51
|
Ng PY, Zhang C, Li H, Baker DJ. Senescent Microglia Represent a Subset of Disease-Associated Microglia in P301S Mice. J Alzheimers Dis 2023; 95:493-507. [PMID: 37545233 PMCID: PMC10848894 DOI: 10.3233/jad-230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND The existence and contribution of microglia with senescent-like alterations in the pathogenesis of age-related neurodegenerative diseases like Alzheimer's disease (AD) have been suggested in recent years. However, the identification of this distinct microglial population in vivo has proven challenging, largely due to overlaps in the inflammatory phenotype of activated and senescent microglia. Furthermore, attempts at recapitulating senescence in microglia in vitro are limited. OBJECTIVE To identify and characterize senescent microglia that occur in vivo in an animal model of neurodegeneration driven by pathologic tau. METHODS We analyzed the RNA expression patterns of individual microglia from normal mice and the pathogenic tau P301 S PS19 mouse model. We have previously demonstrated that p16-expressing senescent microglia occur in these mice when neurodegeneration has occurred. RESULTS Here we identify a subset of disease-associated microglia with senescent features, notably characterized by the expression of Ccl4. This signature overlaps with established markers of senescence from other cell types. CONCLUSION Our characterization of senescent microglia can be used to better understand the role of senescent microglia in various age-related contexts, including whether clearance of senescent microglia represents a viable therapeutic option.
Collapse
Affiliation(s)
- Pei Y. Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
52
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
53
|
Armeli F, Mengoni B, Maggi E, Mazzoni C, Preziosi A, Mancini P, Businaro R, Lenz T, Archer T. Milmed Yeast Alters the LPS-Induced M1 Microglia Cells to Form M2 Anti-Inflammatory Phenotype. Biomedicines 2022; 10:biomedicines10123116. [PMID: 36551872 PMCID: PMC9776009 DOI: 10.3390/biomedicines10123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Microglial cells polarized towards a proinflammatory phenotype are considered the main cellular players of neuroinflammation, underlying several neurodegenerative diseases. Many studies have suggested that imbalance of the gut microbial composition is associated with an increase in the pro-inflammatory cytokines and oxidative stress that underlie chronic neuroinflammatory diseases, and perturbations to the gut microbiota were detected in neurodegenerative conditions such as Parkinson's disease and Alzheimer's disease. The importance of gut-brain axis has been uncovered and the relevance of an appropriate microbiota balance has been highlighted. Probiotic treatment, rebalancing the gut microbioma, may reduce inflammation. We show that Milmed yeast, obtained from S. cerevisiae after exposure to electromagnetic millimeter wavelengths, induces a reversal of LPS-M1 polarized microglia towards an anti-inflammatory phenotype, as demonstrated morphologically by the recovery of resting phenotype by microglia, by the decrease in the mRNAs of IL-1β, IL-6, TNF-α and in the expression of iNOS. Moreover, Milmed stimulated the secretion of IL-10 and the expression of Arginase-1, cell markers of M2 anti-inflammatory polarized cells. The present findings data suggest that Milmed may be considered to be a probiotic with diversified anti-inflammatory activity, capable of directing the polarization of microglial cells.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Cristina Mazzoni
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- Correspondence:
| | | | | |
Collapse
|
54
|
Minchev D, Kazakova M, Sarafian V. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Int J Mol Sci 2022; 23:ijms232314997. [PMID: 36499325 PMCID: PMC9735607 DOI: 10.3390/ijms232314997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Danail Minchev
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
55
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
56
|
Kerry O'Banion M. Microglia: Rheostats of space radiation effects in the CNS microenvironment. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:180-186. [PMID: 36336364 DOI: 10.1016/j.lssr.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Microglia are innate immune cells within the brain that arise from a distinct myeloid lineage. Like other tissue resident macrophages, microglia respond to injury or immune challenges and participate in reparative processes such as phagocytosis to preserve normal function. Importantly, they also participate in normal homeostatic processes including maintenance of neurogenic niches and synaptic plasticity associated with development. This review highlights aspects of microglial biology and how repeated insults that occur with age, neurodegenerative disease and possibly radiation exposure may heighten microglial responses and contribute to their dysfunction, creating a situation where their normal reparative mechanisms are no longer sufficient to maintain brain health. These ideas are discussed in the context of an evolving literature focused on microglial responses as possible targets for mitigation of late CNS radiation effects that represent potential risks for future exploration of deep space environments.
Collapse
Affiliation(s)
- M Kerry O'Banion
- Department of Neuroscience, USA; Del Monte Institute for Neuroscience, USA; Wilmot Cancer Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
57
|
Trease AJ, Niu M, Morsey B, Guda C, Byrareddy SN, Buch S, Fox HS. Antiretroviral therapy restores the homeostatic state of microglia in SIV-infected rhesus macaques. J Leukoc Biol 2022; 112:969-981. [PMID: 35686500 PMCID: PMC9796061 DOI: 10.1002/jlb.3hi0422-635r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Microglia and macrophages are essential for homeostatic maintenance and innate immune response in the brain. They are the first line of defense against infections such as HIV/SIV in the brain. However, they are susceptible to infection and function as viral reservoirs even under effective viral suppression. While current antiretroviral regimens successfully suppress viremia and improve quality of life and lifespan, neurologic complications persist and are in part attributed to activated microglia. We sought to test the hypothesis that brain microglia return to a more homeostatic-like state when viremia is suppressed by combination antiretroviral therapy. Using the SIV-rhesus macaque model, we combined single-cell RNA sequencing, bioinformatics, and pathway analysis to compare gene expression profiles of brain myeloid cells under 4 conditions: uninfected, SIV infected, SIV infected with cART suppression, and SIV encephalitis (SIVE). Our study reveals greater myeloid diversity and an elevated proinflammatory state are associated with untreated SIV infection compared with uninfected animals. The development of encephalitis and suppression of viremia both reduced myeloid diversity. However, they had converse effects on the activation state of microglia and inflammation. Notably, suggestive of a restoration of a homeostatic state in microglia, gene expression and activation of pathways related to inflammation and immune response in cART-suppressed monkeys were most similar to that in uninfected monkeys. Untreated SIV infection shared characteristics, especially in brain macrophages to SIVE, with SIVE showing dramatic inflammation. In support of our hypothesis, our study demonstrates that cART indeed restores this key component of the brain's homeostatic state. Summary: ScRNA-seq of rhesus monkey microglia reveals clusters of cells in activated states in the setting of SIV infection, which is primarily reversed by suppressing viremia with combination antiretroviral therapy.
Collapse
Affiliation(s)
- Andrew J. Trease
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Meng Niu
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Brenda Morsey
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Howard S. Fox
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
58
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
59
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
60
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
61
|
Rosen SF, Soung AL, Yang W, Ai S, Kanmogne M, Davé VA, Artyomov M, Magee JA, Klein RS. Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Med 2022; 14:108. [PMID: 36153630 PMCID: PMC9509564 DOI: 10.1186/s13073-022-01111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. Methods Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. Results Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. Conclusions We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01111-0.
