51
|
Li S, Li R, Lee JR, Zhao N, Ling W. ZINQ-L: a zero-inflated quantile approach for differential abundance analysis of longitudinal microbiome data. Front Genet 2025; 15:1494401. [PMID: 39944355 PMCID: PMC11814158 DOI: 10.3389/fgene.2024.1494401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
Background Identifying bacterial taxa associated with disease phenotypes or clinical treatments over time is critical for understanding the underlying biological mechanism. Association testing for microbiome data is already challenging due to its complex distribution that involves sparsity, over-dispersion, heavy tails, etc. The longitudinal nature of the data adds another layer of complexity - one needs to account for the within-subject correlations to avoid biased results. Existing longitudinal differential abundance approaches usually depend on strong parametric assumptions, such as zero-inflated normal or negative binomial. However, the complex microbiome data frequently violate these distributional assumptions, leading to inflated false discovery rates. In addition, the existing methods are mostly mean-based, unable to identify heterogeneous associations such as tail events or subgroup effects, which could be important biomedical signals. Methods We propose a zero-inflated quantile approach for longitudinal (ZINQ-L) microbiome differential abundance test. A mixed-effects quantile rank-score-based test was proposed for hypothesis testing, which consists of a test in mixed-effects logistic model for the presence-absence status of the investigated taxon, and a series of mixed-effects quantile rank-score tests adjusted for zero inflation given its presence. As a regression method with minimal distributional assumptions, it is robust to the complex microbiome data, controlling false discovery rate, and is flexible to adjust for important covariates. Its comprehensive examination of the abundance distribution enables the identification of heterogeneous associations, improving the testing power. Results Extensive simulation studies and an application to a real kidney transplant microbiome study demonstrate the improved power of ZINQ-L in detecting true signals while controlling false discovery rates. Conclusion ZINQ-L is a zero-inflated quantile-based approach for detecting individual taxa associated with outcomes or exposures in longitudinal microbiome studies, providing a robust and powerful option to improve and complement the existing methods in the field.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Runzhe Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Medical College of Cornell University, New York, NY, United States
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, United States
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Wodan Ling
- Division of Biostatistics, Department of Population Health Sciences, Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
52
|
Mougeot JL, Beckman M, Kooshki M, Neuberger J, Shukla K, Furdui C, Bahrani Mougeot F, Porosnicu M. Salivary Microbiome Profiling of HPV+ and HPV- Oropharyngeal Head and Neck Cancer Patients Undergoing Durvalumab Immunotherapy Suggests Prevotella melaninogenica and Veillonella atypica as Key Players: A Pilot Study. Cancers (Basel) 2025; 17:452. [PMID: 39941819 PMCID: PMC11815830 DOI: 10.3390/cancers17030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE Head and neck cancer (HNC) is a common cancer represented by nearly 80% oral cavity (OC) and oropharyngeal cancers (OPCs). Seventy percent of OPCs are associated with the Human Papilloma Virus (HPV). Immunotherapy holds the promise of future improvements in treating HNC patients. The study objective was to determine whether durvalumab immunotherapy alone, prior to curative surgery, would significantly impact the oral salivary microbiome in a pilot cohort of HPV negative and positive OC and OPC patients. METHODS Early stage OPC patients with squamous cell carcinoma were recruited: 5 HPV+ and 12 HPV-, and treated with two or three administrations of durvalumab given every two weeks, prior to surgery. Unstimulated saliva was collected and processed for bacterial DNA Isolation and V1-V3 16S rRNA gene next generation sequencing, taxa identification, and determination of relative abundance at four time points: baseline prior to surgery (A) and weekly durvalumab treatment timepoints (B, C, and D). Alpha- and beta-diversity differences for the time series were determined in Primerv7. MaAsLin2 in R was used to identify potential associations with the time series and/or HPV status. Linear decomposition model (LDM) R-package was used to investigate the relationship of salivary microbiome with HPV status. ROC curves were plotted for significant species in common between MaAsLin2 analysis and FDR-corrected Mann-Whitney U-test using XLSTAT. RESULTS Longitudinal microbiome data across four timepoints (A, B, C, D) were obtained (HPV+: n = 18 samples; HPV-: n = 46 samples). A total of 416 taxa were detected across all time points, ranging from 336 to 373 per group. There were no differences in α- and β-diversities for all longitudinal comparisons (C vs. BCD, AB vs. CD, or A vs. B, C, or D). However, comparison A vs. D showed a significant increase in Prevotella melaninogenica relative abundance, a potentially pathogenic species able to evade the immune system, after three weeks treatment. Moreover, differences in beta-diversity based on HPV status were found. LDM analysis identified Veillonella atypica, overrepresented in HPV+ group, as the top species accounting for HPV status. CONCLUSIONS The results are consistent with findings from previous studies investigating HNC patients treated with chemoradiotherapy. More research is needed to understand possible impact of immunotherapy on opportunistic bacterial species, although negligible impact from durvalumab treatment on salivary microbiome was observed.
Collapse
Affiliation(s)
- Jean-Luc Mougeot
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Micaela Beckman
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Mitra Kooshki
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Justin Neuberger
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Kirtikar Shukla
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Cristina Furdui
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| | - Farah Bahrani Mougeot
- Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA; (J.-L.M.); (M.B.)
| | - Mercedes Porosnicu
- School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA; (M.K.); (J.N.); (K.S.); (C.F.)
| |
Collapse
|
53
|
Rytter H, Naimi S, Wu G, Lewis J, Duquesnoy M, Vigué L, Tenaillon O, Belda E, Vazquez-Gomez M, Touly N, Arnone D, Hao F, Ley RE, Clément K, Peyrin-Biroulet L, Patterson AD, Gewirtz AT, Chassaing B. In vitro microbiota model recapitulates and predicts individualised sensitivity to dietary emulsifier. Gut 2025:gutjnl-2024-333925. [PMID: 39870396 DOI: 10.1136/gutjnl-2024-333925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals. OBJECTIVES This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota. DESIGN We evaluated the ability of an in vitro microbiota model (MiniBioReactor Arrray, MBRA) to reproduce and predict an individual donor's sensitivity to emulsifiers. Metagenomes were analysed to identify signatures of emulsifier sensitivity. RESULTS Exposure of human microbiotas, maintained in the MBRA, to CMC recapitulated the differential CMC sensitivity previously observed in FRESH subjects. Furthermore, select FRESH control subjects (ie, not fed CMC) had microbiotas that were highly perturbed by CMC exposure in the MBRA model. CMC-induced microbiota perturbability was associated with a baseline metagenomic signature, suggesting the possibility of using one's metagenome to predict sensitivity to dietary emulsifiers. Transplant of human microbiotas that the MBRA model deemed CMC-sensitive, but not those deemed insensitive, into IL-10-/- germfree mice resulted in overt colitis following CMC feeding. CONCLUSION These results suggest that an individual's sensitivity to emulsifier is a consequence of, and can thus be predicted by, examining their baseline microbiota, paving the way to microbiota-based personalised nutrition.
Collapse
Affiliation(s)
- Héloïse Rytter
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Sabrine Naimi
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Gary Wu
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jim Lewis
- Center for Clinical Epidemiology and Biostatistics, Division of Gastroenterology and Hepatology,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeva Duquesnoy
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Lucile Vigué
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Olivier Tenaillon
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Eugeni Belda
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Marta Vazquez-Gomez
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Nina Touly
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Djésia Arnone
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ruth E Ley
- Microbiome Science, Max-Planck-Institute for Biology, Tübingen, Germany
| | - Karine Clément
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
- Department of Gastroenterology, Nancy University Hospital, Vandoeuvre-lès-Nancy, France
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| |
Collapse
|
54
|
Vázquez-Cuesta S, Olmedo M, Kestler M, Álvarez-Uría A, De la Villa S, Alcalá L, Marín M, Rodríguez-Fernández S, Sánchez-Martínez C, Muñoz P, Bouza E, Reigadas E. Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile infection. Clin Microbiol Infect 2025:S1198-743X(25)00034-5. [PMID: 39870349 DOI: 10.1016/j.cmi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVES Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success. METHODS We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for recurrent CDI (January 2018 to December 2022). Samples were collected at three time points: at CDI diagnosis, within 24 hours before FMT administration, and 30 days post-FMT. Calprotectin levels were assessed and the V4 region of the 16S rRNA gene was sequenced to analyse the microbiota composition. Sequencing data analysis and statistical analysis were performed using MOTHUR and R. RESULTS Ninety-seven patients underwent FMT (totalling 105 procedures). A total of 221 samples were processed, including 21 donor samples, 24 capsule contents, and 176 patient faecal samples (39 at diagnosis, 63 pre-FMT, and 74 post-FMT). FMT achieved an overall success rate of 85.1% (86/101 cases). The abundance of Bacteroides, Ruminococcus, Megamonas, and certain Prevotella operational taxonomic units was significantly higher in capsules associated with 100% success compared with less effective capsules. FMT engraftment was observed in 95% of patients with favourable outcomes versus 62% of those with recurrences (p 0.006). Additionally, a negative correlation was found between calprotectin levels and specific microbial genera, suggesting an association with successful outcomes. DISCUSSION This study highlights differences in the evolution of faecal microbiota, bacterial engraftment, and inflammation markers (e.g. calprotectin) between patients with varying FMT outcomes. Potential biomarkers for successful FMT were identified, providing valuable insights for optimizing FMT strategies.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Biochemistry and Molecular Biology Department, School of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martha Kestler
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Álvarez-Uría
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sofía De la Villa
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Sara Rodríguez-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Celia Sánchez-Martínez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| |
Collapse
|
55
|
Tromas N, Goitom E, Chin T, Dinh QT, Dorner SM, Khawasik OS, Cristescu ME, Burnet JB. Impact of grazing by multiple Daphnia species on wastewater bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178364. [PMID: 39799645 DOI: 10.1016/j.scitotenv.2024.178364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems. In this study, we investigated the influence of three different Daphnia species on a wastewater bacterial community, including fecal indicator bacterium E. coli. Using a microcosm setup to simulate the discharge of untreated sewage into surface water, we conducted in-depth analysis of bacterial community dynamics through sequencing the 16S rRNA gene. Our results revealed significant changes in microbial diversity and composition following exposure to Daphnia grazing, with variations observed among the three Daphnia species. D. pulicaria exerted the most pronounced impact on microbial diversity, followed by D. middendorffiana and D. mendotae. A total of 90 taxa exhibited significantly reduced relative abundance in the presence of Daphnia, with Firmicutes phylum being the most affected. At genus level, bacteria typically associated with wastewater (e.g., Zoogloea and Arcobacter) and gut microbiome constituents (e.g., Prevotella and Akkermansia) were notably affected by Daphnia exposure. The influence of Daphnia on bacterial community composition was most pronounced for D. pulicaria, while D. middendorffiana and D. mendotae primarily impacted community structure. Furthermore, we demonstrated that the microbial response to Daphnia exposure is phylogenetically conserved, potentially reflecting a grazing resistance or grazer feeding trait. Our findings shed new light on the role of Daphnia in controlling bacterial communities in polluted water bodies and underscore its potential as biofilter in wastewater treatment and reuse contexts.
Collapse
Affiliation(s)
- Nicolas Tromas
- UMR CARRTEL - INRAE, 74200 Thonon les Bains, France; Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Eyerusalem Goitom
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada; Department of Geography, and Environmental Studies, Toronto Metropolitan University(,) Toronto, ON M5B 2K3, Canada
| | - Tiffany Chin
- Department of Biology, McGill University, Montréal, QC H3A 1B1, Canada
| | - Quoc Tuc Dinh
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Sarah M Dorner
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Ola S Khawasik
- Department of Biology, McGill University, Montréal, QC H3A 1B1, Canada
| | | | - Jean-Baptiste Burnet
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
56
|
O'Brien PA, Bell SC, Rix L, Turnlund AC, Kjeldsen SR, Webster NS, Negri AP, Abdul Wahab MA, Vanwonterghem I. Light and dark biofilm adaptation impacts larval settlement in diverse coral species. ENVIRONMENTAL MICROBIOME 2025; 20:11. [PMID: 39863912 PMCID: PMC11762876 DOI: 10.1186/s40793-025-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition. RESULTS We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species. CONCLUSIONS Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.
