51
|
Ricci G, Minsker K, Kapish A, Osborn J, Ha S, Davide J, Califano JP, Sehlin D, Rustandi RR, Dick LW, Vlasak J, Culp TD, Baudy A, Bell E, Mukherjee M. Flow virometry for process monitoring of live virus vaccines-lessons learned from ERVEBO. Sci Rep 2021; 11:7432. [PMID: 33795759 PMCID: PMC8016999 DOI: 10.1038/s41598-021-86688-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Direct at line monitoring of live virus particles in commercial manufacturing of vaccines is challenging due to their small size. Detection of malformed or damaged virions with reduced potency is rate-limited by release potency assays with long turnaround times. Thus, preempting batch failures caused by out of specification potency results is almost impossible. Much needed are in-process tools that can monitor and detect compromised viral particles in live-virus vaccines (LVVs) manufacturing based on changes in their biophysical properties to provide timely measures to rectify process stresses leading to such damage. Using ERVEBO, MSD's Ebola virus vaccine as an example, here we describe a flow virometry assay that can quickly detect damaged virus particles and provide mechanistic insight into process parameters contributing to the damage. Furthermore, we describe a 24-h high throughput infectivity assay that can be used to correlate damaged particles directly to loss in viral infectivity (potency) in-process. Collectively, we provide a set of innovative tools to enable rapid process development, process monitoring, and control strategy implementation in large scale LVV manufacturing.
Collapse
Affiliation(s)
- Geoffri Ricci
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Kevin Minsker
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Austin Kapish
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - James Osborn
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Sha Ha
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Joseph Davide
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Joseph P Califano
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Darrell Sehlin
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Richard R Rustandi
- Vaccines Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Lawrence W Dick
- Vaccines Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Josef Vlasak
- Vaccines Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Timothy D Culp
- Vaccines Process Development, Merck & Co., Inc., West Point, PA, USA
| | - Andreas Baudy
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, PA, USA
| | - Edward Bell
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA
| | - Malini Mukherjee
- Vaccines Process Development and Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, WP 42-3, West Point, PA, 19486, USA.
| |
Collapse
|
52
|
Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Rep 2021; 35:108984. [PMID: 33852862 PMCID: PMC8133395 DOI: 10.1016/j.celrep.2021.108984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Antibodies that target the glycan cap epitope on the ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization are not well understood. Here, we present cryoelectron microscopy (cryo-EM) structures of diverse glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLDs) to the glycan cap, which we call the MLD anchor and cradle. Antibodies that bind to the MLD cradle share common features, including use of IGHV1–69 and IGHJ6 germline genes, which exploit hydrophobic residues and form β-hairpin structures to mimic the MLD anchor, disrupt MLD attachment, destabilize GP quaternary structure, and block cleavage events required for receptor binding. Our results provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies. A rare subset of ebolavirus antibodies targeting the glycan cap are broadly neutralizing. Murin et al. report cryo-EM structures and custom in vitro assays identifying a conserved site of vulnerability in the glycan cap and detail mechanisms of action, including structural mimicry, trimer instability, and blocking cleavage.
Collapse
|
53
|
Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA, Arasu MV, Yatoo MI, Tiwari R, Dhama K. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules 2021; 26:1775. [PMID: 33809963 PMCID: PMC8004635 DOI: 10.3390/molecules26061775] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.
Collapse
Affiliation(s)
- Arumugam Vijaya Anand
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | | | - Mohandass Kaviya
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Kathirvel Bharathi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Aluru Parithathvi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Meyyazhagan Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India;
| | - Nachiappan Senthilkumar
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Cowley Brown Road, RS Puram, Coimbatore 641002, India;
| | | | | | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
- Xavier Research Foundation, St. Xavier’s College, Palayamkottai, Thirunelveli 627002, India
| | - Mohammad Iqbal Yatoo
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190006, India;
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
54
|
Zhao Z, Qin P, Huang YW. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium 2021; 94:102360. [PMID: 33516131 PMCID: PMC7825922 DOI: 10.1016/j.ceca.2021.102360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pan Qin
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
55
|
Lu M. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Viruses 2021; 13:v13020332. [PMID: 33669922 PMCID: PMC7924862 DOI: 10.3390/v13020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
As a major surface glycoprotein of enveloped viruses, the virus spike protein is a primary target for vaccines and anti-viral treatments. Current vaccines aiming at controlling the COVID-19 pandemic are mostly directed against the SARS-CoV-2 spike protein. To promote virus entry and facilitate immune evasion, spikes must be dynamic. Interactions with host receptors and coreceptors trigger a cascade of conformational changes/structural rearrangements in spikes, which bring virus and host membranes in proximity for membrane fusion required for virus entry. Spike-mediated viral membrane fusion is a dynamic, multi-step process, and understanding the structure–function-dynamics paradigm of virus spikes is essential to elucidate viral membrane fusion, with the ultimate goal of interventions. However, our understanding of this process primarily relies on individual structural snapshots of endpoints. How these endpoints are connected in a time-resolved manner, and the order and frequency of conformational events underlying virus entry, remain largely elusive. Single-molecule Förster resonance energy transfer (smFRET) has provided a powerful platform to connect structure–function in motion, revealing dynamic aspects of spikes for several viruses: SARS-CoV-2, HIV-1, influenza, and Ebola. This review focuses on how smFRET imaging has advanced our understanding of virus spikes’ dynamic nature, receptor-binding events, and mechanism of antibody neutralization, thereby informing therapeutic interventions.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
56
|
Longet S, Mellors J, Carroll MW, Tipton T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front Immunol 2021; 11:599568. [PMID: 33679690 PMCID: PMC7935512 DOI: 10.3389/fimmu.2020.599568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
Ebola viruses are enveloped, single-stranded RNA viruses belonging to the Filoviridae family and can cause Ebola virus disease (EVD), a serious haemorrhagic illness with up to 90% mortality. The disease was first detected in Zaire (currently the Democratic Republic of Congo) in 1976. Since its discovery, Ebola virus has caused sporadic outbreaks in Africa and was responsible for the largest 2013-2016 EVD epidemic in West Africa, which resulted in more than 28,600 cases and over 11,300 deaths. This epidemic strengthened international scientific efforts to contain the virus and develop therapeutics and vaccines. Immunology studies in animal models and survivors, as well as clinical trials have been crucial to understand Ebola virus pathogenesis and host immune responses, which has supported vaccine development. This review discusses the major findings that have emerged from animal models, studies in survivors and vaccine clinical trials and explains how these investigations have helped in the search for a correlate of protection.
