51
|
Iafrati J, Malvache A, Gonzalez Campo C, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Multivariate synaptic and behavioral profiling reveals new developmental endophenotypes in the prefrontal cortex. Sci Rep 2016; 6:35504. [PMID: 27765946 PMCID: PMC5073243 DOI: 10.1038/srep35504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
The postnatal maturation of the prefrontal cortex (PFC) represents a period of increased vulnerability to risk factors and emergence of neuropsychiatric disorders. To disambiguate the pathophysiological mechanisms contributing to these disorders, we revisited the endophenotype approach from a developmental viewpoint. The extracellular matrix protein reelin which contributes to cellular and network plasticity, is a risk factor for several psychiatric diseases. We mapped the aggregate effect of the RELN risk allele on postnatal development of PFC functions by cross-sectional synaptic and behavioral analysis of reelin-haploinsufficient mice. Multivariate analysis of bootstrapped datasets revealed subgroups of phenotypic traits specific to each maturational epoch. The preeminence of synaptic AMPA/NMDA receptor content to pre-weaning and juvenile endophenotypes shifts to long-term potentiation and memory renewal during adolescence followed by NMDA-GluN2B synaptic content in adulthood. Strikingly, multivariate analysis shows that pharmacological rehabilitation of reelin haploinsufficient dysfunctions is mediated through induction of new endophenotypes rather than reversion to wild-type traits. By delineating previously unknown developmental endophenotypic sequences, we conceived a promising general strategy to disambiguate the molecular underpinnings of complex psychiatric disorders and for the rational design of pharmacotherapies in these disorders.
Collapse
Affiliation(s)
- Jillian Iafrati
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Arnaud Malvache
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Cecilia Gonzalez Campo
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - M Juliana Orejarena
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Lassalle
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Lamine Bouamrane
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Pascale Chavis
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
52
|
de la Torre R, de Sola S, Hernandez G, Farré M, Pujol J, Rodriguez J, Espadaler JM, Langohr K, Cuenca-Royo A, Principe A, Xicota L, Janel N, Catuara-Solarz S, Sanchez-Benavides G, Bléhaut H, Dueñas-Espín I, del Hoyo L, Benejam B, Blanco-Hinojo L, Videla S, Fitó M, Delabar JM, Dierssen M. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15:801-810. [DOI: 10.1016/s1474-4422(16)30034-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
53
|
Lu J, Mccarter M, Lian G, Esposito G, Capoccia E, Delli-Bovi LC, Hecht J, Sheen V. Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet 2016; 25:1714-27. [PMID: 26911678 PMCID: PMC4986328 DOI: 10.1093/hmg/ddw043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 01/02/2023] Open
Abstract
Down syndrome (DS) is caused by a triplication of chromosome 21 (HSA21). Increased oxidative stress, decreased neurogenesis and synaptic dysfunction from HSA21 gene overexpression are thought to cause mental retardation, dementia and seizure in this disorder. Recent epigenetic studies have raised the possibility that DNA methylation has significant effects on DS neurodevelopment. Here, we performed methylome profiling in normal and DS fetal cortices and observed a significant hypermethylation in ∼4% of probes in the DS samples compared with age-matched normals. The probes with differential methylation were distributed across all chromosomes, with no enrichment on HSA21. Functional annotation and pathway analyses showed that genes in the ubiquitination pathway were significantly altered, including: BRCA1, TSPYL5 and PEX10 HSA21 located DNMT3L was overexpressed in DS neuroprogenitors, and this overexpression increased the promoter methylation of TSPYL5 potentially through DNMT3B, and decreased its mRNA expression. DNMT3L overexpression also increased mRNA levels for TP53 and APP, effectors of TSPYL5 Furthermore, DNMT3L overexpression increased APP and PSD95 expression in differentiating neurons, whereas DNMT3LshRNA could partially rescue the APP and PSD95 up-regulation in DS cells. These results provide some of the first mechanistic insights into causes for epigenetic changes in DS, leading to modification of genes relevant for the DS neural endophenotype.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurology and
| | | | | | - Giuseppe Esposito
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy and
| | - Elena Capoccia
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy and
| | - Laurent C Delli-Bovi
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
54
|
Ruiz-Mejias M, Martinez de Lagran M, Mattia M, Castano-Prat P, Perez-Mendez L, Ciria-Suarez L, Gener T, Sancristobal B, García-Ojalvo J, Gruart A, Delgado-García JM, Sanchez-Vives MV, Dierssen M. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. J Neurosci 2016; 36:3648-59. [PMID: 27030752 PMCID: PMC6601739 DOI: 10.1523/jneurosci.2517-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/21/2022] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. SIGNIFICANCE STATEMENT DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified decreased neuronal firing rate and deficits in gamma frequency in the prefrontal cortices of transgenic mice overexpressingDyrk1A We also identified a reduction of vesicular GABA transporter punctae specifically on parvalbumin positive interneurons. Using a conductance-based computational model, we demonstrate that this decreased inhibition on interneurons recapitulates the observed functional deficits, including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome.