Collapse
Affiliation(s)
- Paul A O'Brien
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Abigail C Turnlund
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Shannon R Kjeldsen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD, Australia
| |
Collapse
|
57
|
Reddi S, Senyshyn L, Ebadi M, Podlesny D, Minot SS, Gooley T, Kabage AJ, Hill GR, Lee SJ, Khoruts A, Rashidi A. Fecal microbiota transplantation to prevent acute graft-versus-host disease: pre-planned interim analysis of donor effect. Nat Commun 2025; 16:1034. [PMID: 39863610 PMCID: PMC11762788 DOI: 10.1038/s41467-025-56375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase. The primary and key secondary endpoints were microbiota engraftment and severe aGVHD, respectively. Three cohorts of patients (20 total) received FMT, each from a different donor. FMT was safe and effective in restoring microbiota diversity and commensal species. Microbiota engraftment, determined from shotgun sequencing data, correlated with larger microbiota compositional shifts toward donor and better clinical outcomes. Donor 3 yielded a median engraftment rate of 66%, higher than donors 1 (P = 0.02) and 2 (P = 0.03) in multivariable analysis. Three patients developed severe aGVHD; all 3 had received FMT from donor 1. Donor 3 was selected as the sole donor for the randomized phase. Our findings suggest a clinically relevant donor effect and demonstrate feasibility of evidence-based donor selection. FMT is a holistic microbiota restoration approach that can be performed as a precision therapeutic. ClinicalTrials.gov identifier NCT06026371.
Collapse
Affiliation(s)
- Swetha Reddi
- Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Liliia Senyshyn
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Daniel Podlesny
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amanda J Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
58
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. Nat Commun 2025; 16:987. [PMID: 39856104 PMCID: PMC11759687 DOI: 10.1038/s41467-025-56091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The gut microbiome modulates the anti-seizure effects of the ketogenic diet, but how specific dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that medical ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and differentially promote resistance to 6-Hz seizures in mice. Dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts in a model human infant microbial community. Addition of fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective formulas with excess fiber potentiates seizure resistance. By screening 13 fiber sources and types, we identify metagenomic responses in the model community that correspond with increased seizure resistance. Supplementing with seizure-protective fibers enriches microbial genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases genes related to sucrose degradation and TCA cycle, which are also seen in seizure-protected mice that are fed fiber-containing ketogenic formulas. This study reveals that different formulations of ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely by modifying the gut microbiome. Understanding interactions between diet, microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
59
|
Bhosle A, Jackson MI, Walsh AM, Franzosa EA, Badri DV, Huttenhower C. Response of the gut microbiome and metabolome to dietary fiber in healthy dogs. mSystems 2025; 10:e0045224. [PMID: 39714168 PMCID: PMC11748496 DOI: 10.1128/msystems.00452-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Dietary fiber confers multiple health benefits originating from the expansion of beneficial gut microbial activity. However, very few studies have established the metabolic consequences of interactions among specific fibers, microbiome composition, and function in either human or representative animal models. In a study design reflective of realistic population dietary variation, fecal metagenomic and metabolomic profiles were analyzed from healthy dogs fed 12 test foods containing different fiber sources and quantities (5-13% as-fed basis). Taxa and functions were identified whose abundances were associated either with overall fiber intake or with specific fiber compositions. Fourteen microbial species were significantly enriched in response to ≥1 specific fiber source; enrichment of fiber-derived metabolites was more pronounced in response to these fiber sources. Positively associated fecal metabolites, including short-chain fatty acids, acylglycerols, fiber bound sugars, and polyphenols, co-occurred with microbes enriched in specific food groups. Critically, the specific metabolite pools responsive to differential fiber intake were dependent on differences both in individual microbial community membership and in overall ecological configuration. This helps to explain, for the first time, differences in microbiome-diet associations observed in companion animal epidemiology. Thus, our study corroborates findings in human cohorts and reinforces the role of personalized microbiomes even in seemingly phenotypically homogeneous subjects. IMPORTANCE Consumption of dietary fiber changes the composition of the gut microbiome and, to a larger extent, the associated metabolites. Production of health-relevant metabolites such as short-chain fatty acids from fiber depends both on the consumption of a specific fiber and on the enrichment of beneficial metabolite-producing species in response to it. Even in a seemingly homogeneous population, the benefit received from fiber consumption is personalized and emphasizes specific fiber-microbe-host interactions. These observations are relevant for both population-wide and personalized nutrition applications.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Aaron M. Walsh
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric A. Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornik Cregeen S, Schmidt NW. Gut Microbial Changes Associated With Obesity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:364-373. [PMID: 39078977 PMCID: PMC11747672 DOI: 10.1210/clinem/dgae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
CONTEXT Obesity is prevalent in type 1 diabetes (T1D) and is problematic with higher risk for diabetes complications. It is unknown to what extent gut microbiome changes are associated with obesity and T1D. OBJECTIVE This work aimed to describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized statistically significant gut microbial and metabolite differences in lean T1D youth (body mass index [BMI]: 5%-<85%) vs those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) differences in lean (n = 27) and obese (n = 21) T1D youth in a pilot study. The mean ± SD age was 15.3 ± 2.2 years, glycated hemoglobin A1c 7.8 ± 1.3%, diabetes duration 5.1 ± 4.4 years, 42.0% female, and 94.0% were White. RESULTS Bacterial community composition showed between sample diversity differences (β-diversity) by BMI group (P = .013). There was a higher ratio of Prevotella to Bacteroides in the obese group (P = .0058). There was a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri, among other taxa in the obese group. Functional profiling showed an upregulation of branched-chain amino acid (BCAA) biosynthesis in the obese group and upregulation of BCAA degradation, tyrosine metabolism, and secondary bile acid biosynthesis in the lean group. Stool SCFAs were higher in the obese vs the lean group (P < .05 for all). CONCLUSION Our findings identify a gut microbiome and microbial metabolite signature associated with obesity in T1D. These findings could help identify gut microbiome-targeted therapies to manage obesity in T1D.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dimuthu Perera
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rabindra Mandal
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara Hannon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan W Schmidt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
61
|
Fan J, Zeng F, Zhong H, Cai J, Shen W, Cheng C, He C, Liu Y, Zhou Y, Chen S, Zhu Y, Liu T, Zheng JS, Wang L, Chen YM, Ma W, Zhou D. Potential roles of cigarette smoking on gut microbiota profile among Chinese men. BMC Med 2025; 23:25. [PMID: 39838369 PMCID: PMC11753143 DOI: 10.1186/s12916-025-03852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Cigarette smoking is posited as a potential factor in disrupting the balance of the human gut microbiota. However, existing studies with limited sample size have yielded inconclusive results. METHODS Here, we assessed the association between cigarette smoking and gut microbial profile among Chinese males from four independent studies (N total = 3308). Both 16S rRNA and shotgun metagenomic sequencing methods were employed, covering 206 genera and 237 species. Microbial diversity and abundance were compared among non-smokers, current smokers, and former smokers. RESULTS Actinomyces[g], Atopobium[g], Haemophilus[g], Turicibacter[g], and Lachnospira[g] were found to be associated with smoking status (current smokers vs. non-smokers). Metagenomic data provided a higher resolution at the species level, particularly for the Actinomyces[g] branch. Additionally, serum γ-glutamylcysteine (γ-Glu-Cys) was found to have a potential role in connecting smoking and Actinomyces[g]. Furthermore, we revealed putative mediation roles of the gut microbiome in the associations between smoking and common diseases including cholecystitis and type 2 diabetes. CONCLUSIONS We characterized the gut microbiota profile in male smokers and further revealed their potential involvement in mediating the impact of smoking on health outcomes. These findings advance our understanding of the intricate association between cigarette smoking and the gut microbiome.
Collapse
Affiliation(s)
- Jiayao Fan
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haili Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wentao Shen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunxiao Cheng
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chunfeng He
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yuanjiao Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yuan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ju-Sheng Zheng
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Dan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
62
|
Wang D, Jiang Y, Jiang J, Pan Y, Yang Y, Fang X, Liang L, Li H, Dong Z, Fan S, Ma D, Zhang XS, Li H, He Y, Li N. Gut microbial GABA imbalance emerges as a metabolic signature in mild autism spectrum disorder linked to overrepresented Escherichia. Cell Rep Med 2025; 6:101919. [PMID: 39809266 DOI: 10.1016/j.xcrm.2024.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/31/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Gut microbiota (GM) alterations have been implicated in autism spectrum disorder (ASD), yet the specific functional architecture remains elusive. Here, employing multi-omics approaches, we investigate stool samples from two distinct cohorts comprising 203 children with mild ASD or typical development. In our screening cohort, regression-based analysis for metabolomic profiling identifies an elevated γ-aminobutyric acid (GABA) to glutamate (Glu) ratio as a metabolic signature of ASD, independent of age and gender. In the validating cohort, we affirm the GABA/Glu ratio as an ASD diagnostic indicator after adjusting for geography, age, gender, and specific food-consuming frequency. Integrated analysis of metabolomics, 16S rRNA sequencing, and metagenomics reveals a correlation between overrepresented Escherichia and disrupted GABA metabolism. Furthermore, we observe social behavioral impairments in weaning mice transplanted with E. coli, suggesting a potential link to ASD symptomatology. Collectively, these findings provide insights into potential diagnostic and therapeutic strategies aimed at evaluating and restoring gut microbial neurotransmitter homeostasis.
Collapse
Affiliation(s)
- Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Department of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Center for Digestive Disease, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Center for Digestive Disease, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yanming Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaoyi Fang
- Department of Neonatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Hai Li
- Neurorehabilitation Laboratory, Department of Rehabilitation Medicine, Shenzhen Hospital, Shenzhen, Guangdong 518107, China
| | - Zepeng Dong
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Shilu Fan
- ARK Autism & Rehabilitation Institute, Taiyuan, Shanxi 030000, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6AE, UK.