Collapse
Affiliation(s)
- Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles W. Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
57
|
Schafer A, Xiong R, Cooper L, Nowar R, Lee H, Li Y, Ramirez BE, Peet NP, Caffrey M, Thatcher GRJ, Saphire EO, Cheng H, Rong L. Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathog 2021; 17:e1009312. [PMID: 33539432 PMCID: PMC7888603 DOI: 10.1371/journal.ppat.1009312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.
Collapse
Affiliation(s)
- Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Raghad Nowar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Biophysics core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Benjamin E Ramirez
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America.,NMR Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois, United States of America
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
58
|
Peryea T, Southall N, Miller M, Katzel D, Anderson N, Neyra J, Stemann S, Nguyễn ÐT, Amugoda D, Newatia A, Ghazzaoui R, Johanson E, Diederik H, Callahan L, Switzer F. Global Substance Registration System: consistent scientific descriptions for substances related to health. Nucleic Acids Res 2021; 49:D1179-D1185. [PMID: 33137173 DOI: 10.1093/nar/gkaa962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
The US Food and Drug Administration (FDA) and the National Center for Advancing Translational Sciences (NCATS) have collaborated to publish rigorous scientific descriptions of substances relevant to regulated products. The FDA has adopted the global ISO 11238 data standard for the identification of substances in medicinal products and has populated a database to organize the agency's regulatory submissions and marketed products data. NCATS has worked with FDA to develop the Global Substance Registration System (GSRS) and produce a non-proprietary version of the database for public benefit. In 2019, more than half of all new drugs in clinical development were proteins, nucleic acid therapeutics, polymer products, structurally diverse natural products or cellular therapies. While multiple databases of small molecule chemical structures are available, this resource is unique in its application of regulatory standards for the identification of medicinal substances and its robust support for other substances in addition to small molecules. This public, manually curated dataset provides unique ingredient identifiers (UNIIs) and detailed descriptions for over 100 000 substances that are particularly relevant to medicine and translational research. The dataset can be accessed and queried at https://gsrs.ncats.nih.gov/app/substances.
Collapse
Affiliation(s)
- Tyler Peryea
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA.,Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noel Southall
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitch Miller
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Katzel
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niko Anderson
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jorge Neyra
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Stemann
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ðắc-Trung Nguyễn
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dammika Amugoda
- Informatics, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Archana Newatia
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ramez Ghazzaoui
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elaine Johanson
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Herman Diederik
- College ter Beoordeling van Geneesmiddelen, 3531 AH Utrecht, Netherlands
| | - Larry Callahan
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Frank Switzer
- Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
59
|
Abstract
Enveloped viruses exit producer cells and acquire their external lipid envelopes by budding through limiting cellular membranes. Most viruses encode multifunctional structural proteins that coordinate the processes of virion assembly, membrane envelopment, budding, and maturation. In many cases, the cellular ESCRT pathway is recruited to facilitate the membrane fission step of budding, but alternative strategies are also employed. Recently, many viruses previously considered to be non-enveloped have been shown to exit cells non-lytically within vesicles, adding further complexity to the intricacies of virus budding and egress.
Collapse
|
60
|
Dakal TC. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Immunobiology 2021; 226:152021. [PMID: 33232865 PMCID: PMC7642744 DOI: 10.1016/j.imbio.2020.152021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a highly contagious virus that has caused serious health crisis world-wide resulting into a pandemic situation. As per the literature, the SARS-CoV-2 is known to exploit humanACE2 receptors (similar toprevious SARS-CoV-1) for gaining entry into the host cell for invasion, infection, multiplication and pathogenesis. However, considering the higher infectivity of SARS-CoV-2 along with the complex etiology and pathophysiological outcomes seen in COVID-19 patients, it seems that there may be an alternate receptor for SARS-CoV-2. I performed comparative protein sequence analysis, database based gene expression profiling, bioinformatics based molecular docking using authentic tools and techniques for unveiling the molecular basis of high infectivity of SARS-CoV-2 as compared to previous known coronaviruses. My study revealed that SARS-CoV-2 (previously known as 2019-nCoV) harbors a RGD motif in its receptor binding domain (RBD) and the motif is absent in all other previously known SARS-CoVs. The RGD motif is well known for its role in cell-attachment and cell-adhesion. My hypothesis is that the SARS-CoV-2 may be (via RGD) exploiting integrins, that have high expression in lungs and all other vital organs, for invading host cells. However, an experimental verification is required. The expression of ACE2, which is a known receptor for SARS-CoV-2, was found to be negligible in lungs. I assume that higher infectivity of SARS-CoV-2 could be due to this RGD-integrin mediated acquired cell-adhesive property. Gene expression profiling revealed that expression of integrins is significantly high in lung cells, in particular αvβ6, α5β1, αvβ8 and an ECM protein, ICAM1. The molecular docking experiment showed the RBD of spike protein binds with integrins precisely at RGD motif in a similar manner as a synthetic RGD peptide binds to integrins as found by other researchers. SARS-CoV-2 spike protein has a number of phosphorylation sites that can induce cAMP, PKC, Tyr signaling pathways. These pathways either activate calcium ion channels or get activated by calcium. In fact, integrins have calcium & metal binding sites that were predicted around and in vicinity of RGD-integrin docking site in our analysis which suggests that RGD-integrins interaction possibly occurs in calcium-dependent manner. The higher expression of integrins in lungs along with their previously known high binding affinity (~KD = 4.0 nM) for virus RGD motif could serve as a possible explanation for high infectivity of SARS-CoV-2. On the contrary, human ACE2 has lower expression in lungs and its high binding affinity (~KD = 15 nM) for spike RBD alone could not manifest significant virus-host attachment. This suggests that besides human ACE2, an additional or alternate receptor for SARS-CoV-2 is likely to exist. A highly relevant evidence never reported earlier which corroborate in favor of RGD-integrins mediated virus-host attachment is an unleashed cytokine storm which causes due to activation of TNF-α and IL-6 activation; and integrins role in their activation is also well established. Altogether, the current study has highlighted possible role of calcium and other divalent ions in RGD-integrins interaction for virus invasion into host cells and suggested that lowering divalent ion in lungs could avert virus-host cells attachment.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
61
|
[The latest research findings on Ebola virus]. Uirusu 2021; 71:137-150. [PMID: 37245976 DOI: 10.2222/jsv.71.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
013-2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak ever documented that started earlier in Guinea and later widely spread throughout West Africa, ending up a total of > 28,000 human infections. In this review, we outline research findings on Ebola virus (EBOV) variant Makona, a new EBOV variant isolated from the 2013-2016 EVD outbreak, and introduce the unique biological and pathogenic characteristics of Makona variant. We also discuss about the relevance of persistent infection of EBOV in EVD survivors with resurgence of EVD outbreak in Guinea in 2021. Moreover, this review covers a recent case report of EVD relapse and deliberates new interpretations of EBOV biology and EVD outbreak.