Collapse
|
62
|
Roy P, Tomassoni D, Nittari G, Traini E, Amenta F. Effects of choline containing phospholipids on the neurovascular unit: A review. Front Cell Neurosci 2022; 16:988759. [PMID: 36212684 PMCID: PMC9541750 DOI: 10.3389/fncel.2022.988759] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The roles of choline and of choline-containing phospholipids (CCPLs) on the maintenance and progress of neurovascular unit (NVU) integrity are analyzed. NVU is composed of neurons, glial and vascular cells ensuring the correct homeostasis of the blood-brain barrier (BBB) and indirectly the function of the central nervous system. The CCPLs phosphatidylcholine (lecithin), cytidine 5′-diphosphocholine (CDP-choline), choline alphoscerate or α-glyceryl-phosphorylcholine (α-GPC) contribute to the modulation of the physiology of the NVU cells. A loss of CCPLs contributes to the development of neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis, Parkinson’s disease. Our study has characterized the cellular components of the NVU and has reviewed the effect of lecithin, of CDP-choline and α-GPC documented in preclinical studies and in limited clinical trials on these compounds. The interesting results obtained with some CCPLs, in particular with α-GPC, probably would justify reconsideration of the most promising molecules in larger attentively controlled studies. This can also contribute to better define the role of the NVU in the pathophysiology of brain disorders characterized by vascular impairment.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Enea Traini
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
- *Correspondence: Francesco Amenta,
| |
Collapse
|
63
|
Zhang Z, Wang X, Lin Y, Pan D. A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian target of rapamycin signaling in neuronopathic Gaucher disease. Front Mol Neurosci 2022; 15:944883. [PMID: 36204141 PMCID: PMC9530712 DOI: 10.3389/fnmol.2022.944883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronopathic Gaucher disease (nGD) is an inherited neurodegenerative disease caused by mutations in GBA1 gene and is associated with premature death. Neuroinflammation plays a critical role in disease pathogenesis which is characterized by microgliosis, reactive astrocytosis, and neuron loss, although molecular mechanisms leading to neuroinflammation are not well-understood. In this report, we developed a convenient tool to quantify microglia proliferation and activation independently and uncovered abnormal proliferation of microglia (∼2-fold) in an adult genetic nGD model. The nGD-associated pattern of inflammatory mediators pertinent to microglia phenotypes was determined, showing a unique signature favoring pro-inflammatory chemokines and cytokines. Moreover, highly polarized (up or down) dysregulations of mTORC1 signaling with varying lysosome dysfunctions (numbers and volume) were observed among three major cell types of nGD brain. Specifically, hyperactive mTORC1 signaling was detected in all disease-associated microglia (Iba1high) with concurrent increase in lysosome function. Conversely, the reduction of neurons presenting high mTORC1 activity was implicated (including Purkinje-like cells) which was accompanied by inconsistent changes of lysosome function in nGD mice. Undetectable levels of mTORC1 activity and low Lamp1 puncta were noticed in astrocytes of both diseased and normal mice, suggesting a minor involvement of mTORC1 pathway and lysosome function in disease-associated astrocytes. These findings highlight the differences and complexity of molecular mechanisms that are involved within various cell types of the brain. The quantifiable parameters established and nGD-associated pattern of neuroinflammatory mediators identified would facilitate the efficacy evaluation on microgliosis and further discovery of novel therapeutic target(s) in treating neuronopathic Gaucher disease.
Collapse
Affiliation(s)
- Zhenting Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaohong Wang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yi Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
- *Correspondence: Dao Pan,
| |
Collapse
|
64
|
Zhang Y, Sui M, Bai Z, Zhou D, Lin B, Chen G, Hou Y, Li N. Study on components with neuroinflammation inhibitory activities from Croton tiglium L. var. xiaopadou. Chem Biodivers 2022; 19:e202200473. [PMID: 35931661 DOI: 10.1002/cbdv.202200473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
An undescribed tigliane diterpenoid 12- O -tiglyl-13-acetyl-17- O -tiglyl-phorbol, together with thirty-three known components, were isolated from the stems of Croton tiglium L. var. xiaopadou (Euphorbiaceae). Their structures were established based on spectroscopic data and calculated ECD spectra. Their anti-neuroinflammatory effects were evaluated in LPS-induced BV-2 microglia. Thirteen tested compounds showed significant inhibitory activities, especially compounds 10 , 16 , 18 and 21 exhibited an inhibitory effect with IC 50 values in the range of 12.39 to 17.80 μM, which are comparable with that of the positive control (minocycline, IC 50 13.92 μM).
Collapse
Affiliation(s)
- Yanping Zhang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Minghao Sui
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Zisong Bai
- Northeastern University, College of Life and Health Sciences, Shenyang 110004, Shenyang, CHINA
| | - Di Zhou
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Bin Lin
- Shenyang Pharmaceutical University, School of Pharmaceutical Engineering, Wenhua Road 103, Shenyang, CHINA
| | - Gang Chen
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Yue Hou
- Northeastern University, College of Life and Health Sciences, Shenyang 110004, Shenyang, CHINA
| | - Ning Li
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica , Key Laboratory of Structure-Based Drug Design and Discovery, Wenhua Road 103, Not Available, 110016, Shenyang, CHINA
| |
Collapse
|
65
|
Eid A, Mhatre-Winters I, Sammoura FM, Edler MK, von Stein R, Hossain MM, Han Y, Lisci M, Carney K, Konsolaki M, Hart RP, Bennett JW, Richardson JR. Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer's Disease Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87005. [PMID: 35946953 PMCID: PMC9364816 DOI: 10.1289/ehp10576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The interaction of aging-related, genetic, and environmental factors is thought to contribute to the etiology of late-onset, sporadic Alzheimer's disease (AD). We previously reported that serum levels of p,p'-dichlorodiphenyldichloroethylene (DDE), a long-lasting metabolite of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT), were significantly elevated in patients with AD and associated with the risk of AD diagnosis. However, the mechanism by which DDT may contribute to AD pathogenesis is unknown. OBJECTIVES This study sought to assess effects of DDT exposure on the amyloid pathway in multiple in vitro and in vivo models. METHODS Cultured cells (SH-SY5Y and primary neurons), transgenic flies overexpressing amyloid beta (Aβ), and C57BL/6J and 3xTG-AD mice were treated with DDT to assess impacts on the amyloid pathway. Real time quantitative polymerase chain reaction, multiplex assay, western immunoblotting and immunohistochemical methods were used to assess the effects of DDT on amyloid precursor protein (APP) and other contributors to amyloid processing and deposition. RESULTS Exposure to DDT revealed significantly higher APP mRNA and protein levels in immortalized and primary neurons, as well as in wild-type and AD-models. This was accompanied by higher levels of secreted Aβ in SH-SY5Y cells, an effect abolished by the sodium channel antagonist tetrodotoxin. Transgenic flies and 3xTG-AD mice had more Aβ pathology following DDT exposure. Furthermore, loss of the synaptic markers synaptophysin and PSD95 were observed in the cortex of the brains of 3xTG-AD mice. DISCUSSION Sporadic Alzheimer's disease risk involves contributions from genetic and environmental factors. Here, we used multiple model systems, including primary neurons, transgenic flies, and mice to demonstrate the effects of DDT on APP and its pathological product Aβ. These data, combined with our previous epidemiological findings, provide a mechanistic framework by which DDT exposure may contribute to increased risk of AD by impacting the amyloid pathway. https://doi.org/10.1289/EHP10576.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Ferass M. Sammoura
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Richard von Stein
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Miriam Lisci
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Kristina Carney
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Mary Konsolaki
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Joan W. Bennett
- Department of Plant Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
66
|
Muramyl Dipeptide Administration Delays Alzheimer’s Disease Physiopathology via NOD2 Receptors. Cells 2022; 11:cells11142241. [PMID: 35883683 PMCID: PMC9321587 DOI: 10.3390/cells11142241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline. Methods: We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months. Results: We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response. Conclusion: These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.
