51
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
52
|
Mason JS, Wileman T, Chapman T. Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster. PLoS One 2018; 13:e0190105. [PMID: 29329306 PMCID: PMC5766080 DOI: 10.1371/journal.pone.0190105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for 'clean' lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research.
Collapse
Affiliation(s)
- Janet S. Mason
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tom Wileman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
53
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|
54
|
Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi J, Klaunig JE, Zhou S. Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology 2017; 394:45-53. [PMID: 29222055 DOI: 10.1016/j.tox.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Excessive environmental or occupational exposure to manganese (Mn) is associated with increased risk of neuron degenerative disorders. Oxidative stress and mitochondrial dysfunction are the main mechanisms of Mn mediated neurotoxicity. Selective removal of damaged mitochondria by autophagy has been proposed as a protective mechanism against neuronal toxicant-induced neurotoxicity. Whether autophagic flux plays a role in Mn-induced cytotoxicity remains to be fully elucidated. The present study was designed to investigate the effect of Mn exposure on autophagy, and how modulation of autophagic flux alters the sensitivities of cells to Mn-elicited cytotoxicity. Rat adrenal pheochromocytoma PC12 cells were treated with Mn for 24h to establish a cellular mode of Mn toxicity. Treatment of cells with Mn resulted in increased expression of autophagic marker LC3-II protein, as well as accumulation of p62, indicating an interference of autophagy flux caused by Mn. Pre-incubation of cells with antioxidant N-acetyl-l-cysteine (NAC) or resveratrol improved cell survival, accompanied by decreased LC3-II expression and increased expression level of p62, suggesting a down regulation of autophagy flux. To further determine the role of autophagy in Mn-induced cytotoxicity, the effect of chloroquine and rapamycin on cell viability was examined. Inhibition of autophagy flux by chloroquine exacerbated Mn-induced cytotoxicity, while induction of autophagy by rapamycin significantly reduced cell death caused by Mn. Furthermore, it was found that rapamycin, NAC and resveratrol improved cellular oxygen consumption accompanied by a decrease in cellular ROS generation and increase in GSH level, while chloroquine suppressed cellular respiration and deteriorated cellular oxidative stress. Collectively, these results demonstrate that autophagy plays a protective role in Mn-induced cell toxicity. Antioxidants NAC and resveratrol confer protective role in Mn toxicity mainly through maintaining mitochondrial dynamics and function, other than a modulation of autophagy flux.
Collapse
Affiliation(s)
- Qian Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xiaolong Fu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xueting Wang
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Qin Wu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Yuanfu Lu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Jingshan Shi
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China; Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
55
|
Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455:148-157. [PMID: 28412520 PMCID: PMC7153268 DOI: 10.1016/j.mce.2017.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison WI, USA.
| | - Yasoma K Weerasekara
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
56
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
57
|
Qin N, Wei L, Li W, Yang W, Cai L, Qian Z, Wu S. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway. J Pharmacol Sci 2017; 134:166-174. [DOI: 10.1016/j.jphs.2017.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
|
58
|
Takayama K, Kawakami Y, Lavasani M, Mu X, Cummins JH, Yurube T, Kuroda R, Kurosaka M, Fu FH, Robbins PD, Niedernhofer LJ, Huard J. mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. J Orthop Res 2017; 35:1375-1382. [PMID: 27572850 PMCID: PMC5516198 DOI: 10.1002/jor.23409] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/26/2016] [Indexed: 02/04/2023]
Abstract
Mice expressing reduced levels of ERCC1-XPF (Ercc1-/Δ mice) demonstrate premature onset of age-related changes due to decreased repair of DNA damage. Muscle-derived stem/progenitor cells (MDSPCs) isolated from Ercc1-/Δ mice have an impaired capacity for cell differentiation. The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth in response to nutrient, hormone, and oxygen levels. Inhibition of the mTOR pathway extends the lifespan of several species. Here, we examined the role of mTOR in regulating the MDSPC dysfunction that occurs with accelerated aging. We show that mTOR signaling pathways are activated in Ercc1-/Δ MDSPCs compared with wild-type (WT) MDSPCs. Additionally, inhibiting mTOR with rapamycin promoted autophagy and improved the myogenic differentiation capacity of the Ercc1-/Δ MDSPCs. The percent of apoptotic and senescent cells in Ercc1-/Δ MDSPC cultures was decreased upon mTOR inhibition. These results establish that mTOR signaling contributes to stem cell dysfunction and cell fate decisions in response to endogenous DNA damage. Therefore, mTOR represents a potential therapeutic target for improving defective, aged stem cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1375-1382, 2017.
Collapse
Affiliation(s)
- Koji Takayama
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania,Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobe 650‐0017Japan
| | - Yohei Kawakami
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania,Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobe 650‐0017Japan
| | - Mitra Lavasani
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania
| | - Xiaodong Mu
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania,Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonSouth Campus Research Building #3, 1881 East Rd (3SCR) 6th Floor; Room 3708Houston 77054Texas,Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVail 81657Colorado
| | - James H. Cummins
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania,Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonSouth Campus Research Building #3, 1881 East Rd (3SCR) 6th Floor; Room 3708Houston 77054Texas
| | - Takashi Yurube
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobe 650‐0017Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobe 650‐0017Japan
| | - Freddie H. Fu
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania
| | - Paul D. Robbins
- Department of Metabolism and AgingThe Scripps Research Institute FloridaJupiter 33458Florida
| | - Laura J. Niedernhofer
- Department of Metabolism and AgingThe Scripps Research Institute FloridaJupiter 33458Florida
| | - Johnny Huard
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburgh 15213Pennsylvania,Stem Cell Research CenterUniversity of PittsburghPittsburgh 15219Pennsylvania,Department of Orthopaedic SurgeryMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonSouth Campus Research Building #3, 1881 East Rd (3SCR) 6th Floor; Room 3708Houston 77054Texas,Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVail 81657Colorado
| |
Collapse
|
59
|
Lumkwana D, du Toit A, Kinnear C, Loos B. Autophagic flux control in neurodegeneration: Progress and precision targeting—Where do we stand? Prog Neurobiol 2017; 153:64-85. [DOI: 10.1016/j.pneurobio.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/09/2023]
|
60
|
Yue F, Li W, Zou J, Jiang X, Xu G, Huang H, Liu L. Spermidine Prolongs Lifespan and Prevents Liver Fibrosis and Hepatocellular Carcinoma by Activating MAP1S-Mediated Autophagy. Cancer Res 2017; 77:2938-2951. [PMID: 28386016 DOI: 10.1158/0008-5472.can-16-3462] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have worldwide impact but continue to lack safe, low cost, and effective treatments. In this study, we show how the simple polyamine spermidine can relieve cancer cell defects in autophagy, which trigger oxidative stress-induced cell death and promote liver fibrosis and HCC. We found that the autophagic marker protein LC3 interacted with the microtubule-associated protein MAP1S, which positively regulated autophagy flux in cells. MAP1S stability was regulated in turn by its interaction with the histone deacetylase HDAC4. Notably, MAP1S-deficient mice exhibited a 20% reduction in median survival and developed severe liver fibrosis and HCC under stress. Wild-type mice or cells treated with spermidine exhibited a relative increase in MAP1S stability and autophagy signaling via depletion of cytosolic HDAC4. Extending recent evidence that orally administered spermidine can extend lifespan in mice, we determined that life extension of up to 25% can be produced by lifelong administration, which also reduced liver fibrosis and HCC foci as induced by chemical insults. Genetic investigations established that these observed impacts of oral spermidine administration relied upon MAP1S-mediated autophagy. Our findings offer a preclinical proof of concept for the administration of oral spermidine to prevent liver fibrosis and HCC and potentially extend lifespan. Cancer Res; 77(11); 2938-51. ©2017 AACR.
