51
|
Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao Q, Zhang X, Chen H, Gao Y, Zhang L, Han Y, Wang H, Pu J, Xie L, Ji Y. Hydrogen Sulfide Alleviates Liver Injury Through the S-Sulfhydrated-Kelch-Like ECH-Associated Protein 1/Nuclear Erythroid 2-Related Factor 2/Low-Density Lipoprotein Receptor-Related Protein 1 Pathway. Hepatology 2021; 73:282-302. [PMID: 32219872 DOI: 10.1002/hep.31247] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Protein S-sulfhydration mediated by H2 S has been shown to play important roles in several diseases. However, its precise role in liver disease and the related mechanism remain unclear. APPROACH AND RESULTS We showed that in streptozotocin (STZ)-treated and high-fat diet (HFD)-treated low-density lipoprotein receptor-negative (LDLr-/- ) mice, the H2 S donor GYY4137 ameliorated liver injury, decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, mitigated lipid deposition, and reduced hepatocyte death. Strikingly, S-sulfhydration of Kelch-like ECH-associated protein 1 (Keap1) was decreased in the livers of patients with fatty liver under diabetic conditions. In STZ+HFD-treated LDLr-/- mice and in high glucose-treated and oxidized low-density lipoprotein (ox-LDL)-treated primary mouse hepatocytes, the GYY4137-mediated increase in Keap1 S-sulfhydration induced nuclear erythroid 2-related factor 2 (Nrf2) dissociation from Keap1, which enhanced the nuclear translocation of Nrf2 itself and the consequent expression of antioxidant proteins. Keap1 Cys151 mutation significantly reduced Keap1 S-sulfhydration and abolished the hepatoprotective effects of H2 S both in vivo and in vitro. Nrf2 deficiency inhibited the H2 S-induced beneficial impacts in Nrf2-/- mice. Similarly, in CCl4 -stimulated mice, GYY4137 increased Keap1 S-sulfhydration, improved liver function, alleviated liver fibrosis, decreased hepatic oxidative stress, and activated the Nrf2 signaling pathway; and these effects were abrogated after Keap1 Cys151 mutation. Moreover, H2 S increased the binding of Nrf2 to the promoter region of LDLr-related protein 1 (Lrp1) and consequently up-regulated LRP1 expression, but these effects were disrupted by Keap1 Cys151 mutation. CONCLUSIONS H2 S-mediated Keap1 S-sulfhydration alleviates liver damage through activation of Nrf2. Hence, administration of exogenous H2 S in the form of the H2 S donor GYY4137 may be of therapeutic benefit in the context of concurrent hyperlipidemia and hyperglycemia-induced or CCl4 -stimulated liver dysfunction.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyu Song
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yihua Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Siyi Cao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Miao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiyue Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Centers for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
52
|
Braud L, Pini M, Stec DF, Manin S, Derumeaux G, Stec DE, Foresti R, Motterlini R. Increased Sirt1 secreted from visceral white adipose tissue is associated with improved glucose tolerance in obese Nrf2-deficient mice. Redox Biol 2021; 38:101805. [PMID: 33285413 PMCID: PMC7721645 DOI: 10.1016/j.redox.2020.101805] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with metabolic dysregulation characterized by insulin resistance and glucose intolerance. Nuclear factor E2-related factor (Nrf2) is a critical regulator of the stress response and Nrf2-deficient mice (Nrf2-/-) are protected against high fat diet (HFD)-induced metabolic derangement. We searched for factors that could underline this favorable phenotype and found that Nrf2-/- mice exhibit higher circulating levels of sirtuin 1 (Sirt1), a key player in cellular homeostasis and energy metabolism, compared to wild-type mice. Increased Sirt1 levels in Nrf2-/- mice were found not only in animals under standard diet but also following HFD. Interestingly, we report here that the visceral adipose tissue (eWAT) is the sole source of increased Sirt1 protein in plasma. eWAT and other fat depots displayed enhanced adipocytes lipolysis, increased fatty acid oxidation and glycolysis, suggesting autocrine and endocrine actions of Sirt1 in this model. We further demonstrate that removal of eWAT completely abolishes the increase in circulating Sirt1 and that this procedure suppresses the beneficial effect of Nrf2 deficiency on glucose tolerance, but not insulin sensitivity, following a HFD regime. Thus, in contrast to many other stressful conditions where Nrf2 deficiency exacerbates damage, our study indicates that up-regulation of Sirt1 levels specifically in the visceral adipose tissue of Nrf2-/- mice is a key adaptive mechanism that mitigates glucose intolerance induced by nutritional stress.
Collapse
Affiliation(s)
- Laura Braud
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| | - Maria Pini
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Donald F Stec
- Vanderbilt Institute for Chemical Biology (VICB), Vanderbilt University, Nashville, USA
| | - Sylvie Manin
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | | | - David E Stec
- University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| | | |
Collapse
|
53
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
54
|
Di Francesco A, Choi Y, Bernier M, Zhang Y, Diaz-Ruiz A, Aon MA, Kalafut K, Ehrlich MR, Murt K, Ali A, Pearson KJ, Levan S, Preston JD, Martin-Montalvo A, Martindale JL, Abdelmohsen K, Michel CR, Willmes DM, Henke C, Navas P, Villalba JM, Siegel D, Gorospe M, Fritz K, Biswal S, Ross D, de Cabo R. NQO1 protects obese mice through improvements in glucose and lipid metabolism. NPJ Aging Mech Dis 2020; 6:13. [PMID: 33298924 PMCID: PMC7678866 DOI: 10.1038/s41514-020-00051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic nutrient excess leads to metabolic disorders and insulin resistance. Activation of stress-responsive pathways via Nrf2 activation contributes to energy metabolism regulation. Here, inducible activation of Nrf2 in mice and transgenesis of the Nrf2 target, NQO1, conferred protection from diet-induced metabolic defects through preservation of glucose homeostasis, insulin sensitivity, and lipid handling with improved physiological outcomes. NQO1-RNA interaction mediated the association with and inhibition of the translational machinery in skeletal muscle of NQO1 transgenic mice. NQO1-Tg mice on high-fat diet had lower adipose tissue macrophages and enhanced expression of lipogenic enzymes coincident with reduction in circulating and hepatic lipids. Metabolomics data revealed a systemic metabolic signature of improved glucose handling, cellular redox, and NAD+ metabolism while label-free quantitative mass spectrometry in skeletal muscle uncovered a distinct diet- and genotype-dependent acetylation pattern of SIRT3 targets across the core of intermediary metabolism. Thus, under nutritional excess, NQO1 transgenesis preserves healthful benefits.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Youngshim Choi
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yingchun Zhang
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 475004, People's Republic of China
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Crta. de Canto Blanco n° 8, 28049, Madrid, Spain
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Krystle Kalafut
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Margaux R Ehrlich
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department Food Science, Cornell University, Ithaca, NY, 14850, USA
| | - Kelsey Murt
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Sophie Levan
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Joshua D Preston
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Emory University School of Medicine (MD/PhD program), Atlanta, GA, USA
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diana M Willmes
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Christine Henke
- Molecular Diabetology, Paul Langerhans Institute Dresden of the Helmholtz German Center for Diabetes Research Munich, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013, Sevilla, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Sevilla, Spain
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
55
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
56
|
Ginsenoside Rg1 prevent and treat inflammatory diseases: A review. Int Immunopharmacol 2020; 87:106805. [DOI: 10.1016/j.intimp.2020.106805] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
|
57
|
Li S, Eguchi N, Lau H, Ichii H. The Role of the Nrf2 Signaling in Obesity and Insulin Resistance. Int J Mol Sci 2020; 21:ijms21186973. [PMID: 32971975 PMCID: PMC7555440 DOI: 10.3390/ijms21186973] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity, a metabolic disorder characterized by excessive accumulation of adipose tissue, has globally become an increasingly prevalent disease. Extensive studies have been conducted to elucidate the underlying mechanism of the development of obesity. In particular, the close association of inflammation and oxidative stress with obesity has become increasingly evident. Obesity has been shown to exhibit augmented levels of circulating proinflammatory cytokines, which have been associated with the activation of pathways linked with inflammation-induced insulin resistance, a major pathological component of obesity and several other metabolic disorders. Oxidative stress, in addition to its role in stimulating adipose differentiation, which directly triggers obesity, is considered to feed into this pathway, further aggravating insulin resistance. Nuclear factor E2 related factor 2 (Nrf2) is a basic leucine zipper transcription factor that is activated in response to inflammation and oxidative stress, and responds by increasing antioxidant transcription levels. Therefore, Nrf2 has emerged as a critical new target for combating insulin resistance and subsequently, obesity. However, the effects of Nrf2 on insulin resistance and obesity are controversial. This review focuses on the current state of research on the interplay of inflammation and oxidative stress in obesity, the role of the Nrf2 pathway in obesity and insulin resistance, and the potential use of Nrf2 activators for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Shiri Li
- Correspondence: (S.L.); (H.I.); Tel.: +1-(714)-456-5160 (S.L.); +1-(714)-456-8590 (H.I.)