Collapse
|
67
|
Lozupone M, Berardino G, Mollica A, Sardone R, Dibello V, Zupo R, Lampignano L, Castellana F, Bortone I, Stallone R, Daniele A, Altamura M, Bellomo A, Solfrizzi V, Panza F. ALZT-OP1: An experimental combination regimen for the treatment of Alzheimer's Disease. Expert Opin Investig Drugs 2022; 31:759-771. [PMID: 35758153 DOI: 10.1080/13543784.2022.2095261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION For Alzheimer's disease (AD) treatment, US FDA granted accelerated approval for aducanumab due to its amyloid-β (Aβ)-lowering effects, notwithstanding the reported poor correlation between amyloid plaque reduction and clinical change for this drug. The diversification of drug targets appears to be the future of the AD field and from this perspective, drugs modulating microglia dysfunction and combination treatment regimens offer some promise. AREAS COVERED The aim of the present article was to provide a comprehensive review of ALZT-OP1 (cromolyn sodium plus ibuprofen), an experimental combination treatment regimen for AD, discussing their mechanisms of action targeting Aβ and neuroinflammation, examining the role of microglia in AD and offering our own insights on the role of present and alternative approaches directed toward neuroinflammation. EXPERT OPINION Enrolling high-risk participants with elevated brain amyloid could help to slow cognitive decline in secondary prevention trials during AD preclinical stages. Long-term follow-up indicated that non-steroidal anti-inflammatory drugs use begun when the brain was still normal may benefit these patients, suggesting that the timing of therapy could be crucial. However, previous clinical failures and the present incomplete understanding of the Aβ pathophysiological role in AD put this novel experimental combination regimen at substantial risk of failure.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Berardino
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Anita Mollica
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| |
Collapse
|
68
|
Zhu X, Ma Q, Yang F, Li X, Liu Y, Chen J, Li L, Chen M, Zou X, Yan L, Chen J. Xiaoyaosan Ameliorates Chronic Restraint Stress-Induced Depression-Like Phenotype by Suppressing A2AR Signaling in the Rat Striatum. Front Pharmacol 2022; 13:897436. [PMID: 35814204 PMCID: PMC9261476 DOI: 10.3389/fphar.2022.897436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a common mental disorder characterized by pessimism and world-weariness. In our previous study, we found that Xiaoyaosan (XYS) could have antidepressive effects, however the underlying mechanisms remain unclear. Several studies have shown that adenosine A (2 A) receptor (A2AR) in the brain is a key point in the treatment of depression. Our present study aimed to investigate the effects of XYS on A2AR signaling in the striatum of rats exposed to chronic restraint stress (CRS). Ninety-six male Sprague–Dawley rats were randomly divided into 8 groups (control, model, negative control, XYS, A2AR antagonist, A2AR antagonist + XYS, A2AR agonist, A2AR agonist + XYS). The rats in the model group, XYS group, A2AR antagonist group and A2AR antagonist + XYS group were subjected to CRS for 3 h a day. The XYS decoction [2.224 g/(kg·d)] was intragastrical administered by oral gavage to the rats in the negative control group, XYS group, A2AR antagonist + XYS group, and A2AR agonist + XYS group. The rats in the A2AR antagonist group and A2AR antagonist + XYS group were treated with SCH 58261 [0.05 mg/(kg·d)], and the rats in the A2AR agonist and A2AR agonist + XYS group were treated with CGS 21680 [0.1 mg/(kg·d)]. These procedures were performed for 21 consecutive days. Behavioral studies including the open field test, elevated plus maze test, sucrose preference test and forced swimming test, were performed to examine depression-like phenotypes. Then, the effects of XYS on CRS- or A2AR agonist-induced striatal subcellular damage, microglial activation and A2AR signaling changes in the striatum were examined. Here, we report that XYS ameliorates depression-like phenotypes (such as body weight loss as well as depression- and anxiety-like behaviors) and improves synaptic survival and growth in the stratum of the CRS rats. Moreover, XYS reduces A2AR activity and suppresses hyper-activation of striatal microglia. The tissue and cellular effects of XYS were similar to those of the known A2AR antagonists. In conclusion, XYS alleviates depression in the CRS rats via inhibiting A2AR in the striatum.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Furong Yang
- Medical School, Hubei Minzu University, Enshi, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Zou
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Yan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Li Yan, ; Jiaxu Chen,
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Li Yan, ; Jiaxu Chen,
| |
Collapse
|
69
|
Yin W, Ping YF, Li F, Lv SQ, Zhang XN, Li XG, Guo Y, Liu Q, Li TR, Yang LQ, Yang KD, Liu YQ, Luo CH, Luo T, Wang WY, Mao M, Luo M, He ZC, Cao MF, Chen C, Miao JY, Zeng H, Wang C, Zhou L, Yang Y, Yang X, Wang QH, Feng H, Shi Y, Bian XW. A map of the spatial distribution and tumour-associated macrophage states in glioblastoma and grade-4 IDH-mutant astrocytoma. J Pathol 2022; 258:121-135. [PMID: 35723032 DOI: 10.1002/path.5984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade-4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wildtype and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. Spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific geneset was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified 9 myeloid cell clusters including monocyte, six Mo/Mg-TAM subsets, dendritic cell, and proliferative myeloid cluster. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory cluster, whereas Astro-IDH-mut-G4 was with higher proportion of TAM subset mediating antigen presentation. Glioblastomas with higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade-4 gliomas, and may serve as a resource for immunotherapy development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Yin
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Xue-Gang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Ying Guo
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Tian-Ran Li
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Liu-Qing Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Kai-Di Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Yu-Qi Liu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Chun-Hua Luo
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Wen-Ying Wang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Min Luo
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Hui Zeng
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Chao Wang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Lei Zhou
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Xi Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Qiang-Hu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumour Immunopathology, Ministry of Education of China, Chongqing, PR China
| |
Collapse
|
70
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
71
|
de Almeida MMA, Pieropan F, Footz T, David JM, David JP, da Silva VDA, Dos Santos Souza C, Voronova A, Butt AM, Costa SL. Agathisflavone Modifies Microglial Activation State and Myelination in Organotypic Cerebellar Slices Culture. J Neuroimmune Pharmacol 2022; 17:206-217. [PMID: 33881709 DOI: 10.1007/s11481-021-09991-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
Oligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair. There is a need for new potential therapies that regulate myelination and microglia to promote repair. Agathisflavone (FAB) is a non-toxic flavonoid that is known for its anti-inflammatory and neuroprotective properties. Here, we examined the effects of FAB (5-50 μM) on myelination and microglia in organotypic cerebellar slices prepared from P10-P12 Sox10-EGFP and Plp1-DsRed transgenic mice. Immunofluorescence labeling for myelin basic protein (MBP) and neurofilament (NF) demonstrates that FAB significantly increased the proportion of MBP + /NF + axons but did not affect the overall number of oligodendroglia or axons, or the expression of oligodendroglial proteins CNPase and MBP. FAB is known to be a phytoestrogen, but blockade of α- or β- estrogen receptors (ER) indicated the myelination promoting effects of FAB were not mediated by ER. Examination of microglial responses by Iba1 immunohistochemistry demonstrated that FAB markedly altered microglial morphology, characterized by smaller somata and reduced branching of their processes, consistent with a decreased state of activation, and increased Iba1 protein expression. The results provide evidence that FAB increases the extent of axonal coverage by MBP immunopositive oligodendroglial processes and has a modulatory effect upon microglial cells, which are important therapeutic strategies in multiple neuropathologies.
