplicon sequencing and quantitative PCR (qPCR) determination of abundances, glyphosate perturbed the gut microbiota of honey bees regardless of age or period of exposure. Snodgrassella alvi was the most affected bacterial species and responded to glyphosate in a dose-dependent way. Tylosin also perturbed the microbiota, especially at the stage of acquisition, and the effects differed sharply from the effects of glyphosate. These findings show that sublethal doses of glyphosate (0.04 to 1.0 mM) and tylosin (0.1 mM) affect the microbiota of honey bees.IMPORTANCE As is true of many animal species, honey bees depend on their gut microbiota for health. The bee gut microbiota has been shown to regulate the host immune system and to protect against pathogenic diseases, and disruption of the normal microbiota leads to increased mortality. Understanding these effects can give broad insights into vulnerabilities of gut communities, and, in the case of honey bees, could provide information useful for promoting the health of these economically critical insects, which provide us with crop pollination services as well as honey and other products. The bee gut microbiota is acquired early in adult life and can be compromised by antibiotics and other chemicals. The globally used weed killer glyphosate was previously found to impact the gut microbiota of honey bees following sustained exposure. In the present study, we address how this impact depends on concentration, duration of exposure, and stage of community establishment. We found that sublethal doses of glyphosate reduce the abundance of beneficial bacteria and affect microbial diversity in the guts of honey bees, regardless of whether exposure occurs during or after microbiota acquisition. We also compared the effects of glyphosate to those of tylosin, an antibiotic used in beekeeping, and observed that tylosin effects diverge from those caused by glyphosate and are greater during microbiota acquisition. Such perturbations are not immediately lethal to bees but, depending on exposure level, can decrease survivorship under laboratory conditions.
Collapse
|
70
|
Sgargi D, Adam B, Budnik LT, Dinelli G, Moldovan HR, Perry MJ, Scheepers PT, Schlünssen V, Teixeira JP, Mandrioli D, Belpoggi F. Protocol for a systematic review and meta-analysis of human exposure to pesticide residues in honey and other bees' products. ENVIRONMENTAL RESEARCH 2020; 186:109470. [PMID: 32305678 DOI: 10.1016/j.envres.2020.109470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The presence of pesticides in honey and related products is an increasing concern for consumers and producers, although there is lack of data on the current burden of exposure of the general human population through these products. We present a protocol for a systematic review and meta-analysis of contamination to insecticides, herbicides and fungicides of products from honeybees, and an estimation of how much the consumption of these products contributes to the ADI (Acceptable Daily Intake) of selected substances. OBJECTIVES We aim to systematically review and meta-analyse studies on the contamination to plant protection products in honey, royal jelly, beeswax and propolis, applying the Navigation Guide and WHO-ILO systematic review methodology as an organizing framework. DATA SOURCES We will search electronic academic databases for potentially relevant records from PubMed, TOXNET and EMBASE. We will include quantitative studies analysing the contamination from insecticides, herbicides and fungicides in honey, propolis, royal jelly and beeswax. In particular, we will evaluate the presence of the following substances and classes of pesticides: Glyphosate, Chlorpyrifos, pyrethroid and neonicotinoid pesticides, fungicides and acaricides. STUDY APPRAISAL AND SYNTHESIS METHODS At least two authors will independently screen titles and abstracts at a first stage of review, and full texts at a second stage, of potentially eligible records against the eligibility criteria; data extraction of included studies will then be performed by at least two authors, in blind. At least two authors will assess risk of bias and the quality of evidence, using the most suited tools currently available. The data on prevalence of contaminated samples and concentration of pesticides in the products will be combined using meta-analysis: when more than three studies reporting the necessary measures to fit the models are available, meta-analysis will be performed separately by product and by exposure; otherwise, weighted descriptive analysis will be performed. We will report the results using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA).
Collapse
Affiliation(s)
- Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | | | - Lygia T Budnik
- University Medical Centre Hamburg Eppendorf, Institute for Occupational and Maritime Medicine, Translational, Toxicology Unit, Hamburg, Germany
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | | | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington DC, USA
| | - Paul Tj Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Vivi Schlünssen
- Aarhus University, Department of Public Health, Aarhus, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| |
Collapse
|
71
|
Iriart V, Baucom RS, Ashman TL. Herbicides as anthropogenic drivers of eco-evo feedbacks in plant communities at the agro-ecological interface. Mol Ecol 2020; 30:5406-5421. [PMID: 32542840 DOI: 10.1111/mec.15510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Herbicides act as human-mediated novel selective agents and community disruptors, yet their full effects on eco-evolutionary dynamics in natural communities have only begun to be appreciated. Here, we synthesize how herbicide exposures can result in dramatic phenotypic and compositional shifts within communities at the agro-ecological interface and how these in turn affect species interactions and drive plant (and plant-associates') evolution in ways that can feedback to continue to affect the ecology and ecosystem functions of these assemblages. We advocate a holistic approach to understanding these dynamics that includes plastic changes and plant community transformations and also extends beyond this single trophic level targeted by herbicides to the effects on nontarget plant-associated organisms and their potential to evolve, thereby embracing the complexity of these real-world systems. We make explicit recommendations for future research to achieve this goal and specifically address impacts of ecology on evolution, evolution on ecology and their feedbacks so that we can gain a more predictive view of the fates of herbicide-impacted communities.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
72
|
Halsch CA, Code A, Hoyle SM, Fordyce JA, Baert N, Forister ML. Pesticide Contamination of Milkweeds Across the Agricultural, Urban, and Open Spaces of Low-Elevation Northern California. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
73
|
Nicodemo D, Mingatto FE, De Jong D, Bizerra PFV, Tavares MA, Bellini WC, Vicente EF, de Carvalho A. Mitochondrial Respiratory Inhibition Promoted by Pyraclostrobin in Fungi is Also Observed in Honey Bees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1267-1272. [PMID: 32239770 DOI: 10.1002/etc.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
There is no use restriction associated with bees for many fungicides used in agriculture; however, this does not always mean that these pesticides are harmless for these nontarget organisms. We investigated whether the fungicide pyraclostrobin, which acts on fungal mitochondria, also negatively affects honey bee mitochondrial bioenergetics. Honey bees were collected from 5 hives and anesthetized at 4 °C. The thoraces were separated, and mitochondria were isolated by grinding, filtering, and differential centrifugation. An aliquot of 0.5 mg of mitochondrial proteins was added to 0.5 mL of a standard reaction medium with 4 mM succinate (complex II substrate) plus 50 nM rotenone (complex I inhibitor), and mitochondrial respiration was measured at 30 °C using a Clark-type oxygen electrode. Mitochondrial membrane potential was determined spectrofluorimetrically using safranin O as a probe, and adenosine triphosphate (ATP) synthesis was determined by chemiluminescence. Pyraclostrobin at 0 to 50 μM was tested on the mitochondrial preparations, with 3 repetitions. Pyraclostrobin inhibited mitochondrial respiration in a dose-dependent manner at concentrations of 10 μM and above, demonstrating typical inhibition of oxidative phosphorylation. Pyraclostrobin also promoted a decline in the mitochondrial membrane potential at doses of 5 μM and above and in ATP synthesis at 15 μM and above. We conclude that pyraclostrobin interferes with honey bee mitochondrial function, which is especially critical for the energy-demanding flight activity of foraging bees. Environ Toxicol Chem 2020;39:1267-1272. © 2020 SETAC.