Collapse
Affiliation(s)
- Marcel Ruiz-Mejias
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Patricia Castano-Prat
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Lorena Perez-Mendez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Laura Ciria-Suarez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Thomas Gener
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | - Belen Sancristobal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Agnès Gruart
- Neuroscience Department, Pablo de Olavide University 41013 Seville, Spain, and
| | | | - Maria V Sanchez-Vives
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain,
| |
Collapse
|
55
|
Martin HGS, Bernabeu A, Lassalle O, Bouille C, Beurrier C, Pelissier-Alicot AL, Manzoni OJ. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex. Front Cell Neurosci 2015; 9:457. [PMID: 26648844 PMCID: PMC4664641 DOI: 10.3389/fncel.2015.00457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.
Collapse
Affiliation(s)
- Henry G S Martin
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Axel Bernabeu
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Conception, Service de Psychiatrie Marseille, France
| | - Olivier Lassalle
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Clément Bouille
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Corinne Beurrier
- Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288 Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Timone Adultes, Service de Médecine Légale Marseille, France
| | - Olivier J Manzoni
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| |
Collapse
|
56
|
Papouin T, Oliet SHR. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130601. [PMID: 25225095 DOI: 10.1098/rstb.2013.0601] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, Bordeaux, France Université de Bordeaux, Bordeaux, France
| |
Collapse
|
57
|
Souchet B, Guedj F, Penke-Verdier Z, Daubigney F, Duchon A, Herault Y, Bizot JC, Janel N, Créau N, Delatour B, Delabar JM. Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Front Behav Neurosci 2015; 9:267. [PMID: 26539088 PMCID: PMC4611057 DOI: 10.3389/fnbeh.2015.00267] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2015] [Indexed: 01/25/2023] Open
Abstract
Cognitive impairment in Down syndrome (DS) has been linked to increased synaptic inhibition. The underlying mechanisms remain unknown, but memory deficits are rescued in DS mouse models by drugs targeting GABA receptors. Similarly, administration of epigallocatechin gallate (EGCG)-containing extracts rescues cognitive phenotypes in Ts65Dn mice, potentially through GABA pathway. Some developmental and cognitive alterations have been traced to increased expression of the serine-threonine kinase DYRK1A on Hsa21. To better understand excitation/inhibition balance in DS, we investigated the consequences of long-term (1-month) treatment with EGCG-containing extracts in adult mBACtgDyrk1a mice that overexpress Dyrk1a. Administration of POL60 rescued components of GABAergic and glutamatergic pathways in cortex and hippocampus but not cerebellum. An intermediate dose (60 mg/kg) of decaffeinated green tea extract (MGTE) acted on components of both GABAergic and glutamatergic pathways and rescued behavioral deficits as demonstrated on the alternating paradigm, but did not rescue protein level of GABA-synthesizing GAD67. These results indicate that excessive synaptic inhibition in people with DS may be attributable, in large part, to increased DYRK1A dosage. Thus, controlling the level of active DYRK1A is a clear issue for DS therapy. This study also defines a panel of synaptic markers for further characterization of DS treatments in murine models.
Collapse
Affiliation(s)
- Benoit Souchet
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Fayçal Guedj
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France ; Tufts Medical Center, Mother Infant Research Institute Boston, MA, USA
| | - Zsuza Penke-Verdier
- Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| | - Fabrice Daubigney
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Arnaud Duchon
- Institut Génétique Biologie Moléculaire Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UMR7104, UMR964 Illkirch, France
| | - Yann Herault
- Institut Génétique Biologie Moléculaire Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, UMR7104, UMR964 Illkirch, France
| | | | - Nathalie Janel
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Nicole Créau
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France
| | - Benoit Delatour
- Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| | - Jean M Delabar
- Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR Centre National de la Recherche Scientifique 8251 Paris, France ; Université Pierre-et-Marie-Curie Paris, 06 UMR S 1127, Centre National de la Recherche Scientifique UMR 7225, Institut National de la Santé et de la Recherche Médicale, U 1127, Sorbonne Universités, Institut du Cerveau et de la Moelle Epiniere Paris, France
| |
Collapse
|
58
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
59
|
Lovelace JW, Corches A, Vieira PA, Hiroto AS, Mackie K, Korzus E. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity. Neuropharmacology 2015; 99:242-55. [PMID: 25979486 DOI: 10.1016/j.neuropharm.2015.04.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
Abstract
Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL 184 ameliorates eCB-LTD deficits. The observed deficit in cortical presynaptic signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain's intrinsic ability to appropriately adapt to external influences.
