51
|
Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017; 14:22-35. [PMID: 27264686 PMCID: PMC5214938 DOI: 10.1038/cmi.2016.25] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past decades the notion of 'inflammation' has been extended beyond the original hallmarks of rubor (redness), calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory responses and how these key mediators of inflammation counter-regulate each other.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo Yan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
52
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
53
|
Kovarik P, Castiglia V, Ivin M, Ebner F. Type I Interferons in Bacterial Infections: A Balancing Act. Front Immunol 2016; 7:652. [PMID: 28082986 PMCID: PMC5183637 DOI: 10.3389/fimmu.2016.00652] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 01/21/2023] Open
Abstract
Defense against bacterial infections requires activation of the immune response as well as timely reestablishment of tissue and immune homeostasis. Instauration of homeostasis is critical for tissue regeneration, wound healing, and host recovery. Recent studies revealed that severe infectious diseases frequently result from failures in homeostatic processes rather than from inefficient pathogen eradication. Type I interferons (IFN) appear to play a key role in such processes. Remarkably, the involvement of type I IFNs in the regulation of immune and tissue homeostasis upon bacterial insult may have beneficial or detrimental consequences for the host. The reasons for such ambivalent function of type I IFNs are not understood. The disparate effects of type I IFNs on bacterial infections are in marked contrast to their well-established protective roles in most viral infections. In this review, we will focus on type I IFN effector mechanisms which balance processes involved in immune and tissue homeostasis during specific bacterial infections and highlight the most important missing links in our understanding of type I IFN functions.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Masa Ivin
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
54
|
Gamradt P, Xu Y, Gratz N, Duncan K, Kobzik L, Högler S, Kovarik P, Decker T, Jamieson AM. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes. PLoS Pathog 2016; 12:e1006032. [PMID: 27973535 PMCID: PMC5156374 DOI: 10.1371/journal.ppat.1006032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.
Collapse
Affiliation(s)
- Pia Gamradt
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Yun Xu
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kellyanne Duncan
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Sandra Högler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Amanda M. Jamieson
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
55
|
Type I Interferon Keeps IL-1β in Check. Cell Host Microbe 2016; 19:272-4. [PMID: 26962937 DOI: 10.1016/j.chom.2016.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type I interferons have diametric roles in the host defense against pathogens. In this issue of Cell Host & Microbe, Castiglia et al. (2016) demonstrate that type I interferons produced during Streptococcus pyogenes infection are required to prevent inflammation-associated tissue damage and host lethality driven by the pro-inflammatory cytokine IL-1β.
Collapse
|
56
|
Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiol Mol Biol Rev 2016; 80:891-903. [PMID: 27512100 DOI: 10.1128/mmbr.00028-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.
Collapse
|
57
|
Andrade WA, Agarwal S, Mo S, Shaffer SA, Dillard JP, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Golenbock DT. Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Rep 2016; 15:2438-48. [PMID: 27264171 PMCID: PMC5401638 DOI: 10.1016/j.celrep.2016.05.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytosol binds and activates the enzyme cyclic-GMP-AMP synthase (cGAS), which produces 2'3'-cGAMP and triggers STING/TBK-1/IRF3 activation, resulting in type I IFN expression. Here, we reveal a cytosolic response to GC DNA that also contributes to type I IFN induction. We demonstrate that complete IFN-β induction by live GC depends on both cGAS and TLR4. Type I IFN is detrimental to the host, and dysregulation of iron homeostasis genes may explain lower bacteria survival in cGAS(-/-) and TLR4(-/-) cells. Collectively, these observations reveal cooperation between TLRs and cGAS in immunity to GC infection.
Collapse
Affiliation(s)
- Warrison A Andrade
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarika Agarwal
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shunyan Mo
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tobias Schmidt
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, Universitätsklinikum Bonn, Bonn 53127, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Evelyn A Kurt-Jones
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil.
| |
Collapse
|
58
|
Abstract
Type I interferons (IFNs) are pleiotropic cytokines well recognized for their role in the induction of a potent antiviral gene program essential for host defense against viruses. They also modulate innate and adaptive immune responses. However, the role of type I IFNs in host defense against bacterial infections is enigmatic. Depending on the bacterium, they exert seemingly opposite and capricious functions. In this review, we summarize the effect of type I IFNs on specific bacterial infections and highlight the effector mechanisms regulated by type I IFNs in an attempt to elucidate new avenues to understanding their role.
Collapse
Affiliation(s)
- Gayle M Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
59
|
Brown KA, Brown GA, Lewis SM, Beale R, Treacher DF. Targeting cytokines as a treatment for patients with sepsis: A lost cause or a strategy still worthy of pursuit? Int Immunopharmacol 2016; 36:291-299. [PMID: 27208433 DOI: 10.1016/j.intimp.2016.04.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
Despite often knowing the aetiology of sepsis and its clinical course there has not been the anticipated advances in treatment strategies. Cytokines are influential mediators of immune/inflammatory reactions and in patients with sepsis high circulating levels are implicated in the onset and perpetuation of organ failure. Antagonising the activities of pro-inflammatory cytokines enhances survival in animal models of sepsis but, so far, such a therapeutic strategy has not improved patient outcome. This article addresses the questions of why encouraging laboratory findings have failed to be translated into successful treatments of critically ill patients and whether modifying cytokine activity still remains a promising avenue for therapeutic advance in severe sepsis. In pursuing this task we have selected reports that we believe provide an incisive, critical and balanced view of the topic.
Collapse
Affiliation(s)
- K Alun Brown
- Intensive Care Unit, Guy's and St.Thomas' Hospitals, London, UK; Division of Asthma Allergy and Lung Biology, King's College London, UK.
| | | | - Sion M Lewis
- Intensive Care Unit, Guy's and St.Thomas' Hospitals, London, UK; Division of Asthma Allergy and Lung Biology, King's College London, UK
| | - Richard Beale
- Intensive Care Unit, Guy's and St.Thomas' Hospitals, London, UK; Division of Asthma Allergy and Lung Biology, King's College London, UK
| | - David F Treacher
- Intensive Care Unit, Guy's and St.Thomas' Hospitals, London, UK; Division of Asthma Allergy and Lung Biology, King's College London, UK
| |
Collapse
|
60
|
Uchiyama S, Keller N, Schlaepfer E, Grube C, Schuepbach RA, Speck RF, Zinkernagel AS. Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia. J Infect Dis 2016; 214:321-8. [PMID: 27338768 DOI: 10.1093/infdis/jiw157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. METHODS To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. RESULTS We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. CONCLUSIONS These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α.