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Center for Digestive Disease, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
63
|
Obregon-Gutierrez P, Mahmmod Y, Barba-Vidal E, Sibila M, Correa-Fiz F, Aragón V. Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis. Sci Rep 2025; 15:2347. [PMID: 39824862 PMCID: PMC11742689 DOI: 10.1038/s41598-025-85867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response. Here, we studied the nasal and rectal microbiota composition in association with the antibody response against the pathobiont Glaesserella parasuis. The nasal and rectal microbiotas of 24 piglets were sampled in two farms before vaccination and in one unvaccinated farm (naturally exposed to the pathobiont) at similar time. Microbiota composition was inferred by V3V4 16S rRNA gene sequencing and bioinformatics analysis, and the antibody response was quantified using the variation between the levels before and after vaccination (normalized per farm). Piglets with higher antibody responses showed more diverse nasal and rectal microbial communities compared to piglets with lower responses. Moreover, swine nasal core microbiota colonizers were associated with higher antibody levels, such as several members from Bacteroidales and Clostridiales orders and genera including Moraxella, Staphylococcus, Fusobacterium and Neisseria. Regarding taxa found in the rectal microbiota, associations with antibody responses were detected only at order level, pointing towards a positive role for Clostridiales while negative for Enterobacteriales. Altogether, these results suggest that the microbiota is associated with the antibody response to G. parasuis (and probably to other pathogens) and serves as starting point to understand the factors that contribute to immunization in pigs.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Yasser Mahmmod
- Department of Veterinary Clinical Sciences, College of Veterinary, Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | | | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
64
|
Zhou Y, Zhang L, Lin L, Liu Y, Li Q, Zhao Y, Zhang Y. Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137250. [PMID: 39827805 DOI: 10.1016/j.jhazmat.2025.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately. Eczema cases were identified using the International Study of Asthma and Allergies in Childhood core questionnaire and clinical diagnosis. The environmental risk score (ERS) for OPEs was developed to quantify OPEs burden. Conditional logistic regression models, multivariate analysis by linear models, negative-binomial hurdle regression, and mediation analysis were employed. Tris(2-butoxyethyl) phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) had detection rates > 50 %, with median concentrations ranged from 0.11 to 2.71 μg/L. TBP (OR = 1.12, 95 % CI: 1.01, 1.25), TDCPP (OR = 1.32, 95 % CI: 1.09, 1.59), and ERS (OR = 6.44, 95 % CI: 3.47, 11.94) were associated with elevated risk of eczema. OPEs exposure was correlated with increased alpha diversity and the abundance of several pathogenic bacteria, such as Klebsiella. Negative associations were observed between OPEs exposure and the abundances of Lachnospiraceae genera. Additionally, a positive correlation was identified between alpha diversity and the risk of eczema during childhood. Alpha diversity indices and Lachnospiraceae serve as significant mediators in this relationship. Results of this study indicate that prenatal exposure to OPEs is linked to an elevated risk of eczema and gut microbiota dysbiosis, potentially contributing to immunotoxicity of OPEs during early life.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Nantong Center for Disease Control & Prevention, Jiangsu 226007, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
65
|
Rebeck ON, Wallace MJ, Prusa J, Ning J, Evbuomwan EM, Rengarajan S, Habimana-Griffin L, Kwak S, Zahrah D, Tung J, Liao J, Mahmud B, Fishbein SRS, Ramirez Tovar ES, Mehta R, Wang B, Gorelik MG, Helmink BA, Dantas G. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem Biol 2025; 32:98-110.e7. [PMID: 39571582 PMCID: PMC11741927 DOI: 10.1016/j.chembiol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete "miniature" antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Esse M Evbuomwan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | - LeMoyne Habimana-Griffin
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suryang Kwak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Zahrah
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Tung
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erick S Ramirez Tovar
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rehan Mehta
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark G Gorelik
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth A Helmink
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
66
|
Bratseth V, Nendl A, Raju SC, Holm K, Broch K, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Gut dysbiosis and neutrophil extracellular traps in chronic heart failure. Int J Cardiol 2025; 419:132689. [PMID: 39489348 DOI: 10.1016/j.ijcard.2024.132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chronic heart failure (HF) patients have reduced microbiota diversity. Leakage of microbes and their metabolites into the bloodstream may activate neutrophils. Neutrophil extracellular traps (NETs) consist of chromatin and proteases, and may contribute to HF pathogenesis. We assessed associations between circulating NETs and 1) cardiac function, 2) the degree of gut microbiota diversity and 3) gut leakage and microbial metabolites in HF patients. METHODS A cross-sectional study including 124 patients with chronic HF and left ventricular ejection fraction ≤40 %. Severe HF was defined as N-terminal pro-B-type natriuretic peptide concentrations above median. We measured citrullinated histone H3 (CitH3), myeloperoxidase- and double-stranded-DNA in the blood. Gut leakage markers included bacterial lipopolysaccharides and soluble cluster of differentiation 14. The microbial metabolites included circulating trimethylamine N-oxide and butyrate producing capacity. We used the Shannon diversity-index and a dysbiosis-index based on bacteria with altered relative abundance to characterize the gut microbiota profile. RESULTS Quartile 4 of CitH3 was associated with more severe HF compared to quartiles 1-3, after adjustments for age, gender and hypertension (adjusted odds ratio [95 %CI] 3.21[1.18-8.69], p = 0.022). CitH3 was moderately associated with hypertension (p = 0.04), higher CRP levels (p = 0.016) and lower Shannon diversity index, (p = 0.039). No other NET marker associated with severe HF. CONCLUSIONS In chronic HF patients with reduced LVEF, high levels of CitH3 were associated with disease severity, inflammation and reduced gut microbiota diversity. Our results suggest that enhanced release of NETs could be involved in progressive HF, although the contribution of the gut microbiota seems limited in this context.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Andraz Nendl
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sajan C Raju
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Johannes R Hov
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology, and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway; Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
67
|
Clancy SM, Whitehead M, Oliver NAM, Huson KM, Kyle J, Demartini D, Irvine A, Santos FG, Kajugu PE, Hanna REB, Huws SA, Morphew RM, Waite JH, Haldenby S, Robinson MW. The Calicophoron daubneyi genome provides new insight into mechanisms of feeding, eggshell synthesis and parasite-microbe interactions. BMC Biol 2025; 23:11. [PMID: 39800692 PMCID: PMC11727788 DOI: 10.1186/s12915-025-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.76-Gb draft genome for C. daubneyi, the first for any paramphistome species. RESULTS Several gene families have undergone specific expansion in C. daubneyi, including the peptidoglycan-recognition proteins (PGRPs) and DM9 domain-containing proteins, which function as pattern-recognition receptors, as well as the saposin-like proteins with putative antibacterial properties, and are upregulated upon arrival of the fluke in the microbe-rich rumen. We describe the first characterisation of a helminth PGRP and show that a recombinant C. daubneyi PGRP binds to the surface of bacteria, including obligate anaerobes from the rumen, via specific interaction with cell wall peptidoglycan. We reveal that C. daubneyi eggshell proteins lack L-DOPA typically required for eggshell crosslinking in trematodes and propose that C. daubneyi employs atypical eggshell crosslinking chemistry that produces eggs with greater stability. Finally, although extracellular digestion of rumen ciliates occurs within the C. daubneyi gut, unique ultrastructural and biochemical adaptations of the gastrodermal cells suggest that adult flukes also acquire nutrients via uptake of volatile fatty acids from rumen fluid. CONCLUSIONS Our findings suggest that unique selective pressures, associated with inhabiting a host environment so rich in microbial diversity, have driven the evolution of molecular and morphological adaptations that enable C. daubneyi to defend itself against microorganisms, feed and reproduce within the rumen.
Collapse
Affiliation(s)
- Shauna M Clancy
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Mark Whitehead
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Jake Kyle
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Daniel Demartini
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Allister Irvine
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Fernanda Godoy Santos
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | | | | | - Sharon A Huws
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Russell M Morphew
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - J Herbert Waite
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK.
| |
Collapse
|
68
|
Jeong S, Tollison TS, Brochu H, Chou H, Huntress I, Yount KS, Zheng X, Darville T, O'Connell CM, Peng X. Cervicovaginal microbial features predict Chlamydia trachomatis spread to the upper genital tract of infected women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625070. [PMID: 39651251 PMCID: PMC11623589 DOI: 10.1101/2024.11.26.625070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Chlamydia trachomatis (CT) infection can lead to pelvic inflammatory disease, infertility and other reproductive sequelae when it ascends to the upper genital tract. Factors including chlamydial burden, co-infection with other sexually-transmitted bacterial pathogens and oral contraceptive use influence risk for upper genital tract spread. Cervicovaginal microbiome composition influences CT susceptibility and we investigated if it contributes to spread by analyzing amplicon sequence variants (ASVs) derived from the V4 region of 16S rRNA genes in vaginal samples collected from women at high risk for CT infection and for whom endometrial infection had been determined. RESULTS Participants were classified as CT negative (CT-, n=77), CT positive at the cervix (Endo-, n=77), or CT positive at both cervix and endometrium (Endo+, n=66). Although we were unable to identify many significant differences between CT infected and uninfected women, differences in abundance of ASVs representing Lactobacillus iners and L. crispatus subspecies but not dominant lactobacilli were detected. Twelve informative ASVs predicted endometrial chlamydial infection (AUC=0.74), with CT ASV abundance emerging as a key predictor. We also observed a positive correlation between levels of cervically secreted cytokines previously associated with CT ascension and abundance of the informative ASVs. CONCLUSION Our findings suggest that vaginal microbial community members may influence chlamydial spread directly by nutrient limitation and/or disrupting endocervical epithelial integrity and indirectly by modulating pro-inflammatory signaling and/or homeostasis of adaptive immunity. Further investigation of these predictive microbial factors may lead to cervicovaginal microbiome biomarkers useful for identifying women at increased risk for disease.
Collapse
|
69
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
70
|
Daiy K, Wiley K, Allen J, Bailey MT, Dettmer AM. Associations among rearing environment and the infant gut microbiome with early-life neurodevelopment and cognitive development in a nonhuman primate model ( Macaca mulatta). J Dev Orig Health Dis 2025; 16:e1. [PMID: 39781670 PMCID: PMC11731890 DOI: 10.1017/s2040174424000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (Macaca mulatta), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys (n = 33) were either mother-peer-reared (MPR) or nursery-reared (NR). Neurodevelopmental outcomes, namely emotional responsivity, visual orientation, and motor maturity, were assessed with the Primate Neonatal Neurobehavioral Assessment (PNNA) at 14-30 days. Cognitive development was assessed through tasks evaluating infant reward association, cognitive flexibility, and impulsivity at 6-8 months. The fecal microbiome was quantified from rectal swabs via 16S rRNA sequencing. Factor analysis was used to identify "co-abundance factors" describing patterns of microbial composition. We used multiple linear regressions with AIC Model Selection and differential abundance analysis (MaAsLin2) to evaluate relationships between co-abundance factors, microbiome diversity, and neuro-/cognitive development outcomes. At 30 days of age, a gut microbiome co-abundance factor, or pattern, with high Prevotella and Lactobacillus (β = -0.88, p = 0.04, AIC Weight = 68%) and gut microbiome alpha diversity as measured by Shannon diversity (β = -1.33, p = 0.02, AIC Weight = 80%) were both negatively associated with infant emotional responsivity. At 30 days of age, being NR was also associated with lower emotional responsivity (Factor 1 model: β = -3.13, p < 0.01; Shannon diversity model: β = -3.77, p < 0.01). The infant gut microbiome, along with early-rearing environments, may shape domains of neuro-/cognitive development related to temperament.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kyle Wiley
- Department of Sociology and Anthropology, University of Texas at El Paso, El Paso, TX, USA
| | - Jacob Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Bailey
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amanda M Dettmer
- Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
71
|
Nishijima S, Stankevic E, Aasmets O, Schmidt TSB, Nagata N, Keller MI, Ferretti P, Juel HB, Fullam A, Robbani SM, Schudoma C, Hansen JK, Holm LA, Israelsen M, Schierwagen R, Torp N, Telzerow A, Hercog R, Kandels S, Hazenbrink DHM, Arumugam M, Bendtsen F, Brøns C, Fonvig CE, Holm JC, Nielsen T, Pedersen JS, Thiele MS, Trebicka J, Org E, Krag A, Hansen T, Kuhn M, Bork P. Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 2025; 188:222-236.e15. [PMID: 39541968 DOI: 10.1016/j.cell.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
The microbiota in individual habitats differ in both relative composition and absolute abundance. While sequencing approaches determine the relative abundances of taxa and genes, they do not provide information on their absolute abundances. Here, we developed a machine-learning approach to predict fecal microbial loads (microbial cells per gram) solely from relative abundance data. Applying our prediction model to a large-scale metagenomic dataset (n = 34,539), we demonstrated that microbial load is the major determinant of gut microbiome variation and is associated with numerous host factors, including age, diet, and medication. We further found that for several diseases, changes in microbial load, rather than the disease condition itself, more strongly explained alterations in patients' gut microbiome. Adjusting for this effect substantially reduced the statistical significance of the majority of disease-associated species. Our analysis reveals that the fecal microbial load is a major confounder in microbiome studies, highlighting its importance for understanding microbiome variation in health and disease.