Collapse
Affiliation(s)
- Jonathan W Lovelace
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, CA 92521, USA
| | - Philip A Vieira
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Alex S Hiroto
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Gill Center for Biomedical Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Edward Korzus
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA; Biomedical Sciences Program, University of California Riverside, CA 92521, USA.
| |
Collapse
|
60
|
Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, Manzoni OJ. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci 2015; 9:100. [PMID: 25859182 PMCID: PMC4374460 DOI: 10.3389/fncel.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - Christopher M Henstridge
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; School of Ph.D. Studies, Semmelweis University Budapest, Hungary
| | - Marja Sepers
- Department of Psychiatry, University of British Columbia Vancouver, Canada
| | - Olivier Lassalle
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - István Katona
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Olivier J Manzoni
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| |
Collapse
|
61
|
Weitzdoerfer R, Toran N, Subramaniyan S, Pollak A, Dierssen M, Lubec G. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain. Amino Acids 2015; 47:1127-34. [PMID: 25740605 DOI: 10.1007/s00726-015-1941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/29/2023]
Abstract
Down syndrome (DS; trisomy 21) is the most frequent cause of mental retardation with major cognitive and behavioral deficits. Although a series of aberrant biochemical pathways has been reported, work on signaling proteins is limited. It was, therefore, the aim of the study to test a selection of protein kinases and phosphatases known to be essential for memory and learning mechanisms in fetal DS brain. 12 frontal cortices from DS brain were compared to 12 frontal cortices from controls obtained at legal abortions. Proteins were extracted from brains and western blotting with specific antibodies was carried out. Primary results were used for networking (IntAct Molecular Interaction Database) and individual predicted pathway components were subsequently quantified by western blotting. Levels of calcium-calmodulin kinase II alpha, transforming growth factor beta-activated kinase 1 as well as phosphatase and tensin homolog (PTEN) were reduced in cortex of DS subjects and network generation pointed to interaction between PTEN and the dendritic spine protein drebrin that was subsequently determined and reduced levels were observed. The findings of reduced levels of cognitive-function-related protein kinases and the phosphatase may be relevant for interpretation of previous work and may be useful for the design of future studies on signaling in DS brain. Moreover, decreased drebrin levels may point to dendritic spine abnormalities.
Collapse
Affiliation(s)
- Rachel Weitzdoerfer
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
62
|
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601:30-40. [PMID: 25578949 DOI: 10.1016/j.neulet.2015.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023]
Abstract
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
63
|
Liu B, Filippi S, Roy A, Roberts I. Stem and progenitor cell dysfunction in human trisomies. EMBO Rep 2014; 16:44-62. [PMID: 25520324 DOI: 10.15252/embr.201439583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Sarah Filippi
- Department of Statistics, University of Oxford, Oxford, UK
| | - Anindita Roy
- Centre for Haematology, Imperial College London, London, UK
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
64
|
Lysenko LV, Kim J, Henry C, Tyrtyshnaia A, Kohnz RA, Madamba F, Simon GM, Kleschevnikova NE, Nomura DK, Ezekowitz R.AB, Kleschevnikov AM. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome. PLoS One 2014; 9:e114521. [PMID: 25474204 PMCID: PMC4256450 DOI: 10.1371/journal.pone.0114521] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.