Collapse
Affiliation(s)
- Monique Marylin Alves de Almeida
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Bahia, Brazil
| | - Juceni Pereira David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Bahia, Brazil
| | | | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil.
| |
Collapse
|
72
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
73
|
Zhou J, Ni W, Ling Y, Lv X, Niu D, Zeng Y, Qiu Y, Si Y, Wang Z, Hu J. Human neural stem cells secretome inhibits lipopolysaccharide-induced neuroinflammation through modulating microglia polarization by activating PPAR-γ. Stem Cells Dev 2022; 31:369-382. [PMID: 35481777 DOI: 10.1089/scd.2022.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is one of the typical events in multiple neurodegenerative diseases, whereas microglia are the critical participants in the pathogenesis of neuroinflammation. Several studies suggest that neural stem cells (NSCs) present immunomodulatory benefits due to their paracrine products, which contain mounting trophic factors. In the current study, the anti-inflammatory effects of neural stem cells secretome (NSC-S) on lipopolysaccharide (LPS)-induced neuroinflammatory models were evaluated in vivo and the underlying mechanism was further investigated in vitro. It was revealed that NSC-S significantly attenuated the severity of LPS-induced behaviour disorders and inflammatory response in mice. In vitro studies found that NSC-S significantly promoted the polarization of microglia from proinflammatory M1 to anti-inflammatory M2 phenotype, and reduced the production of proinflammatory cytokines while elevated anti-inflammatory cytokines in BV2 cells. NSC-S promoted peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway activation. However, these effects of NSC-S were abrogated by PPAR-γ inhibitor GW9662. Notably, the fatty acid binding protein 5 (FABP5) in NSC-S may mediate PPAR-γ activation and inflammation remission. In summary, NSC-S promotes the regression of LPS-induced microglia-mediated inflammation through the PPAR-γ pathway. This function might be achieved via FABP5.
Collapse
Affiliation(s)
- Jiqin Zhou
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Wei Ni
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yating Ling
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Xiaorui Lv
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Dongdong Niu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Zeng
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yun Qiu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Si
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co.,Ltd, Ningbo, Zhejiang, China;
| | - Jiabo Hu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, 301, , Jiangsu, China, 212013;
| |
Collapse
|
74
|
Reid KM, Kitchener EJA, Butler CA, Cockram TOJ, Brown GC. Brain Cells Release Calreticulin That Attracts and Activates Microglia, and Inhibits Amyloid Beta Aggregation and Neurotoxicity. Front Immunol 2022; 13:859686. [PMID: 35514983 PMCID: PMC9065406 DOI: 10.3389/fimmu.2022.859686] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Calreticulin is a chaperone, normally found in the endoplasmic reticulum, but can be released by macrophages into the extracellular medium. It is also found in cerebrospinal fluid bound to amyloid beta (Aβ). We investigated whether brain cells release calreticulin, and whether extracellular calreticulin had any effects on microglia and neurons relevant to neuroinflammation and neurodegeneration. We found that microglia release nanomolar levels of calreticulin when inflammatory-activated with lipopolysaccharide, when endoplasmic reticulum stress was induced by tunicamycin, or when cell death was induced by staurosporine, and that neurons release calreticulin when crushed. Addition of nanomolar levels of extracellular calreticulin was found to chemoattract microglia, and activate microglia to release cytokines TNF-α, IL-6 and IL-1β, as well as chemokine (C-C motif) ligand 2. Calreticulin blocked Aβ fibrillization and modified Aβ oligomerization, as measured by thioflavin T fluorescence and transmission electron microscopy. Extracellular calreticulin also altered microglial morphology and proliferation, and prevented Aβ-induced neuronal loss in primary neuron-glial cultures. Thus, calreticulin is released by microglia and neurons, and acts: as an alarmin to recruit and activate microglia, as an extracellular chaperone to prevent Aβ aggregation, and as a neuroprotectant against Aβ neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
75
|
The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J Neuroinflammation 2022; 19:96. [PMID: 35429976 PMCID: PMC9013466 DOI: 10.1186/s12974-022-02441-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Elevated production of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is implicated in the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Transgenic mice with CNS-targeted chronic production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN) recapitulate important clinical and pathological features of these human diseases. The activation of microglia is a prominent manifestation found both in the human diseases and in the transgenic mice, yet little is known about how this contributes to disease pathology. Methods Here, we used a combination of ex vivo and in situ techniques to characterize the molecular, cellular and transcriptomic phenotypes of microglia in GFAP-IL6 versus GFAP-IFN mice. In addition, a transcriptomic meta-analysis was performed to compare the microglia response from GFAP-IL6 and GFAP-IFN mice to the response of microglia in a range of neurodegenerative and neuroinflammatory disorders. Results We demonstrated that microglia show stimulus-specific responses to IL-6 versus IFN-α in the brain resulting in unique and extensive molecular and cellular adaptations. In GFAP-IL6 mice, microglia proliferated, had shortened, less branched processes and elicited transcriptomic and molecular changes associated with phagocytosis and lipid processing. In comparison, microglia in the brain of GFAP-IFN mice exhibited increased proliferation and apoptosis, had larger, hyper-ramified processes and showed transcriptomic and surface marker changes associated with antigen presentation and antiviral response. Further, a transcriptomic meta-analysis revealed that IL-6 and IFN-α both contribute to the formation of a core microglia response in animal models of neurodegenerative and neuroinflammatory disorders, such as Alzheimer’s disease, tauopathy, multiple sclerosis and lipopolysaccharide-induced endotoxemia. Conclusions Our findings demonstrate that microglia responses to IL-6 and IFN-α are highly stimulus-specific, wide-ranging and give rise to divergent phenotypes that modulate microglia responses in neuroinflammatory and neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02441-x.