Collapse
Affiliation(s)
- Fei Yue
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Wenjiao Li
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Jing Zou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Xianhan Jiang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guibin Xu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hai Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Leyuan Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas. .,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
61
|
Philipp O, Hamann A, Osiewacz HD, Koch I. The autophagy interaction network of the aging model Podospora anserina. BMC Bioinformatics 2017; 18:196. [PMID: 28347269 PMCID: PMC5369006 DOI: 10.1186/s12859-017-1603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. RESULTS We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. CONCLUSIONS With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.
Collapse
Affiliation(s)
- Oliver Philipp
- Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics and Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe-University Frankfurt am Main, Robert-Mayer-Str. 11-15, Frankfurt am Main, 60325 Germany
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438 Germany
| | - Andrea Hamann
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438 Germany
| | - Heinz D. Osiewacz
- Molecular Developmental Biology, Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438 Germany
| | - Ina Koch
- Molecular Bioinformatics, Institute of Computer Science, Faculty of Computer Science and Mathematics and Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe-University Frankfurt am Main, Robert-Mayer-Str. 11-15, Frankfurt am Main, 60325 Germany
| |
Collapse
|
62
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
63
|
Zizkova P, Stefek M, Rackova L, Prnova M, Horakova L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem Biol Interact 2017; 265:36-46. [DOI: 10.1016/j.cbi.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
|
64
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
65
|
Ghosh AK, Mau T, O'Brien M, Garg S, Yung R. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging (Albany NY) 2016; 8:2525-2537. [PMID: 27777379 PMCID: PMC5115904 DOI: 10.18632/aging.101083] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 04/20/2023]
Abstract
Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation.
Collapse
Affiliation(s)
- Amiya Kumar Ghosh
- Division of Geriatric- and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theresa Mau
- Division of Geriatric- and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin O'Brien
- Division of Geriatric- and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanjay Garg
- Division of Geriatric- and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Yung
- Division of Geriatric- and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Geriatric Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Health System, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
66
|
Nunes RD, Ventura-Martins G, Moretti DM, Medeiros-Castro P, Rocha-Santos C, Daumas-Filho CRDO, Bittencourt-Cunha PRB, Martins-Cardoso K, Cudischevitch CO, Menna-Barreto RFS, Oliveira JHM, Gusmão DS, Alves Lemos FJ, Alviano DS, Oliveira PL, Lowenberger C, Majerowicz D, Oliveira RM, Mesquita RD, Atella GC, Silva-Neto MAC. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan. PLoS Negl Trop Dis 2016; 10:e0005034. [PMID: 27732590 PMCID: PMC5061323 DOI: 10.1371/journal.pntd.0005034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/10/2016] [Indexed: 12/29/2022] Open
Abstract
Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. The dramatic climate changes currently occurring on our planet may likely influence the biology and the distribution of mosquitoes. Aedes aegypti is a major vector of arboviruses. However, females feed on plants for a few days before feeding on blood for the first time. Plants are sessile and cannot move to search for better environmental conditions. In times of extreme temperatures, drought, or UV radiation plants produce polyphenols that allow plants to survive under such extreme conditions. Polyphenol ingestion by mosquitoes enhances the activity of an enzyme named AMP-activated protein kinase (AMPK). Mosquitoes emerging from pupae leave the aquatic environment and are readily colonized by many bacterial strains. Polyphenol-fed mosquitoes display a huge activation of AMPK which enhances autophagy in the midgut cells that increases the capture and killing of midgut bacteria, thus enhancing vector lifespan. Therefore, early meals on polyphenol sources allow for the regulation of vector microbiota. These data may provide the basis of a novel strategy that promotes bacterial proliferation and a shortening of vector lifespan.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Guilherme Ventura-Martins
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Débora Monteiro Moretti
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Priscilla Medeiros-Castro
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carlucio Rocha-Santos
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carlos Renato de Oliveira Daumas-Filho
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Paula Rego Barros Bittencourt-Cunha
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Martins-Cardoso
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Cecília Oliveira Cudischevitch
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | | | - José Henrique Maia Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Desiely Silva Gusmão
- Laboratório de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Francisco José Alves Lemos
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Daniela Sales Alviano
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Prédio do CCS, Bloco I, Rio de JaneiroRio de Janeiro, Brazil
| | - Pedro Lagerblad Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Melo Oliveira
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Bioinformática, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto Cardoso Silva-Neto
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
67
|
Dakik P, Titorenko VI. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging. Front Genet 2016; 7:177. [PMID: 27729926 PMCID: PMC5037234 DOI: 10.3389/fgene.2016.00177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Studies employing the budding yeast Saccharomyces cerevisiae as a model organism have provided deep insights into molecular mechanisms of cellular and organismal aging in multicellular eukaryotes and have demonstrated that the main features of biological aging are evolutionarily conserved. Aging in S. cerevisiae is studied by measuring replicative or chronological lifespan. Yeast replicative aging is likely to model aging of mitotically competent human cell types, while yeast chronological aging is believed to mimic aging of post-mitotic human cell types. Emergent evidence implies that various organelle-organelle and organelle-cytosol communications play essential roles in chronological aging of S. cerevisiae. The molecular mechanisms underlying the vital roles of intercompartmental communications in yeast chronological aging have begun to emerge. The scope of this review is to critically analyze recent progress in understanding such mechanisms. Our analysis suggests a model for how temporally and spatially coordinated movements of certain metabolites between various cellular compartments impact yeast chronological aging. In our model, diverse changes in these key metabolites are restricted to critical longevity-defining periods of chronological lifespan. In each of these periods, a limited set of proteins responds to such changes of the metabolites by altering the rate and efficiency of a certain cellular process essential for longevity regulation. Spatiotemporal dynamics of alterations in these longevity-defining cellular processes orchestrates the development and maintenance of a pro- or anti-aging cellular pattern.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| | - Vladimir I Titorenko