| | | | | | - Hirohito Ichii
- Correspondence: (S.L.); (H.I.); Tel.: +1-(714)-456-5160 (S.L.); +1-(714)-456-8590 (H.I.)
| |
Collapse
|
58
|
Muri J, Wolleb H, Broz P, Carreira EM, Kopf M. Electrophilic Nrf2 activators and itaconate inhibit inflammation at low dose and promote IL-1β production and inflammatory apoptosis at high dose. Redox Biol 2020; 36:101647. [PMID: 32863237 PMCID: PMC7387846 DOI: 10.1016/j.redox.2020.101647] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Controlling inflammation is critical for preventing many diseases including cancer, autoimmune disorders and hypersensitivity reactions. NF-E2-related factor 2 (Nrf2) is a key transcription factor that controls the cellular antioxidant and cytoprotective response. Moreover, Nrf2 has been implicated in the regulation of inflammatory processes, although the ultimate mechanism by which this is achieved is unknown. Here, we investigated mechanisms of inflammation and cell death pathways induced by a variety of Nrf2 activators including dimethyl fumarate (DMF) and the endogenous metabolite itaconate. We found that exposure of bone marrow-derived dendritic cells (BMDCs) to low concentrations of a variety of electrophilic Nrf2 activators including itaconate prior to Toll-like receptor (TLR) stimulation inhibits transcription of pro-inflammatory cytokines (such as interleukin [IL]-12 and IL-1β) by activation of Nrf2. By contrast, high doses of these electrophilic compounds after TLR activation promote inflammatory apoptosis and caspase-8-dependent IL-1β processing and release independently of Nrf2. Interestingly, tert-butylhydroquinone (tBHQ), a non-electrophilic Nrf2-activator, failed to induce IL-1β production. These results have important implications for clinical application of electrophilic compounds.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Helene Wolleb
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Erick M Carreira
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
59
|
Cardinault N, Tourniaire F, Astier J, Couturier C, Perrin E, Dalifard J, Seipelt E, Mounien L, Letullier C, Bonnet L, Karkeni E, Delbah N, Georgé S, Landrier JF. Poplar Propolis Ethanolic Extract Reduces Body Weight Gain and Glucose Metabolism Disruption in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2020; 64:e2000275. [PMID: 32729164 DOI: 10.1002/mnfr.202000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/07/2020] [Indexed: 01/03/2023]
Abstract
SCOPE Current evidence supports the beneficial effect of polyphenols on the management of obesity and associated comorbidities. This is the case for propolis, a polyphenol-rich substance produced by bees. The aim of the present study is to evaluate the effect of a poplar propolis ethanolic extract (PPEE) on obesity and glucose homeostasis, and to unveil its putative molecular mechanisms of action. METHODS AND RESULTS Male high-fat (HF) diet-fed mice are administered PPEE for 12 weeks. PPEE supplementation reduces the HF-mediated adiposity index, adipocyte hypertrophy, and body weight gain. It also improves HOMA-IR and fasting glucose levels. Gene expression profiling of adipose tissue (AT) shows an induction of mRNA related to lipid catabolism and mitochondrial biogenesis and inhibition of mRNA coding for inflammatory markers. Interestingly, several Nrf2-target genes are induced in AT following administration of PPEE. The ability of PPEE to induce the expression of Nrf2-target genes is studied in adipocytes. PPEE is found to transactivate the Nrf2 response element and the Nrf2 DNA-binding, suggesting that part of the effect of PPEE can be mediated by Nrf2. CONCLUSION PPEE supplementation may represent an interesting preventive strategy to tackle the onset of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
| | - Franck Tourniaire
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France.,CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Julien Astier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Charlène Couturier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Estelle Perrin
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Julie Dalifard
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Eva Seipelt
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Claire Letullier
- Pollenergie, La Grabère, Saint Hilaire de Lusignan, 47450, France
| | - Lauriane Bonnet
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Esma Karkeni
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| | - Naïma Delbah
- CTCPA, 449 Avenue Clément Ader, Avignon, 84911, France
| | | | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France.,CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, cedex 5 13385, France
| |
Collapse
|
60
|
Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res 2020; 156:104760. [DOI: 10.1016/j.phrs.2020.104760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
|
61
|
Chen X, Qi J, Wu Q, Jiang H, Wang J, Chen W, Mao A, Zhu M. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. Acta Biochim Biophys Sin (Shanghai) 2020; 52:506-516. [PMID: 32369110 DOI: 10.1093/abbs/gmaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia-mediated reactive oxygen species (ROS) accumulation plays an important role in hyperglycemia-induced endothelial injury. Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway inhibition participates in hyperglycemia-induced ROS accumulation. Our previous study indicated that SET8 overexpression inhibits high glucose-mediated ROS accumulation in human umbilical vein endothelial cells (HUVECs). In the present study, we hypothesize that SET8 may play a major role in high glucose-induced ROS accumulation via modulation of Keap1/Nrf2/ARE pathway. Our data indicated that high glucose mediated cell viability reduction, ROS accumulation, and Nrf2/ARE signal pathway inhibition via upregulation of Keap1 expression in HUVECs. Moreover, high glucose inhibited the expressions of SET8 and H4K20me1 (a downstream target of SET8). SET8 overexpression improved high glucose-mediated Keap1/Nrf2/ARE pathway inhibition and endothelial oxidation. Consistently, the effects of sh-SET8 were similar to that of high glucose treatment and were reversed by si-Keap1. A mechanistic study found that H4K20me1 was enriched at the Keap1 promoter region. SET8 overexpression attenuated Keap1 promoter activity and its expression, while mutant SET8 R259G did not affect Keap1 promoter activity and expression. The results of this study demonstrated that SET8 negatively regulates Keap1 expression, thus participating in high glucose-mediated Nrf2/ARE signal pathway inhibition and oxidative injury in HUVECs.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Qi
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
62
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
63
|
Hua X, Sun D, Zhang W, Fu J, Tong J, Sun S, Zeng F, Ouyang S, Zhang G, Wang S, Li D, Miao C, Wang P. P7C3‐A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP‐activated protein kinase/CREB regulated transcription coactivator 2 pathway. Br J Pharmacol 2020; 178:2111-2130. [PMID: 32037512 DOI: 10.1111/bph.15008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xia Hua
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Di‐Yang Sun
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Wen‐Jie Zhang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jiang‐Tao Fu
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jie Tong
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Si‐Jia Sun
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Fei‐Yan Zeng
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shen‐Xi Ouyang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Guo‐Yan Zhang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shu‐Na Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Dong‐Jie Li
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Chao‐Yu Miao
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| |
Collapse
|
64
|
Wu X, Huang J, Shen C, Liu Y, He S, Sun J, Yu B. NRF2 deficiency increases obesity susceptibility in a mouse menopausal model. PLoS One 2020; 15:e0228559. [PMID: 32045430 PMCID: PMC7012419 DOI: 10.1371/journal.pone.0228559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The risk of metabolic abnormalities in menopausal women increases significantly due to the decline in estrogen level. Nuclear factor E2-related factor 2 (NRF2) is an important oxidative stress sensor that plays regulatory role in energy metabolism. Therefore, an ovariectomized menopausal model in Nrf2-knockout (KO) mice was applied to evaluate the effect of Nrf2 deficiency on metabolism in menopausal females. The mice were divided into four groups according to their genotypes and treatments. Blood samples and bodyweights were obtained preoperatively and in the first to ninth postoperative weeks after overnight fasting. Serum levels of triglycerides (TG), total cholesterol (T-CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose (GLU) were measured at postoperative weeks 0, 1, 3, 5, 7, and 9. Neurotransmitter dopamine (DA) and serotonin (5-HT) was analyzed in brain tissues after sacrifice at postoperative week 9. The results demonstrated that, compared with the corresponding wild-type (WT) mice, KO ovariectomized mice had a greater bodyweight gain (P<0.01). Serum analysis showed that the serum GLU, T-CHO, and TG were significantly lower (P<0.05) but LDL was significantly higher (P<0.05) in the KO control mice than that in WT control mice. However, different from the WT counterparts, an increase in blood GLU level (P<0.05), unchanged T-CHO, TG, and HDL levels, and a significant reduction in LDL (P<0.01) was found in the KO ovariectomized mice. In addition, the level of 5-HT was significantly reduced (P<0.05) in the KO mice after ovariectomy. In conclusion, the combination of Nrf2 deletion and a decline in estrogen level induced a significant increase in bodyweight, which may be associated with their altered glucose and LDL metabolism and decreased 5-HT levels. From a clinical perspective, women with antioxidant defense deficiency may have an increased risk of metabolic abnormalities after menopause.