Collapse
Affiliation(s)
- Suguru Nishijima
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Aasmets
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas S B Schmidt
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Marisa Isabell Keller
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela Ferretti
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Fullam
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Christian Schudoma
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johanne Kragh Hansen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Mads Israelsen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Nikolaj Torp
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Anja Telzerow
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rajna Hercog
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stefanie Kandels
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Diënty H M Hazenbrink
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Charlotte Brøns
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Medical department, University Hospital Zeeland, Køge, Denmark
| | - Julie Steen Pedersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Maja Sofie Thiele
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany; European Foundation for the Study of Chronic Liver Failure, EFCLIF, Barcelona, Spain
| | - Elin Org
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aleksander Krag
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Peer Bork
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
72
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Cass C, Guruge J, Leekha S, Rengarajan S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. Cell Host Microbe 2025; 33:30-41.e6. [PMID: 39731916 PMCID: PMC11717617 DOI: 10.1016/j.chom.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of clinical outcomes. Microbiota humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clinically prevalent clade 1 lineages and identified candidate taxa, including Blautia, as markers of stable colonization. Using gnotobiotic mice engrafted with defined human microbiota, we validated strain-specific CDI severity across clade 1 strains isolated from patients. Mice engrafted with a community broadly representative of colonized patients were protected from severe disease across all strains without suppression of C. difficile colonization. These results underline the capacity of gut community structure to attenuate a diversity of pathogenic strains without inhibiting colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna L DeVeaux
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sakshi Khanna
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aura L Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wesley Agee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Janaki Guruge
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sidh Leekha
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunaina Rengarajan
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
73
|
Portlock T, Shama T, Kakon SH, Hartjen B, Pook C, Wilson BC, Bhuttor A, Ho D, Shennon I, Engelstad AM, Di Lorenzo R, Greaves G, Rahman N, Kelsey C, Gluckman PD, O'Sullivan JM, Haque R, Forrester T, Nelson CA. Interconnected pathways link faecal microbiota plasma lipids and brain activity to childhood malnutrition related cognition. Nat Commun 2025; 16:473. [PMID: 39773949 PMCID: PMC11707170 DOI: 10.1038/s41467-024-55798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Malnutrition affects over 30 million children annually and has profound immediate and enduring repercussions. Survivors often suffer lasting neurocognitive consequences that impact academic performance and socioeconomic outcomes. Mechanistic understanding of the emergence of these consequences is poorly understood. Using multi-system SHAP interpreted random forest models and network analysis, we show that Moderate Acute Malnutrition (MAM) associates with enrichment of faecal Rothia mucilaginosa, Streptococcus salivarius and depletion of Bacteroides fragilis in a cohort of one-year-old children in Dhaka, Bangladesh. These microbiome changes form interconnected pathways that involve reduced plasma odd-chain fatty acid levels, decreased gamma and beta electroencephalogram power in temporal and frontal brain regions, and reduced vocalization. These findings support the hypothesis that prolonged colonization by oral commensal species delay gut microbiome and brain development. While causal links require empirical validation, this study provides insights to improve interventions targeting MAM-associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- T Portlock
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - T Shama
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - S H Kakon
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - B Hartjen
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - C Pook
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - B C Wilson
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - A Bhuttor
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - D Ho
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - I Shennon
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - A M Engelstad
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| | - R Di Lorenzo
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - G Greaves
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - N Rahman
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - C Kelsey
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - P D Gluckman
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - J M O'Sullivan
- The Liggins Institute, University of Auckland, Auckland, New Zealand.
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| | - R Haque
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - T Forrester
- Faculty of Medical Sciences, University of the West Indies (UWI), Kingston, Jamaica
| | - C A Nelson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Harvard Graduate School of Education, Cambridge, MA, USA.
| |
Collapse
|
74
|
Yang HH, Simpson CA, Srivastava M, Bera A, Cappelletti M, Suh JD, Wang M, Beswick DM, Maxim T, Basak SK, Srivatsan ES, Fischer JL, Jacobs JP, Lee JT. Biodiversity of the Bacterial and Fungal Microbiome and Associated Inflammatory Cytokine Profile in Chronic Rhinosinusitis. Int Forum Allergy Rhinol 2025. [PMID: 39776217 DOI: 10.1002/alr.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Dysbiosis of the bacterial and fungal microbiome has been increasingly implicated in the pathogenesis of chronic rhinosinusitis (CRS). This study explores the relationship between microbiome and mycobiome biodiversity and type 2 (T2) versus non-type 2 (NT2) inflammation. METHODS Mucosal tissues from the ethmoid sinus were collected during endoscopic sinus (CRS) and skull base (controls) surgery between January 2020 and July 2021. Specimens underwent 16S rRNA (bacterial) and internal transcribed spacer (fungal) gene sequencing, along with cytokine analysis using the Luminex assay. Based on cytokine (IL-4, IL-5, IL-13) concentrations and the presence of eosinophils, CRS cases were classified into T2 or NT2 inflammatory profiles. The relationships between CRS endotype and the biodiversity of the microbiome and mycobiome were assessed. RESULTS Specimens from 92 patients (30 control, 31 CRSwNP, 31 CRSsNP) were included in the analyses. Among 62 CRS cases, 20 exhibited T2 inflammation and 42 exhibited NT2 inflammation. Compared with control specimens, NT2 specimens exhibited significantly lower amplicon sequence variants (mean difference -149, 95% CI [-261, -37], p = 0.007), Shannon index (-0.48 [-0.79, -0.16], p = 0.002), and Simpson index (-0.003 [-0.005, -0.001], p = 0.002) for bacterial alpha diversity. However, no significant differences in bacterial alpha diversity were observed between T2 specimens and controls, or between T2 and NT2 specimens. Fungal biodiversity did not differ significantly across endotype and control groups. CONCLUSION Dysbiosis of the sinus bacterial microbiome is more strongly associated with a NT2-mediated inflammatory profile than with a T2-mediated inflammatory profile.
Collapse
Affiliation(s)
- Hong-Ho Yang
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carra A Simpson
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences School of Medicine, Bethesda, Maryland, USA
| | - Alakesh Bera
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Monica Cappelletti
- Department of Pathology and Lab Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey D Suh
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - MarileneB Wang
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Daniel M Beswick
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tom Maxim
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Saroj K Basak
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Eri S Srivatsan
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jakob L Fischer
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Gastroenterology, Department of Medicine, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Jivianne T Lee
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
75
|
Yunusbayev B, Bogdanova A, Nadyrchenko N, Danilov L, Bogdanov V, Sergeev G, Altinbaev R, Bilalov F, Yunusbaeva M. Gut dysbiosis narrative in psoriasis: matched-pair approach identifies only subtle shifts correlated with elevated fecal calprotectin. Microbiol Spectr 2025; 13:e0138224. [PMID: 39656003 PMCID: PMC11705824 DOI: 10.1128/spectrum.01382-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Many studies have reported gut microbiome alterations in psoriasis patients, suggesting dysbiosis. While evidence for dysbiosis and its link to pathogenesis remains inconclusive, murine models of psoriasis suggest that gut microbiome alterations develop in response to psoriasis-like inflammation. Hence, the dominant narrative about gut microbiome alterations' impact on disease should be evaluated critically with more data and a well-powered approach. In this case-control study, we used deep sequencing of fecal samples from 53 psoriasis patients and 47 healthy donors to reconstruct the strain/species-level content of the gut microbiome. Unlike previous studies, we first identified matched pairs for each patient with healthy donors to adjust for microbiome variability and increase power. We found no evidence for depleted gut community diversity and apparent divergence in structure between patients and healthy individuals. However, our matched-pair approach identified a subtle but systematic increase in select bacteria among patients, e.g., Megasphaera elsdenii and Eubacterium CAG 180. We next showed that these enriched species were correlated with elevated biomarkers of intestinal and systemic inflammation and liver function. Functionally, one of the top species, Megasphaera elsdenii, is a potent lactate utilizer in the context of intestinal lactic acidosis and inflammation. While our findings hardly support overt dysbiosis in the large intestine, the observed microbial changes correlate with moderately elevated calprotectin, albeit at levels not enough to diagnose ongoing inflammation. Hence, the sources of elevated inflammatory markers in patients' intestines remain unclear and warrant further investigation to clarify their cause-and-effect relationship with the disease. IMPORTANCE With sufficient taxonomic resolution and sample size, this study critically evaluates new and published data on the gut microbiome in psoriasis patients. It shows that observed taxonomic changes in patients are modest and do not meet strict criteria for gut dysbiosis, at least in the large intestine. Instead, observed taxonomic changes in psoriasis patients can be explained by the microbial response to possible low-grade inflammation with unknown localization in the intestine and unclear impact on the host. The authors point out that published endoscopic data point to the small intestine as the site of gut inflammation. Therefore, further research focused on the small intestine would be informative to clarify the hypothetical gut-psoriasis link.
Collapse
Affiliation(s)
- Bayazit Yunusbayev
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anna Bogdanova
- SCAMT institute, ITMO University, Saint Petersburg, Russia
| | | | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Viktor Bogdanov
- Multiomics Laboratory, Moscow Institute of Physics and Technology, Moscow, Russia
- Medical Genetics Laboratory, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | | | - Radick Altinbaev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Fanil Bilalov
- Department of Laboratory Medicine, Bashkir State Medical University, Ufa, Russia
- Republic Medical Genetic Centre, Ufa, Russia
| | - Milyausha Yunusbaeva
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
76
|
Hares MF, Griffiths BE, Barningham L, Vamos EE, Gregory R, Duncan JS, Oikonomou G, Stewart CJ, Coombes JL. Progression of the faecal microbiome in preweaning dairy calves that develop cryptosporidiosis. Anim Microbiome 2025; 7:3. [PMID: 39762941 PMCID: PMC11706078 DOI: 10.1186/s42523-024-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth. METHODS Three hundred and forty-six (346) calves from three dairy farms had one faecal swab collected during the first week of life (W1). Thereafter, sampled calves were monitored for diarrhoeal disease and those that suffered a diarrhoea event were tested for C. parvum by lateral flow testing (LFT). Calves that experienced diarrhoea and tested positive for C. parvum by LFT were assigned to the Cryptosporidium-positive (Cp+) group (n = 32). Matched healthy (H) controls with no history of diarrhoea were selected from the remaining cohort (n = 33). The selected subset of calves (n = 65) was observed until weaning, collecting a faecal swab, at approximately Week 5 (W5) and Week 10 (W10) after birth, resulting in a total of 191 samples (W1; n = 65, W5; n = 64, W10; n = 62). 16S rRNA gene amplicon sequencing was performed on all extracted samples. RESULTS Analysis of the longitudinal microbiome showed significant changes in the microbial diversity and composition across all three time-points. Whilst Firmicutes were elevated in the Cp+ group at W5 compared to the H group, no other significant differences were detected between H and Cp+ groups. Whilst the core microbiota showed some taxa were exclusive to each group, the role of these taxa in health and disease has yet to be determined. Antibiotics were also found to have an impact on the relative abundance of some taxa. Though healthy calves received a significantly higher body condition score than Cp+ calves at W5, the difference did not reach significance at W10, suggesting that Cp+ calves may catch up to their healthy counterparts once the infection has resolved. CONCLUSIONS The findings of this study illustrated the changes in the microbial diversity and composition during the preweaning period in dairy calves. The results also indicated that the faecal microbiome is not predictive of cryptosporidiosis and implied that cryptosporidiosis doesn't cause long-term gut dysbiosis. This study furthered our understanding of the parasite-microbiome relationship and its impact on the bovine host.