Collapse
|
76
|
Saxena A, Moran RRM, Bullard MR, Bondy EO, Smith MF, Morris L, Fogle N, Singh J, Jarvis B, Ray T, Saxena J, Freeman LR. Sex differences in the fecal microbiome and hippocampal glial morphology following diet and antibiotic treatment. PLoS One 2022; 17:e0265850. [PMID: 35385494 PMCID: PMC8985946 DOI: 10.1371/journal.pone.0265850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Rising obesity rates have become a major public health concern within the United States. Understanding the systemic and neural effects of obesity is crucial in designing preventive and therapeutic measures. In previous studies, administration of a high fat diet has induced significant weight gain for mouse models of obesity. Interestingly, sex differences in high-fat diet-induced weight gain have been observed, with female mice gaining significantly less weight compared to male mice on the same high-fat diet. It has also been observed that consumption of a high-fat diet can increase neurogliosis, but the mechanism by which this occurs is still not fully understood. Recent research has suggested that the gut microbiome may mediate diet-induced glial activation. The current study aimed to (1) analyze changes to the gut microbiome following consumption of a high fat (HF) diet as well as antibiotic treatment, (2) evaluate hippocampal microgliosis and astrogliosis, and (3) identify sex differences within these responses. We administered a low fat (Research Diets D12450 K) or high fat diet (Research Diets D12451) to male and female C57Bl/6 mice for sixteen weeks. Mice received an antibiotic cocktail containing 0.5g/L of vancomycin, 1.0 g/L ampicillin, 1.0 g/L neomycin, and 1.0 g/L metronidazole in their drinking water during the last six weeks of the study and were compared to control mice receiving normal drinking water throughout the study. We observed a significant reduction in gut microbiome diversity for groups that received the antibiotic cocktail, as determined by Illumina next-generation sequencing. Male mice fed the HF diet (± antibiotics) had significantly greater body weights compared to all other groups. And, female mice fed the low fat (LF) diet and administered antibiotics revealed significantly decreased microgliosis and astrogliosis in the hippocampus compared to LF-fed females without antibiotics. Interestingly, male mice fed the LF diet and administered antibiotics revealed significantly increased microgliosis, but decreased astrogliosis, compared to LF-fed males without antibiotics. The observed sex differences in LF-fed mice given antibiotics brings forward questions about sex differences in nutrient metabolism, gut microbiome composition, and response to antibiotics.
Collapse
Affiliation(s)
- Anju Saxena
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Roberta R. M. Moran
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Meghan R. Bullard
- Department of Biology, Furman University, Greenville, South Carolina, United States of America
| | - Emma O. Bondy
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Matthew Foster Smith
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Lainie Morris
- Department of Biology, Furman University, Greenville, South Carolina, United States of America
| | - Nicaella Fogle
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Jagroop Singh
- Department of Biology, Furman University, Greenville, South Carolina, United States of America
| | - Brendan Jarvis
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Tammy Ray
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Juhi Saxena
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
| | - Linnea Ruth Freeman
- Neurosciences, Furman University, Greenville, South Carolina, United States of America
- Department of Biology, Furman University, Greenville, South Carolina, United States of America
| |
Collapse
|
77
|
Fortune AJ, Fletcher JL, Blackburn NB, Young KM. Using MS induced pluripotent stem cells to investigate MS aetiology. Mult Scler Relat Disord 2022; 63:103839. [DOI: 10.1016/j.msard.2022.103839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
|
78
|
Huisman C, Norgard MA, Levasseur PR, Krasnow SM, van der Wijst MGP, Olson B, Marks DL. Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Mol Metab 2022; 58:101441. [PMID: 35031523 PMCID: PMC8851272 DOI: 10.1016/j.molmet.2022.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.
Collapse
Affiliation(s)
- Christian Huisman
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States.
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Medical Scientist Training Program, Oregon Health & Science University, Portland, United States
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, United States; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, United States.
| |
Collapse
|
79
|
de Witte LD, Wang Z, Snijders GLJL, Mendelev N, Liu Q, Sneeboer MAM, Boks MPM, Ge Y, Haghighi F. Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biol Psychiatry 2022; 91:572-581. [PMID: 35027166 PMCID: PMC11181298 DOI: 10.1016/j.biopsych.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.
Collapse
Affiliation(s)
- Lot D de Witte
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhaoyu Wang
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gijsje L J L Snijders
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Mendelev
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Qingkun Liu
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marjolein A M Sneeboer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fatemeh Haghighi
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
80
|
Ocañas SR, Pham KD, Blankenship HE, Machalinski AH, Chucair-Elliott AJ, Freeman WM. Minimizing the Ex Vivo Confounds of Cell-Isolation Techniques on Transcriptomic and Translatomic Profiles of Purified Microglia. eNeuro 2022; 9:ENEURO.0348-21.2022. [PMID: 35228310 PMCID: PMC8970438 DOI: 10.1523/eneuro.0348-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Modern molecular and biochemical neuroscience studies require analysis of specific cellular populations derived from brain tissue samples to disambiguate cell type-specific events. This is particularly true in the analysis of minority glial populations in the brain, such as microglia, which may be obscured in whole tissue analyses. Microglia have central functions in development, aging, and neurodegeneration and are a current focus of neuroscience research. A long-standing concern for glial biologists using in vivo models is whether cell isolation from CNS tissue could introduce ex vivo artifacts in microglia, which respond quickly to changes in the environment. Mouse microglia were purified by magnetic-activated cell sorting (MACS), as well as cytometer-based and cartridge-based fluorescence-activated cell sorting (FACS) approaches to compare and contrast performance. The Cx3cr1-NuTRAP mouse model was used to provide an endogenous fluorescent microglial marker and a microglial-specific translatome profile as a baseline comparison lacking cell isolation artifacts. All sorting methods performed similarly for microglial purity with main differences being in cell yield and time of isolation. Ex vivo activation signatures occurred principally during the initial tissue dissociation and cell preparation and not the cell sorting. The cell preparation-induced activational phenotype could be minimized by inclusion of transcriptional and translational inhibitors or non-enzymatic dissociation conducted entirely at low temperatures. These data demonstrate that a variety of microglial isolation approaches can be used, depending on experimental needs, and that inhibitor cocktails are effective at reducing cell preparation artifacts.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Harris E Blankenship
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
81
|
Quek H, Cuní-López C, Stewart R, Colletti T, Notaro A, Nguyen TH, Sun Y, Guo CC, Lupton MK, Roberts TL, Lim YC, Oikari LE, La Bella V, White AR. ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression. J Neuroinflammation 2022; 19:58. [PMID: 35227277 PMCID: PMC8887023 DOI: 10.1186/s12974-022-02421-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia.
Methods
In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls.
Results
We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression.
Conclusions
Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.
Collapse
|
82
|
Kulkarni B, Cruz-Martins N, Kumar D. Microglia in Alzheimer's Disease: An Unprecedented Opportunity as Prospective Drug Target. Mol Neurobiol 2022; 59:2678-2693. [PMID: 35149973 DOI: 10.1007/s12035-021-02661-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an ever more common neurodegenerative disease among the elderly, characterized by recurrent neuroinflammation and amyloid beta (Aβ) accumulation in the brain parenchyma. Recent genome-wide association studies (GWAS) have shown a distinct role for the innate immune system in AD, with microglia playing a key role. The function of microglial cells is stringently regulated by the neighboring microenvironment in the brain. Upon interruption in diseases, like AD, it demonstrates neurotoxic and neuroprotective action by M1 (neurotoxic) and M2 (neuroprotective) microglial phenotypes, respectively, in the brain. Microglial cells on activation by complement factors, toll-like receptors, and genetic variants result in Aβ' phagocytosis, synaptic pruning, and reactivation of complement pathway. Recent studies have demonstrated the presence of potential therapeutic targets in microglial cells. Immune receptors revealed on microglia as potential drug targets can be paired immunoglobulin-like type 2 receptor (PILR), CD3358, and triggering receptor expressed on myeloid cells 2 (TREM2), as they can have impact on late-onset AD occurrence and progression. Thus, targeting these receptors can accentuate the beneficial effects of microglial cells required to decelerate the progression of AD. This review emphasizes the microglial phenotypes, its function in AD brain, and potential immunological and therapeutic targets to fight this highly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Bhargavi Kulkarni
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India
| | - Natália Cruz-Martins
- Institute of Research and Advanced, Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal. .,Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed To Be University) Erandawane, Pune, 411038, Maharashtra, India.
| |
Collapse
|
83
|
Boche D, Gordon MN. Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease. Alzheimers Dement 2022; 18:360-376. [PMID: 34223696 PMCID: PMC9059230 DOI: 10.1002/alz.12389] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 02/03/2023]
Abstract
The morphological plasticity of microglia has fascinated neuroscientists for 100 years. Attempts to classify functional phenotypes are hampered by similarities between endogenous brain microglia and peripheral myeloid cells that can enter the brain under pathological conditions. Recent advances in single-cell -omic methodologies have led to an explosion of data regarding gene expression in microglia. Herein, we review the diversity of microglial phenotypes in healthy brains, aging, and Alzheimer's disease (AD); identify knowledge gaps in the body of evidence; and suggest areas in which new knowledge would be useful. Data from human samples and mouse models are compared and contrasted. Understanding the molecular complexity of the microglial response repertoire will suggest new avenues for therapeutic treatments in AD.