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| |
Collapse
|
68
|
Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O’Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica MLB, Takata K, Teeling J, Town T, Van Eldik LJ, Russek-Blum N, Monsonego A, Low D, Takata K, Ginhoux F, Town T, O’Banion MK, Lamb B, Colonna M, Landreth G, Andreasson KI, Sandusky LA, Selenica MLB, Lee DC, Holmes C, Teeling J, Lynch MA, Van Eldik LJ, Bachstetter AD, Pekny M, Puschmann T. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016; 138:653-93. [PMID: 27248001 PMCID: PMC5433264 DOI: 10.1111/jnc.13667] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Niva Russek-Blum
- The Dead Sea and Arava Science Center, Central Arava Branch, Yair Station, Hazeva, Israel
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, The Faculty of Health Sciences: The National Institute of Biotechnology in the Negev, and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kazuyuki Takata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Terrence Town
- Departments of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089,
| | - M. Kerry O’Banion
- Departments of Neuroscience and Neurology, Del Monte Neuromedicine Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642,
| | - Bruce Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44106
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University 44106
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Sandusky
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Maj-Linda B. Selenica
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Daniel C. Lee
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Clive Holmes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | - Jessica Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | | | | | | | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Till Puschmann
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
69
|
Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds. Nat Rev Mol Cell Biol 2016; 17:679-690. [PMID: 27552971 DOI: 10.1038/nrm.2016.93] [Citation(s) in RCA: 544] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sirtuins (SIRT1-7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.
Collapse
Affiliation(s)
- Michael S Bonkowski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
70
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
71
|
Duan WJ, Li YF, Liu FL, Deng J, Wu YP, Yuan WL, Tsoi B, Chen JL, Wang Q, Cai SH, Kurihara H, He RR. A SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed peritoneal macrophages and RAW 264.7 macrophages. Free Radic Biol Med 2016; 95:230-42. [PMID: 27021965 DOI: 10.1016/j.freeradbiomed.2016.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/04/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
Abstract
Resveratrol gains a great interest for its strong antioxidant properties, while the molecular mechanisms underlie the beneficial effects on psychosocial stress remain controversial. In this study, we demonstrated that resveratrol protected peritoneal macrophages and RAW 264.7 cells from stress-induced decrease in the total cell count, phagocytic capability, reactive oxygen species generation, monodansylcadaverine and mitochondrial membrane potential in stressed mice. Resveratrol promoted stress-induced autophagy in both models. Modulation of autophagy by rapamycin or 3-methyladenine regulated the protective effect of resveratrol, suggesting a role of autophagy in the protective mechanisms of resveratrol. The comparison studies revealed that distinct mechanisms were implicated in the protective effect of resveratrol and other antioxidants (vitamin C and edaravone). Resveratrol promoted autophagy via upregulating SIRT3 expression and phosphorylation of AMP-activated protein kinase (AMPK). Knockdown of SIRT3 resulted in decreased autophagy and abolished protective effect of resveratrol. SIRT1 was also involved in the protective mechanism of resveratrol, although its effect on autophagy was unnoticeable. Pharmacological manipulation of autophagy modulated the effects of resveratrol on SIRT3 and AMPK, revealing the engagement of a positive feedback loop. In sharp contrast, vitamin C and edaravone effectively protected macrophages from stress-induced cytotoxicity, accompanied by downregulated SIRT3 expression and AMPK phosphorylation, and decreased level of autophagy response. Taken together, we conclude that a SIRT3/AMPK/autophagy network orchestrates in the protective effect of resveratrol in macrophages.
Collapse
Affiliation(s)
- Wen-Jun Duan
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi-Fang Li
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Fang-Lan Liu
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jie Deng
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Wei-Lin Yuan
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Bun Tsoi
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jun-Li Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shao-Hui Cai
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
72
|
Lin CJ, Chen TL, Tseng YY, Wu GJ, Hsieh MH, Lin YW, Chen RM. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol Appl Pharmacol 2016; 304:59-69. [PMID: 27236003 DOI: 10.1016/j.taap.2016.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 12/13/2022]
Abstract
Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ta-Liang Chen
- Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Hui Hsieh
- Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Wei Lin
- Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan; Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
73
|
Resveratrol Attenuates Aβ25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway. Neurochem Res 2016; 41:2367-79. [PMID: 27180189 DOI: 10.1007/s11064-016-1950-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of β-amyloid peptide (Aβ) and loss of neurons. Resveratrol (RSV) is a natural polyphenol that has been found to be beneficial for AD through attenuation of Aβ-induced toxicity in neurons both in vivo and in vitro. However, the specific underlying mechanisms remain unknown. Recently, autophagy was found to protect neurons from toxicity injuries via degradation of impaired proteins and organelles. Therefore, the aim of this study was to determine the role of autophagy in the anti-neurotoxicity effect of RSV in PC12 cells. We found that RSV pretreatment suppressed β-amyloid protein fragment 25-35 (Aβ25-35)-induced decrease in cell viability. Expression of light chain 3-II, degradation of sequestosome 1, and formation of autophagosomes were also upregulated by RSV. Suppression of autophagy by 3-methyladenine abolished the favorable effects of RSV on Aβ25-35-induced neurotoxicity. Furthermore, RSV promoted the expression of sirtuin 1 (SIRT1), auto-poly-ADP-ribosylation of poly (ADP-ribose) polymerase 1 (PARP1), as well as tyrosyl transfer-RNA (tRNA) synthetase (TyrRS). Nevertheless, RSV-mediated autophagy was markedly abolished with the addition of inhibitors of SIRT1 (EX527), nicotinamide phosphoribosyltransferase (STF-118804), PARP1 (AG-14361), as well as SIRT1 and TyrRS small interfering RNA transfection, indicating that the action of RSV on autophagy induction was dependent on TyrRS, PARP1 and SIRT1. In conclusion, RSV attenuated neurotoxicity caused by Aβ25-35 through inducing autophagy in PC12 cells, and the autophagy was partially mediated via activation of the TyrRS-PARP1-SIRT1 signaling pathway.