Collapse
Affiliation(s)
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Reto A Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Switzerland
| | | | | |
Collapse
|
61
|
Castiglia V, Piersigilli A, Ebner F, Janos M, Goldmann O, Damböck U, Kröger A, Weiss S, Knapp S, Jamieson AM, Kirschning C, Kalinke U, Strobl B, Müller M, Stoiber D, Lienenklaus S, Kovarik P. Type I Interferon Signaling Prevents IL-1β-Driven Lethal Systemic Hyperinflammation during Invasive Bacterial Infection of Soft Tissue. Cell Host Microbe 2016; 19:375-87. [PMID: 26962946 DOI: 10.1016/j.chom.2016.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFN-Is) are fundamental for antiviral immunity, but their role in bacterial infections is contradictory and incompletely described. Streptococcus pyogenes activates IFN-I production in innate immune cells, and IFN-I receptor 1 (Ifnar1)-deficient mice are highly susceptible to S. pyogenes infection. Here we report that IFN-I signaling protects the host against invasive S. pyogenes infection by restricting inflammation-driven damage in distant tissues. Lethality following infection in Ifnar1-deficient mice is caused by systemically exacerbated levels of the proinflammatory cytokine IL-1β. Critical cellular effectors of IFN-I in vivo are LysM+ and CD11c+ myeloid cells, which exhibit suppression of Il1b transcription upon Ifnar1 engagement. These cells are also the major source of IFN-β, which is significantly induced by S. pyogenes 23S rRNA in an Irf5-dependent manner. Our study establishes IL-1β and IFN-I levels as key homeostatic variables of protective, yet tuned, immune responses against severe invasive bacterial infection.
Collapse
Affiliation(s)
- Virginia Castiglia
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Alessandra Piersigilli
- Institute of Animal Pathology (COMPATH), University of Bern, 3012 Bern, Switzerland; Life Science Faculty, EPFL, 1015 Lausanne, Switzerland
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Marton Janos
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Ursula Damböck
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University, 39106 Magdeburg, Germany; Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sigfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Amanda M Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Carsten Kirschning
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
62
|
Toll-Like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells. mBio 2016; 7:e00168-16. [PMID: 26956584 PMCID: PMC4810485 DOI: 10.1128/mbio.00168-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A functional immune response is crucial to prevent and limit infections with Streptococcus pneumoniae. Dendritic cells (DCs) play a central role in orchestrating the adaptive and innate immune responses by communicating with other cell types via antigen presentation and secretion of cytokines. In this study, we set out to understand how pneumococci activate human monocyte-derived DCs to produce interleukin-12 (IL-12) p70, an important cytokine during pneumococcal infections. We show that IL-12p70 production requires uptake of bacteria as well as the presence of the adaptor molecule TRIF, which is known to transfer signals of Toll-like receptor 3 (TLR3) or TLR4 from the endosome into the cell. While TLR4 is redundant for IL-12p70 production in DCs, we found that TLR3 is required to induce full IL-12p70 secretion. Influenza A virus (IAV) infection of DCs did not induce IL-12p70 but markedly upregulated TLR3 expression that during coinfection with S. pneumoniae significantly enhanced IL-12p70 secretion. Finally, we show that pneumococcal RNA can act as a bacterial stimulus for TLR3 and that it is a key signal to induce IL-12p70 production during challenge of DCs with pneumococci. Streptococcus pneumoniae, a common colonizer of the nose, is the causative agent of severe and deadly diseases. A well-orchestrated immune response is vital to prevent and limit these diseases. Dendritic cells (DCs) reside in the mucosal linings of the lungs and sample antigens. They are activated by pathogens to present antigens and secrete cytokines. While many studies focus on murine models, we focused our work on human monocyte-derived DCs. We found that pneumococcal RNA is an important stimulus in DCs to activate the endosomal receptor TLR3, a receptor previously not identified to sense pneumococci, and its adaptor molecule TRIF. This leads to secretion of the cytokine interleukin-12 (IL-12). Severe pneumococcal pneumonia occurs closely after influenza A virus (IAV) infection. We show that IAV infection upregulates TLR3 in DCs, which sensitizes the cells to endosomal pneumococcal RNA. This new insight contributes to unlock the interplay between pneumococci, IAV, and humans.
Collapse
|
63
|
Abstract
Salmonella enterica is an intracellular pathogen that causes diseases ranging from gastroenteritis to typhoid fever. Salmonella bacteria trigger an autophagic response in host cells upon infection but have evolved mechanisms for suppressing this response, thereby enhancing intracellular survival. We recently reported that S. enterica serovar Typhimurium actively recruits the host tyrosine kinase focal adhesion kinase (FAK) to the surface of the Salmonella-containing vacuole (SCV) (K. A. Owen et al., PLoS Pathog 10:e1004159, 2014). FAK then suppresses autophagy through activation of the Akt/mTORC1 signaling pathway. In FAK−/− macrophages, bacteria are captured in autophagosomes and intracellular survival is attenuated. Here we show that the cell-autonomous bacterial suppression of autophagy also suppresses the broader innate immune response by inhibiting production of beta interferon (IFN-β). Induction of bacterial autophagy (xenophagy), but not autophagy alone, triggers IFN-β production through a pathway involving the adapter TRIF and endosomal Toll-like receptor 3 (TLR3) and TLR4. Selective FAK knockout in macrophages resulted in rapid bacterial clearance from mucosal tissues after oral infection. Clearance correlated with increased IFN-β production by intestinal macrophages and with IFN-β-dependent induction of IFN-γ by intestinal NK cells. Blockade of either IFN-β or IFN-γ increased host susceptibility to infection, whereas experimental induction of IFN-β was protective. Thus, bacterial suppression of autophagy not only enhances cell-autonomous survival but also suppresses more-systemic innate immune responses by limiting type I and type II interferons. Salmonella enterica serovar Typhimurium represents one of the most commonly identified bacterial causes of foodborne illness worldwide. S. Typhimurium has developed numerous strategies to evade detection by the host immune system. Autophagy is a cellular process that involves the recognition and degradation of defective proteins and organelles. More recently, autophagy has been described as an important means by which host cells recognize and eliminate invading intracellular pathogens and plays a key role in the production of cytokines. Previously, we determined that Salmonella bacteria are able to suppress their own autophagic capture and elimination by macrophages. Building on that study, we show here that the inhibition of autophagy by Salmonella also prevents the induction of a protective cytokine response mediated by beta interferon (IFN-β) and IFN-γ. Together, these findings identify a novel virulence strategy whereby Salmonella bacteria prevent cell autonomous elimination via autophagy and suppress the activation of innate immune responses.