Collapse
Affiliation(s)
- Larisa V. Lysenko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jeesun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Cassandra Henry
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Anna Tyrtyshnaia
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russian Federation
| | - Rebecca A. Kohnz
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Francisco Madamba
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Gabriel M. Simon
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Natalia E. Kleschevnikova
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | | | - Alexander M. Kleschevnikov
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
65
|
García-Cerro S, Martínez P, Vidal V, Corrales A, Flórez J, Vidal R, Rueda N, Arbonés ML, Martínez-Cué C. Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PLoS One 2014; 9:e106572. [PMID: 25188425 PMCID: PMC4154723 DOI: 10.1371/journal.pone.0106572] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023] Open
Abstract
Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Paula Martínez
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Andrea Corrales
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Rebeca Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
- Institute of Biomedicine and Biotechnology (IBBITEC), (University of Cantabria- Consejo Superior de Investigaciones Científicas (CSIC) and Investigación, Desarrollo e Investigación Cantabria (IDICAN)), Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - María L. Arbonés
- Barcelona Institute of Molecular Biology, Centro Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
66
|
Souchet B, Guedj F, Sahún I, Duchon A, Daubigney F, Badel A, Yanagawa Y, Barallobre MJ, Dierssen M, Yu E, Herault Y, Arbones M, Janel N, Créau N, Delabar JM. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol Dis 2014; 69:65-75. [PMID: 24801365 DOI: 10.1016/j.nbd.2014.04.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.
Collapse
Affiliation(s)
- Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Fayçal Guedj
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Ignasi Sahún
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arnaud Duchon
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Anne Badel
- MTI, Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Japan
| | - Maria Jose Barallobre
- Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Mara Dierssen
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yann Herault
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Nathalie Janel
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| |
Collapse
|
67
|
Rachdi L, Kariyawasam D, Aïello V, Herault Y, Janel N, Delabar JM, Polak M, Scharfmann R. Dyrk1A induces pancreatic β cell mass expansion and improves glucose tolerance. Cell Cycle 2014; 13:2221-9. [PMID: 24870561 PMCID: PMC4111677 DOI: 10.4161/cc.29250] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes is caused by a limited capacity of insulin-producing pancreatic β cells to increase their mass and function in response to insulin resistance. The signaling pathways that positively regulate functional β cell mass have not been fully elucidated. DYRK1A (also called minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. A significant amount of data implicates DYRK1A in brain growth and Down syndrome, and recent data indicate that Dyrk1A haploinsufficient mice have a low functional β cell mass. Here we ask whether Dyrk1A upregulation could be a way to increase functional β cell mass. We used mice overexpressing Dyrk1A under the control of its own regulatory sequences (mBACTgDyrk1A). These mice exhibit decreased glucose levels and hyperinsulinemia in the fasting state. Improved glucose tolerance is observed in these mice as early as 4 weeks of age. Upregulation of Dyrk1A in β cells induces expansion of β cell mass through increased proliferation and cell size. Importantly, mBACTgDyrk1A mice are protected against high-fat-diet-induced β cell failure through increase in β cell mass and insulin sensitivity. These studies show the crucial role of the DYRK1A pathway in the regulation of β cell mass and carbohydrate metabolism in vivo. Activating the DYRK1A pathway could thus represent an innovative way to increase functional β cell mass.
Collapse
Affiliation(s)
- Latif Rachdi
- INSERM U1016; Institut Cochin; Faculté de Médecine Cochin; Université Paris Descartes; Paris, France
| | - Dulanjalee Kariyawasam
- INSERM U1016; Institut Cochin; Faculté de Médecine Cochin; Université Paris Descartes; Paris, France
- Hôpital Universitaire Necker Enfants Malades; Endocrinologie Gynécologie Diabétologie Pédiatriques; IMAGINE Institute; Paris, France
| | - Virginie Aïello
- INSERM U1016; Institut Cochin; Faculté de Médecine Cochin; Université Paris Descartes; Paris, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Translational Medicine and Neuroscience Program; IGBMC; CNRS; INSERM; Université de Strasbourg; UMR7104, UMR964, and Institut Clinique de la Souris; ICS; GIE CERBM; Illkirch, France
| | - Nathalie Janel
- Sorbonne Paris Cité; Unité de Biologie Fonctionnelle et Adaptative (BFA); CNRS UMR 8251; Paris Diderot University; Paris, France
| | - Jean-Maurice Delabar
- Sorbonne Paris Cité; Unité de Biologie Fonctionnelle et Adaptative (BFA); CNRS UMR 8251; Paris Diderot University; Paris, France
| | - Michel Polak
- INSERM U1016; Institut Cochin; Faculté de Médecine Cochin; Université Paris Descartes; Paris, France
- Hôpital Universitaire Necker Enfants Malades; Endocrinologie Gynécologie Diabétologie Pédiatriques; IMAGINE Institute; Paris, France
| | - Raphaël Scharfmann
- INSERM U1016; Institut Cochin; Faculté de Médecine Cochin; Université Paris Descartes; Paris, France
| |
Collapse
|