Collapse
|
74
|
Filippi-Chiela EC, Bueno e Silva MM, Thomé MP, Lenz G. Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 2016; 11:1099-113. [PMID: 25701485 PMCID: PMC4590630 DOI: 10.1080/15548627.2015.1009795] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- AMP-activated
- AO, acridine orange
- BafA1, bafilomycin A1
- CDKN1A/p21, cyclin-dependent kinase inhibitor 1A (p21 Cip1)
- CPD, cumulative population doubling
- DDR, DNA damage response
- DFM, drug-free medium
- DNA damage
- H2AFX, H2A histone family
- MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3 α
- MTOR, mechanistic target of rapamycin
- MTORC1, MTOR complex 1
- NA, nuclear area
- NMA, nuclear morphometric analysis
- PRKAA/AMPKα, protein kinase
- RAPA, rapamycin
- RPTOR/RAPTOR, regulatory-associated protein of MTOR
- SA-β-gal, senescence associated β-galactosidase assay
- SQSTM1/p62, sequestosome 1
- TMZ, temozolomide
- autophagy
- cP1-4, cellular population 1 to 4
- complex 1
- member X
- nP1–5, nuclear population 1 to 5
- senescence
- single cell
- temozolomide
Collapse
|
75
|
Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 2016. [PMID: 25701485 DOI: 10.0180/15548627.2015.1009795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- AMP-activated
- AO, acridine orange
- BafA1, bafilomycin A1
- CDKN1A/p21, cyclin-dependent kinase inhibitor 1A (p21 Cip1)
- CPD, cumulative population doubling
- DDR, DNA damage response
- DFM, drug-free medium
- DNA damage
- H2AFX, H2A histone family
- MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3 α
- MTOR, mechanistic target of rapamycin
- MTORC1, MTOR complex 1
- NA, nuclear area
- NMA, nuclear morphometric analysis
- PRKAA/AMPKα, protein kinase
- RAPA, rapamycin
- RPTOR/RAPTOR, regulatory-associated protein of MTOR
- SA-β-gal, senescence associated β-galactosidase assay
- SQSTM1/p62, sequestosome 1
- TMZ, temozolomide
- autophagy
- cP1-4, cellular population 1 to 4
- complex 1
- member X
- nP1–5, nuclear population 1 to 5
- senescence
- single cell
- temozolomide
Collapse
|
76
|
Macrophage Migration Inhibitory Factor (MIF) Deficiency Exacerbates Aging-Induced Cardiac Remodeling and Dysfunction Despite Improved Inflammation: Role of Autophagy Regulation. Sci Rep 2016; 6:22488. [PMID: 26940544 PMCID: PMC4778027 DOI: 10.1038/srep22488] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca2+ properties were examined in young (3–4 mo) or old (24 mo) wild type and MIF knockout (MIF−/−) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF−/− mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.
Collapse
|
77
|
Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy. J Neurosci 2016; 35:14842-60. [PMID: 26538654 DOI: 10.1523/jneurosci.3959-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.
Collapse
|
78
|
Guerreiro JF, Sampaio-Marques B, Soares R, Coelho AV, Leão C, Ludovico P, Sá-Correia I. Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain. MICROBIAL CELL 2016; 3:65-78. [PMID: 28357336 PMCID: PMC5349105 DOI: 10.15698/mic2016.02.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Very high concentrations of acetic acid at low pH induce programmed cell death
(PCD) in both the experimental model Saccharomyces cerevisiae
and in Zygosaccharomyces bailii, the latter being considered
the most problematic acidic food spoilage yeast due to its remarkable intrinsic
resistance to this food preservative. However, while the mechanisms underlying
S. cerevisiae PCD induced by acetic acid have been
previously examined, the corresponding molecular players remain largely unknown
in Z. bailii. Also, the reason why acetic acid concentrations
known to be necrotic for S. cerevisiae induce PCD with an
apoptotic phenotype in Z. bailii remains to be elucidated. In
this study, a 2-DE-based expression mitochondrial proteomic analysis was
explored to obtain new insights into the mechanisms involved in PCD in the
Z. bailii derived hybrid strain ISA1307. This allowed the
quantitative assessment of expression of protein species derived from each of
the parental strains, with special emphasis on the processes taking place in the
mitochondria known to play a key role in acetic acid - induced PCD. A marked
decrease in the content of proteins involved in mitochondrial metabolism, in
particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a
concomitant increase in the abundance of proteins involved in fermentation
(Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified
proteins also suggest the involvement of the oxidative stress response, protein
translation, amino acid and nucleotide metabolism, among other processes, in the
PCD response. Overall, the results strengthen the emerging concept of the
importance of metabolic regulation of yeast PCD.
Collapse
Affiliation(s)
- Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Cecília Leão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
79
|
Abstract
Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as physiological regulators of autophagy in relation to cellular and organismal growth, survival, and aging.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | |
Collapse
|
80
|
Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins. Sci Rep 2015; 5:17199. [PMID: 26598009 PMCID: PMC4657008 DOI: 10.1038/srep17199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.
Collapse
|
81
|
Abstract
AbstractEnergy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.