Collapse
|
62
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
63
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
64
|
Bleasel MD, Peterson GM. Emetine Is Not Ipecac: Considerations for Its Use as Treatment for SARS-CoV2. Pharmaceuticals (Basel) 2020; 13:E428. [PMID: 33261173 PMCID: PMC7760625 DOI: 10.3390/ph13120428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Emetine is a potent antiviral that acts on many viruses in the low-nM range, with several studies in animals and humans demonstrating antiviral activity. Historically, emetine was used to treat patients with Spanish influenza, in the last stages of the pandemic in the early 1900s. Some of these patients were "black" with cyanosis. Emetine rapidly reversed the cyanosis and other symptoms of this disease in 12-24 h. However, emetine also has been shown to have anti-inflammatory properties and it appears it is these anti-inflammatory properties that were responsible for the effects seen in patients with Spanish influenza. Emetine, in the past, has also been used in 10s to 100s of millions of people at a dose of ~60 mg daily to treat amoebiasis. Based on viral inhibition data we can calculate a likely SARS-CoV2 antiviral dose of ~1/10th the amoebiasis dose, which should dramatically reduce the risk of any side effects. While there are no anti-inflammatory dose response data available, based on the potential mode of action, the anti-inflammatory actions may also occur at low doses. This paper also examines the toxicity of emetine seen in clinical practice and that seen in the laboratory, and discusses the methods of administration aimed at reducing side effects if higher doses were found to be necessary. While emetine is a "pure drug" as it is extracted from ipecac, some of the differences between emetine and ipecac are also discussed.
Collapse
Affiliation(s)
- Martin D. Bleasel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
- School of Health Sciences, Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia
| |
Collapse
|
65
|
DeMers HL, He S, Pandit SG, Hannah EE, Zhang Z, Yan F, Green HR, Reyes DF, Hau D, McLarty ME, Altamura L, Taylor-Howell C, Gates-Hollingsworth MA, Qiu X, AuCoin DP. Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Negl Trop Dis 2020; 14:e0008817. [PMID: 33141837 PMCID: PMC7608863 DOI: 10.1371/journal.pntd.0008817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022] Open
Abstract
The 2013–2016 Ebola virus (EBOV) outbreak in West Africa and the ongoing cases in the Democratic Republic of the Congo have spurred development of a number of medical countermeasures, including rapid Ebola diagnostic tests. The likelihood of transmission increases as the disease progresses due to increasing viral load and potential for contact with others. Early diagnosis of EBOV is essential for halting spread of the disease. Polymerase chain reaction assays are the gold standard for diagnosing Ebola virus disease (EVD), however, they rely on infrastructure and trained personnel that are not available in most resource-limited settings. Rapid diagnostic tests that are capable of detecting virus with reliable sensitivity need to be made available for use in austere environments where laboratory testing is not feasible. The goal of this study was to produce candidate lateral flow immunoassay (LFI) prototypes specific to the EBOV glycoprotein and viral matrix protein, both targets known to be present during EVD. The LFI platform utilizes antibody-based technology to capture and detect targets and is well suited to the needs of EVD diagnosis as it can be performed at the point-of-care, requires no cold chain, provides results in less than twenty minutes and is low cost. Monoclonal antibodies were isolated, characterized and evaluated in the LFI platform. Top performing LFI prototypes were selected, further optimized and confirmed for sensitivity with cultured live EBOV and clinical samples from infected non-human primates. Comparison with a commercially available EBOV rapid diagnostic test that received emergency use approval demonstrates that the glycoprotein-specific LFI developed as a part of this study has improved sensitivity. The outcome of this work presents a diagnostic prototype with the potential to enable earlier diagnosis of EVD in clinical settings and provide healthcare workers with a vital tool for reducing the spread of disease during an outbreak. Ebola virus (EBOV) causes a severe hemorrhagic fever and has an extremely high fatality rate that ranges from 60%-90%. There is no approved treatment or vaccine for this infectious disease and halting spread of the virus relies on identifying and isolating infected patients quickly. The current gold standard, polymerase chain reaction assay, requires patient samples be transported to regional reference laboratories where it often takes days to get results. A handful of Ebola rapid diagnostic tests have been developed, but lack the sensitivity required to detect the virus in earlier stages of the disease. There is great need for more sensitive rapid diagnostic tests that can identify the EBOV infected patients when they first become symptomatic. This study focused on production of high affinity mAbs to two target EBOV proteins for development of a more sensitivity rapid diagnostic test. Efforts have resulted in production of prototype detecting the EBOV glycoprotein that shows a notable improvement in sensitivity and offers the potential for earlier diagnosis of infection.
Collapse
Affiliation(s)
- Haley L. DeMers
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sujata G. Pandit
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Emily E. Hannah
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Zirui Zhang
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Feihu Yan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather R. Green
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Denise F. Reyes
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Megan E. McLarty
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
| | - Louis Altamura
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Cheryl Taylor-Howell
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | | | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail: (XQ); (DPA)
| | - David P. AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine Reno, Nevada, United States of America
- * E-mail: (XQ); (DPA)
| |
Collapse
|
66
|
Barfoot S, Poger D, Mark AE. Understanding the Activated Form of a Class-I Fusion Protein: Modeling the Interaction of the Ebola Virus Glycoprotein 2 with a Lipid Bilayer. Biochemistry 2020; 59:4051-4058. [PMID: 32960042 DOI: 10.1021/acs.biochem.0c00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fusion of the viral and target cell membranes is a key step in the life cycle of all enveloped viruses. Here, a range of structural data is used to generate an evidence-based model of the active conformation of an archetypical type-I fusion protein, the Ebola glycoprotein 2 (GP2). The stability of the trimeric complex is demonstrated using molecular dynamics and validated by simulating the interaction of the complex with a lipid bilayer. In this model, the fusion peptides project away from the central helix bundle parallel to the target membrane. This maximizes contact with the host membrane, enhances lateral stability, and would explain why, when activated, viral fusion proteins are trimeric.