Collapse
Affiliation(s)
- Daniel Nicodemo
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| | - David De Jong
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Francisco Veiga Bizerra
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| | - Marco Aurélio Tavares
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| | - William Cesar Bellini
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- Department of Biosystem Engineering, School of Science and Engineering, São Paulo State University (Unesp), Tupã, São Paulo, Brazil
| | - Amanda de Carvalho
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo, Brazil
| |
Collapse
|
74
|
Guimarães-Cestaro L, Martins MF, Martínez LC, Alves MLTMF, Guidugli-Lazzarini KR, Nocelli RCF, Malaspina O, Serrão JE, Teixeira ÉW. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Naturwissenschaften 2020; 107:16. [DOI: 10.1007/s00114-020-1670-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
|
75
|
Cunha Pereira R, Faria Barbosa W, Pereira Lima MA, Vieira JOL, Carvalho Guedes RN, Rodrigues da Silva BK, Dias Barbosa GM, Lemes Fernandes F. Toxicity of botanical extracts and their main constituents on the bees Partamona helleri and Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:246-257. [PMID: 32170464 DOI: 10.1007/s10646-020-02167-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Africanized and wild bees are sensitive to synthetic insecticides, but may not be sensitive to botanical extracts. In this work, we evaluated the toxicity of botanical extracts with homemade preparations used in agroecological crops and their constituents on the bees Apis mellifera and Partamona helleri. Toxicity bioassays of adult bees were done by means of oral exposure and ingestion, using the insecticide imidacloprid as a positive control. Dietary consumption, respiration rate and bee flight were evaluated as sublethal parameters. Although some extracts were toxic to bees, survival was always higher compared to the results obtained with the imidacloprid, which was lethal to 100% of bees. In dietary consumption, P. helleri consumed less (5 mg/bee) in 3 h than A. mellifera (11 mg/bee), and P. helleri consumed less (7 mg/bee) in 24 h than A. mellifera (22 mg/bee). There was no difference in consumption of food containing plant extracts or food containing water only. We did not detect any adverse effects of the botanical extracts on bee respiration rates or flight. The major constituent of N. tabacum is nicotine (8.4-15.1%), in A. americana it is β-caryophyllene (11.3%), and in A. colubrina, lupeol (12.2%). Imidacloprid and nicotine were more toxic to bees (LC50 ≤ 1.3 and LC50 ≤ 44.3). Botanical extracts were selective to A. mellifera and the native bee P. helleri, and therefore, have the potential for ecofriendly pest control.
Collapse
Affiliation(s)
- Renata Cunha Pereira
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Campus UFV, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Wagner Faria Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus UFV, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Maria Augusta Pereira Lima
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Campus UFV, Viçosa, Minas Gerais, 36570-000, Brazil
| | - José Olívio Lopes Vieira
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Campus UFV, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Raul Narciso Carvalho Guedes
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Campus UFV, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Brenda Karina Rodrigues da Silva
- Universidade Federal de Viçosa, Instituto de Ciências Agrárias, Campus Rio Paranaíba, MG230, Km08, Rio Paranaíba, Minas Gerais, 38810-000, Brazil
| | - Guilherme Mateus Dias Barbosa
- Universidade Federal de Viçosa, Instituto de Ciências Agrárias, Campus Rio Paranaíba, MG230, Km08, Rio Paranaíba, Minas Gerais, 38810-000, Brazil
| | - Flávio Lemes Fernandes
- Universidade Federal de Viçosa, Instituto de Ciências Agrárias, Campus Rio Paranaíba, MG230, Km08, Rio Paranaíba, Minas Gerais, 38810-000, Brazil.
| |
Collapse
|
76
|
Ejomah AJ, Uyi OO, Ekaye SO. Exposure of the African mound building termite, Macrotermes bellicosus workers to commercially formulated 2,4-D and atrazine caused high mortality and impaired locomotor response. PLoS One 2020; 15:e0230664. [PMID: 32208460 PMCID: PMC7093002 DOI: 10.1371/journal.pone.0230664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
Recent empirical evidence suggests that herbicides have damaging effects on non-target organisms in both natural and semi-natural ecosystems. The African mound building termite, Macrotermes bellicosus, is an important beneficial insect that functions as an ecosystem engineer due to its role in the breakdown of dead and decaying materials. Here, we examined the effects of 2,4-D amine salt (2,4-D) and atrazine based herbicides viz. Vestamine® and Ultrazine® on the survival and locomotion response of M. bellicosus. Worker termites were treated with a range of concentrations of Vestamine® (the recommended concentration: 6.25 ml per 500 ml of water, 0.25- and 0.5-fold below the recommended concentration and distilled water as control) and Ultrazine® (the recommended concentration: 3.75 ml per 500 ml of water, 0.25-, 0.5-, 2.0- and 4-fold of the recommended concentration and distilled water as control) for 24 hours for the mortality test, and allowed to run for 15 seconds for the locomotion trial. All concentrations of both Vestamine® and Ultrazine® were highly toxic to worker termites and mortality increased as the concentration and time after treatment increased. For both herbicides, concentrations far less than the recommended rates caused 100% mortality. The speed of termites was significantly influenced by both Vestamine® and Ultrazine® as termites exposed to all tested concentrations of the herbicides exhibited reduced running speed than the control. These findings suggest that beneficial insects, especially M. bellicosus may experience high mortality (up to 100%) and reduced mobility if they are sprayed upon or come in contact with plant materials that have been freshly sprayed with (less or more than) the recommended concentrations of Vestamine® and Ultrazine®. The findings of our study calls for the reassessment of the usage of 2,4-D and atrazine based herbicides in weed control in termite and other beneficial insect populated habitats.