Collapse
|
82
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
83
|
Enot DP, Niso-Santano M, Durand S, Chery A, Pietrocola F, Vacchelli E, Madeo F, Galluzzi L, Kroemer G. Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. Cell Cycle 2015; 14:2399-407. [PMID: 26098646 DOI: 10.1080/15384101.2015.1064206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recently, we reported that saturated and unsaturated fatty acids trigger autophagy through distinct signal transduction pathways. Saturated fatty acids like palmitate (PA) induce autophagic responses that rely on phosphatidylinositol 3-kinase, catalytic subunit type 3 (PIK3C3, best known as VPS34) and beclin 1 (BECN1). Conversely, unsaturated fatty acids like oleate (OL) promote non-canonical, PIK3C3- and BECN1-independent autophagy. Here, we explored the metabolic effects of autophagy-inducing doses of PA and OL in mice. Mass spectrometry coupled to principal component analysis revealed that PA and OL induce well distinguishable changes in circulating metabolites as well as in the metabolic profile of the liver, heart, and skeletal muscle. Importantly, PA (but not OL) causes the depletion of multiple autophagy-inhibitory amino acids in the liver. Conversely, OL (but not PA) increased the hepatic levels of nicotinamide adenine dinucleotide (NAD), an obligate co-factor for autophagy-stimulatory enzymes of the sirtuin family. Moreover, PA (but not OL) raised the concentrations of acyl-carnitines in the heart, a phenomenon that perhaps is linked to its cardiotoxicity. PA also depleted the liver from spermine and spermidine, 2 polyamines have been ascribed with lifespan-extending activity. The metabolic changes imposed by unsaturated and saturated fatty acids may contribute to their health-promoting and health-deteriorating effects, respectively.
Collapse
Affiliation(s)
- David P Enot
- a Equipe 11 labellisée Ligue contre le Cancer; Centre de Recherche des Cordeliers ; Paris , France
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Bhullar KS, Hubbard BP. Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1209-18. [PMID: 25640851 DOI: 10.1016/j.bbadis.2015.01.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/02/2023]
Abstract
A number of small molecules with the ability to extend the lifespan of multiple organisms have recently been discovered. Resveratrol, amongst the most prominent of these, has gained widespread attention due to its ability to extend the lifespan of yeast, worms, and flies, and its ability to protect against age-related diseases such as cancer, Alzheimer's, and diabetes in mammals. In this review, we discuss the origins and molecular targets of resveratrol and provide an overview of its effects on the lifespan of simple model organisms and mammals. We also examine the unique ability of resveratrol to extend the healthy years, or healthspan, of mammals and its potential to counteract the symptoms of age-related disease. Finally, we explore the many scientific, medical, and economic challenges faced when translating these findings to the clinic, and examine potential approaches for realizing the possibility of human lifespan extension. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
85
|
Abstract
Defects in autophagy have been linked to a wide range of medical illnesses, including cancer as well as infectious, neurodegenerative, inflammatory, and metabolic diseases. These observations have led to the hypothesis that autophagy inducers may prevent or treat certain clinical conditions. Lifestyle and nutritional factors, such as exercise and caloric restriction, may exert their known health benefits through the autophagy pathway. Several currently available FDA-approved drugs have been shown to enhance autophagy, and this autophagy-enhancing action may be repurposed for use in novel clinical indications. The development of new drugs that are designed to be more selective inducers of autophagy function in target organs is expected to maximize clinical benefits while minimizing toxicity. This Review summarizes the rationale and current approaches for developing autophagy inducers in medicine, the factors to be considered in defining disease targets for such therapy, and the potential benefits of such treatment for human health.
Collapse
|
86
|
Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino Acids 2014; 47:469-81. [PMID: 25471600 DOI: 10.1007/s00726-014-1879-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
Abstract
The polyamines spermidine and spermine, and their precursor putrescine, have been shown to play an important role in cell migration, proliferation, and differentiation. Because of their polycationic property, polyamines are traditionally thought to be involved in DNA replication, gene expression, and protein translation. However, polyamines can also be covalently conjugated to proteins by transglutaminase 2 (TG2). This modification leads to an increase in positive charge in the polyamine-incorporated region which significantly alters the structure of proteins. It is anticipated that protein polyamine conjugation may affect the protein-protein interaction, protein localization, and protein function of the TG2 substrates. In order to investigate the roles of polyamine modification, we synthesized a spermine-conjugated antigen and generated an antiserum against spermine. In vitro TG2-catalyzed spermine incorporation assays were carried out to show that actin, tubulins, heat shock protein 70 and five types of histone proteins were modified with spermine, and modification sites were also identified by liquid chromatography and linear ion trap-orbitrap hybrid mass spectrometry. Subsequent mass spectrometry-based shotgun proteomic analysis also identified 254 polyaminated sites in 233 proteins from the HeLa cell lysate catalyzed by human TG2 with spermine, thus allowing, for the first time, a global appraisal of site-specific protein polyamination. Global analysis of mouse tissues showed that this modification really exists in vivo. Importantly, we have demonstrated that there is a new histone modification, polyamination, in cells. However, the functional significance of histone polyamination demands further investigations.
Collapse
|
87
|
Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, Watson AS, Cerundolo V, Townsend AR, Klenerman P, Simon AK. Autophagy is a critical regulator of memory CD8(+) T cell formation. eLife 2014; 3. [PMID: 25385531 PMCID: PMC4225493 DOI: 10.7554/elife.03706] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
During infection, CD8+ T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8+ T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8+ T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8+ T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8+ T cells from aged mice. We could rejuvenate CD8+ T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8+ T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity. DOI:http://dx.doi.org/10.7554/eLife.03706.001 In the face of an infection, the immune system mounts an aggressive response by producing many copies of killer immune cells called CD8+ T cells that recognize and destroy any cells infected with the invading pathogen. The number of killer cells produced depends on the extent of the infection. Once the infection has been brought under control, most of the CD8+ T cells die off. The small numbers that are retained—called memory cells—‘remember’ the pathogen, so that if it invades the body again, they can help the immune system to respond more quickly and effectively. Memory cells are also critical to the effectiveness of vaccines, many of which introduce a dead or weakened pathogen into the body. This does not cause an infection, but does allow the immune system to create memory cells that are able to fend off the same pathogen in the future. However, vaccines only work in individuals that are able to produce and maintain memory cells, which many older people are less able to do. An important system that maintains cells, called autophagy, destroys and removes the ‘junk’ and toxic by products that all cells accumulate over time as a result of normal cell functions. Without autophagy, cells become less able to produce energy and they may die. Puleston et al. show that autophagy begins to fail in old mice, which prevents the formation of a proper memory response. In addition, mice that lack an important gene needed for autophagy are unable to produce memory cells after being infected with viruses such as influenza. Puleston et al. found that boosting autophagy in older mice using a chemical called spermidine—which is also found naturally in many tissues—helped to restore the mice's ability to create and maintain memory cells. Spermidine-treated mice developed a stronger immunity to influenza after vaccination compared with other mice of a similar age. Further research is required to better understand how spermidine works to see if it could be developed into a drug that safely boosts the immune system of humans. DOI:http://dx.doi.org/10.7554/eLife.03706.002
Collapse
Affiliation(s)
- Daniel J Puleston
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hanlin Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy J Powell
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Elina Lipina
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stuart Sims
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Isabel Panse
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander S Watson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alain Rm Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
88
|
Abstract
During the past two decades, several interventions have been shown to increase the healthy lifespan of model organisms as evolutionarily distant from each other as yeast, worms, flies and mammals. These anti-aging maneuvers include (but are not limited to) cycles of caloric restriction, physical exercise as well as the administration of multiple, chemically unrelated agents, such as resveratrol, spermidine and various rapamycin-like compounds collectively known as rapalogs. Most, if not all, lifespan-extending agents promote macroautophagy (hereafter referred to as autophagy), an evolutionarily old mechanism that contributes to the maintenance of intracellular homeostasis and plays a critical role in the adaptive response of cells to stress. In line with this notion, the activation of autophagy appears to mediate significant anti-ageing effects in several organisms, including mice. Here, we focus on rapalogs to discuss the possibility that part of the beneficial activity of lifespan-extending agents stems from their ability to exert immunostimulatory effects. Accumulating evidence indicates indeed that the immune system can recognize and eliminate not only cells that are prone to undergo malignant transformation, but also senescent cells, thus playing a significant role in the control of organismal aging. In addition, it has recently become clear that rapamycin and other rapalogs, which for a long time have been viewed (and used in the clinic) as pure immunosuppressants, can mediate robust immunostimulatory functions, at least in some circumstances.