Collapse
|
64
|
Lund LD, Ingmer H, Frøkiær H. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells. PLoS One 2016; 11:e0149092. [PMID: 26872029 PMCID: PMC4752283 DOI: 10.1371/journal.pone.0149092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/27/2016] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.
Collapse
Affiliation(s)
- Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
65
|
LaRock CN, Nizet V. Inflammasome/IL-1β Responses to Streptococcal Pathogens. Front Immunol 2015; 6:518. [PMID: 26500655 PMCID: PMC4597127 DOI: 10.3389/fimmu.2015.00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA ; Skaggs School of Medicine and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
66
|
Eigenbrod T, Dalpke AH. Bacterial RNA: An Underestimated Stimulus for Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:411-8. [DOI: 10.4049/jimmunol.1500530] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
67
|
Eigenbrod T, Pelka K, Latz E, Kreikemeyer B, Dalpke AH. TLR8 Senses Bacterial RNA in Human Monocytes and Plays a Nonredundant Role for Recognition ofStreptococcus pyogenes. THE JOURNAL OF IMMUNOLOGY 2015; 195:1092-9. [DOI: 10.4049/jimmunol.1403173] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/20/2015] [Indexed: 12/25/2022]
|
68
|
Bergstrøm B, Aune MH, Awuh JA, Kojen JF, Blix KJ, Ryan L, Flo TH, Mollnes TE, Espevik T, Stenvik J. TLR8 Senses Staphylococcus aureus RNA in Human Primary Monocytes and Macrophages and Induces IFN-β Production via a TAK1–IKKβ–IRF5 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:1100-11. [DOI: 10.4049/jimmunol.1403176] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
|
69
|
Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, Shiloh MU. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe 2015; 17:820-8. [PMID: 26048137 DOI: 10.1016/j.chom.2015.05.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.
Collapse
Affiliation(s)
- Angela C Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Haocheng Cai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Luis H Franco
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Xiao-Dong Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Caitlyn R Scharn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Beth Levine
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA.
| |
Collapse
|
70
|
Fieber C, Janos M, Koestler T, Gratz N, Li XD, Castiglia V, Aberle M, Sauert M, Wegner M, Alexopoulou L, Kirschning CJ, Chen ZJ, von Haeseler A, Kovarik P. Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One 2015; 10:e0119727. [PMID: 25756897 PMCID: PMC4355416 DOI: 10.1371/journal.pone.0119727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.
Collapse
Affiliation(s)
- Christina Fieber
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Marton Janos
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Tina Koestler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Xiao-Dong Li
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | - Marion Aberle
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Martina Sauert
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mareike Wegner
- Universitätsklinikum Freiburg, Universitäts-Hautklinik, Freiburg, Germany
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, Marseille, France
| | | | - Zhijian J. Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
71
|
Latvala S, Mäkelä SM, Miettinen M, Charpentier E, Julkunen I. Dynamin inhibition interferes with inflammasome activation and cytokine gene expression in Streptococcus pyogenes-infected human macrophages. Clin Exp Immunol 2014; 178:320-33. [PMID: 25079511 DOI: 10.1111/cei.12425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
In the present study, we have analysed the ability of Streptococcus pyogenes [Group A streptococcus (GAS)] to activate the NACHT-domain-, leucine-rich repeat- and PYD-containing protein 3 (NALP3) inflammasome complex in human monocyte-derived macrophages and the molecules and signalling pathways involved in GAS-induced inflammatory responses. We focused upon analysing the impact of dynamin-dependent endocytosis and the role of major streptococcal virulence factors streptolysin O (SLO) and streptolysin S (SLS) in the immune responses induced by GAS. These virulence factors are involved in immune evasion by forming pores in host cell membranes, and aid the bacteria to escape from the endosome-lysosome pathway. We analysed cytokine gene expression in human primary macrophages after stimulation with live or inactivated wild-type GAS as well as with live SLO and SLS defective bacteria. Interleukin (IL)-1β, IL-10, tumour necrosis factor (TNF)-α and chemokine (C-X-C motif) ligand (CXCL)-10 cytokines were produced after bacterial stimulation in a dose-dependent manner and no differences in cytokine levels were seen between live, inactivated or mutant bacteria. These data suggest that streptolysins or other secreted bacterial products are not required for the inflammatory responses induced by GAS. Our data indicate that inhibition of dynamin-dependent endocytosis in macrophages attenuates the induction of IL-1β, TNF-α, interferon (IFN)-β and CXCL-10 mRNAs. We also observed that pro-IL-1β protein was expressed and efficiently cleaved into mature-IL-1β via inflammasome activation after bacterial stimulation. Furthermore, we demonstrate that multiple signalling pathways are involved in GAS-stimulated inflammatory responses in human macrophages.