Collapse
Affiliation(s)
- Xunwei Wu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Shen
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yeling Liu
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Shengjie He
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Junquan Sun
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
65
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases like type 2 diabetes and obesity. In recent decades, accumulating evidence has revealed that the hepatokines, proteins mainly secreted by the liver, play important roles in the development of NAFLD by acting directly on the lipid and glucose metabolism. As a member of organokines, the hepatokines establish the communication between the liver and the adipose, muscular tissues. In this review, we summarize the current understanding of the hepatokines and how they modulate the pathogenesis of metabolic disorders especially NAFLD.
Collapse
|
66
|
Teimouri M, Hosseini H, Shabani M, Koushki M, Noorbakhsh F, Meshkani R. Inhibiting miR-27a and miR-142-5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway. IUBMB Life 2019; 72:361-372. [PMID: 31889412 DOI: 10.1002/iub.2221] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
The gene Nrf2 (nuclear factor-erythroid 2-related factor 2) is the most important regulator of the cellular antioxidant system and its dysregulation has a role in the etiology of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the association between Nrf2 targeted miRNAs (miR-27a, miR-142-5p, miR-153, and miR-128) with lipid accumulation in vitro and in vivo models of NAFLD. We used two in vivo and in vitro models of NAFLD. The expression of the genes and miRNAs was assessed by real-time PCR and the protein level was evaluated using western blot. To investigate the potential role of miRNAs in NAFLD, the inhibitors or mimics of the miR-27a and miR-142-5p were transfected into HepG2 cells. The mRNA and protein levels of Nrf2 were significantly decreased in the liver of high fat diet-fed mice as well as in HepG2 cells treated with high glucose (HG). Reduced expression of Nrf2 was associated with increased expression levels of miR-27a and miR-142-5p in both models of NAFLD. HG-induced triglyceride accumulation was attenuated by inhibition of miR-27a or miR-142-5p in HepG2 cells. Overexpression of miR-27a or miR-142-5p suppressed the expression of Nrf2 and its downstream antioxidant genes and increased production of reactive oxygen species, whereas inhibition of miR-27a or miR-142-5p reversed these effects. In conclusion, the data of this study may suggest that miR-27a and miR-142-5p are increased in NAFLD, where they suppress Nrf2 expression and contribute to the accumulation of lipids in the hepatocytes.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Merry TL, MacRae C, Pham T, Hedges CP, Ristow M. Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training. Am J Physiol Cell Physiol 2019; 318:C337-C345. [PMID: 31774701 DOI: 10.1152/ajpcell.00426.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress induced by acute exercise may regulate exercise training-induced adaptations that improve metabolic health. One of the central transcription regulatory targets of reactive oxygen species (ROS) is Nrf2 (nuclear factor erythroid-derived 2-like 2, or NFE2L2). Here, we investigated whether global deficiency of Nrf2 in mice would impact exercise training-induced changes in glucose and lipid homeostasis. We report that following 6 wk of treadmill exercise training, Nrf2-deficient mice have elevated fasting plasma triglycerides and free fatty acids and higher blood glucose levels following a meal despite having a similar fat mass to wild-type controls. This impaired glucose homeostasis appears to be related to reduced insulin sensitivity primarily in adipose and liver tissue, and although a clear mechanism was not evident, Nrf2-deficient mice had increased markers of hepatic oxidative stress and stress-related kinase activation in white adipose tissue (WAT) without overt inflammation alteration in WAT or modulation of hepatic and WAT fibroblast growth factor 21 gene expression. Our results suggest that Nrf2 facilitates exercise training-induced improvements in glucose homeostasis; however, further research is required to determine whether this occurs through direct regulation of exercise adaptations or via the maintenance of redox balance during training.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
68
|
Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, Mirzaei HR, Mirzaei H. Medicinal Plants As Natural Polarizers of Macrophages: Phytochemicals and Pharmacological Effects. Curr Pharm Des 2019; 25:3225-3238. [DOI: 10.2174/1381612825666190829154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Macrophages are one of the crucial mediators of the immune response in different physiological and
pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in
the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been
shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the
basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory
cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory
cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via
producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage
subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of
macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic
approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders,
it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization
and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of
natural compounds on macrophage polarization.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad K. Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R. Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
69
|
Cho HY, Kleeberger SR. Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch Pharm Res 2019; 43:297-320. [PMID: 31486024 DOI: 10.1007/s12272-019-01182-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
A constant improvement in understanding of mitochondrial biology has provided new insights into mitochondrial dysfunction in human disease pathogenesis. Impaired mitochondrial dynamics caused by various stressors are characterized by structural abnormalities and leakage, compromised turnover, and reactive oxygen species overproduction in mitochondria as well as increased mitochondrial DNA mutation frequency, which leads to modified energy production and mitochondria-derived cell signaling. The mitochondrial dysfunction in airway epithelial, smooth muscle, and endothelial cells has been implicated in diseases including chronic obstructive lung diseases and acute lung injury. Increasing evidence indicates that the NRF2-antioxidant response element (ARE) pathway not only enhances redox defense but also facilitates mitochondrial homeostasis and bioenergetics. Identification of functional or potential AREs further supports the role for Nrf2 in mitochondrial dysfunction-associated airway disorders. While clinical reports indicate mixed efficacy, NRF2 agonists acting on respiratory mitochondrial dynamics are potentially beneficial. In lung cancer, growth advantage provided by sustained NRF2 activation is suggested to be through increased cellular antioxidant defense as well as mitochondria reinforcement and metabolic reprogramming to the preferred pathways to meet the increased energy demands of uncontrolled cell proliferation. Further studies are warranted to better understand NRF2 regulation of mitochondrial functions as therapeutic targets in airway disorders.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| |
Collapse
|
70
|
Esfahani M, Baranchi M, Goodarzi MT. The implication of hepatokines in metabolic syndrome. Diabetes Metab Syndr 2019; 13:2477-2480. [PMID: 31405664 DOI: 10.1016/j.dsx.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 01/26/2023]
Abstract
Hepatokines are liver-derived proteins with equivocal roles in metabolic syndrome (MetS). These proteins have prominent role in pathogenesis of MetS component such as obesity, insulin resistance, dyslipidemia and hypertension. The identification and functional characterization of hepatokines may provide significant insights that could help in better understanding of MetS pathogenesis. Fetuin-A, Hepatocyte-derived fibrinogen-related protein 1, Fibroblast growth factor 21, Angiopoietin-related growth factor, Selenoprotein-P, Angiopoietin like proteins, Leukocyte cell-derived chemotaxin 2 are regarded as the most significant hepatokines. We describe recent data on these new hormones in progression of MetS. Understanding of the accurate role of these proteins in pathophysiology of MetS can help improving prevention and treatment of this syndrome.