Collapse
|
89
|
New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:210934. [PMID: 25132912 PMCID: PMC4124219 DOI: 10.1155/2014/210934] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The heart is highly sensitive to the aging process. In the elderly, the heart tends to become hypertrophic and fibrotic. Stiffness increases with ensuing systolic and diastolic dysfunction. Aging also affects the cardiac response to stress. At the molecular level, the aging process is associated with accumulation of damaged proteins and organelles, partially due to defects in protein quality control systems. The accumulation of dysfunctional and abnormal mitochondria is an important pathophysiological feature of the aging process, which is associated with excessive production of reactive oxygen species. Mitochondrial fusion and fission and mitochondrial autophagy are crucial mechanisms for maintaining mitochondrial function and preserving energy production. In particular, mitochondrial fission allows for selective segregation of damaged mitochondria, which are afterward eliminated by autophagy. Unfortunately, recent evidence indicates that mitochondrial dynamics and autophagy are progressively impaired over time, contributing to the aging process. This suggests that restoration of these mechanisms could delay organ senescence and prevent age-associated cardiac diseases. Here, we discuss the current understanding of the close relationship between mitochondrial dynamics, mitophagy, oxidative stress, and aging, with a particular focus on the heart.
Collapse
|
90
|
Minois N, Rockenfeller P, Smith TK, Carmona-Gutierrez D. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PLoS One 2014; 9:e102435. [PMID: 25010732 PMCID: PMC4092136 DOI: 10.1371/journal.pone.0102435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water increases life span and stress resistance in several model organisms. In this work, we expand spermidine's range of age-related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine's mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces autophagy. Here, we suggest that the molecular targets of spermidine also include lipid metabolism: Spermidine-fed flies contain more triglycerides and show altered fatty acid and phospholipid profiles. We further determine that most of these metabolic changes are regulated through autophagy. Collectively, our data suggests an additional and novel lipid-mediated mechanism of action for spermidine-induced autophagy.
Collapse
Affiliation(s)
- Nadège Minois
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| | | |
Collapse
|
91
|
WANG YAO, XU KUN, ZHANG HONGBING, ZHAO JUNHONG, ZHU XIUPING, WANG YANGZHENG, WU RENYI. Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: A brief literature review presenting a novel hypothesis in glaucoma pathology. Mol Med Rep 2014; 10:1179-83. [DOI: 10.3892/mmr.2014.2346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/13/2014] [Indexed: 11/06/2022] Open
|
92
|
Arlia-Ciommo A, Leonov A, Piano A, Svistkova V, Titorenko VI. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:163-178. [PMID: 28357241 PMCID: PMC5354559 DOI: 10.15698/mic2014.06.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A body of evidence supports the view that the signaling pathways governing
cellular aging - as well as mechanisms of their modulation by
longevity-extending genetic, dietary and pharmacological interventions - are
conserved across species. The scope of this review is to critically analyze
recent advances in our understanding of cell-autonomous mechanisms of
chronological aging in the budding yeast Saccharomyces
cerevisiae. Based on our analysis, we propose a concept of a
biomolecular network underlying the chronology of cellular aging in yeast. The
concept posits that such network progresses through a series of lifespan
checkpoints. At each of these checkpoints, the intracellular concentrations of
some key intermediates and products of certain metabolic pathways - as well as
the rates of coordinated flow of such metabolites within an intricate network of
intercompartmental communications - are monitored by some checkpoint-specific
ʺmaster regulatorʺ proteins. The concept envisions that a synergistic action of
these master regulator proteins at certain early-life and late-life checkpoints
modulates the rates and efficiencies of progression of such processes as cell
metabolism, growth, proliferation, stress resistance, macromolecular
homeostasis, survival and death. The concept predicts that, by modulating these
vital cellular processes throughout lifespan (i.e., prior to an arrest of cell
growth and division, and following such arrest), the checkpoint-specific master
regulator proteins orchestrate the development and maintenance of a pro- or
anti-aging cellular pattern and, thus, define longevity of chronologically aging
yeast.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
93
|
Uchida D, Shiraha H, Kato H, Nagahara T, Iwamuro M, Kataoka J, Horiguchi S, Watanabe M, Takaki A, Nouso K, Nasu Y, Yagi T, Kumon H, Yamamoto K. Potential of adenovirus-mediated REIC/Dkk-3 gene therapy for use in the treatment of pancreatic cancer. J Gastroenterol Hepatol 2014; 29:973-83. [PMID: 24372695 DOI: 10.1111/jgh.12501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM The reduced expression in immortalized cells REIC/the dickkopf 3 (Dkk-3) gene, tumor suppressor gene, is downregulated in various malignant tumors. In a prostate cancer study, an adenovirus vector carrying the REIC/Dkk-3 gene (Ad-REIC) induces apoptosis. In the current study, we examined the effects of REIC/Dkk-3 gene therapy in pancreatic cancer. METHODS REIC/Dkk-3 expression was assessed by immunoblotting and immunohistochemistry in the pancreatic cancer cell lines (ASPC1, MIAPaCa2, Panc1, BxPC3, SUIT-2, KLM1, and T3M4) and pancreatic cancer tissues. The Ad-REIC agent was used to investigate the apoptotic effect in vitro and antitumor effects in vivo. We also assessed the therapeutic effects of Ad-REIC therapy with gemcitabine. RESULTS The REIC/Dkk-3 expression was lost in the pancreatic cancer cell lines and decreased in pancreatic cancer tissues. Ad-REIC induced apoptosis and inhibited cell growth in the ASPC1 and MIAPaCa2 lines in vitro, and Ad-REIC inhibited tumor growth in the mouse xenograft model using ASPC1 cells. The antitumor effect was further enhanced in combination with gemcitabine. This synergistic effect may be caused by the suppression of autophagy via the enhancement of mammalian target of rapamycin signaling. CONCLUSIONS Ad-REIC induces apoptosis and inhibits tumor growth in pancreatic cancer cell lines. REIC/Dkk-3 gene therapy is an attractive therapeutic tool for pancreatic cancer.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Sampaio-Marques B, Burhans WC, Ludovico P. Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. MICROBIAL CELL 2014; 1:118-127. [PMID: 28357232 PMCID: PMC5349200 DOI: 10.15698/mic2014.04.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ageing is a complex and multi-factorial process that results in the progressive
accumulation of molecular alterations that disrupt different cellular functions.