Collapse
Affiliation(s)
- M F Hares
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK.
| | - B E Griffiths
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - L Barningham
- Centre for Genomic Research, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - E E Vamos
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - R Gregory
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - J S Duncan
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - G Oikonomou
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - C J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - J L Coombes
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
77
|
Yang J, Lei OK, Bhute S, Kris-Etherton PM, Lichtenstein AH, Matthan NR, Petersen KS, Sabaté J, Reboussin DM, Lovato L, Vitolins MZ, Rajaram S, Jacobs JP, Huang J, Taw M, Yang S, Li Z. Impact of daily avocado consumption on gut microbiota in adults with abdominal obesity: an ancillary study of HAT, a randomized controlled trial. Food Funct 2025; 16:168-180. [PMID: 39641169 DOI: 10.1039/d4fo03806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Objectives: This study aimed to investigate short-term and long-term impact of avocado consumption without caloric restriction on the gut microbiota of free-living adults with abdominal obesity. Methods: The Habitual Diet and Avocado Trial (HAT) was a 26-week, multi-center, randomized, controlled trial involving 1008 individuals with abdominal obesity. Participants were randomly assigned to the Avocado Supplemented Diet Group (AVO), receiving one avocado per day, or the Habitual Diet group (HAB), maintaining their usual dietary habits. Fecal samples were collected at baseline, week 4 and week 26 from a subset of participants recruited at a University of California Los Angeles site (n = 230). Fecal microbiota was assessed with shotgun metagenomics sequencing. Alpha diversity was assessed using the Chao1 and Shannon indices; beta diversity was assessed using Bray-Curtis dissimilarity with significance determined by repeated measures permutational multivariat analysis of variance. Potential association of intervention at week 4 and 26 with alpha diversity, species and metabolic pathways was examined using linear mixed effect models. Results: Compared to the HAB group, the AVO group had higher alpha diversity by 4 weeks, which persisted through the 26-week study period. Exploratory analysis based on healthy eating index-2015 (HEI-2015) indicated that participants with a low HEI score at baseline (≤52.7), had an increase in alpha diversity in the AVO group vs. HAB group. The AVO group had a significant change in beta diversity at week 26 compared to the HAB group. At the species level, the AVO group had significantly increased Faecalibacterium prausnitzii and Bacterium AF16_15 at week 26 compared to the HAB group. Functional analysis showed no significant difference in metabolic pathways between the HAB and AVO groups. Conclusions: Our findings document a potentially favorable effect of avocados on gut microbiota diversity. The prebiotic potential of avocados is more pronounced in individuals with a low diet quality score. This trial is registered at clinicaltrials.gov as NCT03528031 (https://clinicaltrials.gov/study/NCT03528031).
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
| | - On Kei Lei
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Faculty of Education, University of Macau, Macao, China
| | - Shrikant Bhute
- David Geffen School of Medicine, Department of Medicine, Los Angeles, CA, 90095, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, CA, 92354, USA
| | - David M Reboussin
- Department of Biostatistics, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Laura Lovato
- Department of Biostatistics, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Mara Z Vitolins
- Department of Biostatistics, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, CA, 92354, USA
| | - Jonathan P Jacobs
- David Geffen School of Medicine, Department of Medicine, Los Angeles, CA, 90095, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine VA Greater Los Angeles HealthCare System, Los Angeles, CA 90073, USA
| | - Jianjun Huang
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
| | - Meileen Taw
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
| | - Scarlet Yang
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
| | - Zhaoping Li
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Department of Medicine VA Greater Los Angeles HealthCare System, Los Angeles, CA 90073, USA
| |
Collapse
|
78
|
Xu LL, McIlroy SE, Ni Y, Guibert I, Chen J, Rocha U, Baker DM, Panagiotou G. Chemical pollution drives taxonomic and functional shifts in marine sediment microbiome, influencing benthic metazoans. ISME COMMUNICATIONS 2025; 5:ycae141. [PMID: 40008244 PMCID: PMC11851482 DOI: 10.1093/ismeco/ycae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Microbial communities in marine sediments contribute significantly to the overall health and resiliency of marine ecosystems. However, increased human disturbance undermines biodiversity and, hence, natural functionality provided by marine sediments. Here, through a deep shotgun metagenomics sequencing of the sediment microbiome and COI metabarcoding of benthic metazoans, we demonstrate that >50% of the microorganisms' and metazoan's taxonomic variation can be explained by specific chemical pollution indices. Interestingly, there was a significant correlation between the similarity in microbiome communities' taxonomical and functional attributes and the similarity of benthic metazoans community composition. Furthermore, mediation analysis was conducted to evaluate the microbiome-mediated indirect effect, suggesting that microbial species and functions accounted for 36% and 26%, respectively, of the total effect of pollution on the benthic metazoans. Our study introduces a multi-level perspective for future studies in urbanized coastal areas to explore marine ecosystems, revealing the impact of pollution stress on microbiome communities and their critical biogeochemical functions, which in turn may influence macrofaunal composition.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
| | - Shelby E McIlroy
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Yueqiong Ni
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thuringia, 07743, Germany
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Isis Guibert
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
| | - Jiarui Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-Sen University, Zhongshaner Rd 74, Guangdong, Guangzhou, 510080, P.R. China
| | - Ulisses Rocha
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research—UFZ GmbH, Permoserstrasse 15, Leipzig, Saxony, 04318, Germany
| | - David M Baker
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thuringia, 07743, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Fürstengraben 1, Jena, Thuringia, 07743, Germany
| |
Collapse
|
79
|
Menon R, Bhattarai SK, Crossette E, Prince AL, Olle B, Silber JL, Bucci V, Faith J, Norman JM. Multi-omic profiling a defined bacterial consortium for treatment of recurrent Clostridioides difficile infection. Nat Med 2025; 31:223-234. [PMID: 39747680 DOI: 10.1038/s41591-024-03337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Donor-derived fecal microbiota treatments are efficacious in preventing recurrent Clostridioides difficile infection (rCDI), but they have inherently variable quality attributes, are difficult to scale and harbor the risk of pathogen transfer. In contrast, VE303 is a defined consortium of eight purified, clonal bacterial strains developed for prevention of rCDI. In the phase 2 CONSORTIUM study, high-dose VE303 was well tolerated and reduced the odds of rCDI by more than 80% compared to placebo. VE303 organisms robustly colonized the gut in the high-dose group and were among the top taxa associated with non-recurrence. Multi-omic modeling identified antibiotic history, baseline stool metabolites and serum cytokines as predictors of both on-study CDI recurrence and VE303 colonization. VE303 potentiated early recovery of the host microbiome and metabolites with increases in short-chain fatty acids, secondary bile acids and bile salt hydrolase genes after antibiotic treatment for CDI, which is considered important to prevent CDI recurrences. These results support the idea that VE303 promotes efficacy in rCDI through multiple mechanisms.
Collapse
Affiliation(s)
| | - Shakti K Bhattarai
- Program in Microbiome Dynamics, Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Bernat Olle
- Vedanta Biosciences, Inc., Cambridge, MA, USA
| | | | - Vanni Bucci
- Program in Microbiome Dynamics, Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremiah Faith
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
80
|
Aydin Ö, Wahlström A, de Jonge PA, Meijnikman AS, Sjöland W, Olsson L, Henricsson M, de Goffau MC, Oonk S, Bruin SC, Acherman YIZ, Marschall HU, Gerdes VEA, Nieuwdorp M, Bäckhed F, Groen AK. An integrated analysis of bile acid metabolism in humans with severe obesity. Hepatology 2025; 81:19-31. [PMID: 39010331 DOI: 10.1097/hep.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/26/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND AND AIMS Bile acids (BA) are vital regulators of metabolism. BAs are AQ6 secreted in the small intestine, reabsorbed, and transported back to the liver, where they can modulate metabolic functions. There is a paucity of data regarding the portal BA composition in humans. This study aimed to address this knowledge gap by investigating portal BA composition and the relation with peripheral and fecal BA dynamics in conjunction with the gut microbiome. APPROACH AND RESULTS Thirty-three individuals from the BARIA cohort were included. Portal plasma, peripheral plasma, and feces were collected. BA and C4 levels were measured employing mass spectrometry. FGF19 was measured using ELISA. Gut microbiota composition was determined through metagenomics analysis on stool samples. Considerable diversity in the portal BA composition was observed. The majority (n = 26) of individuals had a 9-fold higher portal than peripheral BA concentration. In contrast, 8 individuals showed lower portal BA concentration compared with peripheral and had higher levels of unconjugated and secondary BA in this compartment, suggesting more distal origin. The altered portal BA profile was associated with altered gut microbiota composition. In particular, taxa within Bacteroides were reduced in abundance in the feces of these individuals. CONCLUSIONS Characterization of the portal BA composition in relation to peripheral and fecal BA increased insight into the dynamics of BA metabolism in individuals with obesity. Peripheral BA composition was much more diverse due to microbial metabolism. About 24% of the portal samples was surprisingly low in total BA; the underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrick A de Jonge
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus C de Goffau
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stijn Oonk
- Department of Scientific Research, Data Science, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Sjoerd C Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victor E A Gerdes
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
- Department of Internal Medicine, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albert K Groen
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
81
|
Zhou H, Balint D, Shi Q, Vartanian T, Kriegel MA, Brito I. Lupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders. Ann Rheum Dis 2025; 84:93-105. [PMID: 39874239 PMCID: PMC11868722 DOI: 10.1136/ard-2024-225829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols. METHODS We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways. RESULTS Distinct microbial signatures were identified across autoimmune disorders, with notable overlaps between SLE and IBD, suggesting shared microbial underpinnings. Significant predictive biomarkers highlighted the diverse microbial influences across these conditions. Protein-protein interaction analyses revealed interactions targeting glucocorticoid signalling, antigen presentation and interleukin-12 signalling pathways, offering insights into possible common disease mechanisms. Experimental validation confirmed interactions between the host protein glucocorticoid receptor (NR3C1) and specific gut bacteria-derived proteins, which may have therapeutic implications for inflammatory disorders like SLE and IBD. CONCLUSIONS Our findings underscore the gut microbiome's critical role in autoimmune diseases, offering insights into shared and distinct microbial signatures. The study highlights the potential importance of microbial biomarkers in understanding disease mechanisms and guiding treatment strategies, paving the way for novel therapeutic approaches based on microbial profiles. TRIAL REGISTRATION NUMBER NCT02394964.
Collapse
Affiliation(s)
- Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Diana Balint
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, Münster, Germany; Section of Rheumatology and Clinical Immunology, University Hospital Münster, Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ilana Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
82
|
Masson BA, Kiridena P, Lu D, Kleeman EA, Reisinger SN, Qin W, Davies WJ, Muralitharan RR, Jama HA, Antonacci S, Marques FZ, Gubert C, Hannan AJ. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice. Brain Behav Immun 2025; 123:290-305. [PMID: 39293692 DOI: 10.1016/j.bbi.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
The paternal environment prior to conception has been demonstrated to influence offspring physiology and behavior, with the sperm epigenome (including noncoding RNAs) proposed as a potential facilitator of non-genetic inheritance. Whilst the maternal gut microbiome has been established as an important influence on offspring development, the impact of the paternal gut microbiome on offspring development, health and behavior is largely unknown. Gut microbiota have major influences on immunity, and thus we hypothesized that they may be relevant to paternal immune activation (PIA) modulating epigenetic inheritance in mice. Therefore, male C57BL/6J mice (F0) were orally administered non-absorbable antibiotics via drinking water in order to substantially deplete their gut microbiome. Four weeks after administration of the antibiotics (gut microbiome depletion), F0 male mice were then mated with naïve female mice. The F1 offspring of the microbiome-depleted males had reduced body weight as well as altered gut morphology (shortened colon length). F1 females showed significant alterations in affective behaviors, including measures of anxiety and depressive-like behaviors, indicating altered development. Analysis of small noncoding RNAs in the sperm of F0 mice revealed that gut microbiome depletion is associated with differential expression of 8 different PIWI-interacting RNAs (piRNAs), each of which has the potential to modulate the expression of multiple downstream gene targets, and thus influence epigenetic inheritance and offspring development. This study demonstrates that the gut-germline axis influences sperm small RNA profiles and offspring physiology, with specific impacts on offspring affective and/or coping behaviors. These findings may have broader implications for other animal species with comparable gut microbiota, intergenerational epigenetics and developmental biology, including humans.