Collapse
Affiliation(s)
| | | | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
71
|
da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front Pharmacol 2019; 10:382. [PMID: 31031630 PMCID: PMC6473049 DOI: 10.3389/fphar.2019.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Free radicals act as secondary messengers, modulating a number of important biological processes, including gene expression, ion mobilization in transport systems, protein interactions and enzymatic functions, cell growth, cell cycle, redox homeostasis, among others. In the cardiovascular system, the physiological generation of free radicals ensures the integrity and function of cardiomyocytes, endothelial cells, and adjacent smooth muscle cells. In physiological conditions, there is a balance between free radicals generation and the activity of enzymatic and non-enzymatic antioxidant systems. Redox imbalance, caused by increased free radical's production and/or reduced antioxidant defense, plays an important role in the development of cardiovascular diseases, contributing to cardiac hypertrophy and heart failure, endothelial dysfunction, hypertrophy and hypercontractility of vascular smooth muscle. Excessive production of oxidizing agents in detriment of antioxidant defenses in the cardiovascular system has been described in obesity, diabetes mellitus, hypertension, and atherosclerosis. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), a major regulator of antioxidant and cellular protective genes, is primarily activated in response to oxidative stress. Under physiological conditions, Nrf2 is constitutively expressed in the cytoplasm of cells and is usually associated with Keap-1, a repressor protein. This association maintains low levels of free Nrf2. Stressors, such as free radicals, favor the translocation of Nrf2 to the cell nucleus. The accumulation of nuclear Nrf2 allows the binding of this protein to the antioxidant response element of genes that code antioxidant proteins. Although little information on the role of Nrf2 in the cardiovascular system is available, growing evidence indicates that decreased Nrf2 activity contributes to oxidative stress, favoring the pathophysiology of cardiovascular disorders found in obesity, diabetes mellitus, and atherosclerosis. The present mini-review will provide a comprehensive overview of the role of Nrf2 as a contributing factor to cardiovascular risk in metabolic diseases.
Collapse
Affiliation(s)
- Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia S Lobato
- Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
72
|
Abstract
Background Thermogenic adipocytes reorganize their metabolism during cold exposure. Metabolic reprogramming requires readily available bioenergetics substrates, such as glucose and fatty acids, to increase mitochondrial respiration and produce heat via the uncoupling protein 1 (UCP1). This condition generates a finely-tuned production of mitochondrial reactive oxygen species (ROS) that support non-shivering thermogenesis. Scope of review Herein, the findings underlining the mechanisms that regulate ROS production and control of the adaptive responses tuning thermogenesis in adipocytes are described. Furthermore, this review describes the metabolic responses to substrate availability and the consequence of mitochondrial failure to switch fuel oxidation in response to changes in nutrient availability. A framework to control mitochondrial ROS threshold to maximize non-shivering thermogenesis in adipocytes is provided. Major conclusions Thermogenesis synchronizes fuel oxidation with an acute and transient increase of mitochondrial ROS that promotes the activation of redox-sensitive thermogenic signaling cascade and UCP1. However, an overload of substrate flux to mitochondria causes a massive and damaging mitochondrial ROS production that affects mitochondrial flexibility. Finding novel thermogenic redox targets and manipulating ROS concentration in adipocytes appears to be a promising avenue of research for improving thermogenesis and counteracting metabolic diseases. Mitochondrial ROS support non-shivering thermogenesis. Thermogenic ROS are tightly related to mitochondrial metabolic reorganization. Uncontrolled mitochondrial ROS production is causative of metabolic inflexibility.
Collapse
|
73
|
Ding L, Yuan X, Yan J, Huang Y, Xu M, Yang Z, Yang N, Wang M, Zhang C, Zhang L. Nrf2 exerts mixed inflammation and glucose metabolism regulatory effects on murine RAW264.7 macrophages. Int Immunopharmacol 2019; 71:198-204. [PMID: 30913518 DOI: 10.1016/j.intimp.2019.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/14/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that mediates a broad range of cellular antioxidative, detoxification and anti-inflammatory effects. However, the precise mechanism by which Nrf2 regulates inflammation and metabolism in macrophages remains controversial and unclear. To further clarify the roles of Nrf2 in inflammation and glucose metabolism regulation, retrovirus-mediated knockdown of Nrf2 was performed in murine RAW264.7 macrophages, and the cells were stimulated with 100 ng/mL lipopolysaccharide for 24 h for M1 activation. qPCR and western blotting results indicated that Nrf2 knockdown significantly enhanced expression of the inflammatory genes Il1a and Il1b in unstimulated macrophages and increased expression of the inflammatory genes Il1a, Il1b, Il6, Il10, Ccl2, Ccl22, and CD38 but decreased that of Tnfa and Tgfb1 in M1 macrophages. Nrf2 knockdown also significantly elevated IL6 and IL10 secretion by M1 macrophages. Western blotting showed that Nrf2 knockdown reduced iNOS protein levels in resting macrophages and enhanced CD38 protein levels in both resting and M1 macrophages. The differential regulation of these macrophage inflammation and polarization markers by Nrf2 reveals multiple roles for Nrf2 in regulating inflammation in macrophages. Moreover, Nrf2 knockdown increased the Glu4 protein level and decreased AKT and GSK3β protein phosphorylation in M1 macrophages, suggesting multiple roles for Nrf2 in regulating glucose metabolism in macrophages. Overall, our results are the first to demonstrate mixed inflammation and glucose metabolism regulatory effects of Nrf2 in macrophages that may occur independent of its classic function in redox regulation. These findings support the potential of Nrf2 as a therapeutic target for the prevention and treatment of inflammation- and obesity-associated syndromes, including diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Ling Ding
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Xiaoyang Yuan
- Department of Neurology, Brain Aging and Cognitive, Neuroscience Laboratory of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Mulin Xu
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Manting Wang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China.
| |
Collapse
|
74
|
Li L, Fu J, Sun J, Liu D, Chen C, Wang H, Hou Y, Xu Y, Pi J. Is Nrf2-ARE a potential target in NAFLD mitigation? CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Amos D, Cook C, Santanam N. Omega 3 rich diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel antioxidant mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:466-488. [PMID: 30658097 DOI: 10.1016/j.bbalip.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed "western diet" rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed 'stress-less' mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States.