Collapse
Affiliation(s)
- Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marcia N. Gordon
- Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI, USA,corresponding author: Marcia N. Gordon, PhD, Michigan State University GRRC, 400 Monroe Ave NW, Grand Rapids, MI, 49503 USA, , Telephone: (616) 234-2837
| |
Collapse
|
84
|
White matter microglia heterogeneity in the CNS. Acta Neuropathol 2022; 143:125-141. [PMID: 34878590 DOI: 10.1007/s00401-021-02389-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident myeloid cells in the central nervous system (CNS) play critical roles in shaping the brain during development, responding to invading pathogens, and clearing tissue debris or aberrant protein aggregations during ageing and neurodegeneration. The original concept that like macrophages, microglia are either damaging (pro-inflammatory) or regenerative (anti-inflammatory) has been updated to a kaleidoscope view of microglia phenotypes reflecting their wide-ranging roles in maintaining homeostasis in the CNS and, their contribution to CNS diseases, as well as aiding repair. The use of new technologies including single cell/nucleus RNA sequencing has led to the identification of many novel microglia states, allowing for a better understanding of their complexity and distinguishing regional variations in the CNS. This has also revealed differences between species and diseases, and between microglia and other myeloid cells in the CNS. However, most of the data on microglia heterogeneity have been generated on cells isolated from the cortex or whole brain, whereas white matter changes and differences between white and grey matter have been relatively understudied. Considering the importance of microglia in regulating white matter health, we provide a brief update on the current knowledge of microglia heterogeneity in the white matter, how microglia are important for the development of the CNS, and how microglial ageing affects CNS white matter homeostasis. We discuss how microglia are intricately linked to the classical white matter diseases such as multiple sclerosis and genetic white matter diseases, and their putative roles in neurodegenerative diseases in which white matter is also affected. Understanding the wide variety of microglial functions in the white matter may provide the basis for microglial targeted therapies for CNS diseases.
Collapse
|
85
|
Garcia P, Jürgens‐Wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐Schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐Borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 2022; 70:935-960. [PMID: 35092321 PMCID: PMC9305192 DOI: 10.1002/glia.24149] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α‐synuclein. Alpha‐synuclein (α‐syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α‐syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α‐syn induced by striatal injection of α‐syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α‐syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α‐syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α‐syn inclusion formation is not the major driver in the early phases of PD‐like neurodegeneration, but that microglia, activated by diffusible, oligomeric α‐syn, may play a key role in this process. Our findings uncover new features of α‐syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α‐syn spreading.
Collapse
Affiliation(s)
- Pierre Garcia
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Wiebke Jürgens‐Wemheuer
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Annette Masuch
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Simone Brioschi
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | | | - Eric Koncina
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Carole Sousa
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tony Kaoma
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Nathalie Nicot
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tatjana Pfander
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | | | | | | | - Knut Biber
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Felix Kleine‐Borgmann
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| |
Collapse
|
86
|
Nguyen NP, Helmbrecht H, Ye Z, Adebayo T, Hashi N, Doan MA, Nance E. Brain Tissue-Derived Extracellular Vesicle Mediated Therapy in the Neonatal Ischemic Brain. Int J Mol Sci 2022; 23:620. [PMID: 35054800 PMCID: PMC8775954 DOI: 10.3390/ijms23020620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.
Collapse
Affiliation(s)
- Nam Phuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
| | - Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tolulope Adebayo
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Najma Hashi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Elizabeth Nance
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
87
|
Murani E, Trakooljul N, Hadlich F, Ponsuksili S, Wimmers K. Brain Transcriptome Responses to Dexamethasone Depending on Dose and Sex Reveal Factors Contributing to Sex-Specific Vulnerability to Stress-Induced Disorders. Neuroendocrinology 2022; 112:235-251. [PMID: 33853082 PMCID: PMC8985051 DOI: 10.1159/000516500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Glucocorticoid (GC) receptor (GR) signaling in the hypothalamus (Hyp) and in the superordinate limbic structures, such as the hippocampus (Hip), conveys feedback regulation of the neuroendocrine stress response and acts upon other neurobiological functions that ultimately influence mental health. These responses are strongly influenced by sex, but the molecular causes are still largely unexplored. METHODS To investigate GR targets and their GC sensitivity in the Hyp and Hip, we treated juvenile male and female piglets with 10 (D10) or 60 (D60) µg/kg dexamethasone (DEX), a selective GR agonist, and analyzed transcriptome responses compared to a saline control group using RNA sequencing. RESULTS Both doses influenced similar biological functions, including cellular response to lipid and immune cell-related functions, but the transcriptional response to D10 was considerably weaker, particularly in the Hip. Weighted Gene Co-expression Network Analysis revealed a network of genes coordinately regulated by DEX in both structures, among which the alpha-arrestin ARRDC2 takes a central position. Distinct functional groups of genes were differentially regulated by DEX between sexes depending on the dose; at D10, these included particularly mitochondrial genes, whereas at D60 interferon signaling and lipid homeostasis genes were enriched. The general and sex-specific transcriptional responses to DEX highlight microglia as the prominent target. Several key marker genes of disease-associated microglia were regulated by DEX depending on sex, such as TREM2 and LPL. CONCLUSION The discovered expression signatures suggest that DEX induced a dysfunctional state of microglia in males, while in females microglia were primed, which could entail predisposition for different mental disorders.