Collapse
Affiliation(s)
- S Latvala
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | |
Collapse
|
72
|
A MyD88-JAK1-STAT1 complex directly induces SOCS-1 expression in macrophages infected with Group A Streptococcus. Cell Mol Immunol 2014; 12:373-83. [PMID: 25399770 DOI: 10.1038/cmi.2014.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
Some pathogens can use host suppressor of cytokine signaling 1 (SOCS-1), an important negative-feedback molecule, as the main mode of immune evasion. Here we found that group A Streptococcus (GAS) is capable of inducing SOCS-1 expression in RAW264.7 and BMDM macrophages. IFN-β plays a role in GAS-induced SOCS-1 expression in macrophages following the induction of cytokine expression by GAS, representing the classical pathway of SOCS-1 expression. However, GAS also induced STAT1 activation and SOCS-1 expression when GAS-infected cells were incubated with anti-IFN-β monoclonal antibody in this study. Moreover, upon comparing TLR4(-/-) BMDM macrophages with wild-type (WT) cells, we found that TLR4 also plays an essential role in the induction of SOCS-1. MyD88, which is an adaptor protein for TLR4, contributes to STAT1 activation and phosphorylation by forming a complex with Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1) in macrophages. GAS-stimulated expression of STAT1 was severely impaired in MyD88(-/-) macrophages, whereas expression of JAK1 was unaffected, suggesting that MyD88 was involved in STAT1 expression and phosphorylation. Together, these data demonstrated that in addition to IFN-β signaling and MyD88 complex formation, JAK1 and STAT1 act in a novel pathway to directly induce SOCS-1 expression in GAS-infected macrophages, which may be more conducive to rapid bacterial infection.
Collapse
|
73
|
Protein kinase IKKβ-catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells. Proc Natl Acad Sci U S A 2014; 111:17432-7. [PMID: 25326418 DOI: 10.1073/pnas.1418399111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The siRNA knockdown of IFN Regulatory Factor 5 (IRF5) in the human plasmacytoid dendritic cell line Gen2.2 prevented IFNβ production induced by compound CL097, a ligand for Toll-like receptor 7 (TLR7). CL097 also stimulated the phosphorylation of IRF5 at Ser462 and stimulated the nuclear translocation of wild-type IRF5, but not the IRF5[Ser462Ala] mutant. The CL097-stimulated phosphorylation of IRF5 at Ser462 and its nuclear translocation was prevented by the pharmacological inhibition of protein kinase IKKβ or the siRNA knockdown of IKKβ or its "upstream" activator, the protein kinase TAK1. Similar results were obtained in a murine macrophage cell line stimulated with the TLR7 agonist compound R848 or the nucleotide oligomerization domain 1 (NOD1) agonist KF-1B. IKKβ phosphorylated IRF5 at Ser462 in vitro and induced the dimerization of wild-type IRF5 but not the IRF5[S462A] mutant. These findings demonstrate that IKKβ activates two "master" transcription factors of the innate immune system, IRF5 and NF-κB.
Collapse
|
74
|
Fieber C, Kovarik P. Responses of innate immune cells to group A Streptococcus. Front Cell Infect Microbiol 2014; 4:140. [PMID: 25325020 PMCID: PMC4183118 DOI: 10.3389/fcimb.2014.00140] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022] Open
Abstract
Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies.
Collapse
Affiliation(s)
| | - Pavel Kovarik
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of ViennaVienna, Austria
| |
Collapse
|
75
|
Tsatsaronis JA, Walker MJ, Sanderson-Smith ML. Host responses to group a streptococcus: cell death and inflammation. PLoS Pathog 2014; 10:e1004266. [PMID: 25165887 PMCID: PMC4148426 DOI: 10.1371/journal.ppat.1004266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.
Collapse
Affiliation(s)
- James A. Tsatsaronis
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- * E-mail:
| |
Collapse
|
76
|
Dinis M, Plainvert C, Kovarik P, Longo M, Fouet A, Poyart C. The innate immune response elicited by Group A Streptococcus is highly variable among clinical isolates and correlates with the emm type. PLoS One 2014; 9:e101464. [PMID: 24991887 PMCID: PMC4081719 DOI: 10.1371/journal.pone.0101464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
Group A Streptococcus (GAS) infections remain a significant health care problem due to high morbidity and mortality associated with GAS diseases, along with their increasing worldwide prevalence. Macrophages play a key role in the control and clearance of GAS infections. Moreover, pro-inflammatory cytokines production and GAS persistence and invasion are related. In this study we investigated the correlation between the GAS clinical isolates genotypes, their known clinical history, and their ability to modulate innate immune response. We constituted a collection of 40 independent GAS isolates representative of the emm types currently prevalent in France and responsible for invasive (57.5%) and non-invasive (42.5%) clinical manifestations. We tested phagocytosis and survival in mouse bone marrow-derived macrophages and quantified the pro-inflammatory mediators (IL-6, TNF-α) and type I interferon (INF-β) production. Invasive emm89 isolates were more phagocytosed than their non-invasive counterparts, and emm89 isolates more than the other isolates. Regarding the survival, differences were observed depending on the isolate emm type, but not between invasive and non-invasive isolates within the same emm type. The level of inflammatory mediators produced was also emm type-dependent and mostly invasiveness status independent. Isolates of the emm1 type were able to induce the highest levels of both pro-inflammatory cytokines, whereas emm89 isolates induced the earliest production of IFN-β. Finally, even within emm types, there was a variability of the innate immune responses induced, but survival and inflammatory mediator production were not linked.