| |
Collapse
|
76
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
77
|
Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 2018; 7:218-225. [PMID: 29898626 PMCID: PMC6261473 DOI: 10.1080/21623945.2018.1474669] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023] Open
Abstract
Obesity is a low-grade sustained inflammatory state that causes oxidative stress in different metabolic tissues, which leads to insulin resistance and nonalcoholic fatty liver disease (NAFLD). Particularly, obesity-induced metabolic endotoxemia plays an important role in the pathogenesis of insulin resistance and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of antioxidant signaling that serves as a primary cellular defense against the cytotoxic effects of oxidative stress. Pharmacological stimulation of Nrf2 mitigates obesity and insulin resistance in mice; however, Nrf2 activators are not clinically available due to biosafety concerns. A recent study demonstrated that glucoraphanin, a precursor of the Nrf2 activator sulforaphane, ameliorates obesity by enhancing energy expenditure and browning of white adipose tissue, and attenuates obesity-related inflammation and insulin resistance by polarizing M2 macrophages and reducing metabolic endotoxemia. Thus, this review focuses on the efficiency and safety of glucoraphanin in alleviating obesity, insulin resistance, and NAFLD. Abbreviations: ALT, Alanine aminotransferase; AMPK, AMP-activated protein kinase; ATMs, Adipose tissue macrophages; BAT, Brown adipose tissue; CDDO-Im, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid-imidazolide; CDDO-Me, CDDO-methyl ester; DIO, High-fat-diet-induced obese; FFA, Free fatty acid; FGF, Fibroblast growth factor; GTP, Glutamyl transpeptidase; HFD, High-fat diet; IKKβ, Inhibitor of κB-kinase β; IL, Interleukin; JNK, C-Jun N-terminal kinase; KD, Knockdown; Keap1, Kelch-like ECH-associated protein 1; KO, Knockout; LPS, Lipopolysaccharide; NADPH, Nicotinamide adenine dinucleotide phosphate; NAFLD, Non-alcoholic fatty liver disease; NF-κB, Nuclear factor-κB; Nrf2, Nuclear factor E2-related factor 2; ROS, Reactive oxygen species; T2D, Type 2 diabetes; TLR, Toll-like receptor; TNF, tumor necrosis factor; UCP, Uncoupling protein; WAT, White adipose tissue.
Collapse
Affiliation(s)
- Liang Xu
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
78
|
Chartoumpekis DV, Palliyaguru DL, Wakabayashi N, Fazzari M, Khoo NKH, Schopfer FJ, Sipula I, Yagishita Y, Michalopoulos GK, O'Doherty RM, Kensler TW. Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2018; 315:E180-E195. [PMID: 29486138 PMCID: PMC6139497 DOI: 10.1152/ajpendo.00311.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a canonical regulator of cytoprotective gene expression, but evidence of its cross talk with other pathways, including metabolic ones, is ever increasing. Pharmacologic or systemic genetic activation of the Nrf2 pathway partially protects from obesity in mice and ameliorates fasting hyperglycemia in mice and humans. However, systemic Nrf2 deletion also protects from diet-induced obesity and insulin resistance in mice. To further investigate the effect of the disruption of Nrf2 on obesity in a tissue-specific manner, we focused on adipocytes and hepatocytes with targeted deletion of Nrf2. To this end, mice with cell-specific deletion of Nrf2 in adipocytes (ANKO) or hepatocytes (HeNKO) were fed a high-fat diet (HFD) for 6 mo and showed similar increases in body weight and body fat content. ANKO mice showed a partially deteriorated glucose tolerance, higher fasting glucose levels, and higher levels of cholesterol and nonesterified fatty acids compared with their Control counterparts. The HeNKO mice, though, had lower insulin levels and trended toward improved insulin sensitivity without having any difference in liver triglyceride accumulation. This study compared for the first time two conditional Nrf2 knockout models in adipocytes and in hepatocytes during HFD-induced obesity. None of these models could completely recapitulate the unexpected protection against obesity observed in the whole body Nrf2 knockout mice, but this study points out the differential roles that Nrf2 may play, beyond cytoprotection, in different target tissues and rather suggests systemic activation of the Nrf2 pathway as an effective means of prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dushani L Palliyaguru
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- Fondazione Ri.MED, Palermo , Italy
| | - Nicholas K H Khoo
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ian Sipula
- Division of Endocrinology, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yoko Yagishita
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert M O'Doherty
- Division of Endocrinology, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
79
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
80
|
Li X, Cheng Y, Zhong X, Zhang B, Bao Z, Zhang Y, Wang Z. Nuclear factor erythroid 2-related factor 2 activation mediates hyperhomocysteinemia-associated lipolysis suppression in adipocytes. Exp Biol Med (Maywood) 2018; 243:926-933. [PMID: 30105954 PMCID: PMC6108053 DOI: 10.1177/1535370218788520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is associated with suppressed lipolytic response in adipocytes/adipose tissue, however, the underlying mechanism remains to be extensively studied. Nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor regulating antioxidant generation, has been recently reported to mediate lipid metabolism. Employing both fully differentiated 3T3-L1 adipocytes and male C57BL/6 mice, in the present study, we investigated the potential involvement of Nrf2 activation in HHcy-mediated lipolytic suppression. Our results showed that homocysteine (Hcy) treatment resulted in suppressed lipolysis, evidenced by increased intracellular triglyceride (TG) accumulation, decreased glycerol and free fatty acid (FFA) in fully differentiated 3T3-L1 adipocytes. Interestingly, Hcy exposure was associated with Nrf2 activation in adipocytes. Further studies showed that Nrf2 knockdown via siRNA transfection ameliorated Hcy-induced glycerol release in adipocytes. On the contrary, Nrf2 activators, epigallocatechin gallate (EGCG) and tert-butylhydroquinone (t-BHQ), increased intracellular TG content and decreased glycerol release in adipocytes. Importantly, our in vitro observations were corroborated by our in vivo findings, in which Hcy feeding (0.1% wt/vol) for four weeks induced Nrf2 expression in adipose tissue and lowered circulating FFA and glycerol levels in mice. Furthermore, EGCG injection (5 mg/kg/d) decreased circulating glycerol levels in comparison to the control group in mice. In conclusion, these results indicated that Nrf2 activation in response to HHcy plays an important role in mediating Hcy-suppressed lipolysis in adipocytes.