Collapse
|
88
|
Cristino LMF, Chaves Filho AJM, Custódio CS, Vasconcelos SMM, de Sousa FCF, Sanders LLO, de Lucena DF, Macedo DS. Animal Model of Neonatal Immune Challenge by Lipopolysaccharide: A Study of Sex Influence in Behavioral and Immune/Neurotrophic Alterations in Juvenile Mice. Neuroimmunomodulation 2022; 29:391-401. [PMID: 35272296 DOI: 10.1159/000522055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The prenatal/perinatal exposure to infections may trigger neurodevelopmental alterations that lead to neuropsychiatric disorders such as autism spectrum disorder (ASD). Previous evidence points to long-term behavioral consequences, such as autistic-like behaviors in rodents induced by lipopolysaccharide (LPS) pre- and postnatal (PN) exposure during critical neurodevelopmental periods. Additionally, sex influences the prevalence and symptoms of ASD. Despite this, the mechanisms underlying this influence are poorly understood. We aim to study sex influences in behavioral and neurotrophic/inflammatory alterations triggered by LPS neonatal exposure in juvenile mice at an approximate age of ASD diagnosis in humans. METHODS Swiss male and female mice on PN days 5 and 7 received a single daily injection of 500 μg/kg LPS from Escherichia coli or sterile saline (control group). We conducted behavioral determinations of locomotor activity, repetitive behavior, anxiety-like behavior, social interaction, and working memory in animals on PN25 (equivalent to 3-5 years old of the human). To determine BDNF levels in the prefrontal cortex and hippocampus, we used animals on PN8 (equivalent to a human term infant) and PN25. In addition, we evaluated iba-1 (microglia marker), TNFα, and parvalbumin expression on PN25. RESULTS Male juvenile mice presented repetitive behavior, anxiety, and working memory deficits. Females showed social impairment and working memory deficits. In the neurochemical analysis, we detected lower BDNF levels in brain areas of female mice that were more evident in juvenile mice. Only LPS-challenged females presented a marked hippocampal expression of the microglial activation marker, iba-1, and increased TNFα levels, accompanied by a lower parvalbumin expression. DISCUSSION/CONCLUSION Male and female mice presented distinct behavioral alterations. However, LPS-challenged juvenile females showed the most prominent neurobiological alterations related to autism, such as increased microglial activation and parvalbumin impairment. Since these sex-sensitive alterations seem to be age-dependent, a better understanding of changes induced by the exposure to specific risk factors throughout life represents essential targets for developing strategies for autism prevention and precision therapy.
Collapse
Affiliation(s)
- Larissa Maria Frota Cristino
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Charllyany Sabino Custódio
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Francisca Cléa F de Sousa
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Centro Universitário Christus - Unichristus, Fortaleza, Brazil
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Danielle S Macedo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Houston, Brazil
| |
Collapse
|
89
|
Zhou J, Zhang C, Yang X, Zhang X, Zhang N, Fang X, Zhu Y, Liu D, Xu S, Xu M, Zhu Z. Study on the effect of sevoflurane on the cognitive function of aged rats based on the activation of cortical microglia. IBRAIN 2021; 7:288-297. [PMID: 37786559 PMCID: PMC10528793 DOI: 10.1002/ibra.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 10/04/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common clinical manifestation that is a severe complication characterized by decreased learning ability and deterioration of memory following anesthesia and surgery. However, the precise mechanisms of POCD are not completely understood. Rats were divided into blank control group (Con, n = 12) and sevoflurane group (Sev, n = 12). Morris water maze test was performed to evaluate the ability of learning and memory in two groups of rats; immunohistochemical staining was used to detect the expression of ion calcium-binding adaptor molecule-1 (Iba-1) in rat prefrontal cortex (PFC); Western blot analysis was applied respectively to investigate Iba-1, inducible nitric oxide synthase (iNOS), arginase-1 (ARG1), inflammatory cytokines interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) expression; The expression of iNOS, ARG1, IL-1β, and TNF-α in sera of rats was detected by enzyme-linked immunosorbent assay. We found that sevoflurane induced learning and memory impairment assessed by morris water maze test, anesthesia up-regulated the expression of iNOS, IL-1β and TNF-α inflammasome in microglia, as indicated by increased activation of Iba-1 and reduced the level of ARG1 in the PFC. We conclude that the cognitive function of rats after inhaling anesthesia was likely associated with M1/M2 polarization of microglia, which was triggered by sevoflurane.
Collapse
Affiliation(s)
- Jun‐Jie Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xin‐Xin Yang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiao‐Xi Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Nai‐Xin Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Hang Zhu
- College of Animal Science/Institute of Agro‐Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education)Guizhou UniversityGuiyangGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shan Xu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Mei‐Qi Xu
- School of Foreign LanguagesZunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Soochow University Medical CollegeSuzhouJiangsuChina
| |
Collapse
|
90
|
A new suspect in the unsolved case of neuroinflammation in schizophrenia. Mol Psychiatry 2021; 26:7105-7106. [PMID: 34285346 DOI: 10.1038/s41380-021-01225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
|
91
|
Gas6/TAM Signalling Negatively Regulates Inflammatory Induction of GM-CSF in Mouse Brain Microglia. Cells 2021; 10:cells10123281. [PMID: 34943789 PMCID: PMC8699038 DOI: 10.3390/cells10123281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia and astrocytes are the main CNS glial cells responsible for the neuroinflammatory response, where they release a plethora of cytokines into the CNS inflammatory milieu. The TAM (Tyro3, Axl, Mer) receptors and their main ligand Gas6 are regulators of this response, however, the underlying mechanisms remain to be determined. We investigated the ability of Gas6 to modulate the CNS glial inflammatory response to lipopolysaccharide (LPS), a strong pro-inflammatory agent, through a qPCR array that explored Toll-like receptor signalling pathway-associated genes in primary cultured mouse microglia. We identified the Csf2 gene, encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), as a major Gas6 target gene whose induction by LPS was markedly blunted by Gas6. Both the Csf2 gene induction and the suppressive effect of Gas6 on this were emulated through measurement of GM-CSF protein release by cells. We found distinct profiles of GM-CSF induction in different glial cell types, with microglia being most responsive during inflammation. Also, Gas6 markedly inhibited the LPS-stimulated nuclear translocation of NF-κB p65 protein in microglia. These results illustrate microglia as a major resident CNS cellular source of GM-CSF as part of the neuroinflammatory response, and that Gas6/TAM signalling inhibits this response through suppression of NF-κB signalling.
Collapse
|
92
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
93
|
Soliman E, Mills J, Ju J, Kaloss AM, Basso EKG, Groot N, Kelly C, Kowalski EA, Elhassanny M, Chen M, Wang X, Theus MH. Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Front Mol Neurosci 2021; 14:747770. [PMID: 34630039 PMCID: PMC8497746 DOI: 10.3389/fnmol.2021.747770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | | | - Nathalie Groot
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth A Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States.,Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
94
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
95
|
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Crapser J, Figueroa Velez DX, Jiang S, Royer SE, Kim SJ, Henningfield CM, Anderson A, Gandhi SP, Mortazavi A, Inlay MA, Green KN. Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. eLife 2021; 10:66738. [PMID: 34423781 PMCID: PMC8425950 DOI: 10.7554/elife.66738] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia, the brain’s resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Allison R Najafi
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Joshua Crapser
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | | | - Shan Jiang
- Department of Developmental and Cell Biology, Irvine, United States
| | - Sarah E Royer
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States
| | - Sung Jin Kim
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Aileen Anderson
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, United States
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, Irvine, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Irvine, United States
| | - Matthew A Inlay
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Kim N Green
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| |
Collapse
|
96
|
Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC, Ergul A. Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male Diabetic Rats: Role of Endothelial Ferroptosis. Transl Stroke Res 2021; 12:615-630. [PMID: 32875455 PMCID: PMC7917163 DOI: 10.1007/s12975-020-00844-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Abstract
It is a clinically well-established fact that patients with diabetes have very poor stroke outcomes. Yet, the underlying mechanisms remain largely unknown. Our previous studies showed that male diabetic animals show greater hemorrhagic transformation (HT), profound loss of cerebral vasculature in the recovery period, and poor sensorimotor and cognitive outcomes after ischemic stroke. This study aimed to determine the impact of iron chelation with deferoxamine (DFX) on (1) cerebral vascularization patterns and (2) functional outcomes after stroke in control and diabetic rats. After 8 weeks of type 2 diabetes induced by a combination of high-fat diet and low-dose streptozotocin, male control and diabetic animals were subjected to thromboembolic middle cerebral artery occlusion (MCAO) and randomized to vehicle, DFX, or tPA/DFX and followed for 14 days with behavioral tests. Vascular indices (vascular volume and surface area), neurovascular remodeling (AQP4 polarity), and microglia activation were measured. Brain microvascular endothelial cells (BMVEC) from control and diabetic animals were evaluated for the impact of DFX on ferroptotic cell death. DFX treatment prevented vasoregression and microglia activation while improving AQP4 polarity as well as blood-brain barrier permeability by day 14 in diabetic rats. These pathological changes were associated with improvement of functional outcomes. In control rats, DFX did not have an effect. Iron increased markers of ferroptosis and lipid reactive oxygen species (ROS) to a greater extent in BMVECs from diabetic animals, and this was prevented by DFX. These results strongly suggest that (1) HT impacts post-stroke vascularization patterns and recovery responses in diabetes, (2) treatment of bleeding with iron chelation has differential effects on outcomes in comorbid disease conditions, and (3) iron chelation and possibly inhibition of ferroptosis may provide a novel disease-modifying therapeutic strategy in the prevention of post-stroke cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Weiguo Li
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Rebecca Ward
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Sarah Jamil
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA.