Collapse
Affiliation(s)
- Afure J. Ejomah
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Osariyekemwen O. Uyi
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Sese-Owei Ekaye
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| |
Collapse
|
77
|
Medalie L, Baker NT, Shoda ME, Stone WW, Meyer MT, Stets EG, Wilson M. Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136008. [PMID: 31863994 DOI: 10.1016/j.scitotenv.2019.136008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/10/2019] [Accepted: 12/06/2019] [Indexed: 05/24/2023]
Abstract
Glyphosate is the most widely used herbicide in the United States for agricultural and non-agricultural weed control. Many studies demonstrate possible effects of glyphosate and its degradate AMPA on human and ecological health. Although glyphosate is thought to have limited mobility in soil, it is found year-round in many rivers and streams throughout the world in both agricultural and developed environments. It is vitally important to continue to increase the knowledge base of glyphosate use, distribution, transport, and impacts on human health and the environment. Here we show that glyphosate and AMPA are found in nearly all of 70 streams throughout the United States at concentrations far below human health or ecological benchmarks, with less occurrence in the Northeast and that undeveloped land, classified as such by land use near the sampling station, has lower concentrations compared to other types of land. Results also show that sites with large watersheds tend to have more AMPA than glyphosate and the opposite is true for small watersheds. Travel times and opportunity for glyphosate to degrade to AMPA and for reservoirs of AMPA to grow are greater in large watersheds. Factors that promoted quick movement of glyphosate to streams, such as subsurface tile or storm drains, sewers, overland flow from developed landscapes, and arid landscapes were associated with sites that had greater concentrations of glyphosate compared to AMPA. These results contribute contemporary information and generalized interpretations adding to the knowledge base of the fate of glyphosate on a national scale and provide a springboard for further exploration of technical processes controlling transport to streams.
Collapse
Affiliation(s)
- Laura Medalie
- U.S. Geological Survey, New England Water Science Center, New Hampshire - Vermont Office, 87 State Street, Montpelier, VT 05602, USA.
| | - Nancy T Baker
- U.S. Geological Survey, Ohio Kentucky Indiana Water Science Center, 5957 Lakeside Boulevard, Indianapolis, IN 46278, USA.
| | - Megan E Shoda
- U.S. Geological Survey, Ohio Kentucky Indiana Water Science Center, 5957 Lakeside Boulevard, Indianapolis, IN 46278, USA.
| | - Wesley W Stone
- U.S. Geological Survey, Ohio Kentucky Indiana Water Science Center, 5957 Lakeside Boulevard, Indianapolis, IN 46278, USA.
| | - Michael T Meyer
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Drive, Lawrence, KS 66049, USA.
| | - Edward G Stets
- U.S. Geological Survey, National Research Program, 3215 Marine Street, Boulder, CO 80303, USA.
| | - Michaelah Wilson
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Drive, Lawrence, KS 66049, USA.
| |
Collapse
|
78
|
Gómez-Gallego C, Rainio MJ, Collado MC, Mantziari A, Salminen S, Saikkonen K, Helander M. Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol Lett 2020; 367:fnaa050. [PMID: 32188977 DOI: 10.1093/femsle/fnaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2023] Open
Abstract
Here, we examined whether glyphosate affects the microbiota of herbivores feeding on non-target plants. Colorado potato beetles (Leptinotarsa decemlineata) were reared on potato plants grown in pots containing untreated soil or soil treated with glyphosate-based herbicide (GBH). As per the manufacturer's safety recommendations, the GBH soil treatments were done 2 weeks prior to planting the potatoes. Later, 2-day-old larvae were introduced to the potato plants and then collected in two phases: fourth instar larvae and adults. The larvae's internal microbiota and the adults' intestinal microbiota were examined by 16S rRNA gene sequencing. The beetles' microbial composition was affected by the GBH treatment and the differences in microbial composition between the control and insects exposed to GBH were more pronounced in the adults. The GBH treatment increased the relative abundance of Agrobacterium in the larvae and the adults. This effect may be related to the tolerance of some Agrobacterium species to glyphosate or to glyphosate-mediated changes in potato plants. On the other hand, the relative abundances of Enterobacteriaceae, Rhodobacter, Rhizobium and Acidovorax in the adult beetles and Ochrobactrum in the larvae were reduced in GBH treatment. These results demonstrate that glyphosate can impact microbial communities associated with herbivores feeding on non-target crop plants.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211, Kuopio, Finland
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
| | - Miia J Rainio
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - M Carmen Collado
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980, Valencia, Spain
| | | | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20014, Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
79
|
El Agrebi N, Tosi S, Wilmart O, Scippo ML, de Graaf DC, Saegerman C. Honeybee and consumer's exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135312. [PMID: 31780165 DOI: 10.1016/j.scitotenv.2019.135312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In order to assess bee and human exposure to residues of glyphosate-based herbicide (GBH) and its main degradation products aminomethylphosphonic acid (AMPA) and to characterise the risk posed by these substances, we analysed 3 different bee matrices; beebread (N = 81), wax (N = 100) and 10-paired samples of wax/honey collected in 2016/2017 from 379 Belgian apiaries. A high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS-MS) was used as analytical method. Limit of quantification and detection (LOQ and LOD) for GBH residues and AMPA in the 3 matrices was respectively of 10 ng g-1 and 1 ng g-1. In beebread, 81.5% of the samples showed a residue concentration > LOQ and 9.9% of the samples a residue concentration < LOQ (detection without quantification); no significant difference in detection rate was found between the north and the south of the country. Glyphosate was detected in beeswax less frequently than in beebread (i.e. 26% >LOQ versus 81.5% >LOQ). The maximum GBH residues and AMPA concentration found in beebread (respectively 700 ng g-1 and 250 ng g-1) led to sub-lethal exposure to bees. The Hazard Quotient (HQ) for beebread and beeswax (7 and 3.2, respectively) were far below the "safety" oral and contact thresholds for bees. For human health, the highest exposure to GBH residues in pollen corresponded to 0.312% and 0.187% of the ADI and of the ARfD respectively and, to 0.002% and to 0.001% for beeswax. No transfer of glyphosate from wax to honey was detected. Considering our results and the available regulatory data on the glyphosate molecule considered solely, not including the adjuvants in GBH formulation, the consumption of these three contaminated matrices would not be a food safety issue. Nonetheless, caution should be taken in the interpretation of the results as new studies indicate possible glyphosate/GBH residues toxicity below regulatory limits and at chronic sub-lethal doses.