Collapse
Affiliation(s)
- Márcia Dinis
- INSERM U 1016, Institut Cochin, Unité FRM “Barrières et Pathogènes”, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Céline Plainvert
- INSERM U 1016, Institut Cochin, Unité FRM “Barrières et Pathogènes”, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
- Hôpitaux Universitaires Paris Centre, Site Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Magalie Longo
- INSERM U 1016, Institut Cochin, Unité FRM “Barrières et Pathogènes”, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Agnès Fouet
- INSERM U 1016, Institut Cochin, Unité FRM “Barrières et Pathogènes”, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Poyart
- INSERM U 1016, Institut Cochin, Unité FRM “Barrières et Pathogènes”, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
- Hôpitaux Universitaires Paris Centre, Site Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, France
- CNRS 2172, Paris, France
- * E-mail:
| |
Collapse
|
77
|
Borrelia burgdorferi RNA induces type I and III interferons via Toll-like receptor 7 and contributes to production of NF-κB-dependent cytokines. Infect Immun 2014; 82:2405-16. [PMID: 24664510 DOI: 10.1128/iai.01617-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi elicits a potent cytokine response through activation of multiple signaling receptors on innate immune cells. Spirochetal lipoproteins initiate expression of NF-κB-dependent cytokines primarily via TLR2, whereas type I interferon (IFN) production is induced through the endosomal receptors TLR7 and TLR9 in human dendritic cells and TLR8 in monocytes. We demonstrate that DNA and RNA are the B. burgdorferi components that initiate a type I IFN response by human peripheral blood mononuclear cells (PBMCs). IFN-α protein and transcripts for IRF7, MX1, and OAS1 were induced by endosomal delivery of B. burgdorferi DNA, RNA, or whole-cell lysate, but not by lysate that had been treated with DNase and RNase. Induction of IFN-α and IFN-λ1, a type III IFN, by B. burgdorferi RNA or live spirochetes required TLR7-dependent signaling and correlated with significantly enhanced transcription and expression of IRF7 but not IRF3. Induction of type I and type III IFNs by B. burgdorferi RNA could be completely abrogated by a TLR7 inhibitor, IRS661. In addition to type I and type III IFNs, B. burgdorferi RNA contributed to the production of the NF-κB-dependent cytokines, IFN-γ, interleukin-10 (IL-10), IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α), by human PBMCs. Collectively, these data indicate that TLR7-dependent recognition of RNA is pivotal for IFN-α and IFN-λ1 production by human PBMCs, and that RNA-initiated signaling contributes to full potentiation of the cytokine response generated during B. burgdorferi infection.
Collapse
|
78
|
Zhang L, Mo J, Swanson KV, Wen H, Petrucelli A, Gregory SM, Zhang Z, Schneider M, Jiang Y, Fitzgerald KA, Ouyang S, Liu ZJ, Damania B, Shu HB, Duncan JA, Ting JPY. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 2014; 40:329-41. [PMID: 24560620 DOI: 10.1016/j.immuni.2014.01.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
Stimulator of interferon genes (STING, also named MITA, MYPS, or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich-repeat-containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP), and DNA viruses. NLRC3 associated with both STING and TBK1 and impeded STING-TBK1 interaction and downstream type I interferon production. By using purified recombinant proteins, we found NLRC3 to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3(-/-) mice exhibited enhanced innate immunity and reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus, and c-di-GMP.
Collapse
Affiliation(s)
- Lu Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Oral Biology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinyao Mo
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen V Swanson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Wen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex Petrucelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean M Gregory
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monika Schneider
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yan Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Katherine A Fitzgerald
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Bing Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Institute of Inflammatory Diseases and Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
79
|
Fernandez I, Brito RM, Bidet P, Rallu F, Laferrière C, Ovetchkine P, Le Deist F. Invasive group A Streptococcus disease in French-Canadian children is not associated with a defect in MyD88/IRAK4-pathway. Allergy Asthma Clin Immunol 2014; 10:9. [PMID: 24499202 PMCID: PMC3927219 DOI: 10.1186/1710-1492-10-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/22/2013] [Indexed: 01/09/2023] Open
Abstract
Background Beta-hemolytic Group A Streptococcus invasive disease (iGASd) has been subject to intense research since its re-emergence in the late 1980s. In Quebec, an increase in the number of severe iGASd cases has recently been observed. Because of the inter-individual variability in the severity of iGASd, a hereditary predisposition to invasive disease can be suspected. Given that iGASd occurs in MyD88- and IRAK4-deficient patients, although rarely, the increasing frequency of iGASd in the population of French-Canadian children may be associated with a deficiency in the host’s innate immune response. Methods In this report, we assessed the influence of: (i) bacterial genotype and virulence factors, (ii) immune-cellular features, and (iii) Myd88/IRAK4-dependent response to GAS in vitro on the susceptibility to iGASd in a paediatric cohort of 16 children: 11 French-Canadian and 5 from diverse origin. Findings GAS virulence factors and genotype are not implicated in the susceptibility toward iGASd, and cellular and MyD88/IRAK4 deficiencies are excluded in our patients. Conclusions Although it has been shown that the MyD88/IRAK4-dependent signal is involved in the response to invasive GAS, our data indicates that a MyD88/IRAK4-mediated signalling defect is not the main factor responsible for the susceptibility to severe iGASd in a paediatric population from the province of Quebec.
Collapse
Affiliation(s)
- Isabel Fernandez
- Department of Microbiology, Infectiology and Immunology, CHU Sainte-Justine and University of Montreal, Montreal (Quebec), Canada.
| | | | | | | | | | | | | |
Collapse
|
80
|
Neves FS, Spiller F. Possible mechanisms of neutrophil activation in Behçet's disease. Int Immunopharmacol 2013; 17:1206-10. [DOI: 10.1016/j.intimp.2013.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/15/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
81
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
82
|
Neves FS, Spiller F. WITHDRAWN: Neutrophil activation in Behçet's Disease. Int Immunopharmacol 2013:S1567-5769(13)00291-9. [PMID: 23941768 DOI: 10.1016/j.intimp.2013.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/05/2013] [Indexed: 11/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.intimp.2013.07.017. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Fabricio Souza Neves
- Immunobiology Laboratory (LiDI), Federal University of Santa Catarina (UFSC), Florianopolis, 88040-900 Brazil.
| | | |
Collapse
|
83
|
Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 2013; 38:1176-86. [PMID: 23770228 DOI: 10.1016/j.immuni.2013.05.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
Type I interferon (IFN) is crucial during infection through its antiviral properties and by coordinating the immunocompetent cells involved in antiviral or antibacterial immunity. Type I IFN (IFN-α and IFN-β) is produced after virus or bacteria recognition by cytosolic receptors or membrane-bound TLR receptors following the activation of the transcription factors IRF3 or IRF7. IFN-β production after fungal infection was recently reported, although the underlying mechanism remains controversial. Here we describe that IFN-β production by dendritic cells (DCs) induced by Candida albicans is largely dependent on Dectin-1- and Dectin-2-mediated signaling. Dectin-1-induced IFN-β production required the tyrosine kinase Syk and the transcription factor IRF5. Type I IFN receptor-deficient mice had a lower survival after C. albicans infection, paralleled by defective renal neutrophil infiltration. IFN-β production by renal infiltrating leukocytes was severely reduced in C. albicans-infected mice with Syk-deficient DCs. These data indicate that Dectin-induced IFN-β production by renal DCs is crucial for defense against C. albicans infection.