Collapse
Affiliation(s)
- Shelley Barfoot
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David Poger
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
67
|
Powlson J, Wright D, Zeltina A, Giza M, Nielsen M, Rampling T, Venkatrakaman N, Bowden TA, Hill AVS, Ewer KJ. Characterization of Antigenic MHC-Class-I-Restricted T Cell Epitopes in the Glycoprotein of Ebolavirus. Cell Rep 2020; 29:2537-2545.e3. [PMID: 31775024 PMCID: PMC6899439 DOI: 10.1016/j.celrep.2019.10.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/20/2019] [Accepted: 10/25/2019] [Indexed: 11/05/2022] Open
Abstract
Ebolavirus causes highly lethal hemorrhagic fever in humans. The envelope-displayed viral glycoprotein (GP) is the primary target of humoral immunity induced by natural exposure and vaccination. No T cell epitopes in the GP have been characterized in humans. A phase I clinical trial of a heterologous prime-boost vaccination regime with viral vectors encoding filovirus antigens elicits humoral and T cell responses in vaccinees. The most frequently recognized peptide pools are deconvoluted to identify the minimal epitopes recognized by antigen-specific T cells. We characterize nine immunogenic epitopes on the Ebolavirus GP. Histocompatibility leukocyte antigen (HLA) typing with in silico epitope analysis determines the likely MHC class I restriction elements. Thirteen HLA-A and -B alleles are predicted to present the identified CD8+ T cell epitopes, suggesting promiscuous recognition and a broad immune response. Delivery of the Ebolavirus GP antigen by using a heterologous prime-boost approach is immunogenic in genetically diverse human populations, with responses against multiple epitopes. Vaccination induces high T cell responses to the Ebola virus glycoprotein in humans Eight CD8+ epitopes were defined, recognized through multiple MHC class I alleles Responses match those observed in Ebola survivors and could boost vaccine efficacy
Collapse
Affiliation(s)
- Jonathan Powlson
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Daniel Wright
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Antra Zeltina
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mark Giza
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Morten Nielsen
- Department of Health Technology, The Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, 2800 Kgs Lyngby, Denmark
| | - Tommy Rampling
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Navin Venkatrakaman
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adrian V S Hill
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Katie J Ewer
- The Jenner Institute, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
68
|
Development of an Enzyme-Linked Immunosorbent Assay to Determine the Expression Dynamics of Ebola Virus Soluble Glycoprotein during Infection. Microorganisms 2020; 8:microorganisms8101535. [PMID: 33036194 PMCID: PMC7600751 DOI: 10.3390/microorganisms8101535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 01/17/2023] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus with human case fatality rates of up to 90%. EBOV uses transcriptional editing to express three different glycoproteins (GPs) from its GP gene: soluble GP (sGP), GP, and small sGP (ssGP). The molecular ratio of unedited to edited mRNA is about 70% (sGP): 25% (GP): 5% (ssGP), indicating that sGP is produced more abundantly than GP. While the presence of sGP has been confirmed in the blood during human EBOV infection, there is no report about its expression dynamics. In this study, we developed an EBOV-sGP-specific sandwich enzyme-linked immunosorbent assay (ELISA) using two different available antibodies and tested several animal serum samples to determine the concentration of sGP. EBOV-sGP was detected in nonhuman primate serum samples as early as 4 days after EBOV infection, correlating with RT-qPCR positivity. This ELISA might be further developed into a diagnostic tool for detection of EBOV in patients. Furthermore, this study provides insights into the expression dynamics of sGP during infection, which are important to decipher the function that sGP plays during infection.
Collapse
|
69
|
Characterization of rVSVΔG-ZEBOV-GP glycoproteins using automated capillary western blotting. Vaccine 2020; 38:7166-7174. [DOI: 10.1016/j.vaccine.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022]
|
70
|
Cooper L, Schafer A, Li Y, Cheng H, Medegan Fagla B, Shen Z, Nowar R, Dye K, Anantpadma M, Davey RA, Thatcher GRJ, Rong L, Xiong R. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem 2020; 63:11085-11099. [PMID: 32886512 DOI: 10.1021/acs.jmedchem.0c01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Filoviridae, including Ebola (EBOV) and Marburg (MARV) viruses, are emerging pathogens that pose a serious threat to public health. No agents have been approved to treat filovirus infections, representing a major unmet medical need. The selective estrogen receptor modulator (SERM) toremifene was previously identified from a screen of FDA-approved drugs as a potent EBOV viral entry inhibitor, via binding to EBOV glycoprotein (GP). A focused screen of ER ligands identified ridaifen-B as a potent dual inhibitor of EBOV and MARV. Optimization and reverse-engineering to remove ER activity led to a novel compound 30 (XL-147) showing potent inhibition against infectious EBOV Zaire (0.09 μM) and MARV (0.64 μM). Mutagenesis studies confirmed that inhibition of EBOV viral entry is mediated by the direct interaction with GP. Importantly, compound 30 displayed a broad-spectrum antifilovirus activity against Bundibugyo, Tai Forest, Reston, and Měnglà viruses and is the first submicromolar antiviral agent reported for some of these strains, therefore warranting further development as a pan-filovirus inhibitor.
Collapse
Affiliation(s)
- Laura Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Bani Medegan Fagla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Raghad Nowar
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Katherine Dye
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Manu Anantpadma
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston, Massachusetts 02118, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston, Massachusetts 02118, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
71
|
Delauzun V, Amigues B, Gaubert A, Leone P, Grange M, Gauthier L, Roussel A. Extracellular vesicles as a platform to study cell-surface membrane proteins. Methods 2020; 180:35-44. [PMID: 32156657 DOI: 10.1016/j.ymeth.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Producing intact recombinant membrane proteins for structural studies is an inherently challenging task due to their requirement for a cell-lipid environment. Most of the procedures developed involve isolating the protein by solubilization with detergent and further reconstitutions into artificial membranes. These procedures are highly time consuming and suffer from further drawbacks, including low yields and high cost. We describe here an alternative method for rapidly obtaining recombinant cell-surface membrane proteins displayed on extracellular vesicles (EVs) derived from cells in culture. Interaction between these membrane proteins and ligands can be analyzed directly on EVs. Moreover, EVs can also be used for protein structure determination or immunization purposes.
Collapse
Affiliation(s)
- Vincent Delauzun
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Magali Grange
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | | | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France.
| |
Collapse
|
72
|
Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry. J Virol 2020; 94:JVI.01002-20. [PMID: 32493822 PMCID: PMC7394885 DOI: 10.1128/jvi.01002-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics. Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG). Using an inducible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we demonstrated that depletion of HOPS subunits as well as UVRAG impairs entry by all pathogenic filoviruses. UVRAG depletion resulted in reduced delivery of EBOV virions to NPC1+ cellular compartments. Furthermore, we show that deletion of a domain on UVRAG known to be required for interaction with the HOPS complex results in impaired EBOV entry. Taken together, our studies demonstrate that EBOV requires both expression of and coordination between the HOPS complex and UVRAG in order to mediate efficient viral entry. IMPORTANCE Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics.