| |
Collapse
|
97
|
Siemsen BM, Landin JD, McFaddin JA, Hooker KN, Chandler LJ, Scofield MD. Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats. J Neurosci Res 2021; 99:1922-1939. [PMID: 32621337 PMCID: PMC7779701 DOI: 10.1002/jnr.24683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jon A. McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N. Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lawrence J. Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
98
|
Goldfarb S, Fainstein N, Ganz T, Vershkov D, Lachish M, Ben-Hur T. Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling. Brain Behav Immun 2021; 96:40-53. [PMID: 33989746 DOI: 10.1016/j.bbi.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain stimulation by electroconvulsive therapy is effective in neuropsychiatric disorders by unknown mechanisms. Microglial toxicity plays key role in neuropsychiatric, neuroinflammatory and degenerative diseases. We examined the mechanism by which electroconvulsive seizures (ECS) regulates microglial phenotype and response to stimuli. Microglial responses were examined by morphological analysis, Iba1 and cytokine expression. ECS did not affect resting microglial phenotype or morphology but regulated their activation by Lipopolysaccharide stimulation. Microglia were isolated after ECS or sham sessions in naïve mice for transcriptome analysis. RNA sequencing identified 141 differentially expressed genes. ECS modulated multiple immune-associated gene families and attenuated neurotoxicity-associated gene expression. Blood brain barrier was examined by injecting Biocytin-TMR tracer. There was no breakdown of the BBB, nor increase in gene-signature of peripheral monocytes, suggesting that ECS effect is mainly on resident microglia. Unbiased analysis of regulatory sequences identified the induction of microglial retinoic acid receptor α (RARα) gene expression and a putative common RARα-binding motif in multiple ECS-upregulated genes. The effects of AM580, a selective RARα agonist on microglial response to LPS was examined in vitro. AM580 prevented LPS-induced cytokine expression and reactive oxygen species production. Chronic murine experimental autoimmune encephalomyelitis (EAE) was utilized to confirm the role RARα signaling as mediator of ECS-induced transcriptional pathway in regulating microglial toxicity. Continuous intracerebroventricular delivery of AM580 attenuated effectively EAE severity. In conclusion, ECS regulates CNS innate immune system responses by activating microglial retinoic acid receptor α pathway, signifying a novel therapeutic approach for chronic neuroinflammatory, neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Smadar Goldfarb
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Dan Vershkov
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel; The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Marva Lachish
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
99
|
da Silva Creão LS, Neto JBT, de Lima CM, dos Reis RR, de Sousa AA, dos Santos ZA, Diniz JAP, Diniz DG, Diniz CWP. Microglial Metamorphosis in Three Dimensions in Virus Limbic Encephalitis: An Unbiased Pictorial Representation Based on a Stereological Sampling Approach of Surveillant and Reactive Microglia. Brain Sci 2021; 11:brainsci11081009. [PMID: 34439628 PMCID: PMC8393838 DOI: 10.3390/brainsci11081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/03/2022] Open
Abstract
Microglia influence pathological progression in neurological diseases, reacting to insults by expressing multiple morphofunctional phenotypes. However, the complete morphological spectrum of reactive microglia, as revealed by three-dimensional microscopic reconstruction, has not been detailed in virus limbic encephalitis. Here, using an anatomical series of brain sections, we expanded on an earlier Piry arbovirus encephalitis study to include CA1/CA2 and assessed the morphological response of homeostatic and reactive microglia at eight days post-infection. Hierarchical cluster and linear discriminant function analyses of multimodal morphometric features distinguished microglial morphology between infected animals and controls. For a broad representation of the spectrum of microglial morphology in each defined cluster, we chose representative cells of homeostatic and reactive microglia, using the sum of the distances of each cell in relation to all the others. Based on multivariate analysis, reactive microglia of infected animals showed more complex trees and thicker branches, covering a larger volume of tissue than in control animals. This approach offers a reliable representation of microglia dispersion in the Euclidean space, revealing the morphological kaleidoscope of surveillant and reactive microglia morphotypes. Because form precedes function in nature, our findings offer a starting point for research using integrative methods to understand microglia form and function.
Collapse
Affiliation(s)
- Leonardo Sávio da Silva Creão
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| | | | - Daniel Guerreiro Diniz
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém 66093-020, Brazil;
- Correspondence:
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Programa de Pós-Graduação em Oncologia e Ciências Médicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, Brazil; (L.S.d.S.C.); (C.W.P.D.)
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.B.T.N.); (C.M.d.L.); (R.R.d.R.); (A.A.d.S.); (Z.A.d.S.)
| |
Collapse
|
100
|
Shi M, Li C, Tian X, Chu F, Zhu J. Can Control Infections Slow Down the Progression of Alzheimer's Disease? Talking About the Role of Infections in Alzheimer's Disease. Front Aging Neurosci 2021; 13:685863. [PMID: 34366826 PMCID: PMC8339924 DOI: 10.3389/fnagi.2021.685863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease as the most common age-related dementia affects more than 40 million people in the world, representing a global public health priority. However, the pathogenesis of Alzheimer’s disease (AD) is complex, and it remains unclear. Over the past decades, all efforts made in the treatments of AD, with targeting the pathogenic amyloid β (Aβ), neurofibrillary tangles, and misfolded tau protein, were failed. Recently, many studies have hinted that infection, and chronic inflammation that caused by infection are crucial risk factors for AD development and progress. In the review, we analyzed the role of infections caused by bacteria, viruses, and other pathogens in the pathogenesis of AD and its animal models, and explored the therapeutic possibility with anti-infections for AD. However, based on the published data, it is still difficult to determine their causal relationship between infection and AD due to contradictory results. We think that the role of infection in the pathogenesis of AD should not be ignored, even though infection does not necessarily cause AD, it may act as an accelerator in AD at least. It is essential to conduct the longitudinal studies and randomized controlled trials in humans, which can determine the role of infection in AD and clarify the links between infection and the pathological features of AD. Finding targeting infection drugs and identifying the time window for applying antibacterial or antiviral intervention may be more promising for future clinical therapeutic strategies in AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|