Collapse
|
84
|
Eigenbrod T, Bode KA, Dalpke AH. Early inhibition of IL-1β expression by IFN-γ is mediated by impaired binding of NF-κB to the IL-1β promoter but is independent of nitric oxide. THE JOURNAL OF IMMUNOLOGY 2013; 190:6533-41. [PMID: 23667107 DOI: 10.4049/jimmunol.1300324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The significance of bacterial RNA recognition for initiating innate immune responses against invading pathogens has only recently started to be elucidated. Bacterial RNA is an important trigger of inflammasome activation, resulting in caspase-1-dependent cleavage of pro-IL-1β into the active form. It was reported previously that prolonged treatment with IFN-γ can inhibit IL-1β production at the level of both transcription and Nlrp3 inflammasome activation in an NO-dependent manner. As a result of the delayed kinetics of NO generation after IFN-γ stimulation, these effects were only observed at later time points. We report that IFN-γ suppressed bacterial RNA and LPS induced IL-1β transcription in primary murine macrophages and dendritic cells by an additional, very rapid mechanism that was independent of NO. Costimulation with IFN-γ selectively attenuated binding of NF-κB p65 to the IL-1β promoter, thus representing a novel mechanism of IL-1β inhibition by IFN-γ. Transcriptional silencing was specific for IL-1β because expression of other proinflammatory cytokines, such as TNF, IL-6, and IL-12p40, was not affected. Furthermore, by suppressing IL-1β production, IFN-γ impaired differentiation of Th17 cells and production of neutrophil chemotactic factor CXCL1 in vitro. The findings provide evidence for a rapid immune-modulating effect of IFN-γ independent of NO.
Collapse
Affiliation(s)
- Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology, and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
85
|
Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 2013; 140:1184-95. [PMID: 23444351 DOI: 10.1242/dev.088849] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The imprinted Airn macro long non-coding (lnc) RNA is an established example of a cis-silencing lncRNA. Airn expression is necessary to initiate paternal-specific silencing of the Igf2r gene, which is followed by gain of a somatic DNA methylation imprint on the silent Igf2r promoter. However, the developmental requirements for Airn initiation of Igf2r silencing and the role of Airn or DNA methylation in maintaining stable Igf2r repression have not been investigated. Here, we use inducible systems to control Airn expression during mouse embryonic stem cell (ESC) differentiation. By turning Airn expression off during ESC differentiation, we show that continuous Airn expression is needed to maintain Igf2r silencing, but only until the paternal Igf2r promoter is methylated. By conditionally turning Airn expression on, we show that Airn initiation of Igf2r silencing is not limited to one developmental 'window of opportunity' and can be maintained in the absence of DNA methylation. Together, this study shows that Airn expression is both necessary and sufficient to silence Igf2r throughout ESC differentiation and that the somatic methylation imprint, although not required to initiate or maintain silencing, adds a secondary layer of repressive epigenetic information.
Collapse
Affiliation(s)
- Federica Santoro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
86
|
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 2013; 4:e00018-13. [PMID: 23631912 PMCID: PMC3663186 DOI: 10.1128/mbio.00018-13] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED STING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells. IMPORTANCE This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections.
Collapse
|
87
|
Atianand MK, Fitzgerald KA. Molecular basis of DNA recognition in the immune system. THE JOURNAL OF IMMUNOLOGY 2013; 190:1911-8. [PMID: 23417527 DOI: 10.4049/jimmunol.1203162] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of microbial nucleic acids is one strategy by which mammalian hosts respond to infectious agents. Intracellular DNA that is introduced into cells during infection elicits potent inflammatory responses by triggering the induction of antiviral type I IFNs and the maturation and secretion of inflammatory cytokines, such as TNF-α, IL-1β, and IL-18. In addition, if nucleases, such as DNase II or DNase III (Trex1), fail to clear self-DNA, accumulated DNA gains access to intracellular compartments where it drives inflammatory responses leading to autoimmune disease. In this review, we discuss a rapidly evolving view of how cytosolic DNA-sensing machineries coordinate antimicrobial immunity and, if unchecked, lead to autoimmune disease.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
88
|
STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 2013; 14:19-26. [PMID: 23238760 DOI: 10.1038/ni.2491] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/08/2012] [Indexed: 02/07/2023]
Abstract
Cytosolic detection of pathogen-derived nucleic acids is critical for the initiation of innate immune defense against diverse bacterial, viral and eukaryotic pathogens. Conversely, inappropriate responses to cytosolic nucleic acids can produce severe autoimmune pathology. The host protein STING has been identified as a central signaling molecule in the innate immune response to cytosolic nucleic acids. STING seems to be especially critical for responses to cytosolic DNA and the unique bacterial nucleic acids called 'cyclic dinucleotides'. Here we discuss advances in the understanding of STING and highlight the many unresolved issues in the field.
Collapse
|
89
|
Kaplan A, Ma J, Kyme P, Wolf AJ, Becker CA, Tseng CW, Liu GY, Underhill DM. Failure to induce IFN-β production during Staphylococcus aureus infection contributes to pathogenicity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4537-45. [PMID: 23008447 DOI: 10.4049/jimmunol.1201111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The importance of type I IFNs in the host response to viral infection is well established; however, their role in bacterial infection is not fully understood. Several bacteria (both Gram-positive and -negative) have been shown to induce IFN-β production in myeloid cells, but this IFN-β is not always beneficial to the host. We examined whether Staphylococcus aureus induces IFN-β from myeloid phagocytes, and if so, whether it is helpful or harmful to the host to do so. We found that S. aureus poorly induces IFN-β production compared with other bacteria. S. aureus is highly resistant to degradation in the phagosome because it is resistant to lysozyme. Using a mutant that is more sensitive to lysozyme, we show that phagosomal degradation and release of intracellular ligands is essential for induction of IFN-β and inflammatory chemokines downstream of IFN-β. Further, we found that adding exogenous IFN-β during S. aureus infection (in vitro and in vivo) was protective. Together, the data demonstrate that failure to induce IFN-β production during S. aureus infection contributes to pathogenicity.