Collapse
|
73
|
Tang H, Abouleila Y, Si L, Ortega-Prieto AM, Mummery CL, Ingber DE, Mashaghi A. Human Organs-on-Chips for Virology. Trends Microbiol 2020; 28:934-946. [PMID: 32674988 PMCID: PMC7357975 DOI: 10.1016/j.tim.2020.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 02/03/2023]
Abstract
While conventional in vitro culture systems and animal models have been used to study the pathogenesis of viral infections and to facilitate development of vaccines and therapeutics for viral diseases, models that can accurately recapitulate human responses to infection are still lacking. Human organ-on-a-chip (Organ Chip) microfluidic culture devices that recapitulate tissue–tissue interfaces, fluid flows, mechanical cues, and organ-level physiology have been developed to narrow the gap between in vitro experimental models and human pathophysiology. Here, we describe how recent developments in Organ Chips have enabled re-creation of complex pathophysiological features of human viral infections in vitro. Microfluidic Organ Chip culture devices are emerging alternatives to conventional in vitro and animal models due to their ability to replicate many structural and functional features of human physiology and disease states. Recent innovations demonstrate that Organ Chip technology is a promising strategy for virology studies where there have been successes in reproducing various viral disease phenotypes. Organ Chips have enabled investigation of many aspects of viral infection, including virus–host interactions, viral therapy-resistance evolution, and development of new antiviral therapeutics, as well as underlying pathogenesis. As Organ Chip-based assays provide accessibility to study virus-induced diseases in real time and at high resolution, they can open new avenues to uncover viral pathogenesis in a human-relevant environment and may eventually enable development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
74
|
Development of coumarine derivatives as potent anti-filovirus entry inhibitors targeting viral glycoprotein. Eur J Med Chem 2020; 204:112595. [PMID: 32707357 DOI: 10.1016/j.ejmech.2020.112595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Filoviruses, including Ebolavirus (EBOV), Marburgvirus (MARV) and Cuevavirus, cause hemorrhagic fevers in humans with up to 90% mortality rates. In the 2014-2016 West Africa Ebola epidemic, there are 15,261 laboratory confirmed cases and 11,325 total deaths. The lack of effective vaccines and medicines for the prevention and treatment of filovirus infection in humans stresses the urgency to develop antiviral therapeutics against filovirus-associated diseases. Our previous study identified a histamine receptor antagonist compound CP19 as an entry inhibitor against both EBOV and MARV. The preliminary structure-activity relationship (SAR) studies of CP19 showed that its piperidine, coumarin and linker were related with its antiviral activities. In this study, we performed detailed SAR studies on these groups with synthesized CP19 derivatives. We discovered that 1) the piperidine group could be optimized with heterocycles, 2) the substitution groups of C3 and C4 of coumarin should be relatively large hydrophobic groups and 3) the linker part should be least substituted. Based on the SAR analysis, we synthesized compound 32 as a potent entry inhibitor of EBOV and MARV (IC50 = 0.5 μM for EBOV and 1.5 μM for MARV). The mutation studies of Ebola glycoprotein and molecular docking studies showed that the coumarin and its substituted groups of compound 32 bind to the pocket of Ebola glycoprotein in a similar way to the published entry inhibitor compound 118a. However, the carboxamide group of compound 32 does not have strong interaction with N61 as compound 118a does. The coumarin skeleton structure and the binding model of compound 32 elucidated by this study could be utilized to guide further design and optimization of entry inhibitors targeting the filovirus glycoproteins.
Collapse
|
75
|
Rowen RJ. Ozone and oxidation therapies as a solution to the emerging crisis in infectious disease management: a review of current knowledge and experience. Med Gas Res 2020; 9:232-237. [PMID: 31898609 PMCID: PMC7802416 DOI: 10.4103/2045-9912.273962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicine faces crisis with emerging “super bugs,” lethal viruses (Ebola), and stealth pathogens such as tick-borne infections. Thousands are dying worldwide of once easily treatable diseases. Ozone therapy, extensively studied, may be a valuable adjunctive or stand-alone therapy. Ebola again ravages Africa with over 2000 already dead, carrying a 65% mortality rate. The world desperately needs safe, inexpensive and effective anti-infective therapy to which microbes will not develop resistance. Oxidation therapies have shown an extremely high safety profile, lacking credible reports of significant injury beyond vein irritation. Ozone therapy, the most studied and least expensive to perform, is in itself a germicide, not an antibiotic, and improves several physiological parameters essential for infection defense. Recent reports indicate very favorable responses to both bacterial and viral disease, inclusive of Ebola. Despite lack of commercial profitability (not patentable), medicine would do well to revisit its pre-antibiotic era oxidation therapy roots, especially ozone in the current crisis.
Collapse
|
76
|
Nehls J, Businger R, Hoffmann M, Brinkmann C, Fehrenbacher B, Schaller M, Maurer B, Schönfeld C, Kramer D, Hailfinger S, Pöhlmann S, Schindler M. Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner. Cell Rep 2020; 26:1841-1853.e6. [PMID: 30759394 DOI: 10.1016/j.celrep.2019.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 11/07/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
The Ebola virus glycoprotein (EBOV-GP) forms GP-containing microvesicles, so-called virosomes, which are secreted from GP-expressing cells. However, determinants of GP-virosome release and their functionality are poorly understood. We characterized GP-mediated virosome formation and delineated the role of the antiviral factor tetherin (BST2, CD317) in this process. Residues in the EBOV-GP receptor-binding domain (RBD) promote GP-virosome secretion, while tetherin suppresses GP-virosomes by interactions involving the GP-transmembrane domain. Tetherin from multiple species interfered with GP-virosome release, and tetherin from the natural fruit bat reservoir showed the highest inhibitory activity. Moreover, analyses of GP from various ebolavirus strains, including the EBOV responsible for the West African epidemic, revealed the most efficient GP-virosome formation by highly pathogenic ebolaviruses. Finally, EBOV-GP-virosomes were immunomodulatory and acted as decoys for EBOV-neutralizing antibodies. Our results indicate that GP-virosome formation might be a determinant of EBOV immune evasion and pathogenicity, which is suppressed by tetherin.
Collapse
Affiliation(s)
- Julia Nehls
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ramona Businger
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | | | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Brigitte Maurer
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Schönfeld
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Daniela Kramer
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
77
|
Benhaim MA, Lee KK. New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes. Viruses 2020; 12:E413. [PMID: 32276357 PMCID: PMC7232462 DOI: 10.3390/v12040413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.