Collapse
Affiliation(s)
- Noëmie El Agrebi
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège (Sart-Tilman), Belgium
| | - Simone Tosi
- Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, ANSES (French Agency for Food, Environmental and Occupational Health and Safety) Animal Health Laboratory, Maisons-Alfort, France; Entomology Department, University of Maryland, USA
| | - Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, Boulevard du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
| | - Dirk C de Graaf
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Krijgslaan 281 S2, 9000 Ghent, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège (Sart-Tilman), Belgium.
| |
Collapse
|
80
|
Raimets R, Bontšutšnaja A, Bartkevics V, Pugajeva I, Kaart T, Puusepp L, Pihlik P, Keres I, Viinalass H, Mänd M, Karise R. Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory. CHEMOSPHERE 2020; 238:124555. [PMID: 31454746 DOI: 10.1016/j.chemosphere.2019.124555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Pesticide residues in bee products is still a major issue. However, the relations to botanical source and land use characteristics are not clear. The large variability of residues detected questions the suitability of bee-collected- and other hive materials as indicators for environmental contamination. The aim of our study was to clarify whether different beehive matrices contain similar pesticide residues, and how these are correlated with forage preferences and land use types in foraging areas. We tested bee-collected pollen, beebread, honey, nurse bees and honey bee larvae for the presence of concurrently used agricultural pesticides in Estonia. Samples were collected at the end of May and mid-July to include the main crop in northern region - winter and spring oilseed rape (Brassica napus). We saw that different beehive matrices contained various types of pesticide residues in different proportions: pollen and beebread tended to contain more insecticides and fungicides, whereas herbicides represented the primary contaminant in honey. The variations were related to collection year and time but were not related to crops as basic forage resource nor the land use type. We found few positive correlations between amount of pesticides and proportion of pollen from any particular plant family. None of these correlations were related to any land-use type. We conclude that pesticide residues in different honey bee colony components vary largely in amount and composition. The occurrence rate of pesticide residues was not linked to any particular crop.
Collapse
Affiliation(s)
- Risto Raimets
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian Univesity of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia.
| | - Anna Bontšutšnaja
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian Univesity of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga, LV-1076, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga, LV-1076, Latvia
| | - Tanel Kaart
- Department of Animal Genetics and Breeding, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Liisa Puusepp
- School of Natural Sciences and Health, Institute of Ecology, Tallinn University, Uus-Sadama 5, 10120, Tallinn, Estonia
| | - Priit Pihlik
- Department of Animal Genetics and Breeding, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Indrek Keres
- Department of Field Crops and Grassland Husbandry, Institute of Agricultural and Environmental Sciences, Estonian Univesity of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Haldja Viinalass
- Department of Animal Genetics and Breeding, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Marika Mänd
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian Univesity of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Reet Karise
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian Univesity of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| |
Collapse
|
81
|
Cullen MG, Thompson LJ, Carolan JC, Stout JC, Stanley DA. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS One 2019; 14:e0225743. [PMID: 31821341 PMCID: PMC6903747 DOI: 10.1371/journal.pone.0225743] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023] Open
Abstract
Bees and the pollination services they deliver are beneficial to both food crop production, and for reproduction of many wild plant species. Bee decline has stimulated widespread interest in assessing hazards and risks to bees from the environment in which they live. While there is increasing knowledge on how the use of broad-spectrum insecticides in agricultural systems may impact bees, little is known about effects of other pesticides (or plant protection products; PPPs) such as herbicides and fungicides, which are used more widely than insecticides at a global scale. We adopted a systematic approach to review existing research on the potential impacts of fungicides and herbicides on bees, with the aim of identifying research approaches and determining knowledge gaps. While acknowledging that herbicide use can affect forage availability for bees, this review focussed on the potential impacts these compounds could have directly on bees themselves. We found that most studies have been carried out in Europe and the USA, and investigated effects on honeybees. Furthermore, certain effects, such as those on mortality, are well represented in the literature in comparison to others, such as sub-lethal effects. More studies have been carried out in the lab than in the field, and the impacts of oral exposure to herbicides and fungicides have been investigated more frequently than contact exposure. We suggest a number of areas for further research to improve the knowledge base on potential effects. This will allow better assessment of risks to bees from herbicides and fungicides, which is important to inform future management decisions around the sustainable use of PPPs.
Collapse
Affiliation(s)
- Merissa G. Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Linzi J. Thompson
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - James. C. Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jane C. Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dara A. Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
82
|
Farina WM, Balbuena MS, Herbert LT, Mengoni Goñalons C, Vázquez DE. Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. INSECTS 2019; 10:insects10100354. [PMID: 31635293 PMCID: PMC6835870 DOI: 10.3390/insects10100354] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosystems. Its great versatility as an experimental model makes it an excellent proxy to evaluate the environmental impact of agrochemicals using current methodologies and procedures in environmental toxicology. The increase in agrochemical use, including those that do not target insects directly, can have deleterious effects if carried out indiscriminately. This seems to be the case of the herbicide glyphosate (GLY), the most widely used agrochemical worldwide. Its presence in honey has been reported in samples obtained from different environments. Hence, to understand its current and potential risks for this pollinator it has become essential to not only study the effects on honeybee colonies located in agricultural settings, but also its effects under laboratory conditions. Subtle deleterious effects can be detected using experimental approaches. GLY negatively affects associative learning processes of foragers, cognitive and sensory abilities of young hive bees and promotes delays in brood development. An integrated approach that considers behavior, physiology, and development allows not only to determine the effects of this agrochemical on this eusocial insect from an experimental perspective, but also to infer putative effects in disturbed environments where it is omnipresent.
Collapse
Affiliation(s)
- Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - M Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Lucila T Herbert
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Carolina Mengoni Goñalons
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| | - Diego E Vázquez
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
| |
Collapse
|
83
|
El Agrebi N, Wilmart O, Urbain B, Danneels EL, de Graaf DC, Saegerman C. Belgian case study on flumethrin residues in beeswax: Possible impact on honeybee and prediction of the maximum daily intake for consumers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:712-719. [PMID: 31412474 DOI: 10.1016/j.scitotenv.2019.05.493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 05/11/2023]
Abstract
To assess the health risk posed by flumethrin residues in beeswax to honeybees and honey consumers, 124 wax samples randomly distributed in Belgium were analysed for flumethrin residues using liquid chromatography/tandem mass spectrometry. The risk posed by flumethrin residues in beeswax to honeybee health was assessed through the calculation of a non-pondered and a pondered Hazard Quotient by the prevalence rate of flumethrin considering an oral or topical exposure. No statistical difference was found when comparing both the average flumethrin residues concentrations and contact and oral pondered hazard quotients between apiaries with lower and equal or higher than 10% of colony loss. Flumethrin residues estimated daily intake by Belgian consumers through honey and wax ingestion was estimated via a deterministic (worst-case scenario) and a probabilistic approach. The probabilistic approach was not possible for beeswax consumption due to the lack of individual consumption data. The highest estimated exposure was <0.1% of the theoretical maximum daily intake for both approaches, meaning no risk for human health.