Collapse
Affiliation(s)
- Xin Li
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Yuhong Cheng
- Daqing Medical College, Daqing 163312, Heilongjiang, P.R. China
| | - Xiuli Zhong
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Bing Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Zhiwei Bao
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Yi Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| | - Zhigang Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang, P. R. China
| |
Collapse
|
81
|
Zhang J, Weng W, Wang K, Lu X, Cai L, Sun J. The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci 2018; 14:1000-1011. [PMID: 29989062 PMCID: PMC6036735 DOI: 10.7150/ijbs.25026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Data from the International Diabetes Federation show that 347 million people worldwide have diabetes, and the incidence is still rising. Although the treatment of diabetes has been advanced, the current therapeutic options and outcomes, e.g. complications, are yet far from ideal. Therefore, an urgent need exists for the development of more effective therapies. Numerous studies have been conducted to establish and confirm whether FGF21 exerts beneficial effects on obesity and diabetes along with its complications. However, most of the studies associated with FGF21 were conducted in the patients with type 2 diabetes. Subsequently, the effect of FGF21 in the prevention or treatment of type 1 diabetes and its complications were also increasingly reported. In this review, we summarize the findings available on the function of FGF21 and the status of FGF21's treatment for type 1 diabetes. Based on the available information, we found that FGF21 exerts a hypoglycemic effect, restores the function of brown fat, and inhibits various complications in type 1 diabetes patients. Although these features are predominantly similar to those observed in the studies that showed the beneficial impact of FGF21 on type 2 diabetes and its complications, there are also certain distinct features and findings that may be of provide important and instructive for us to understand mechanistic insights and further promote the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China.,Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Wenya Weng
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Kai Wang
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Lu Cai
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Jian Sun
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
82
|
Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2837-2844. [PMID: 29363750 DOI: 10.1002/jsfa.8898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Obesity is linked to the onset of many diseases such as diabetes mellitus, cardiovascular diseases and cancer, among others. The prevalence of obesity nearly doubled worldwide between 1980 and 2014. Simultaneously, in the last decade, the effects of sulforaphane as a potential treatment for obesity have been investigated, with promising results. Fruits and vegetables and their processed agri-food co-products are good sources of natural health-promoting compounds. Brassica crops are among the most produced crops in the world and are a good source of glucoraphanin, which, following hydrolysis, releases sulforaphane. The Brassicaceae family generates large amounts of co-products with no intended use, causing negative economic and environmental impact. Valorization of these co-products could be achieved through their exploitation for the extraction of bioactive compounds such as sulforaphane. However, the extraction process still needs further improvement for its economic feasibility. This article reviews the potential effects of sulforaphane in the treatment of obesity, linked to the relevance of giving Brassica co-products added value, which is of key importance for the competitiveness of farmers and the agri-food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory Animal Science Group, Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
83
|
Impaired Fasting-Induced Adaptive Lipid Droplet Biogenesis in Liver-Specific Atg5-Deficient Mouse Liver Is Mediated by Persistent Nuclear Factor-Like 2 Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1833-1846. [PMID: 29803835 DOI: 10.1016/j.ajpath.2018.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/08/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) are intracellular organelles that store neutral lipids as energy reservoir. Recent studies suggest that autophagy is important in maintaining the homeostasis of intracellular LDs by either regulating the biogenesis of LDs, mobilization of fatty acids, or degradation of LDs in cultured cells. Increasing evidence also supports a role of autophagy in regulating glucose and lipid metabolism in vivo in mammals. In response to fasting/starvation, lipids are mobilized from the adipose tissue to the liver, which increases the number of intracellular LDs and stimulates fatty acid oxidation and ketogenesis. However, it is still controversial and unclear how impaired autophagy in hepatocytes affects the biogenesis of LDs in mouse livers. In the present study, it was demonstrated that hepatic autophagy-deficient (L-Atg)5 knockout mice had impaired adaptation to fasting-induced hepatic biogenesis of LDs. The maladaptation to fasting-induced hepatic biogenesis of LDs in L-Atg5 knockout mouse livers was not due to hepatic changes of de novo lipogenesis, secretion of very-low-density lipoprotein or fatty acid β-oxidation, but it was due to persistent nuclear factor-like 2 activation because biogenesis of LDs restored in L-Atg5/nuclear factor-like 2 double-knockout mice.
Collapse
|
84
|
Wible RS, Tran QT, Fathima S, Sutter CH, Kensler TW, Sutter TR. Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo. Mol Pharmacol 2018; 93:297-308. [PMID: 29367259 PMCID: PMC5832324 DOI: 10.1124/mol.117.110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
The Kelch-like erythroid-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway is the subject of several clinical trials evaluating the effects of Nrf2 activation on the prevention of cancer and diabetes and the treatment of chronic kidney disease and multiple sclerosis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two distinct series of Nrf2 chemical activators. Previous reports have described activator-specific effects on Nrf2-dependent gene regulation and physiologic outcomes. Here we used a robust chemical genomics approach to characterize expression profiles between D3T and CDDO-Im in livers from wild-type and Nrf2-null mice. At equally efficacious doses in wild-type mice, 406 genes show common RNA responses to both treatments. These genes enriched the Nrf2-regulated pathways of antioxidant defense and xenobiotic metabolism. In addition, 197 and 745 genes were regulated uniquely in response to either D3T or CDDO-Im, respectively. Functional analysis of the D3T-regulated set showed a significant enrichment of Nrf2-regulated enzymes involved in cholesterol biosynthesis. This result was supported by Nrf2-dependent increases in lanosterol synthase and CYP51 protein expression. CDDO-Im had no effect on cholesterol biosynthesis regardless of the dose tested. However, unlike D3T, CDDO-Im resulted in Nrf2-dependent elevation of peroxisome proliferator α and Kruppel-like factor 13, as well as the coactivator peroxisome proliferator γ coactivator 1β, together indicating regulation of β-oxidation and lipid metabolic pathways. These findings provide novel insights into the pharmacodynamic action of these two activators of Keap1-Nrf2 signaling. Although both compounds modify Keap1 to affect canonical cytoprotective gene expression, additional unique sets of Nrf2-dependent genes were regulated by each agent with enrichment of selective metabolic pathways.
Collapse
Affiliation(s)
- Ryan S Wible
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Quynh T Tran
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Samreen Fathima
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Carrie H Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas W Kensler
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas R Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| |
Collapse
|
85
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol Genet Metab 2018; 123:50-58. [PMID: 29221916 DOI: 10.1016/j.ymgme.2017.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
A sustained activation of the unfolded protein response and the subsequent endoplasmic reticulum (ER) stress has been involved in the onset and severity of several metabolic diseases. The aim of this study was to analyze the association of DNA methylation signatures at ER stress genes with adiposity traits and related metabolic disorders. An epigenomic analysis within the Methyl Epigenome Network Association (MENA) project was conducted in an adult population (n=474). DNA methylation status in peripheral white blood cells was analyzed by a microarray approach. KEGG database was used to the characterization and discrimination of genes involved in the "protein processing in endoplasmic reticulum pathway". Anthropometric measurements and plasma metabolic profiles were analyzed. A total of 15 CpG sites at genes participating in ER pathway were strongly correlated with BMI after adjusted linear regression analyses (p<0.0001). These included cg08188400 (MAP2K7), cg20541779 (CASP12), cg24776411 (EIF2AK1), cg14190817 (HSPA5), cg21376454 (ERN1), cg06666486 (EIF2AK1), cg03211481 (DNAJC1), cg18357645 (OS9), cg05801879 (MBTPS1), cg20964082 (ERO1LB), cg17300868 (NFE2L2), cg03384128 (EIF2AK4), cg02712587 (EIF2AK4), cg04972384 (SELS), cg02240686 (EIF2AK2). Noteworthy, most of them were implicated in ER stress (p=2.9E-09). However, only methylation levels at cg20964082 (ERO1LB), cg17300868 (NFE2L2), cg05801879 (MBTPS1), and cg03384128 (EIF2AK4) also correlated with total fat mass. Interestingly, significant associations between methylation patterns at cg20964082 (ERO1LB) and cg17300868 (NFE2L2) and insulin and HOMA-IR index were found, whereas cg05801879 (MBTPS1) and cg03384128 (EIF2AK4) were correlated with triglyceride levels. This study suggests associations of methylation signatures at ER stress genes with adiposity and insulin resistance, as revealed by discriminative pathway analyses.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain; Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
86
|
Chouchani ET, Kazak L, Spiegelman BM. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. J Biol Chem 2017; 292:16810-16816. [PMID: 28842500 DOI: 10.1074/jbc.r117.789628] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brown and beige adipose tissues can catabolize stored energy to generate heat, relying on the principal effector of thermogenesis: uncoupling protein 1 (UCP1). This unique capability could be leveraged as a therapy for metabolic disease. Numerous animal and cellular models have now demonstrated that mitochondrial reactive oxygen species (ROS) signal to support adipocyte thermogenic identity and function. Herein, we contextualize these findings within the established principles of redox signaling and mechanistic studies of UCP1 function. We provide a framework for understanding the role of mitochondrial ROS signaling in thermogenesis together with testable hypotheses for understanding mechanisms and developing therapies.