Collapse
Affiliation(s)
- Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
78
|
Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE. Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity 2020; 52:388-403.e12. [PMID: 32023489 PMCID: PMC7111202 DOI: 10.1016/j.immuni.2020.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
Abstract
Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C. Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert W. Cross
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E. Mire
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Hui
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bronwyn M. Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tanwee Alkutkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G. Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan E. Vodzak
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Adaora Okoli
- First Consultants Medical Center, Lagos, Nigeria
| | | | | | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, Galveston, TX 77550, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Corresponding author
| |
Collapse
|
79
|
Sanchez-Lockhart M, Reyes DS, Gonzalez JC, Garcia KY, Villa EC, Pfeffer BP, Trefry JC, Kugelman JR, Pitt ML, Palacios GF. Qualitative Profiling of the Humoral Immune Response Elicited by rVSV-ΔG-EBOV-GP Using a Systems Serology Assay, Domain Programmable Arrays. Cell Rep 2020; 24:1050-1059.e5. [PMID: 30044972 DOI: 10.1016/j.celrep.2018.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023] Open
Abstract
Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel S Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeanette C Gonzalez
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Karla Y Garcia
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika C Villa
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley P Pfeffer
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - John C Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Margaret L Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
80
|
Liu N, Girvin ME, Brenowitz M, Lai JR. Conformational and lipid bilayer-perturbing properties of Marburg virus GP2 segments containing the fusion loop and membrane-proximal external region/transmembrane domain. Heliyon 2019; 5:e03018. [PMID: 31890962 PMCID: PMC6926192 DOI: 10.1016/j.heliyon.2019.e03018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Fusion of host and viral membranes is a crucial step during infection by enveloped viruses. In the structurally-defined "class I″ viral glycoproteins, the formation of a highly stable α-helical bundle by the ectodomain of the fusion subunit (e.g., GP2 for Marburg virus, MARV) is postulated to provide the energetic driving force to overcome barriers associated with membrane fusion. Upon cell binding, the fusion subunit is proposed to form an extended intermediate that bridges both the viral and host membranes, and collapse of this extended intermediate brings the two membranes into proximity. While there is much high-resolution structural data available for prefusion and post-fusion structures of viral glycoproteins, little information is available about intermediate conformations especially in the context of the fusion loop/peptide (FL or FP) and membrane-proximal external region (MPER)/transmembrane (TM) segments. We present structural and functional studies on segments of MARV GP2 that encompass the FL and MPER/TM in detergent micelles and lipid bicelles. A protein that contains most elements of GP2 ("MGP2-full") is α-helical in membrane-mimicking environments and has pH-dependent membrane lytic activity. MGP2-full is monomeric under such conditions, contrasting with the trimeric species that has been described previously for MARV GP2 ectodomain in aqueous buffer. Variants of MARV GP2 containing the N- and C-terminal halves ("MGP2-FNL" and "MGP2-CMT", respectively) have similar properties. This work provides novel insight into conformational and membrane-perturbing properties of the MARV fusion subunit and how they may relate to viral membrane fusion.
Collapse
Affiliation(s)
- Nina Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mark E Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
81
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
82
|
Meyer M, Yoshida A, Ramanathan P, Saphire EO, Collins PL, Crowe JE, Samal S, Bukreyev A. Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Rep 2019; 24:1816-1829. [PMID: 30110638 PMCID: PMC6145141 DOI: 10.1016/j.celrep.2018.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Comparative immune response profiling is important for selecting next-generation vaccines. We comprehensively evaluated the antibody responses from a panel of nine respiratory vaccines against Ebola virus (EBOV) derived from human and avian paramyxoviruses expressing EBOV glycoprotein (GP). Most vaccines were protective in guinea pigs but yielded antibody repertoires that differed in proportion targeting key antigenic regions, avidity, neutralizing antibody specificities, and linear epitope preferences. Competition studies with monoclonal antibodies from human survivors revealed that some epitopes in GP targeted for neutralization were vector dependent, while EBOV-neutralizing titers correlated with the response magnitude toward the receptor-binding domain and GP1/GP2 interface epitopes. While an immunogen determines the breadth of antibody response, distinct vaccine vectors can induce qualitatively different responses, affecting protective efficacy. These data suggest that immune correlates of vaccine protection cannot be generalized for all vaccines against the same pathogen, even if they use the exact same immunogen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/blood
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibody Affinity
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/biosynthesis
- Ebola Vaccines/genetics
- Ebolavirus/drug effects
- Ebolavirus/genetics
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Gene Expression
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immune Sera/chemistry
- Protein Binding
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Survival Analysis
- Vaccination
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter L Collins
- RNA Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Siba Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
83
|
Murin CD, Bruhn JF, Bornholdt ZA, Copps J, Stanfield R, Ward AB. Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Rep 2019; 24:2723-2732.e4. [PMID: 30184505 DOI: 10.1016/j.celrep.2018.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) with pan-ebolavirus cross-reactivity are highly desirable, but development of such mAbs is limited by a lack of a molecular understanding of cross-reactive epitopes. The antibody ADI-15878 was previously identified from a human survivor of Ebola virus Makona variant (EBOV/Mak) infection. This mAb demonstrated potent neutralizing activity against all known ebolaviruses and provided protection in rodent and ferret models against three ebolavirus species. Here, we describe the unliganded crystal structure of ADI-15878 as well as the cryo-EM structures of ADI-15878 in complex with the EBOV/Mak and Bundibugyo virus (BDBV) glycoproteins (GPs). ADI-15878 binds through an induced-fit mechanism by targeting highly conserved residues in the internal fusion loop (IFL), bridging across GP protomers via the heptad repeat 1 (HR1) region. Our structures provide a more complete description of the ebolavirus immunogenic landscape, as well as a molecular basis for how rare but potent antibodies target conserved filoviral fusion machinery.
Collapse
Affiliation(s)
- Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica F Bruhn
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | | | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
84
|
Venkatesan A, Ravichandran L, Dass JFP. Computational Drug Design against Ebola Virus Targeting Viral Matrix Protein VP30. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i2.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ebola viral disease (EVD) is a deadly infectious hemorrhagic viral fever caused by the Ebola virus with a high mortality rate. Until date, there is no effective drug or vaccination available to combat this condition. This study focuses on designing an effective antiviral drug for Ebola viral disease targeting viral protein 30 (VP30) of Ebola virus, highly required for transcription initiation. The lead molecules were screened for Lipinski rule of five, ADMET study following which molecular docking and bioactivity prediction was carried out. The compounds with the least binding energy were analyzed using interaction software. The results revealed that 6-Hydroxyluteolin and (-)-Arctigenin represent active lead compounds that inhibit the activity of VP30 protein and exhibits efficient pharmacokinetics. Both these compounds are plant-derived flavonoids and possess no known adverse effects on human health. In addition, they bind strongly to the predicted binding site centered on Lys180, suggesting that these two lead molecules can be imperative in designing a potential drug for EVD.