The budding yeast Saccharomyces cerevisiae is an important
model organism that has significantly contributed to the identification of
conserved molecular and cellular determinants of ageing. The nutrient-sensing
pathways are well-recognized modulators of longevity from yeast to mammals, but
their downstream effectors and outcomes on different features of ageing process
are still poorly understood. A hypothesis that is attracting increased interest
is that one of the major functions of these “longevity pathways” is to
contribute to the maintenance of the proteome during ageing. In support of this
hypothesis, evidence shows that TOR/Sch9 and Ras/PKA pathways are important
regulators of autophagy that in turn are essential for healthy cellular ageing.
It is also well known that mitochondria homeostasis and function regulate
lifespan, but how mitochondrial dynamics, mitophagy and biogenesis are regulated
during ageing remains to be elucidated. This review describes recent findings
that shed light on how longevity pathways and metabolic status impact
maintenance of the proteome in both yeast ageing paradigms. These findings
demonstrate that yeast remain a powerful model system for elucidating these
relationships and their influence on ageing regulation.
Collapse
Affiliation(s)
- Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - William C Burhans
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
95
|
Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, Fischer JW, Kalfalah F, Reinke H, Reifenberger G, Stühler K, Ventura N, Gundermann S, Boukamp P, Boege F. The hallmarks of fibroblast ageing. Mech Ageing Dev 2014; 138:26-44. [PMID: 24686308 DOI: 10.1016/j.mad.2014.03.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/26/2022]
Abstract
Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades.
Collapse
Affiliation(s)
- Julia Tigges
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Jean Krutmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Judith Haendeler
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Heiner Schaal
- Center for Microbiology and Virology, Institute of Virology, Heinrich-Heine-University, Med. Faculty, D-40225 Düsseldorf, Germany
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Faiza Kalfalah
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Hans Reinke
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany; Molecular Proteomics Laboratory, Centre for Biological and Medical Research (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | | | - Petra Boukamp
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
96
|
Darzynkiewicz Z, Zhao H, Halicka HD, Li J, Lee YS, Hsieh TC, Wu JM. In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry. Cytometry A 2014; 85:386-99. [PMID: 24677687 DOI: 10.1002/cyto.a.22452] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
Abstract
This review presents the evidence in support of the IGF-1/mTOR/S6K1 signaling as the primary factor contributing to aging and cellular senescence. Reviewed are also specific interactions between mTOR/S6K1 and ROS-DNA damage signaling pathways. Outlined are critical sites along these pathways, including autophagy, as targets for potential antiaging (gero-suppressive) and/or chemopreventive agents. Presented are applications of flow- and laser scanning- cytometry utilizing phospho-specific Abs, to monitor activation along these pathways in response to the reported antiaging drugs rapamycin, metformin, berberine, resveratrol, vitamin D3, 2-deoxyglucose, and acetylsalicylic acid. Specifically, effectiveness of these agents to attenuate the level of constitutive mTOR signaling was tested by cytometry and confirmed by Western blotting through measuring phosphorylation of the mTOR-downstream targets including ribosomal protein S6. The ratiometric analysis of phosphorylated to total protein along the mTOR pathway offers a useful parameter reporting the effects of gero-suppressive agents. In parallel, their ability to suppress the level of constitutive DNA damage signaling induced by endogenous ROS was measured. While the primary target of each of these agents may be different the data obtained on several human cancer cell lines, WI-38 fibroblasts and normal lymphocytes suggest common downstream mechanism in which the decline in mTOR/S6K1 signaling and translation rate is coupled with a reduction of oxidative phosphorylation and ROS that leads to decreased oxidative DNA damage. The combined assessment of constitutive γH2AX expression, mitochondrial activity (ROS, ΔΨm), and mTOR signaling provides an adequate gamut of cell responses to test effectiveness of gero-suppressive agents. Described is also an in vitro model of induction of cellular senescence by persistent replication stress, its quantitative analysis by laser scanning cytometry, and application to detect the property of the studied agents to attenuate the induction of senescence. Discussed is cytometric analysis of cell size and heterogeneity of size as a potential biomarker used to asses gero-suppressive agents and longevity.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York, 10595
| | | | | | | | | | | | | |
Collapse
|
97
|
Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep 2014; 30:1412-37. [PMID: 24056714 DOI: 10.1039/c3np70031c] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ageing is a complex molecular process driven by diverse molecular pathways and biochemical events that are promoted by both environmental and genetic factors. Specifically, ageing is defined as a time-dependent decline of functional capacity and stress resistance, associated with increased chance of morbidity and mortality. These effects relate to age-related gradual accumulation of stressors that result in increasingly damaged biomolecules which eventually compromise cellular homeostasis. Nevertheless, the findings that genetic or diet interventions can increase lifespan in evolutionarily diverse organisms indicate that mortality can be postponed. Natural compounds represent an extraordinary inventory of high diversity structural scaffolds that can offer promising candidate chemical entities in the major healthcare challenge of increasing health span and/or delaying ageing. Herein, those natural compounds (either pure forms or extracts) that have been found to delay cellular senescence or in vivo ageing will be critically reviewed and summarized according to affected cellular signalling pathways. Moreover, the chemical structures of the identified natural compounds along with the profile of extracts related to their bioactive components will be presented and discussed. Finally, novel potential molecular targets for screening natural compounds for anti-ageing activity, as well as the idea that anti-ageing interventions represent a systemic approach that is also effective against age-related diseases will be discussed.