Collapse
Affiliation(s)
- Noëmie El Agrebi
- Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, (Sart-Tilman), Belgium
| | - Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, Boulevard du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Bruno Urbain
- Federal Agency for Medicines and Health Products (FAMHP), Eurostation II, Place Victor Horta 40/40, 1060 Brussels, Belgium
| | - Ellen L Danneels
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Krijgslaan 281 S2, 9000 Ghent, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, (Sart-Tilman), Belgium.
| |
Collapse
|
84
|
Sun M, Li H, Jaisi DP. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. WATER RESEARCH 2019; 163:114840. [PMID: 31319360 DOI: 10.1016/j.watres.2019.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/07/2019] [Accepted: 07/03/2019] [Indexed: 05/09/2023]
Abstract
Glyphosate, the most commonly used herbicide in the world, can be degraded into more toxic and persistent products such as aminomethylphosphonic acid (AMPA) or non-toxic products such as sarcosine and glycine. In this study, we used liquid chromatography mass spectrometry (LC-MS) and electrospray ionization (ESI) source Q Extractive Orbitrap mass spectrometry (ESI-Orbitrap MS) to identify glyphosate degradation products and combined with sequential extraction and stable isotopes to investigate the degradation of glyphosate and transformation of phosphorous (P) product in a soil-water system. The LC-MS and ESI-Orbitrap MS results showed that glycine formed during the early stage but was rapidly utilized by soil microorganisms. AMPA started to accumulate at the late stage and was found to be 3-6 times more resistant than glyphosate against degradation; while no sarcosine was formed. The 18O labeling and phosphate oxygen isotope results allowed a clear distinction of the fraction of inorganic P (Pi) derived from glyphosate, about half of which was then rapidly taken up and recycled by soil microorganisms. Our results provide the first evidence of the preferential utilization of glyphosate-derived Pi by microorganisms in the soil-water system. The rapid cycling of Pi derived from this disregarded source has important implications on nutrient management as well as water quality.
Collapse
Affiliation(s)
- Mingjing Sun
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hui Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
85
|
Fathi MA, Abdelghani E, Shen D, Ren X, Dai P, Li Z, Tang Q, Li Y, Li C. Effect of in ovo glyphosate injection on embryonic development, serum biochemistry, antioxidant status and histopathological changes in newly hatched chicks. J Anim Physiol Anim Nutr (Berl) 2019; 103:1776-1784. [PMID: 31453655 DOI: 10.1111/jpn.13181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/04/2019] [Accepted: 07/20/2019] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the potential toxic effects of pure glyphosate or Roundup® on hatchability, serum biochemistry and histopathological observation of the liver and kidney of newly hatched chicks. On day six, a total of 225 fertile eggs were obtained from Huafeng breeder hens. The eggs were randomly divided into three treatments: (a) the control group injected with deionized water, (b) the glyphosate group injected 10 mg pure glyphosate/Kg egg mass and (c) the Roundup group injected 10 mg the active ingredient glyphosate in Roundup® /Kg egg. The results showed a decrease of hatchability rate in chicks treated with Roundup® (66%). In addition, no significant change was observed in body weights, yolk sac weight and relative weight organs except the liver and kidney were significantly increased with groups treated with glyphosate and Roundup® compared to the control group. The results showed that serum protein profiles were linearly significantly increased of serum phosphor, uric acid, aspirate aminotransferase, alanine transaminase and alkaline phosphatase in groups treated with Roundup® , as well as the serum concentrations of triglyceride altered after treatment with glyphosate. Furthermore, oxidative stress was observed in the treated chicks, the glyphosate and Roundup® induced changes of the content of malondialdehyde in both the liver and kidney, moreover decrease of glutathione peroxidase, total superoxide dismutase and catalase activity in the kidney tissue and serum. Additionally, changes also happened in the histomorphology of the liver and kidney tissue of the treated chicks. It can be concluded that Roundup® as a probable decrease of hatchability. Exposure to glyphosate alone or Roundup® caused liver and kidney histopathological alterations, serum parameters imbalances and oxidative stress, also induced a variety of liver and kidney biochemical alterations that might impair normal organ functioning in newly hatched chicks.
Collapse
Affiliation(s)
- Mohamed Ahmed Fathi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ezaldeen Abdelghani
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dan Shen
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Ren
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyuan Dai
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojan Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Tang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yansen Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunmei Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
86
|
Bio-herbicide potential of naturalised Desmodium uncinatum crude leaf extract against the invasive plant species Parthenium hysterophorus. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02075-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
87
|
|
88
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|
89
|
Schweizer M, Brilisauer K, Triebskorn R, Forchhammer K, Köhler HR. How glyphosate and its associated acidity affect early development in zebrafish ( Danio rerio). PeerJ 2019; 7:e7094. [PMID: 31249735 PMCID: PMC6589083 DOI: 10.7717/peerj.7094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/07/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glyphosate is among the most extensively used pesticides worldwide. Following the ongoing highly controversial debate on this compound, its potential impact on non-target organisms is a fundamental scientific issue. In its pure compound form, glyphosate is known for its acidic properties. METHODS We exposed zebrafish (Danio rerio) embryos to concentrations between 10 μM and 10 mM glyphosate in an unbuffered aqueous medium, as well as at pH 7, for 96 hours post fertilization (hpf). Furthermore, we investigated the effects of aqueous media in the range of pH 3 to 8, in comparison with 1 mM glyphosate treatment at the respective pH levels. Additionally, we exposed zebrafish to 7-deoxy-sedoheptulose (7dSh), another substance that interferes with the shikimate pathway by a mechanism analogous to that of glyphosate, at a concentration of one mM. The observed endpoints included mortality, the hatching rate, developmental delays at 24 hpf, the heart rate at 48 hpf and the malformation rate at 96 hpf. LC10/50, EC10 and, if reasonable, EC50 values were determined for unbuffered glyphosate. RESULTS The results revealed high mortalities in all treatments associated with low pH, including high concentrations of unbuffered glyphosate (>500 μM), low pH controls and glyphosate treatments with pH < 3.4. Sublethal endpoints like developmental delays and malformations occurred mainly at higher concentrations of unbuffered glyphosate. In contrast, effects on the hatching rate became particularly prominent in treatments at pH 7, showing that glyphosate significantly accelerates hatching compared with the control and 7dSh, even at the lowest tested concentration. Glyphosate also affected the heart rate, resulting in alterations both at pH 7 and, even more pronounced, in the unbuffered system. In higher concentrations, glyphosate tended to accelerate the heart rate in zebrafish embryos, again, when not masked by the decelerating influence of its low pH. At pH > 4, no mortality occurred, neither in the control nor in glyphosate treatments. At 1 mM, 7dSh did not induce any mortality, developmental delays or malformations; only slightly accelerated hatching and a decelerated heart rate were observed. Our results demonstrate that lethal impacts in zebrafish embryos can be attributed mainly to low pH, but we could also show a pH-independent effect of glyphosate on the development of zebrafish embryos on a sublethal level.