Collapse
|
85
|
Pinzón Martín S, Seeberger PH, Varón Silva D. Mucins and Pathogenic Mucin-Like Molecules Are Immunomodulators During Infection and Targets for Diagnostics and Vaccines. Front Chem 2019; 7:710. [PMID: 31696111 PMCID: PMC6817596 DOI: 10.3389/fchem.2019.00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mucins and mucin-like molecules are highly O-glycosylated proteins present on the cell surface of mammals and other organisms. These glycoproteins are highly diverse in the apoprotein and glycan cores and play a central role in many biological processes and diseases. Mucins are the most abundant macromolecules in mucus and are responsible for its biochemical and biophysical properties. Mucin-like molecules cover various protozoan parasites, fungi and viruses. In humans, modifications in mucin glycosylation are associated with tumors in epithelial tissue. These modifications allow the distinction between normal and abnormal cell conditions and represent important targets for vaccine development against some cancers. Mucins and mucin-like molecules derived from pathogens are potential diagnostic markers and targets for therapeutic agents. In this review, we summarize the distribution, structure, role as immunomodulators, and the correlation of human mucins with diseases and perform a comparative analysis of mucins with mucin-like molecules present in human pathogens. Furthermore, we review the methods to produce pathogenic and human mucins using chemical synthesis and expression systems. Finally, we present applications of mucin-like molecules in diagnosis and prevention of relevant human diseases.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
86
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
87
|
Olukitibi TA, Ao Z, Mahmoudi M, Kobinger GA, Yao X. Dendritic Cells/Macrophages-Targeting Feature of Ebola Glycoprotein and its Potential as Immunological Facilitator for Antiviral Vaccine Approach. Microorganisms 2019; 7:E402. [PMID: 31569539 PMCID: PMC6843631 DOI: 10.3390/microorganisms7100402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Gary A Kobinger
- Centre de Recherche en Infectiologie de l' Université Laval/Centre Hospitalier de l' Université Laval (CHUL), Québec, QC G1V 4G2, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
88
|
Singleton CD, Humby MS, Yi HA, Rizzo RC, Jacobs A. Identification of Ebola Virus Inhibitors Targeting GP2 Using Principles of Molecular Mimicry. J Virol 2019; 93:e00676-19. [PMID: 31092576 PMCID: PMC6639268 DOI: 10.1128/jvi.00676-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 μM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.
Collapse
Affiliation(s)
- Courtney D Singleton
- Department of Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| |
Collapse
|
89
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
90
|
Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol 2019; 36:56-66. [PMID: 31202133 PMCID: PMC7102858 DOI: 10.1016/j.coviro.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Glycosylation is a common and biologically significant post-translational modification that is found on numerous virus surface proteins (VSPs). Many of these glycans affect virulence through modulating virus receptor binding, masking antigenic sites, or by stimulating the host immune response. Mass spectrometry (MS) has arisen as a pivotal technique for the characterization of VSP glycosylation. This review will cover how MS-based analyses, such as released glycan profiles, glycan site localization, site-occupancy, and site-specific heterogeneity, are being utilized to map VSP glycosylation. Furthermore, this review will provide information on how MS glycoprofiling data are being used in conjunction with molecular and structural experiments to provide a better understanding of the role of specific glycans in VSP function.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
91
|
Nieto-Gómez R, Angulo C, Monreal-Escalante E, Govea-Alonso DO, De Groot AS, Rosales-Mendoza S. Design of a multiepitopic Zaire ebolavirus protein and its expression in plant cells. J Biotechnol 2019; 295:41-48. [PMID: 30826446 DOI: 10.1016/j.jbiotec.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
The recent Ebola virus disease (EVD) outbreaks make the development of efficacious and low cost vaccines against Ebola virus (EBOV) an urgent goal. Multiepitopic vaccines allow a rational design rendering vaccines able to induce proper immune responses in terms of polarization and potency. In addition, the pathogen variants can be easily covered by including epitopes conserved among relevant isolates. Other important aspects to consider in vaccination are the costs associated to production, distribution, and administration of the vaccine. Plants provide an advantageous platform for this purpose, since they yield biomass at very low costs and some species can be used to formulate purification-free oral vaccines. In the present study, a multiepitopic protein called Zerola, which carries epitopes from the EBOV glycoprotein (GP), was designed based on immunoinformatic approaches and current experimental evidence on B cell protective GP epitopes. Moreover, expression studies performed in nuclear-transformed tobacco lines confirmed the capacity of the plant cell to synthetize the Zerola antigenic protein. The generation of this plant-based candidate vaccine is a step forward in the development of highly efficient and low cost EBOV vaccines.
Collapse
Affiliation(s)
- Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico
| | | | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico.
| |
Collapse
|
92
|
Dolzhikova IV, Tukhvatulin AI, Gromova AS, Grousova DM, Tukhvatulina NM, Tokarskaya EA, Logunov DY, Naroditskiy BS, Gintsburg AL. Glycoprotein GP as a basis for the universal vaccine against Ebola virus disease. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ebola virus disease (EVD) is one of the deadliest viral infections affecting humans and nonhuman primates. Of 6 known representatives of the Ebolavirus genus responsible for the disease, 3 can infect humans, causing acute highly contagious fever characterized by up to 90% fatality. These include Bundibugyo ebolavirus (BDBV), Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SUDV). The majority of the reported EVD cases are caused by ZEBOV. Vaccine development against the virus started in 1976, immediately after the causative agent of the infection was identified. So far, 4 vaccines have been approved. All of them are based on the protective epitope of the ZEBOV glycoprotein GP. Because SUDV and BDBV can also cause outbreaks and epidemics, it is vital to design a vaccine capable of conferring protection against all known ebolaviruses posing a threat to the human population. This article presents systematized data on the structure, immunogenicity and protective properties of ebolavirus glycoprotein GP, looks closely at the immunodominant epitopes of ZEBOV, SUDV and BDBV glycoprotein GP required to elicit a protective immune response, and offers a rational perspective on the development of a universal vaccine against EVD that relies on the use of vectors expressing two variants of GP represented by ZEBOV and SUDV.