Collapse
Affiliation(s)
- Edward T Chouchani
- From the Dana-Farber Cancer Institute, Harvard Medical School and.,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| | - Lawrence Kazak
- From the Dana-Farber Cancer Institute, Harvard Medical School and.,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| | - Bruce M Spiegelman
- From the Dana-Farber Cancer Institute, Harvard Medical School and .,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| |
Collapse
|
87
|
Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, Kidokoro K, Taniguchi S, Takahashi M, Satoh M, Sasaki T, Suzuki T, Yamamoto M, Horng T, Kashihara N. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep 2017; 7:8801. [PMID: 28821730 PMCID: PMC5562821 DOI: 10.1038/s41598-017-08054-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can be a major driver of the failure of a variety of organs, including chronic kidney disease (CKD). The NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been shown to play a pivotal role in inflammation in a mouse kidney disease model. Nuclear factor erythroid 2-related factor 2 (Nrf2), the master transcription factor for anti-oxidant responses, has also been implicated in inflammasome activation under physiological conditions. However, the mechanism underlying inflammasome activation in CKD remains elusive. Here, we show that the loss of Nrf2 suppresses fibrosis and inflammation in a unilateral ureter obstruction (UUO) model of CKD in mice. We consistently observed decreased expression of inflammation-related genes NLRP3 and IL-1β in Nrf2-deficient kidneys after UUO. Increased infiltration of M1, but not M2, macrophages appears to mediate the suppression of UUO-induced CKD symptoms. Furthermore, we found that activation of the NLRP3 inflammasome is attenuated in Nrf2-deficient bone marrow–derived macrophages. These results demonstrate that Nrf2-related inflammasome activation can promote CKD symptoms via infiltration of M1 macrophages. Thus, we have identified the Nrf2 pathway as a promising therapeutic target for CKD.
Collapse
Affiliation(s)
- Yuji Sogawa
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chieko Ihoriya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seiji Itano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Uchida
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shun'ichiro Taniguchi
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tiffany Horng
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
88
|
Abstract
Fibroblast growth factors (FGF) are mitogenic signal mediators that induce cell proliferation and survival. Although cardiac myocytes are post-mitotic, they have been shown to be able to respond to local and circulating FGFs. While precise molecular mechanisms are not well characterized, some FGF family members have been shown to induce cardiac remodeling under physiologic conditions by mediating hypertrophic growth in cardiac myocytes and by promoting angiogenesis, both events leading to increased cardiac function and output. This FGF-mediated physiologic scenario might transition into a pathologic situation involving cardiac cell death, fibrosis and inflammation, and eventually cardiac dysfunction and heart failure. As discussed here, cardiac actions of FGFs - with the majority of studies focusing on FGF2, FGF21 and FGF23 - and their specific FGF receptors (FGFR) and precise target cell types within the heart, are currently under experimental investigation. Especially cardiac effects of endocrine FGFs entered center stage over the past five years, as they might provide communication routes that couple metabolic mechanisms, such as bone-regulated phosphate homeostasis, or metabolic stress, such as hyperphosphatemia associated with kidney injury, with changes in cardiac structure and function. In this context, it has been shown that elevated serum FGF23 can directly tackle cardiac myocytes via FGFR4 thereby contributing to cardiac hypertrophy in models of chronic kidney disease, also called uremic cardiomyopathy. Precise characterization of FGFs and their origin and regulation of expression, and even more importantly, the identification of the FGFR isoforms that mediate their cardiac actions should help to develop novel pharmacological interventions for heart failure, such as FGFR4 inhibition to tackle uremic cardiomyopathy.
Collapse
Affiliation(s)
- Christian Faul
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
89
|
Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L, Chang Y, Geng B, Sun L, Dou L, Li J, Guan Y, Cui Q, Yang J. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway. Diabetes 2017; 66:1819-1832. [PMID: 28411267 DOI: 10.2337/db16-1172] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/07/2017] [Indexed: 11/13/2022]
Abstract
Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libo Sun
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Lin Dou
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
90
|
Gómez-Sámano MÁ, Grajales-Gómez M, Zuarth-Vázquez JM, Navarro-Flores MF, Martínez-Saavedra M, Juárez-León ÓA, Morales-García MG, Enríquez-Estrada VM, Gómez-Pérez FJ, Cuevas-Ramos D. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol 2017; 11:335-341. [PMID: 28039838 PMCID: PMC5200873 DOI: 10.1016/j.redox.2016.12.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4), involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.
Collapse
Affiliation(s)
- Miguel Ángel Gómez-Sámano
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Mariana Grajales-Gómez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Julia María Zuarth-Vázquez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Ma Fernanda Navarro-Flores
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Mayela Martínez-Saavedra
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Óscar Alfredo Juárez-León
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Mariana G Morales-García
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Víctor Manuel Enríquez-Estrada
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Francisco J Gómez-Pérez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Daniel Cuevas-Ramos
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
91
|
Yuan X, Huang H, Huang Y, Wang J, Yan J, Ding L, Zhang C, Zhang L. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes. Exp Biol Med (Maywood) 2017; 242:930-938. [PMID: 28440735 DOI: 10.1177/1535370217694435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P < 0.05) of that of untransfected control cells. The impacts of Nrf2 knockdown (NK) on the antioxidant system, inflammatory response, and glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2αS51, p-nuclear factor-κB p65S276, and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKTS473, and p-GSK3α/βY279/Y216, which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in vivo studies employing either Nrf2-knockout or Nrf2-activated mice have achieved a similar endpoint: protection against an obese and insulin-resistant phenotype that includes impaired lipogenesis and gluconeogenesis in the liver. These apparently paradoxical observations led us to evaluate the impact of Nrf2 in liver cells in the absence of any influence from the systemic environment, including changes in the secretion of adipokines and proinflammatory cytokines by adipose tissues. In the present study, Nrf2 knockdown was sufficient to induce fundamental changes in the glucose metabolism of AML12 hepatocytes in addition to its classical cytoprotective functions. We also discuss similarities and differences between our in vitro study and previous in vivo studies, which may be helpful to dissect and better understand in vivo data that represents the culmination of both local and systemic alterations.
Collapse
Affiliation(s)
- Xiaoyang Yuan
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huijing Huang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Huang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinli Wang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Ding
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
92
|
Zhang L, Dasuri K, Fernandez-Kim SO, Bruce-Keller AJ, Keller JN. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice. Am J Transl Res 2016; 8:5309-5319. [PMID: 28078004 PMCID: PMC5209484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21, Pgc1a). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice.