Collapse
Affiliation(s)
- Mona Schweizer
- Institute of Evolution and Ecology, Animal Physiological Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Klaus Brilisauer
- Microbiology, Organismic Interactions, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Rita Triebskorn
- Institute of Evolution and Ecology, Animal Physiological Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology, Rottenburg am Neckar, Germany
| | - Karl Forchhammer
- Microbiology, Organismic Interactions, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Heinz-R. Köhler
- Institute of Evolution and Ecology, Animal Physiological Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
90
|
Liu K, Yu M, Wang H, Wang J, Liu W, Hoffmann MR. Multiphase Porous Electrochemical Catalysts Derived from Iron-Based Metal-Organic Framework Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6474-6482. [PMID: 31074616 PMCID: PMC6551571 DOI: 10.1021/acs.est.9b01143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Herbicide use has attracted attention recently due to potential damage to human health and lethality to the honey bees and other pollinators. Fenton reagent treatment processes can be applied for the degradation of herbicidal contaminants from water. However, the need to carry out the normal Fenton reactions under acidic conditions often hinders their practical application for pollution control. Herein, we report on the synthesis and application of multiphasic porous electro-Fenton catalysts prepared from calcinated metal-organic framework compounds, CMOF@PCM, and their application for the mineralization of herbicides in aqueous solution at circum-neutral pH. CMOF nanoparticles (NPs) are anchored on porous carbon monolithic (PCM) substrates, which allow for binder-free application. H2O2 is electrochemically generated on the PCM substrate which serves as a cathode, while ·OH is generated by the CMOF NPs at low applied potentials (-0.14 V). Results show that the structure and reactivity of the CMOF@PCM electro-Fenton catalysts are dependent on the specific MOF precursor used during synthesis. For example, CMIL-88-NH2, which is prepared from MIL-88(Fe)-NH2, is a porous core-shell structured NP comprised of a cementite (Fe3C) intermediate layer that is sandwiched between a graphitic shell and a magnetite (Fe3O4) core. The electro-Fenton production of hydroxyl radical on the CMOF@PCM composite material is shown to effectively degrade an array of herbicides.
Collapse
Affiliation(s)
- Kai Liu
- College
of Environmental and Resource Science, Zhejiang
University, Hangzhou 310058, China
- Department
of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
| | - Menglin Yu
- College
of Environmental and Resource Science, Zhejiang
University, Hangzhou 310058, China
| | - Haiying Wang
- College
of Environmental and Resource Science, Zhejiang
University, Hangzhou 310058, China
| | - Juan Wang
- College
of Environmental and Resource Science, Zhejiang
University, Hangzhou 310058, China
| | - Weiping Liu
- College
of Environmental and Resource Science, Zhejiang
University, Hangzhou 310058, China
| | - Michael R. Hoffmann
- Department
of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91126, United States
| |
Collapse
|
91
|
Honey bees increase their foraging performance and frequency of pollen trips through experience. Sci Rep 2019; 9:6778. [PMID: 31043647 PMCID: PMC6494865 DOI: 10.1038/s41598-019-42677-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/05/2019] [Indexed: 01/10/2023] Open
Abstract
Honey bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions. Here we explored the relationship between foraging activity and foraging performance in honey bees (Apis mellifera) by using an automated behaviour monitoring system to record mass on departing the hive, trip duration, presence of pollen on the hind legs and mass upon return to the hive, during the lifelong foraging career of individual bees. In our colonies, only a subset of foragers collected pollen, and no bee exclusively foraged for pollen. A minority of very active bees (19% of the foragers) performed 50% of the colony’s total foraging trips, contributing to both pollen and nectar collection. Foraging performance (amount and rate of food collection) depended on bees’ individual experience (amount of foraging trips completed). We argue that this reveals an important vulnerability for these social bees since environmental stressors that alter the activity and reduce the lifespan of foragers may prevent bees ever achieving maximal performance, thereby seriously compromising the effectiveness of the colony foraging force.
Collapse
|
92
|
Sponsler DB, Grozinger CM, Hitaj C, Rundlöf M, Botías C, Code A, Lonsdorf EV, Melathopoulos AP, Smith DJ, Suryanarayanan S, Thogmartin WE, Williams NM, Zhang M, Douglas MR. Pesticides and pollinators: A socioecological synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:1012-1027. [PMID: 30738602 DOI: 10.1016/j.scitotenv.2019.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The relationship between pesticides and pollinators, while attracting no shortage of attention from scientists, regulators, and the public, has proven resistant to scientific synthesis and fractious in matters of policy and public opinion. This is in part because the issue has been approached in a compartmentalized and intradisciplinary way, such that evaluations of organismal pesticide effects remain largely disjoint from their upstream drivers and downstream consequences. Here, we present a socioecological framework designed to synthesize the pesticide-pollinator system and inform future scholarship and action. Our framework consists of three interlocking domains-pesticide use, pesticide exposure, and pesticide effects-each consisting of causally linked patterns, processes, and states. We elaborate each of these domains and their linkages, reviewing relevant literature and providing empirical case studies. We then propose guidelines for future pesticide-pollinator scholarship and action agenda aimed at strengthening knowledge in neglected domains and integrating knowledge across domains to provide decision support for stakeholders and policymakers. Specifically, we emphasize (1) stakeholder engagement, (2) mechanistic study of pesticide exposure, (3) understanding the propagation of pesticide effects across levels of organization, and (4) full-cost accounting of the externalities of pesticide use and regulation. Addressing these items will require transdisciplinary collaborations within and beyond the scientific community, including the expertise of farmers, agrochemical developers, and policymakers in an extended peer community.