Collapse
Affiliation(s)
- Bethany A Masson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Pamudika Kiridena
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Da Lu
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth A Kleeman
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sonali N Reisinger
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Wendy Qin
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - William J Davies
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Simona Antonacci
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
83
|
Olivera PA, Martinez-Lozano H, Leibovitzh H, Xue M, Neustaeter A, Espin-Garcia O, Xu W, Madsen KL, Guttman DS, Bernstein CN, Yerushalmi B, Hyams JS, Abreu MT, Marshall JK, Wrobel I, Mack DR, Jacobson K, Bitton A, Aumais G, Panacionne R, Dieleman LA, Silverberg MS, Steinhart AH, Moayyedi P, Turner D, Griffiths AM, Turpin W, Lee SH, Croitoru K. Healthy First-Degree Relatives From Multiplex Families vs Simplex Families Have Higher Subclinical Intestinal Inflammation, a Distinct Fecal Microbial Signature, and Harbor a Higher Risk of Developing Crohn's Disease. Gastroenterology 2025; 168:99-110.e2. [PMID: 39236898 DOI: 10.1053/j.gastro.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND & AIMS Unaffected first-degree relatives (FDRs) from families with ≥2 affected FDRs with Crohn's disease (CD, multiplex families) have a high risk of developing CD, although the underlying mechanisms driving this risk are poorly understood. We aimed to identify differences in biomarkers between FDRs from multiplex vs simplex families and investigate the risk of future CD onset accounting for potential confounders. METHODS We assessed the Crohn's and Colitis Canada Genetic Environmental Microbial cohort of healthy FDRs of patients with CD. Genome-wide CD-polygenic risk scores, urinary fractional excretion of lactulose-to-mannitol ratio, fecal calprotectin (FCP), and fecal 16S ribosomal RNA microbiome were measured at recruitment. Associations between CD multiplex status and baseline biomarkers were determined using generalized estimating equations models. Cox models were used to assess the risk of future CD onset. RESULTS There were 4051 participants from simplex families and 334 from CD multiplex families. CD multiplex status was significantly associated with higher baseline FCP (P = .026) but not with baseline CD-polygenic risk scores or the lactulose-to-mannitol ratio. Three bacterial genera were found to be differentially abundant between both groups. CD multiplex status at recruitment was independently associated with an increased risk of developing CD (adjusted hazard ratio, 3.65; 95% confidence interval, 2.18-6.11, P < .001). CONCLUSION Within FDRs of patients with CD, participants from multiplex families had a 3-fold increased risk of CD onset, a higher FCP, and an altered bacterial composition, but not genetic burden or altered gut permeability. These results suggest that putative environmental factors might be enriched in FDRs from multiplex families.
Collapse
Affiliation(s)
- Pablo A Olivera
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Helena Martinez-Lozano
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada; Department of Digestive System Medicine, Hospital General Universitario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Haim Leibovitzh
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Mingyue Xue
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Neustaeter
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Wei Xu
- Division of Biostatistics, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Department of Cell & Systems Biology and Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Charles N Bernstein
- Inflammatory Bowel Disease Clinical and Research Centre and Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Maria T Abreu
- Division of Gastroenterology, Crohn's and Colitis Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - John K Marshall
- Department of Medicine, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, Canada
| | - Iwona Wrobel
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - David R Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Kevan Jacobson
- Canadian Gastro-Intestinal Epidemiology Consortium, Toronto, Ontario, Canada; British Columbia Children's Hospital, Vancouver, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alain Bitton
- Division of Gastroenterology and Hepatology, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Guy Aumais
- Department of Medicine, Montreal University, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Remo Panacionne
- Inflammatory Bowel Disease Clinic, Division of Gastroenterology and Hepatology of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Levinus A Dieleman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - A Hillary Steinhart
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, Canada
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, The Hebrew University of Jerusalem, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Anne M Griffiths
- Department of Gastroenterology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Gastroenterology & Hepatology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
84
|
Zhang X, Lau HCH, Ha S, Liu C, Liang C, Lee HW, Ng QWY, Zhao Y, Ji F, Zhou Y, Pan Y, Song Y, Zhang Y, Lo JCY, Cheung AHK, Wu J, Li X, Xu H, Wong CC, Wong VWS, Yu J. Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis. Nat Metab 2025; 7:102-119. [PMID: 39779889 PMCID: PMC11774752 DOI: 10.1038/s42255-024-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of Tm6sf2 (Tm6sf2ΔIEC) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from Tm6sf2ΔIEC mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in Tm6sf2ΔIEC mice co-housed with wild-type mice. Mechanistically, Tm6sf2-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both Tm6sf2ΔIEC and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suki Ha
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanfa Liu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Queena Wing-Yin Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Zhao
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenfen Ji
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Song
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yating Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jennie Ching Yin Lo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxing Li
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chi Chun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
85
|
He B, Xu S, Schooling CM, Leung GM, Ho JWK, Au Yeung SL. Gut microbiome and obesity in late adolescence: A case-control study in "Children of 1997" birth cohort. Ann Epidemiol 2025; 101:58-66. [PMID: 39710013 DOI: 10.1016/j.annepidem.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Although the gut microbiome is important in human health, its relation to adolescent obesity remains unclear. Here we assessed the associations of the gut microbiome with adolescent obesity in a case-control study. METHODS In the "Children of 1997" birth cohort, participants with and without obesity at ∼17.4 years were 1:1 matched on sex, physical activity, parental education and occupation (n = 312). Fecal gut microbiome composition and pathways were assessed via shotgun metagenomic sequencing. The association of microbiota species with obesity was evaluated using conditional logistic regression. We explored the association of the obesity-relevant species with adolescent metabolomics using multivariable linear regression, and causal relationships with type 2 diabetes using Mendelian randomization analysis. RESULTS Gut microbiota in the adolescents with obesity exhibited lower richness (p = 0.031) and evenness (p = 0.014) compared to controls. Beta diversity revealed differences in the microbiome composition in two groups (p = 0.034). Lower relative abundance of Clostridium spiroforme, Clostridium phoceensis and Bacteroides uniformis were associated with higher obesity risk (q<0.15). Lower Bacteroides uniformis was associated with higher branched-chain amino acid, potentially contributing to higher type 2 diabetes risk. CONCLUSION Adolescents with obesity had a distinct gut microbiota profile compared to the controls, possibly linked to metabolic pertubation and related diseases.
Collapse
Affiliation(s)
- Baoting He
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Sheng Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Public Health and Health Policy, City University of New York, New York, USA.
| | - Gabriel M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
86
|
Lalli MK, Salo TE, Hakola L, Knip M, Virtanen SM, Vatanen T. Associations between dietary fibers and gut microbiome composition in the EDIA longitudinal infant cohort. Am J Clin Nutr 2025; 121:83-99. [PMID: 39551356 PMCID: PMC11747200 DOI: 10.1016/j.ajcnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The infant gut microbiome undergoes rapid changes in the first year of life, supporting normal development and long-term health. Although diet shapes this process, the role of fibers in complementary foods on gut microbiome maturation is poorly understood. OBJECTIVES We explored how the transition from human milk to fibers in complementary foods shapes the taxonomic and functional maturation of the gut microbiome within the first year of life. METHODS We assessed the longitudinal and cross-sectional development of infant gut microbiomes (N = 68 infants) and metabolomes (N = 33 infants) using linear mixed models to uncover their associations to dietary fibers and their food sources. Fiber intakes were assessed with 3-d food records (months 3, 6, 9, and 12) relying on CODEX-compliant fiber fraction values, and questionnaires tracked the overall complementary food introduction. Bacterial species were identified and quantified via MetaPhlAn2 from metagenomic data, and metabolomic profiles were obtained using 4 LC-MS methods. RESULTS We identified 176 complementary food fiber-bacterial species associations. First plant-based fibers associated with microbiota compositions similar to breastfeeding, and further associated with aromatic amino acid-derived metabolites, including 5-hydroxyindoleacetic acid (total dietary fiber - complementary foods (g) - β = 3.50, CI: 2.48, 4.52, P = 6.53 × 10-5). Distinct fibers from different food categories showed unique associations with specific bacterial taxa. Key species, such as Faecalibacterium prausnitznii, associated with oat fibers (g/MJ, β = 2.18, confidence interval: 1.36, 2.84, P = 6.12 × 10-6), reflective of maturing microbial communities. Fiber intake during weaning associated with shifts in metabolite profiles, including immunomodulatory metabolites, with fiber effects observed in a source- and timing-dependent manner, implicated in gradual microbiome diversification. CONCLUSIONS Introducing complementary dietary fibers during the weaning period supports gut microbiome diversification and stabilization. Even minor dietary variations shows significant associations with microbial taxa and functions from the onset of weaning, highlighting the importance of infant dietary recommendations that support the gut microbiome maturation during early life. This trial was registered at clinicaltrials.gov as registration number NCT01735123.
Collapse
Affiliation(s)
- Marianne K Lalli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli Ei Salo
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Leena Hakola
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
87
|
Ezzat L, Peter H, Bourquin M, Busi SB, Michoud G, Fodelianakis S, Kohler TJ, Lamy T, Geers A, Pramateftaki P, Baier F, Marasco R, Daffonchio D, Deluigi N, Wilmes P, Styllas M, Schön M, Tolosano M, De Staercke V, Battin TJ. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 2025; 637:622-630. [PMID: 39743584 PMCID: PMC11735386 DOI: 10.1038/s41586-024-08313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
The rapid melting of mountain glaciers and the vanishing of their streams is emblematic of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable ecosystems in which life is dominated by microbial biofilms2,3. However, current knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, we provide a comprehensive survey of bacteria in the benthic microbiome across 152 GFSs draining the Earth's major mountain ranges. We find that the GFS bacterial microbiome is taxonomically and functionally distinct from other cryospheric microbiomes. GFS bacteria are diverse, with more than half being specific to a given mountain range, some unique to single GFSs and a few cosmopolitan and abundant. We show how geographic isolation and environmental selection shape their biogeography, which is characterized by distinct compositional patterns between mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered microdiverse clades resulting from environmental selection, probably promoting functional resilience and contributing to GFS bacterial biodiversity and biogeography. Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study provides a global reference for future climate-change microbiology studies on the vanishing GFS ecosystem.
Collapse
Affiliation(s)
- Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology, Wallingford, UK
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Tyler J Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Aileen Geers
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Florian Baier
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Ramona Marasco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nicola Deluigi
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michail Styllas
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institut de Physique du Globe de Paris, Paris, France
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Vincent De Staercke
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Tom J Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
| |
Collapse
|
88
|
Nishio J, Sato H, Watanabe E, Masuoka H, Aoki K, Kawazoe M, Wakiya R, Yamada S, Muraoka S, Masuoka S, Hayashi T, Mizutani S, Yamada Z, Koshiba K, Irita I, Kanaji M, Furukawa K, Yajima N, Dobashi H, Hirose W, Ishii Y, Suda W, Nanki T. Associations of gut microbiota with disease development, disease activity, and therapeutic effects in patients with systemic lupus erythematosus. Sci Rep 2024; 14:32076. [PMID: 39738678 PMCID: PMC11685445 DOI: 10.1038/s41598-024-83835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Altered gut microbiota is linked to systemic lupus erythematosus (SLE), but its association with disease development, disease activity, and post-intervention changes remains unclear. We compared new-onset SLE (NOSLE, n = 25), SLE in remission (RemSLE, n = 30), and healthy controls (HC, n = 30) cross-sectionally and conducted the first longitudinal analysis of NOSLE patients (n = 22) from pre-intervention to remission over 12 months. Significant β-diversity differences were observed in both NOSLE and RemSLE compared to HC, but not between NOSLE and RemSLE. Only four operational taxonomic units (OTUs) were enriched in NOSLE versus HC. However, 26 OTUs, including butyrate-producing bacteria (BPB), were depleted, and seven (including five BPBs) remained depleted in RemSLE compared to HC. OTUs positively and negatively correlated with disease activity were also identified. Longitudinal analysis revealed a reversal of several OTUs altered at onset and an increase in Streptococci, unrelated to the disease. Significant β-diversity differences were observed in patients with anti-SSA or anti-RNP antibodies and those with complement reduction compared to their counterparts. Our study identified gut microbiota alterations, including BPB depletion, in SLE regardless of onset or remission status, bacteria linked to disease activity, and a reversal of disease-associated bacteria along with the enrichment of Streptococci through intervention.