Collapse
Affiliation(s)
- Le Zhang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Road, Wuhan 430030, Hubei, China
- Pennington Biomedical Research Center/LSU System6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/LSU System6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center/LSU System6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Annadora J Bruce-Keller
- Pennington Biomedical Research Center/LSU System6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Jeffrey N Keller
- Pennington Biomedical Research Center/LSU System6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
93
|
Xia SF, Le GW, Wang P, Qiu YY, Jiang YY, Tang X. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet. Nutrients 2016; 8:nu8120799. [PMID: 27973423 PMCID: PMC5188454 DOI: 10.3390/nu8120799] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Shu-Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Guo-Wei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Peng Wang
- COFCO Corporation Oilseeds Processing Division, Beijing 100020, China.
| | - Yu-Yu Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Yu-Yu Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
94
|
Fu J, Hou Y, Xue P, Wang H, Xu Y, Qu W, Zhang Q, Pi J. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
95
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
96
|
Cuevas-Ramos D, Aguilar-Salinas CA. Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0023/hmbci-2016-0023.xml. [PMID: 27318658 DOI: 10.1515/hmbci-2016-0023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/08/2016] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) are a superfamily of 22 proteins related to cell proliferation and tissue repair after injury. A subgroup of three proteins, FGF19, FGF21, and FGF23, are major endocrine mediators. These three FGFs have low affinity to heparin sulfate during receptor binding; in contrast they have a strong interaction with the cofactor Klotho/β-Klotho. FGF21 has received particular attention because of its key role in carbohydrate, lipids, and energy balance regulation. FGF21 improves glucose and lipids metabolism as well as increasing energy expenditure in animal models and humans. Conditions that induce human physical stress such as exercise, lactation, obesity, insulin resistance, and type 2 diabetes influence FGF21 circulating levels. FGF21 also has an anti-oxidant function in human metabolic diseases which contribute to understanding the FGF21 compensatory increment in obesity, the metabolic syndrome, and type 2 diabetes. Interestingly, energy expenditure and weight loss is induced by FGF21. The mechanism involved is through "browning" of white adipose tissue, increasing brown adipose tissue activity and heat production. Therefore, clinical evaluation of therapeutic action of exogenous FGF21 administration is warranted, particularly to treat diabetes and obesity.
Collapse
|
97
|
Merry TL, Ristow M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol 2016; 594:5195-207. [PMID: 27094017 DOI: 10.1113/jp271957] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Reactive oxygen species (ROS) and nitric oxide (NO) regulate exercise-induced nuclear factor erythroid 2-related factor 2 (NFE2L2) expression in skeletal muscle. NFE2L2 is required for acute exercise-induced increases in skeletal muscle mitochondrial biogenesis genes, such as nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A, and anti-oxidant genes, such as superoxide dismutase (SOD)1, SOD2 and catalase. Following exercise training mice with impaired NFE2L2 expression have reduced exercise performance, energy expenditure, mitochondrial volume and anti-oxidant activity. In muscle cells, ROS and NO can regulate mitochondrial biogenesis via a NFE2L2/NRF-1-dependent pathway. ABSTRACT Regular exercise induces adaptations to skeletal muscle, which can include mitochondrial biogenesis and enhanced anti-oxidant reserves. These adaptations and others are at least partly responsible for the improved health of physically active individuals. Reactive oxygen species (ROS) and nitric oxide (NO) are produced during exercise and may mediate the adaptive response to exercise in skeletal muscle. However, the mechanisms through which they act are unclear. In the present study, we aimed to determine the role of the redox-sensitive transcription factor nuclear factor erythroid-derived 2-like 2 (NFE2L2) in acute exercise- and training-induced mitochondrial biogenesis and the anti-oxidant response. We report that ROS and NO regulate acute exercise-induced expression of NFE2L2 in mouse skeletal muscle and muscle cells, and that deficiency in NFE2L2 prevents normal acute treadmill exercise-induced increases in mRNA of the mitochondrial biogenesis markers, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA), and the anti-oxidants superoxide dismutase (SOD) 1 and 2, as well as catalase, in mouse gastrocnemius muscle. Furthermore, after 5 weeks of treadmill exercise training, mice deficient in NFE2L2 had reduced exercise capacity and whole body energy expenditure, as well as skeletal muscle mitochondrial mass and SOD activity, compared to wild-type littermates. In C2C12 myoblasts, acute treatment with exogenous H2 O2 (ROS)- and diethylenetriamine/NO adduct (NO donor) induced increases in mtTFA, which was prevented by small interfering RNA and short hairpin RNA knockdown of either NFE2L2 or NRF-1. Our results suggest that, during exercise, ROS and NO can act via NFE2L2 to functionally regulate skeletal muscle mitochondrial biogenesis and anti-oxidant defence gene expression.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland. .,Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
98
|
Suh KS, Chon S, Choi EM. Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Cytotechnology 2016; 68:2539-2552. [PMID: 27221336 DOI: 10.1007/s10616-016-9977-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Methylglyoxal (MG), a reactive sugar-derived metabolite, exerts harmful effects by inducing oxidative stress, which aggravates a series of diabetic complications, including osteoporosis. The present study was performed to examine the effects of luteolin, a dietary polyphenolic flavonoid, on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Pretreatment of MC3T3-E1 osteoblastic cells with luteolin prevented MG-induced cell death and production of tumor necrosis factor-alpha, intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation. In addition, luteolin increased the levels of glutathione and nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inhibition of heme oxygenase-1 activity by MG. Pretreatment with luteolin prior to MG exposure reduced MG-induced mitochondrial dysfunction and increased the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nitric oxide levels, suggesting that luteolin may induce mitochondrial biogenesis. Taken together, these observations indicated that luteolin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-702, South Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea.
| |
Collapse
|
99
|
Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, Zhang C, Lu X, Tan Y, Feng W, Fu Y, Liu GC, Xu Z, Cai L. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med 2016; 93:94-109. [PMID: 26849944 PMCID: PMC7446394 DOI: 10.1016/j.freeradbiomed.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
The lipid lowering medication, fenofibrate (FF), is a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, possessing beneficial effects for type 2 diabetic nephropathy (DN). We investigated whether FF can prevent the development of type 1 DN, and the underlying mechanisms. Diabetes was induced by a single intraperitoneal injection of streptozotocin in C57BL/6J mice. Mice were treated with oral gavage of FF at 100mg/kg every other day for 3 and 6 months. Diabetes-induced renal oxidative stress, inflammation, apoptosis, lipid and collagen accumulation, and renal dysfunction were accompanied by significant decrease in PI3K, Akt, and GSK-3β phosphorylation as well as an increase in the nuclear accumulation of Fyn [a negative regulator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. All these adverse effects were significantly attenuated by FF treatment. FF also significantly increased fibroblast growth factor 21 (FGF21) expression and enhanced Nrf2 function in diabetic and non-diabetic kidneys. Moreover, FF-induced amelioration of diabetic renal damage, including the stimulation of PI3K/Akt/GSK-3β/Fyn pathway and the enhancement of Nrf2 function were abolished in FGF21-null mice, confirming the critical role of FGF21 in FF-induced renal protection. These results suggest for the first time that FF prevents the development of DN via up-regulating FGF21 and stimulating PI3K/Akt/GSK-3β/Fyn-mediated activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Yanli Cheng
- The First Hospital of Jilin University, Changchun 130021, China; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Jingjing Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Department of Cardiology at the First Hospital of China Medical University, Shenyang 110016, China; Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Weiying Guo
- The First Hospital of Jilin University, Changchun 130021, China
| | - Fengsheng Li
- The Second Artillery General Hospital, Beijing 100088, China
| | - Weixia Sun
- The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Xuemian Lu
- The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Gilbert C Liu
- Child and Adolescent Health Research Design and Support, University of Louisville, Louisville, KY 40204, USA
| | - Zhonggao Xu
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
100
|
Vernia S, Cavanagh-Kyros J, Barrett T, Tournier C, Davis RJ. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK. Cell Rep 2016; 14:2273-80. [PMID: 26947074 PMCID: PMC4794343 DOI: 10.1016/j.celrep.2016.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
The cJun NH2-terminal kinase (JNK)-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21) is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Cathy Tournier
- Faculty of Life Sciences, Manchester University, Manchester M13 9PL, UK
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|