Collapse
Affiliation(s)
- Douglas B Sponsler
- Pennsylvania State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, USA.
| | - Christina M Grozinger
- Pennsylvania State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, USA
| | - Claudia Hitaj
- U. S. Department of Agriculture, Economic Research Service, Washington, D.C., USA
| | - Maj Rundlöf
- Lund University, Department of Biology, 223 62 Lund, Sweden; University of California, Department of Entomology and Nematology, Davis, CA 95616, USA
| | - Cristina Botías
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Aimee Code
- Xerces Society for Invertebrate Conservation, USA
| | | | | | - David J Smith
- U. S. Department of Agriculture, Economic Research Service, Washington, D.C., USA
| | - Sainath Suryanarayanan
- University of Wisconsin-Madison, Population Health Institute, Nelson Institute for Environmental Studies, Madison, WI 53706, USA
| | - Wayne E Thogmartin
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA
| | - Neal M Williams
- University of California, Department of Entomology and Nematology, Davis, CA 95616, USA
| | - Minghua Zhang
- Department of Land, Air and Water Resources, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Margaret R Douglas
- Dickinson College, Department of Environmental Studies & Environmental Science, Carlisle, PA 17013, USA
| |
Collapse
|
93
|
Blot N, Veillat L, Rouzé R, Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 2019; 14:e0215466. [PMID: 30990837 PMCID: PMC6467416 DOI: 10.1371/journal.pone.0215466] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
The honeybee (Apis mellifera) has to cope with multiple environmental stressors, especially pesticides. Among those, the herbicide glyphosate and its main metabolite, the aminomethylphosphonic acid (AMPA), are among the most abundant and ubiquitous contaminant in the environment. Through the foraging and storing of contaminated resources, honeybees are exposed to these xenobiotics. As ingested glyphosate and AMPA are directly in contact with the honeybee gut microbiota, we used quantitative PCR to test whether they could induce significant changes in the relative abundance of the major gut bacterial taxa. Glyphosate induced a strong decrease in Snodgrassella alvi, a partial decrease of a Gilliamella apicola and an increase in Lactobacillus spp. abundances. In vitro, glyphosate reduced the growth of S. alvi and G. apicola but not Lactobacillus kunkeei. Although being no bee killer, we confirmed that glyphosate can have sublethal effects on the honeybee microbiota. To test whether such imbalanced microbiota could favor pathogen development, honeybees were exposed to glyphosate and to spores of the intestinal parasite Nosema ceranae. Glyphosate did not significantly enhance the effect of the parasite infection. Concerning AMPA, while it could reduce the growth of G. apicola in vitro, it did not induce any significant change in the honeybee microbiota, suggesting that glyphosate is the active component modifying the gut communities.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Loïs Veillat
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, Pôle de Protection des Plantes, Saint-Pierre, France
| |
Collapse
|
94
|
Menzel R, Tison L, Fischer-Nakai J, Cheeseman J, Balbuena MS, Chen X, Landgraf T, Petrasch J, Polster J, Greggers U. Guidance of Navigating Honeybees by Learned Elongated Ground Structures. Front Behav Neurosci 2019; 12:322. [PMID: 30697152 PMCID: PMC6341004 DOI: 10.3389/fnbeh.2018.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particularly salient landmarks for navigating animals. Here, we ask how honeybees learn such structures and how they are used during their homing flights after being released at an unexpected location (catch-and-release paradigm). The experiments were performed in two landscapes that differed with respect to their overall structure: a rather feature-less landscape, and one rich in close and far distant landmarks. We tested three different forms of learning: learning during orientation flights, learning during training to a feeding site, and learning during homing flights after release at an unexpected site within the explored area. We found that bees use elongated ground structures, e.g., a field boundary separating two pastures close to the hive (Experiment 1), an irrigation channel (Experiment 2), a hedgerow along which the bees were trained (Experiment 3), a gravel road close to the hive and the feeder (Experiment 4), a path along an irrigation channel with its vegetation close to the feeder (Experiment 5) and a gravel road along which bees performed their homing flights (Experiment 6). Discrimination and generalization between the learned linear landmarks and similar ones in the test area depend on their object properties (irrigation channel, gravel road, hedgerow) and their compass orientation. We conclude that elongated ground structures are embedded into multiple landscape features indicating that memory of these linear structures is one component of bee navigation. Elongated structures interact and compete with other references. Object identification is an important part of this process. The objects are characterized not only by their appearance but also by their alignment in the compass. Their salience is highest if both components are close to what had been learned. High similarity in appearance can compensate for (partial) compass misalignment, and vice versa.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Lea Tison
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Johannes Fischer-Nakai
- Fachbereich Biowissenschaften, Polytechnische Gesellschaft Frankfurt am Main, Institute für Bienenkunde, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - James Cheeseman
- Department of Anaesthesiology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maria Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Xiuxian Chen
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Tim Landgraf
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Julian Petrasch
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Johannes Polster
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Uwe Greggers
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
95
|
Seide VE, Bernardes RC, Pereira EJG, Lima MAP. Glyphosate is lethal and Cry toxins alter the development of the stingless bee Melipona quadrifasciata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1854-1860. [PMID: 30408873 DOI: 10.1016/j.envpol.2018.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Brazil is the second largest producer of genetically modified plants in the world. This agricultural practice exposes native pollinators to contact and ingestion of Bacillus thuringiensis proteins (e.g. Cry toxins) from transgenic plants. Furthermore, native bees are also exposed to various herbicides applied to crops, including glyphosate. Little is known about the possible effects of glyphosate and Cry proteins on stingless bees, especially regarding exposure at an immature stage. Here, we show for the first time that glyphosate is lethal, and that Cry toxins (Cry1F, Cry2Aa) alter the development of the stingless bee Melipona quadrifasciata upon contamination of larval food. Glyphosate was very toxic to the bee larvae, killing all of them within only a few days of exposure. Bees treated with Cry2Aa proteins had a higher survival rate and were delayed in their development, compared to the negative controls. Those treated with the Cry1F protein also suffered delays in their development, compared to the negative controls. In conclusion, the proteins Cry1F, Cry2Aa, and the herbicide glyphosate were highly toxic to the stingless bee M. quadrifasciata, causing lethal or sublethal effects which can severely impair colony growth and viability, and reduce pollination ability.