Collapse
Affiliation(s)
- Junko Nishio
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Immunopathology and Immunoregulation, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroshi Sato
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Eri Watanabe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hiroaki Masuoka
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Risa Wakiya
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture, 761-0793, Japan
| | - Soichi Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Shotaro Masuoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Tomoki Hayashi
- Division of Rheumatology, Department of Medicine, Showa University, 2-14-19 Nishinakanobu, Shinagawa-ku, Tokyo, 142-0054, Japan
| | - Satoshi Mizutani
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Zento Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Keiko Koshiba
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Izumi Irita
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Miwa Kanaji
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Karin Furukawa
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Nobuyuki Yajima
- Division of Rheumatology, Department of Medicine, Showa University, 2-14-19 Nishinakanobu, Shinagawa-ku, Tokyo, 142-0054, Japan
| | - Hiroaki Dobashi
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture, 761-0793, Japan
| | - Wataru Hirose
- Hirose Clinic of Rheumatology, 2-14-7 Midoricho, Tokorozawa City, Saitama, 359-1111, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
89
|
Reigel AM, Easson CG, Fiore CL, Apprill A. Sponge exhalent metabolites influence coral reef picoplankton dynamics. Sci Rep 2024; 14:31394. [PMID: 39733106 PMCID: PMC11682114 DOI: 10.1038/s41598-024-82995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations. We used 16S rRNA gene sequencing and flow cytometry-based cell counts to examine the picoplankton community and metabolomics and other analyses to examine the dissolved metabolite pool. The initial sponge exhalent was enriched in adenosine, inosine, chorismate, humic-like and amino acid-like components, and ammonium. Following 48 h of exposure to sponge exhalent, the picoplankton differed in composition, were reduced in diversity, showed doubled (or higher) growth efficiencies, and harbored increased copiotrophic and denitrifying taxa (Marinomonas, Pontibacterium, Aliiroseovarius) compared to control, reef-water based incubations. Alongside these picoplankton alterations, the sponge treatments, relative to seawater controls, had decreased adenosine, inosine, tryptophan, and ammonium, metabolites that may support the observed higher picoplankton growth efficiencies. Sponge treatments also had a net increase in several monosaccharides and other metabolites including anthranilate, riboflavin, nitrite, and nitrate. Our work demonstrates a link between sponge exhalent-associated metabolites and the picoplankton community, with exhalent water supporting an increased abundance of efficient, copiotrophic taxa that catabolize complex nutrients. The copiotrophic taxa were often different from those observed in previous algae and coral studies. These results have implications for better understanding the multifaceted role of sponges on picoplankton biomass with subsequent potential impacts to coral and other planktonic feeders in oligotrophic reef environments.
Collapse
Affiliation(s)
- Alicia M Reigel
- Department of Biology, Appalachian State University, Boone, USA.
- Biology Department, Washington and Lee University, Lexington, VA, 24450, USA.
| | - Cole G Easson
- Department of Biology, Middle Tennessee State University, Murfreesboro, USA
| | - Cara L Fiore
- Department of Biology, Appalachian State University, Boone, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA
| |
Collapse
|
90
|
Bao Z, Yang Z, Sun R, Chen G, Meng R, Wu W, Li MD. Predicting host health status through an integrated machine learning framework: insights from healthy gut microbiome aging trajectory. Sci Rep 2024; 14:31143. [PMID: 39732755 DOI: 10.1038/s41598-024-82418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The gut microbiome, recognized as a critical component in the development of chronic diseases and aging processes, constitutes a promising approach for predicting host health status. Previous research has underscored the potential of microbiome-based predictions, and the rapid advancements of machine learning techniques have introduced new opportunities for exploiting microbiome data. To predict various host nonhealthy conditions, this study proposed an integrated machine learning-based estimation pipeline of Gut Age Index (GAI) by establishing a health aging baseline with the gut microbiome data from healthy individuals. We assessed the performance of GAI pipeline on two extensive cohorts - the Guangdong Gut Microbiome Project (GGMP) and the American Gut Project (AGP). In the GGMP cohort, for 20 common chronic diseases such as metabolic syndrome, obesity, and cardiovascular diseases, the proposed GAI achieved a balanced accuracy, ranging from 66 to 75%, with the prediction performance for atherosclerosis being the highest. In the AGP cohort, the balanced accuracy of GAI ranged from 58 to 72% for 10 diseases. Based on the results from these two datasets, we conclude that our proposed approach in this study can be used to predict individual health status, which offers the potential for scalable, cost-effective, and personalized health insights.
Collapse
Affiliation(s)
- Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruixiang Sun
- The Maiyata Research Institute For Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiling Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
- Guangdong Provincial Institute of Public Health, Guangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
91
|
Bisker C, Taylor G, Carney H, Orr CH, Javan GT, Ralebitso-Senior TK. Comparative soil bacterial metabarcoding after aboveground vs. subsurface decomposition of Mus musculus. Sci Rep 2024; 14:31179. [PMID: 39732855 DOI: 10.1038/s41598-024-82437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.0002), Edaphobaculum (p = 0.0004) and Lacibacter (p = 0.0034) recorded significant shifts relative to sampling time. Furthermore, Massilia (p = 0.0005), Mycobacterium (p = 0.0006) and Sandaracinus (p = 0.0007) increased in abundance for the aboveground mice treatments. This was confirmed with ANOSIM where p = 0.0082 showed statistically significant difference between the aboveground and subsurface deposition. TBS and physicochemical analyses suggested that nutrient release into the soils occurred during active decay and skin rapture on days 7-13 in the subsurface and days 13-20 aboveground, with a particular increase in soil potassium concentration on day 15. Significant differences in soil temperatures resulted between A and S vs. C microcosms, aligning with atmospheric temperature changes. In summary, complementary application of metabarcoding, total body score, exogenous and physicochemical methods for postmortem interval estimation and clandestine grave location highlighted the feasibility of using temperature records downloaded from meteorological stations and portable X-ray fluorescence as indicators for various phases of decomposition.
Collapse
Affiliation(s)
- Chawki Bisker
- National Institute of Criminalistics and Criminology, Bouchaoui, Algiers, Algeria
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Gillian Taylor
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| | - Helen Carney
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| | - Caroline H Orr
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| | - Gulnaz T Javan
- Department of Physical Sciences and Forensic Science Programs, Alabama State University, Montgomery, AL, USA
| | - Theresia Komang Ralebitso-Senior
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
92
|
Kim CY, Park DJ, Ahn BC, Baek S, Hong MH, Nguyen LT, Hwang SH, Kim N, Podlesny D, Orakov A, Schudoma C, Robbani SM, Shim HS, Yoon HI, Lee CY, Park SY, Yong D, Han M, Bork P, Kim BC, Ha SJ, Kim HR, Lee I. A conserved pilin from uncultured gut bacterial clade TANB77 enhances cancer immunotherapy. Nat Commun 2024; 15:10726. [PMID: 39730328 DOI: 10.1038/s41467-024-55388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Immune checkpoint blockade (ICB) has become a standard anti-cancer treatment, offering durable clinical benefits. However, the limited response rate of ICB necessitates biomarkers to predict and modulate the efficacy of the therapy. The gut microbiome's influence on ICB efficacy is of particular interest due to its modifiability through various interventions. However, gut microbiome biomarkers for ICB response have been inconsistent across different studies. Here, we identify TANB77, an uncultured and distinct bacterial clade, as the most consistent responder-enriched taxon through meta-analysis of ten independent ICB recipient cohorts. Traditional taxonomy fails to distinguish TANB77 from unrelated taxa, leading to its oversight. Mice with higher gut TANB77 abundance, either naturally or through transplantation, show improved response to anti-PD-1 therapy. Additionally, mice injected with TANB77-derived pilin-like protein exhibit improved anti-PD-1 therapy response, providing in vivo evidence for the beneficial role of the pilin-like protein. These findings suggest that pilins from the TANB77 order may enhance responses to ICB therapy across diverse cohorts of cancer patients.
Collapse
Affiliation(s)
- Chan Yeong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Dong Jin Park
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beung Chul Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Lung Cancer, Division of Hematology and Oncology, Department of Internal Medicine, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Linh Thanh Nguyen
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sun Ha Hwang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Daniel Podlesny
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Christian Schudoma
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Shahriyar Mahdi Robbani
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mina Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Peer Bork
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Sang-Jun Ha
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
93
|
Won S, Jeong Y, Kim JE, Kim JH, Song HS, Bae HH, Kwak MS, Kim DK, Sung MH, Kwak S. Evaluation of the Safety and Impact of Heat-Treated Lactiplantibacillus plantarum KM2 Fermentation on Gut Microbiome Architecture. J Microbiol Biotechnol 2024; 35:e2411069. [PMID: 39757420 PMCID: PMC11813362 DOI: 10.4014/jmb.2411.11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Postbiotics, bioactive compounds from the fermentation process by probiotics, are gaining attention for their potential health benefits as safer alternatives to live probiotic microbes. Lactiplantibacillus plantarum is a well-studied probiotic species known for promoting gut health and immune modulation. However, the safety and effects of its postbiotic formulations on the gut microbiome structure remain less explored. This study presents a randomized, double-blind, placebo-controlled human study of KLP-KM2, a postbiotic consisting of heat-treated L. plantarum KM2 fermentation complex, in elderly participants. Over 12 weeks, KLP-KM2 consumption did not result in noticeable adverse reaction cases compared to the placebo. Nevertheless, the gut microbial diversity and taxonomic architecture of the KLP-KM2 recipients were differentiated from those of the placebo recipients after 12 weeks. A notable outcome was the increase in the number of subjects carrying Veillonella spp., which contributed to the distinct gut microbiome profiles observed between the two groups. Interestingly, KLP-KM2 facilitated the de novo colonization of Veillonella spp. in subjects who had not harbored these bacteria at the baseline. These results suggest the potential of KLP-KM2 as a safe and effective postbiotic intervention to enhance energy metabolism and mobility in older adults.
Collapse
Affiliation(s)
- Seok Won
- Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Yejin Jeong
- Microbiome Technology Research Institute, Kookmin Bio, Seoul 02826, Republic of Korea
| | - Ji-Eun Kim
- Microbiome Technology Research Institute, Kookmin Bio, Seoul 02826, Republic of Korea
| | - Jong-Hoon Kim
- Microbiome Technology Research Institute, Kookmin Bio, Seoul 02826, Republic of Korea
| | - Hyun Soo Song
- Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyun-Hwa Bae
- Department of Physical Medicine and Rehabilitation, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea
| | - Mi-Sun Kwak
- Microbiome Technology Research Institute, Kookmin Bio, Seoul 02826, Republic of Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea
| | - Moon-Hee Sung
- Microbiome Technology Research Institute, Kookmin Bio, Seoul 02826, Republic of Korea
| | - Suryang Kwak
- Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
94
|
Alhasani AT, Modasia AA, Anodiyil M, Corsetti M, Aliyu AI, Crooks C, Marciani L, Reid J, Yakubov GE, Taylor M, Avery A, Harris H, Warren FJ, Spiller RC. Mode of Action of Psyllium in Reducing Gas Production from Inulin and its Interaction with Colonic Microbiota: A 24-hour, Randomized, Placebo-Controlled Trial in Healthy Human Volunteers. J Nutr 2024:S0022-3166(24)01244-6. [PMID: 39732438 DOI: 10.1016/j.tjnut.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Recent studies show that the increase in breath hydrogen (BH2) and symptoms after ingestion of inulin are reduced by coadministering psyllium (PI). OBJECTIVES To determine if slowing delivery of inulin to the colon by administering it in divided doses would mimic the effect of PI. Primary endpoint was the BH2 area under the curve AUC0-24 h. Secondary endpoints included BH2 AUC0-6 h, 6-12 h, and 12-24 h. Exploratory endpoints included the correlation of BH2 AUC0-24 h with dietary fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) intake and in vitro fermentation results. METHODS A total of 17 healthy adults were randomly assigned to a single-blind, 3-arm, crossover trial. All consumed 20 g inulin (I) powder dissolved in 500 mL water and mixed with either 20 g maltodextrin (control) or 20 g PI consumed as a single dose or 20 g inulin given in divided doses (DDI), 62.5 mL every 45 min over 6 h. Twenty-four-hour BH2, dietary FODMAP intake, stool microbiota, and gas production in vitro were measured. Responders were defined as those whose AUC0-24 h BH2 was reduced by PI, whereas nonresponders showed no reduction. RESULTS Compared with control, PI did not reduce mean BH2 AUC0-24 h, whereas DDI increased it, P < 0.0002. DDI and PI both significantly reduced BH2 AUC0-6 h compared with the control, P < 0.0001. However, subsequently, DDI significantly increased BH2 from 6 to 12 h (P < 0.0001) and overnight (12-24 h) (P < 0.0001), whereas PI did so only overnight (P = 0.0002). Nonresponders showed greater release of arabinose during in vitro fermentation and higher abundance of 2 species, Clostridium spp. AM22_11AC and Phocaeicola dorei, which also correlated with BH2 production on PI. Dietary FODMAP intake tended to correlate inversely with BH2 AUC0-24 h (r = -0.42, P = 0.09) and correlated with microbiome community composition. CONCLUSIONS DDI, like PI, reduces early BH2 production. PI acts by delaying transit to the colon but not reducing colonic fermentation over 24 h. Dietary FODMAP intake correlates with BH2 response to inulin and the microbiome. This trial was registered at www. CLINICALTRIALS gov as NCT05619341.