Collapse
Affiliation(s)
- Amber Kaplan
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Hidmark A, von Saint Paul A, Dalpke AH. Cutting edge: TLR13 is a receptor for bacterial RNA. THE JOURNAL OF IMMUNOLOGY 2012; 189:2717-21. [PMID: 22896636 DOI: 10.4049/jimmunol.1200898] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial RNA (bRNA) can induce cytokine production in macrophages and dendritic cells (DCs) through a previously unidentified receptor. Gene expression analysis of murine DCs showed that bRNA induced gene regulation similar to that induced by stimulation of TLR7 with R848. Although TLR7 was dispensable for cytokine induction by bRNA, TLR-associated proteins MyD88 and UNC93B were required. TLR13 is an endosomal murine TLR that has been described to interact with UNC93B with, so far, no characterized ligand. Small interfering RNA against TLR13 reduced cytokine induction by bRNA in DCs. Moreover, Chinese hamster ovary cells transfected with TLR13, but not with TLR7 or 8, could activate NF-κB in response to bRNA or Streptococcus pyogenes in an RNA-specific manner. TLR7 antagonist IRS661 could, in addition, inhibit TLR13 signaling and reduced recognition of whole Gram-positive bacteria by DCs, also in the absence of TLR7. The results identify TLR13 as a receptor for bRNA.
Collapse
Affiliation(s)
- Asa Hidmark
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
91
|
Weiss G, Maaetoft-Udsen K, Stifter SA, Hertzog P, Goriely S, Thomsen AR, Paludan SR, Frøkiær H. MyD88 drives the IFN-β response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. THE JOURNAL OF IMMUNOLOGY 2012; 189:2860-8. [PMID: 22896628 DOI: 10.4049/jimmunol.1103491] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type I IFNs are induced by pathogens to protect the host from infection and boost the immune response. We have recently demonstrated that this IFN response is not restricted to pathogens, as the Gram-positive bacterium Lactobacillus acidophilus, a natural inhabitant of the intestine, induces high levels of IFN-β in dendritic cells. In the current study, we investigate the intracellular pathways involved in IFN-β upon stimulation of dendritic cells with L. acidophilus and reveal that this IFN-β induction requires phagosomal uptake and processing but bypasses the endosomal receptors TLR7 and TLR9. The IFN-β production is fully dependent on the TIR adapter molecule MyD88, partly dependent on IFN regulatory factor (IRF)1, but independent of the TIR domain-containing adapter inducing IFN-β MyD88 adapter-like, IRF and IRF7. However, our results suggest that IRF3 and IRF7 have complementary roles in IFN-β signaling. The IFN-β production is strongly impaired by inhibitors of spleen tyrosine kinase (Syk) and PI3K. Our results indicate that L. acidophilus induces IFN-β independently of the receptors typically used by bacteria, as it requires MyD88, Syk, and PI3K signaling and phagosomal processing to activate IRF1 and IRF3/IRF7 and thereby the release of IFN-β.
Collapse
Affiliation(s)
- Gudrun Weiss
- Department of Basic Sciences and Environment, Molecular Immunology, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Lemire P, Houde M, Segura M. Encapsulated group BStreptococcusmodulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol 2012; 14:1707-19. [DOI: 10.1111/j.1462-5822.2012.01830.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 01/26/2023]
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| | - Mathieu Houde
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| | - Mariela Segura
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| |
Collapse
|
93
|
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 2012; 8:e1002780. [PMID: 22761576 PMCID: PMC3386177 DOI: 10.1371/journal.ppat.1002780] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/15/2012] [Indexed: 12/22/2022] Open
Abstract
Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity. The pathogenesis of severe dengue diseases remains unclear, but magnitude of dengue virus (DEN) replication is believed to be one of the major determining factors. Thus, revealing how DEN evades the host defense mechanism such as type I interferon (IFN) system is important for better understanding this devastating disease. Although several DEN viral proteins have been reported as IFN-resistant factors, without knowing the cellular targets, the mechanism of how DEN subverts IFN system is poorly understood. In this study, we found that the human mediator of IRF3 activation (MITA), also known as STING and ERIS, was cleaved in cells infected with DEN and in cells expressing an enzymatically active DEN protease NS2B3. MITA is known as a DNA sensor for IFN production and its antiviral role has also been demonstrated for several DNA and RNA viruses. DEN protease appears to cleave MITA but not its murine homologue MPYS, and this cleavage resulted in impaired MITA activation. Ectopic overexpression of MPYS but not MITA reduced DEN replication, and knockdown of endogenous MPYS enhanced DEN replication. Thus, we find that MITA/MPYS is involved in host defense against DEN replication and DEN protease targets MITA to subvert its antiviral effect.