Collapse
Affiliation(s)
- IV Dolzhikova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AI Tukhvatulin
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AS Gromova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - DM Grousova
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - NM Tukhvatulina
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - EA Tokarskaya
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - DYu Logunov
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - BS Naroditskiy
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - AL Gintsburg
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
93
|
Salata C, Calistri A, Alvisi G, Celestino M, Parolin C, Palù G. Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses 2019; 11:v11030274. [PMID: 30893774 PMCID: PMC6466262 DOI: 10.3390/v11030274] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola Virus Disease (EVD) is one of the most lethal transmissible infections, characterized by a high fatality rate, and caused by a member of the Filoviridae family. The recent large outbreak of EVD in Western Africa (2013–2016) highlighted the worldwide threat represented by the disease and its impact on global public health and the economy. The development of highly needed anti-Ebola virus antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, allowing to screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to study Ebola virus entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus-like particles, tremendously boosted both our knowledge of the viral life cycle and the identification of promising antiviral compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Michele Celestino
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, IT-35121 Padova, Italy.
| |
Collapse
|
94
|
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 2019; 4:734-747. [PMID: 30886356 PMCID: PMC6818971 DOI: 10.1038/s41564-019-0392-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics.
Collapse
|
95
|
Islam MA, Pillay TS. Pharmacoinformatics-based identification of chemically active molecules against Ebola virus. J Biomol Struct Dyn 2018; 37:4104-4119. [PMID: 30449258 DOI: 10.1080/07391102.2018.1544509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ebola is a dangerous virus transmitted by animals and humans and to date there is no curable agent for such a deadly infectious disease. In this study, pharmacoinformatics-based methods were adopted to find effective novel chemical entities against Ebola virus. A well predictive and statistical robust pharmacophore model was developed from known Ebola virus inhibitors collected from the literature. The model explained the significance of each of hydrogen bond acceptor and donor, and two hydrophobic regions for activity. The National Cancer Institute and Asinex (Antiviral library) databases were screened using the final validated pharmacophore model. Initial hits were further screened with a set of criteria and finally eight molecules from both databases were proposed as promising anti Ebola agents. Further molecular docking and molecular dynamics studies were carried out and it was found that the proposed molecules possessed capability to interact with amino residues of Ebola protein as well as retaining equilibrium of protein-ligand systems. Finally, the binding energies were calculated using molecular mechanics Poisson-Boltzmann surface area approach and all proposed molecules showed strong binding affinity towards the Ebola protein receptor. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Ataul Islam
- a Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,b School of Health Sciences, University of Kwazulu-Natal, Westville Campus , Durban , South Africa
| | - Tahir S Pillay
- a Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,c Division of Chemical Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
96
|
A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 2018; 9:5367. [PMID: 30560862 PMCID: PMC6299077 DOI: 10.1038/s41467-018-07789-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic β-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery. The translocation domain (HN) of Botulinum neurotoxins (BoNTs) mediates the delivery of the BoNT light chain (LC) into neuronal cytosol. Here the authors provide insights into HN membrane insertion by determining the crystal structure of BoNT/A1 HN at acidic pH, which reveals a molecular switch in HN, where buried α-helices are transformed into surface-exposed hydrophobic β-hairpins.
Collapse
|
97
|
Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep 2018; 8:17628. [PMID: 30514891 PMCID: PMC6279787 DOI: 10.1038/s41598-018-35964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
MIL77, which has a higher manufacturing capacity than ZMapp, comprises MIL77-1, MIL77-2, and MIL77-3. The mechanisms by which these antibodies inhibit glycoprotein are unclear. Infection by viruses with lipid-bilayer envelopes occurs via the fusion of the viral membrane with the membrane of the target cell. Therefore, the interaction between the antibodies and the EBOV membrane is crucial. We examined the interactions between MIL77 and the viral membrane using SPR. MIL77-1 selectively binds to viral membranes, while MIL77-2 and MIL77-3 do not. MIL77-1’s ability to screen the more rigid domains of the membranes results in a locally increased concentration of the drug at the fusion site. Although MIL77-2 recognizes an epitope of GP, it is not necessary in the MIL77 cocktail. These results highlight the importance of EBOV membrane interactions in improving the efficiency of a neutralizing antibody. Furthermore, the viral membrane may be an important target of antibodies against EBOV.
Collapse
|
98
|
Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M. Review of computational methods for virus-host protein interaction prediction: a case study on novel Ebola-human interactions. Brief Funct Genomics 2018; 17:381-391. [PMID: 29028879 PMCID: PMC7109800 DOI: 10.1093/bfgp/elx026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of potential virus-host interactions is useful and vital to control the highly infectious virus-caused diseases. This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been published. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for prediction of novel virus-host interactions for infectious diseases followed by a case study on EBOV-human interactions. The assessment result shows that the predicted human host proteins are highly similar with known human interaction partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways and host-pathogen relationships.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Pritha Dutta
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mahantapas Kundu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, India
| |
Collapse
|
99
|
Bazzill JD, Stronsky SM, Kalinyak LC, Ochyl LJ, Steffens JT, van Tongeren SA, Cooper CL, Moon JJ. Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:414-425. [PMID: 30471480 DOI: 10.1016/j.nano.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 01/31/2023]
Abstract
The recent outbreaks of Ebolavirus (EBOV) in West Africa underscore the urgent need to develop an effective EBOV vaccine. Here, we report the development of synthetic nanoparticles as a safe and highly immunogenic platform for vaccination against EBOV. We show that a large recombinant EBOV antigen (rGP) can be incorporated in a configurational manner into lipid-based nanoparticles, termed interbilayer-crosslinked multilamellar vesicles (ICMVs). The epitopes and quaternary structure of rGP were properly maintained on the surfaces of ICMVs formed either with or without nickel nitrilotriacetic acid (NTA)-functionalized lipids. When administered in mice, rGP-ICMVs without NTA-lipids efficiently generated germinal center B cells and polyfunctional T cells while eliciting robust neutralizing antibody responses. This study suggests the potential of vaccine nanoparticles as a delivery platform for configurational, multivalent display of large subunit antigens and induction of neutralizing antibody and T cell responses.
Collapse
Affiliation(s)
- Joseph D Bazzill
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Laura C Kalinyak
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jesse T Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Sean A van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
100
|
Pleet ML, Erickson J, DeMarino C, Barclay RA, Cowen M, Lepene B, Liang J, Kuhn JH, Prugar L, Stonier SW, Dye JM, Zhou W, Liotta LA, Aman MJ, Kashanchi F. Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles. J Infect Dis 2018; 218:S365-S387. [PMID: 30169850 PMCID: PMC6249571 DOI: 10.1093/infdis/jiy472] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-β1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | | | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Laura Prugar
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - John M Dye
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, Maryland
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| |
Collapse
|