Collapse
Affiliation(s)
- Alaa T Alhasani
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Faculty of Health and Rehabilitation Sciences, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Amisha A Modasia
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Mohamed Anodiyil
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Maura Corsetti
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Abdulsalam I Aliyu
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Colin Crooks
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Luca Marciani
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Joshua Reid
- Food and Biomaterials Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Gleb E Yakubov
- Food and Biomaterials Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Moira Taylor
- Faculty of Medicine & Health Sciences, University of Nottingham Medical School Queen's Medical Centre, Nottingham, UK
| | - Amanda Avery
- Food and Biomaterials Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Hannah Harris
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Frederick J Warren
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Robin C Spiller
- Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
95
|
Huang KD, Müller M, Sivapornnukul P, Bielecka AA, Amend L, Tawk C, Lesker TR, Hahn A, Strowig T. Dietary selective effects manifest in the human gut microbiota from species composition to strain genetic makeup. Cell Rep 2024; 43:115067. [PMID: 39673707 DOI: 10.1016/j.celrep.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Diet significantly influences the human gut microbiota, a key player in health. We analyzed shotgun metagenomic sequencing data from healthy individuals with long-term dietary patterns-vegan, flexitarian, or omnivore-and included detailed dietary surveys and blood biomarkers. Dietary patterns notably affected the bacterial community composition by altering the relative abundances of certain species but had a minimal impact on microbial functional repertoires. However, diet influenced microbial functionality at the strain level, with diet type linked to strain genetic variations. We also found molecular signatures of selective pressure in species enriched by specific diets. Notably, species enriched in omnivores exhibited stronger positive selection, such as multiple iron-regulating genes in the meat-favoring bacterium Odoribacter splanchnicus, an effect that was also validated in independent cohorts. Our findings offer insights into how diet shapes species and genetic diversity in the human gut microbiota.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mattea Müller
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Pavaret Sivapornnukul
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Hahn
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School (MHH), Hannover, Germany; Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
96
|
Ruff SE, de Angelis IH, Mullis M, Payet JP, Magnabosco C, Lloyd KG, Sheik CS, Steen AD, Shipunova A, Morozov A, Reese BK, Bradley JA, Lemonnier C, Schrenk MO, Joye SB, Huber JA, Probst AJ, Morrison HG, Sogin ML, Ladau J, Colwell F. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. SCIENCE ADVANCES 2024; 10:eadq0645. [PMID: 39693444 DOI: 10.1126/sciadv.adq0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Subsurface environments are among Earth's largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth's subsurface and surface environments.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | | - Brandi Kiel Reese
- University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Laboratory, Dauphin Island, AL, USA
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille, France
- Queen Mary University of London, London, UK
| | - Clarisse Lemonnier
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI. USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | | | - Joshua Ladau
- Department of Computational Precision Health, University of California, San Francisco, CA, USA
- Arva Intelligence, Houston, TX, USA
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
97
|
Jang J, Park J, Hwang CY, Gim Y, Park KT, Yoon YJ, Seo M, Lee BY. Selective transmission of airborne bacterial communities from the ocean to the atmosphere over the Northern Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177462. [PMID: 39528211 DOI: 10.1016/j.scitotenv.2024.177462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
This study simultaneously measured the taxonomic diversity of bacterial communities in both seawater and PM2.5 aerosol samples collected from the Northern Pacific Ocean during a cruise covering 7724 km between 37°N 126°E and 58°N 179°E. The relative abundance of Proteobacteria, Cyanobacteria, and Firmicutes were found to be more prevalent in aerosol samples (39 ± 16 %, 5.1 ± 1.9 %, and 3.2 ± 1.7 %, respectively) than in seawater samples (26 ± 9 %, 3.8 ± 1.7 %, and 0.02 ± 0.09 %, respectively). The preferential aerosolization of bacterial communities such as Proteobacteria and Firmicutes was likely to be accompanied by a terrestrial origin and high hydrophobicity. Cyanobacteria could undergo increased aerosolization, possibly because of their smaller size in the significantly higher salinity open ocean (32.8 ± 0.14 PSU) compared to those in lower salinity coastal areas (31.3 ± 1.4 PSU). The results of this study indicated that bacterial properties substantially affect their transfer from the ocean to the atmosphere, possibly influencing climate change and public health.
Collapse
Affiliation(s)
- Jiyi Jang
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Jiyeon Park
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea.
| | - Chung Yeon Hwang
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
| | - Yeontae Gim
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Ki-Tae Park
- Department of Environmental Sciences and Biotechnology, Hallym University, Gangwon-do 24252, South Korea
| | - Young Jun Yoon
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Minju Seo
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea; University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Bang Yong Lee
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| |
Collapse
|
98
|
Byrne A, Diener C, Brown BP, Maust BS, Feng C, Alinde BL, Gibbons SM, Koch M, Gray CM, Jaspan HB, Nyangahu DD. Neonates exposed to HIV but uninfected exhibit an altered gut microbiota and inflammation associated with impaired breast milk antibody function. MICROBIOME 2024; 12:261. [PMID: 39707483 PMCID: PMC11662858 DOI: 10.1186/s40168-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma. Further, we tested whether HIV exposure impacts antibody-microbiota binding in neonatal gut and whether antibodies in breast milk impact the growth of commensal bacteria. RESULTS Neonates exposed to HIV but uninfected (nHEU) exhibited altered gut bacteriome and virome compared to unexposed neonates (nHU). In addition, HIV exposure differentially impacted IgA-microbiota binding in neonates. The relative abundance of Blautia spp. in the whole stool or IgA-bound microbiota was positively associated with plasma concentrations of C-reactive protein. Finally, IgA from the breast milk of mothers living with HIV displayed a significantly lower ability to inhibit the growth of Blautia coccoides which was associated with inflammation in nHEU. CONCLUSION nHEU exhibits profound alterations in gut bacterial microbiota with a mild impact on the enteric DNA virome. Elevated inflammation in nHEU could be due to a lower capacity of breast milk IgA from mothers living with HIV to limit growth the of gut bacteria associated with inflammation. Video Abstract.
Collapse
Affiliation(s)
- Audrey Byrne
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Christian Diener
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bryan P Brown
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Colin Feng
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Berenice L Alinde
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Sean M Gibbons
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
| | - Clive M Gray
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Heather B Jaspan
- Seattle Children's Research Institute, Seattle, WA, USA
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pharmacology, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Center for Advanced Biotechnology and Medicine, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Department of Human Pathology, Egerton University, Nakuru, Kenya.
| |
Collapse
|
99
|
Nowotny HF, Zheng T, Seiter TM, Ju J, Schneider H, Kroiss M, Sarkis AL, Sturm L, Britz V, Lechner A, Potzel AL, Kunz S, Bidlingmaier M, Neuhaus K, Gottschlich A, Kobold S, Reisch N, Schirmer M, Reincke M, Adolf C. Sex-dependent modulation of T and NK cells and gut microbiome by low sodium diet in patients with primary aldosteronism. Front Immunol 2024; 15:1428054. [PMID: 39749333 PMCID: PMC11693743 DOI: 10.3389/fimmu.2024.1428054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Background High dietary sodium intake is a major cardiovascular risk factor and adversely affects blood pressure control. Patients with primary aldosteronism (PA) are at increased cardiovascular risk, even after medical treatment, and high dietary sodium intake is common in these patients. Here, we analyze the impact of a moderate dietary sodium restriction on microbiome composition and immunophenotype in patients with PA. Methods Prospective two-stage clinical trial including two subgroups: 15 treatment-naive PA patients compared to matched normotensive controls; and 31 PA patients on mineralocorticoid receptor antagonist treatment before and three months after sodium restriction. Patients underwent blood pressure measurements, laboratory tests, analysis of peripheral blood mononuclear cells via flow cytometry and microbiome analysis. Results We observed a higher percentage of Tregs in treatment-naive PA patients (p = 0.0303), while the abundance of Bacteroides uniformis was higher in PA patients compared to normotensive controls (p = 0.00027) and the abundance of Lactobacillus species however was higher in the subgroup of normotensive controls (p = 0.0290). Sodium restriction was accompanied by a decrease in pro-inflammatory Tc17 cells in male patients (p = 0.0081, females p = 0.3274). Bacteroides uniformis abundance was higher in female patients (0.01230, p = 0.0016) and decreased upon sodium restriction (0.002309, p = 0.0068). Conclusion Dietary sodium restriction in patients with PA modulates the peripheral immune cell composition toward a less inflammatory phenotype. This suggests a potential mechanism by which sodium reduction modulates immune cell composition, leading to blood pressure reduction and positively impacting cardiovascular risk.
Collapse
Affiliation(s)
- Hanna F. Nowotny
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tingting Zheng
- Chair of Translational Microbiome Data Integration, Technical University of Munich, Freising, Germany
| | | | - Jing Ju
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Holger Schneider
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna-Lina Sarkis
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Sturm
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vera Britz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Lechner
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anne L. Potzel
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Physicians Association for Nutrition e.V, Munich, Germany
- CCG Type 2 Diabetes, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Kunz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Bidlingmaier
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Melanie Schirmer
- Chair of Translational Microbiome Data Integration, Technical University of Munich, Freising, Germany
| | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Adolf
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
100
|
Galic I, Bez C, Bertani I, Venturi V, Stankovic N. Herbicide-treated soil as a reservoir of beneficial bacteria: microbiome analysis and PGP bioinoculants in maize. ENVIRONMENTAL MICROBIOME 2024; 19:107. [PMID: 39695885 DOI: 10.1186/s40793-024-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices. RESULTS A bacterial community analysis explored the effects of long-term S-metolachlor application on soil bacterial diversity, revealing that the herbicide's impact on microbial communities is less significant than the effects of temporal factors (summer vs. winter) or agricultural practices (continuous maize cultivation vs. maize-winter wheat rotation). Although S-metolachlor did not markedly alter the overall bacteriome structure in our environmental context, the application of enrichment techniques enabled the selection of genera such as Pseudomonas, Serratia, and Brucella, which were rare in metagenome analysis of soil samples. Strain isolation revealed a rich source of herbicide-tolerant PGP bacteria within the culturable microbiome fraction, termed the high herbicide concentration tolerant (HHCT) bacterial culture collection. Within the HHCT collection, we isolated 120 strains that demonstrated significant in vitro PGP and biocontrol potential, and soil quality improvement abilities. The most promising HHCT isolates were combined into three consortia, each exhibiting a comprehensive range of plant-beneficial traits. We evaluated the efficacy and persistence of these multi-strain consortia during 4-week in pot experiments on maize using both agronomic parameters and 16S rRNA gene community analysis assessing early-stage plant development, root colonization, and rhizosphere persistence. Notably, 7 out of 10 inoculated consortia partners successfully established themselves and persisted in the maize root microbiome without significantly altering host root biodiversity. Our results further evidenced that all three consortia positively impacted both seed germination and early-stage plant development, increasing shoot biomass by up to 47%. CONCLUSIONS Herbicide-treated soil bacterial community analysis revealed that integrative agricultural practices can suppress the effects of continuous S-metolachlor application on soil microbial diversity and stabilize microbiome fluctuations. The HHCT bacterial collection holds promise as a source of beneficial bacteria that promote plant fitness while maintaining herbicide tolerance.
Collapse
Affiliation(s)
- Ivana Galic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.
| |
Collapse
|