Collapse
Affiliation(s)
- Vanessa Eler Seide
- Departamento de Biologia Animal, Universidade Federal de Viçosa, MG, 36570-900, Brazil
| | | | | | | |
Collapse
|
96
|
Baglan H, Lazzari CR, Guerrieri FJ. Glyphosate impairs learning in Aedes aegypti mosquito larvae at field-realistic doses. J Exp Biol 2018; 221:jeb187518. [PMID: 30127074 DOI: 10.1242/jeb.187518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
Abstract
Glyphosate is the most widely used herbicide in the world. Over the past few years, the number of studies revealing deleterious effects of glyphosate on non-target species has been increasing. Here, we studied the impact of glyphosate at field-realistic doses on learning in mosquito larvae (Aedes aegypti). Larvae of A. aegypti live in small bodies of water and perform a stereotyped escape response when a moving object projects its shadow on the water surface. Repeated presentations of an innocuous visual stimulus induce a decrease in response due to habituation, a non-associative form of learning. In this study, different groups of larvae were reared in water containing different concentrations of glyphosate that are commonly found in the field (50 µg l-1, 100 µg l-1, 210 µg l-1 and 2 mg l-1). Larvae reared in a glyphosate solution of 2 mg l-1 (application dose) could complete their development. However, glyphosate at a concentration of 100 µg l-1 impaired habituation. A dose-dependent deleterious effect on learning ability was observed. This protocol opens new avenues to further studies aimed at understanding how glyphosate affects non-target organisms, such as insects. Habituation in mosquito larvae could serve as a parameter for testing the impact of pollutants in the water.
Collapse
Affiliation(s)
- Hugo Baglan
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Fernando J Guerrieri
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| |
Collapse
|
97
|
Abstract
Glyphosate, the primary herbicide used globally for weed control, targets the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme in the shikimate pathway found in plants and some microorganisms. Thus, glyphosate may affect bacterial symbionts of animals living near agricultural sites, including pollinators such as bees. The honey bee gut microbiota is dominated by eight bacterial species that promote weight gain and reduce pathogen susceptibility. The gene encoding EPSPS is present in almost all sequenced genomes of bee gut bacteria, indicating that they are potentially susceptible to glyphosate. We demonstrated that the relative and absolute abundances of dominant gut microbiota species are decreased in bees exposed to glyphosate at concentrations documented in the environment. Glyphosate exposure of young workers increased mortality of bees subsequently exposed to the opportunistic pathogen Serratia marcescens Members of the bee gut microbiota varied in susceptibility to glyphosate, largely corresponding to whether they possessed an EPSPS of class I (sensitive to glyphosate) or class II (insensitive to glyphosate). This basis for differences in sensitivity was confirmed using in vitro experiments in which the EPSPS gene from bee gut bacteria was cloned into Escherichia coli All strains of the core bee gut species, Snodgrassella alvi, encode a sensitive class I EPSPS, and reduction in S. alvi levels was a consistent experimental result. However, some S. alvi strains appear to possess an alternative mechanism of glyphosate resistance. Thus, exposure of bees to glyphosate can perturb their beneficial gut microbiota, potentially affecting bee health and their effectiveness as pollinators.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Kasie Raymann
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
98
|
Vázquez DE, Ilina N, Pagano EA, Zavala JA, Farina WM. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One 2018; 13:e0205074. [PMID: 30300390 PMCID: PMC6177133 DOI: 10.1371/journal.pone.0205074] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
As the main agricultural insect pollinator, the honey bee (Apis mellifera) is exposed to a number of agrochemicals, including glyphosate (GLY), the most widely used herbicide. Actually, GLY has been detected in honey and bee pollen baskets. However, its impact on the honey bee brood is poorly explored. Therefore, we assessed the effects of GLY on larval development under chronic exposure during in vitro rearing. Even though this procedure does not account for social compensatory mechanisms such as brood care by adult workers, it allows us to control the herbicide dose, homogenize nutrition and minimize environmental stress. Our results show that brood fed with food containing GLY traces (1.25-5.0 mg per litre of food) had a higher proportion of larvae with delayed moulting and reduced weight. Our assessment also indicates a non-monotonic dose-response and variability in the effects among colonies. Differences in genetic diversity could explain the variation in susceptibility to GLY. Accordingly, the transcription of immune/detoxifying genes in the guts of larvae exposed to GLY was variably regulated among the colonies studied. Consequently, under laboratory conditions, the response of honey bees to GLY indicates that it is a stressor that affects larval development depending on individual and colony susceptibility.
Collapse
Affiliation(s)
- Diego E. Vázquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Natalia Ilina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
| | - Eduardo A. Pagano
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
| | - Jorge A. Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, (INBA), Buenos Aires, Argentina
| | - Walter M. Farina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
99
|
Dai P, Yan Z, Ma S, Yang Y, Wang Q, Hou C, Wu Y, Liu Y, Diao Q. The Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of Honey Bee during Larvae Reared in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7786-7793. [PMID: 29992812 DOI: 10.1021/acs.jafc.8b02212] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Effects of glyphosate on survival, developmental rate, larval weight, and midgut bacterial diversity of Apis mellifera were tested in the laboratory. Larvae were reared in vitro and fed diet containing glyphosate 0.8, 4, and 20 mg/L. The dependent variables were compared with negative control and positive control (dimethoate 45 mg/L). Brood survival decreased in 4 or 20 mg/L glyphosate treatments but not in 0.8 mg/L, and larval weight decreased in 0.8 or 4 mg/L glyphosate treatments. Exposure to three concentrations did not affect the developmental rate. Furthermore, the intestinal bacterial communities were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial phyla such as Proteobacteria (30.86%), Firmicutes (13.82%), and Actinobacteria (11.88%) were detected, and significant changes were found in the species diversity and richness in 20 mg/L glyphosate group. Our results suggest that high concentrations of glyphosate are deleterious to immature bees.
Collapse
Affiliation(s)
- Pingli Dai
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Zhenxiong Yan
- Beijing University of Agriculture , Beijing 102206 , China
| | - Shilong Ma
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
- College of Bee Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Qiang Wang
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Chunsheng Hou
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Yanyan Wu
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Yongjun Liu
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology , Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| |
Collapse
|
100
|
Mengoni Goñalons C, Farina WM. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J Exp Biol 2018; 221:jeb176644. [PMID: 29643175 DOI: 10.1242/jeb.176644] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022]
Abstract
Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to field-realistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest.
Collapse
Affiliation(s)
- Carolina Mengoni Goñalons
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires C1428EHA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires C1428EHA, Argentina
| | - Walter M Farina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires C1428EHA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires C1428EHA, Argentina
| |
Collapse
|