Collapse
Affiliation(s)
- Chia-Yi Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruei-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
94
|
Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012; 8:e1002736. [PMID: 22719247 PMCID: PMC3375267 DOI: 10.1371/journal.ppat.1002736] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/20/2012] [Indexed: 01/09/2023] Open
Abstract
Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology & Drug Discovery and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Annelies S. Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
95
|
Eigenbrod T, Franchi L, Muñoz-Planillo R, Kirschning CJ, Freudenberg MA, Núñez G, Dalpke A. Bacterial RNA mediates activation of caspase-1 and IL-1β release independently of TLRs 3, 7, 9 and TRIF but is dependent on UNC93B. THE JOURNAL OF IMMUNOLOGY 2012; 189:328-36. [PMID: 22634614 DOI: 10.4049/jimmunol.1103258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recognition of foreign nucleic acids is important for the induction of an innate immune response against invading pathogens. Although the pathways involved in sensing bacterial DNA and viral RNA are now well established, only limited knowledge is available on mechanisms underlying recognition of bacterial RNA. It has been reported that intracellular delivery of Escherichia coli RNA activates the Nlrp3 inflammasome, but whether this is a general property of bacterial RNA remains unclear as are the pathways involved in pro-IL-1β induction and caspase-1 activation by bacterial RNA. In this study, we report that bacterial RNA from both Gram-positive and Gram-negative bacteria induces activation of caspase-1 and secretion of IL-1β by murine dendritic cells and bone-marrow derived macrophages. Stimulation was independent of the presence of 5'-triphosphate termini and occurred with whole RNA preparations from bacteria but not from eukaryotes. Induction of pro-IL-1β as well as the priming for caspase-1 activation by bacterial RNA was dependent on UNC93B, an endoplasmic reticulum protein essential for delivery of TLRs to the endosome, whereas the established nucleic acid sensing endosomal TLRs 3, 7, and 9 were dispensable. Additionally, caspase-1 activation and IL-1β production by transfected bacterial RNA were absent in MyD88-deficient cells but independent of TRIF. Thus, our data indicate the presence of a yet unidentified intracellular nucleic acid receptor involved in bacterial RNA-induced inflammasome activation and release of IL-1β.
Collapse
Affiliation(s)
- Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Besides their well known functions in storage and translation of information nucleic acids have emerged as a target of pattern recognition receptors that drive activation of innate immunity. Due to the paucity of building block monomers used in nucleic acids, discrimination of host and microbial nucleic acids as a means of self/foreign discrimination is a complicated task. Pattern recognition receptors rely on discrimination by sequence, structural features and spatial compartmentalization to differentiate microbial derived nucleic acids from host ones. Microbial nucleic acid detection is important for the sensing of infectious danger and initiating an immune response to microbial attack. Failures in the underlying recognitions systems can have severe consequences: thus, inefficient recognition of microbial nucleic acids may increase susceptibility to infectious diseases. On the other hand, excessive immune responses as a result of failed self/foreign discrimination are associated with autoimmune diseases. This review gives a general overview over the underlying concepts of nucleic acid sensing by Toll-like receptors. Within this general framework, we focus on bacterial RNA and synthetic RNA oligomers.
Collapse
Affiliation(s)
- Alexander Dalpke
- Heidelberg University, Department of Infectious Diseases - Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | | |
Collapse
|
97
|
Spontaneous mutation of the Dock2 gene in Irf5-/- mice complicates interpretation of type I interferon production and antibody responses. Proc Natl Acad Sci U S A 2012; 109:E898-904. [PMID: 22431588 DOI: 10.1073/pnas.1118155109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genome-wide studies have identified associations between polymorphisms in the IFN regulatory factor-5 (Irf5) gene and a variety of human autoimmune diseases. Its functional role in disease pathogenesis, however, remains unclear, as studies in Irf5(-/-) mice have reached disparate conclusions regarding the importance of this transcription factor in type I IFN production and antibody responses. We identified a spontaneous genomic duplication and frameshift mutation in the guanine exchange factor dedicator of cytokinesis 2 (Dock2) that has arisen in at least a subset of circulating Irf5(-/-) mice and inadvertently been bred to homozygosity. Retroviral expression of DOCK2, but not IRF-5, rescued defects in plasmacytoid dendritic cell and B-cell development, and Irf5(-/-) mice lacking the mutation in Dock2 exhibited normal plasmacytoid dendritic cell and B-cell development, largely intact type I IFN responses, and relatively normal antibody responses to viral infection. Thus, confirmation of the normal Dock2 genotype in circulating Irf5(-/-) mice is warranted, and our data may partly explain conflicting results in this field.
Collapse
|
98
|
Abstract
Cytosolic pattern recognition receptors (PRRs) sense intracellular nucleic acids from pathogens such as bacteria and viruses, which leads to the induction of type I interferon (IFN) responses that are essential for an effective immune response. Further, these PRR pathways can be aberrantly activated by self DNA, which leads to autoimmunity. Therefore, understanding the signaling mechanisms that underlie PRR-induced production of IFN is vital to health and disease. A key transcription factor that is involved in these pathways is IFN regulatory factor 3 (IRF3), which is often activated by the kinase TANK-binding kinase 1 (TBK1). STING (stimulator of interferon genes) is a master regulator for the cyto-solic nucleic acid-mediated activation of IRF3 through TBK1 stimulation, but how the STING-TBK1-IRF3 signaling axis operates has been unclear. A study now shows that in response to cytosolic double-stranded DNA, the C-terminal tail of STING provides a scaffold to assemble IRF3 and TBK1, which leads to TBK1-dependent phosphorylation of IRF3. Thus, STING directs TBK1 to activate IRF3 in DNA-sensing pathways.
Collapse
Affiliation(s)
- Andrew Bowie
- Immunology Research Centre, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
99
|
Type I interferons: diversity of sources, production pathways and effects on immune responses. Curr Opin Virol 2011; 1:463-75. [PMID: 22440910 DOI: 10.1016/j.coviro.2011.10.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFN-I) were first described over 50 years ago as factors produced by cells that interfere with virus replication and promote an antiviral state. Innate and adaptive immune responses to viruses are also greatly influenced by IFN-I. In this article we discuss the diversity of cellular sources of IFN-I and the pathways leading to IFN-I production during viral infections. Finally, we discuss the effects of IFN-I on cells of the immune system with emphasis on dendritic cells.
Collapse
|
100
|
Parker D, Prince A. Type I interferon response to extracellular bacteria in the airway epithelium. Trends Immunol 2011; 32:582-8. [PMID: 21996313 DOI: 10.1016/j.it.2011.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022]
Abstract
The airway epithelium possesses many mechanisms to prevent bacterial infection. Not only does it provide a physical barrier, but it also acts as an extension of the immune system through the expression of innate immune receptors and corresponding effectors. One outcome of innate signaling by the epithelium is the production of type I interferons (IFNs), which have traditionally been associated with activation via viral and intracellular organisms. We discuss how three extracellular bacterial pathogens of the airway activate this intracellular signaling cascade through both surface components as well as via secretion systems, and the differing effects of type I IFN signaling on host defense of the respiratory tract.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|