Collapse
Affiliation(s)
- Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | | | | | | |
Collapse
|
98
|
Breitenbach M, Rinnerthaler M, Hartl J, Stincone A, Vowinckel J, Breitenbach-Koller H, Ralser M. Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res 2014; 14:198-212. [PMID: 24373480 DOI: 10.1111/1567-1364.12134] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are responsible for a series of metabolic functions. Superoxide leakage from the respiratory chain and the resulting cascade of reactive oxygen species-induced damage, as well as mitochondrial metabolism in programmed cell death, have been intensively studied during ageing in single-cellular and higher organisms. Changes in mitochondrial physiology and metabolism resulting in ROS are thus considered to be hallmarks of ageing. In this review, we address 'other' metabolic activities of mitochondria, carbon metabolism (the TCA cycle and related underground metabolism), the synthesis of Fe/S clusters and the metabolic consequences of mitophagy. These important mitochondrial activities are hitherto less well-studied in the context of cellular and organismic ageing. In budding yeast, they strongly influence replicative, chronological and hibernating lifespan, connecting the diverse ageing phenotypes studied in this single-cellular model organism. Moreover, there is evidence that similar processes equally contribute to ageing of higher organisms as well. In this scenario, increasing loss of metabolic integrity would be one driving force that contributes to the ageing process. Understanding mitochondrial metabolism may thus be required for achieving a unifying theory of eukaryotic ageing.
Collapse
|
99
|
Barrajón-Catalán E, Herranz-López M, Joven J, Segura-Carretero A, Alonso-Villaverde C, Menéndez JA, Micol V. Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:141-59. [PMID: 25038998 DOI: 10.1007/978-3-319-07320-0_11] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of plant-derived polyphenols for the management of diseases has been under debate in the last decades. Most studies have focused on the specific effects of polyphenols on particular targets, while ignoring their pleiotropic character. The multitargeted character of polyphenols, a plausible consequence of their molecular promiscuity, may suppose an opportunity to fight multifactorial diseases. Therefore, a wider perspective is urgently needed to elucidate whether their rational use as bioactive food components may be valid for the management of diseases. In this chapter, we discuss the most likely targets of polyphenols that may account for their salutary effects from a global perspective. Among these targets, the modulation of signalling and energy-sensitive pathways, oxidative stress and inflammation-related processes, mitochondrial functionality, epigenetic machinery, histone acetylation and membrane-dependent processes play central roles in polyphenols' mechanisms of action.Sufficient evidence on polyphenols has accumulated for them to be considered a serious option for the management of non-communicable diseases, such as cancer and obesity, as well as infectious diseases. The remaining unresolved issues that must be seriously addressed are their bioavailability, metabolite detection, specific molecular targets, interactions and toxicity. The Xenohormesis hypothesis, which postulates that polyphenols are the product of plant evolutive adaptation to stress and conferee their resistance to mammals, offers a reasonable explanation to justify the beneficial and non-toxic effects of plant mixtures, but do not fully meet expectations. Hence, future research must be supported by the use of complex polypharmacology approaches and synergic studies focused on the understanding of the pleiotropic effects of polyphenols. Revisiting polyphenol mechanisms of action with the help of these techniques may allow for the improvement of human health and wellness by using intelligent nutritional intervention.
Collapse
Affiliation(s)
- Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Avenida de la Universidad s/n, Elche, Alicante, E-03202, Spain,
| | | | | | | | | | | | | |
Collapse
|
100
|
Vitale N, Kisslinger A, Paladino S, Procaccini C, Matarese G, Pierantoni GM, Mancini FP, Tramontano D. Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells. PLoS One 2013; 8:e80728. [PMID: 24260465 PMCID: PMC3834311 DOI: 10.1371/journal.pone.0080728] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
UVB radiation causes about 90% of non-melanoma skin cancers by damaging DNA either directly or indirectly by increasing levels of reactive oxygen species (ROS). Skin, chronically exposed to both endogenous and environmental pro-oxidant agents, contains a well-organised system of chemical and enzymatic antioxidants. However, increased or prolonged free radical action can overwhelm ROS defence mechanisms, contributing to the development of cutaneous diseases. Thus, new strategies for skin protection comprise the use of food antioxidants to counteract oxidative stress. Resveratrol, a phytoalexin from grape, has gained a great interest for its ability to influence several biological mechanisms like redox balance, cell proliferation, signal transduction pathways, immune and inflammatory response. Therefore, the potential of resveratrol to modify skin cell response to UVB exposure could turn out to be a useful option to protect skin from sunlight-induced degenerative diseases. To investigate into this matter, HaCaT cells, a largely used model for human skin keratinocytes, were treated with 25 or 100 µM resveratrol for 2 and 24 hours prior to UVB irradiation (10 to 100 mJ/cm2). Cell viability and molecular markers of proliferation, oxidative stress, apoptosis, and autophagy were analyzed. In HaCaT cells resveratrol pretreatment: reduces UVB-induced ROS formation, enhances the detrimental effect of UVB on HaCaT cell vitality, increases UVB-induced caspase 8, PARP cleavage, and induces autophagy. These findings suggest that resveratrol could exert photochemopreventive effects by enhancing UVB-induced apoptosis and by inducing autophagy, thus reducing the odds that damaged cells could escape programmed cell death and initiate malignant transformation.
Collapse
Affiliation(s)
- Nicoletta Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Claudio Procaccini
- Institute of Oncology and Experimental Endocrinology, CNR, Naples, Italy
| | - Giuseppe Matarese
- Department of Medicine and Surgery, University of Salerno, Baronissi Campus, Salerno, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|