51
|
Li M, Nishimura T, Takeuchi Y, Hongu T, Wang Y, Shiokawa D, Wang K, Hirose H, Sasahara A, Yano M, Ishikawa S, Inokuchi M, Ota T, Tanabe M, Tada KI, Akiyama T, Cheng X, Liu CC, Yamashita T, Sugano S, Uchida Y, Chiba T, Asahara H, Nakagawa M, Sato S, Miyagi Y, Shimamura T, Nagai LAE, Kanai A, Katoh M, Nomura S, Nakato R, Suzuki Y, Tojo A, Voon DC, Ogawa S, Okamoto K, Foukakis T, Gotoh N. FXYD3 functionally demarcates an ancestral breast cancer stem cell subpopulation with features of drug-tolerant persisters. J Clin Invest 2023; 133:e166666. [PMID: 37966117 PMCID: PMC10645391 DOI: 10.1172/jci166666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain-containing ion transport regulator 3 (FXYD3), a component of the Na+/K+ pump. Accordingly, FXYD3+ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3+ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3+ CSCs were sensitive to senolytic Na+/K+ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3+ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na+/K+ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis.
Collapse
Affiliation(s)
- Mengjiao Li
- Division of Cancer Cell Biology, Cancer Research Institute, and
| | | | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, and
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| | - Tsunaki Hongu
- Division of Cancer Cell Biology, Cancer Research Institute, and
| | - Yuming Wang
- Division of Cancer Cell Biology, Cancer Research Institute, and
| | - Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kang Wang
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Haruka Hirose
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya City, Japan
| | - Asako Sasahara
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masao Yano
- Department of Surgery, Minami-machida Hospital, Machida City, Tokyo, Japan
| | - Satoko Ishikawa
- Department of Breast Oncology, Kanazawa University Hospital, Kanazawa City, Japan
| | - Masafumi Inokuchi
- Department of Breast Oncology, Kanazawa University Hospital, Kanazawa City, Japan
| | - Tetsuo Ota
- Department of Breast Oncology, Kanazawa University Hospital, Kanazawa City, Japan
| | - Masahiko Tanabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kei-ichiro Tada
- Department of Breast and Endocrine Surgery, Nihon University, Itabashi-ku, Tokyo, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Xi Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama City, Kanagawa, Japan
| | - Sumio Sugano
- Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama City, Kanagawa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama City, Kanagawa, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya City, Japan
| | | | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Biosciences
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine
- Genome Science Division, Research Center for Advanced Science and Technology
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine
- Genome Science Division, Research Center for Advanced Science and Technology
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, and
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Biosciences
| | - Arinobu Tojo
- Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dominic C. Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
- Inflammation and Epithelial Plasticity Unit, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, and
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|
52
|
Tacail T, Lewis J, Clauss M, Coath CD, Evershed R, Albalat E, Elliott TR, Tütken T. Diet, cellular, and systemic homeostasis control the cycling of potassium stable isotopes in endothermic vertebrates. Metallomics 2023; 15:mfad065. [PMID: 37858308 DOI: 10.1093/mtomcs/mfad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
The naturally occurring stable isotopes of potassium (41K/39K, expressed as δ41K) have the potential to make significant contributions to vertebrate and human biology. The utility of K stable isotopes is, however, conditioned by the understanding of the dietary and biological factors controlling natural variability of δ41K. This paper reports a systematic study of K isotopes in extant terrestrial endothermic vertebrates. δ41K has been measured in 158 samples of tissues, biofluids, and excreta from 40 individuals of four vertebrate species (rat, guinea pig, pig and quail) reared in two controlled feeding experiments. We show that biological processing of K by endothermic vertebrates produces remarkable intra-organism δ41K variations of ca. 1.6‰. Dietary δ41K is the primary control of interindividual variability and δ41K of bodily K is +0.5-0.6‰ higher than diet. Such a trophic isotope effect is expected to propagate throughout trophic chains, opening promising use for reconstructing dietary behaviors in vertebrate ecosystems. In individuals, cellular δ41K is related to the intensity of K cycling and effectors of K homeostasis, including plasma membrane permeability and electrical potential. Renal and intestinal transepithelial transports also control fractionation of K isotopes. Using a box-modeling approach, we establish a first model of K isotope homeostasis. We predict a strong sensitivity of δ41K to variations of intracellular and renal K cycling in normal and pathological contexts. Thus, K isotopes constitute a promising tool for the study of K dyshomeostasis.
Collapse
Affiliation(s)
- T Tacail
- Institute of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, D-55128, Mainz, Germany
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Lewis
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - M Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland
| | - C D Coath
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - R Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, UK
| | - E Albalat
- ENS de LYON, Universite Claude Bernard Lyon1, LGL-TPE, CNRS UMR 5276, Lyon, France
| | - T R Elliott
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - T Tütken
- Institute of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, D-55128, Mainz, Germany
| |
Collapse
|
53
|
Valvassori SS, Peper-Nascimento J, Aguiar-Geraldo JM, Hilsendeger A, Daminelli T, Juruena MF, El-Mallakh RS, Quevedo J. Biological rhythms are correlated with Na +, K +-ATPase and oxidative stress biomarkers: A translational study on bipolar disorder. J Affect Disord 2023; 340:877-885. [PMID: 37572705 DOI: 10.1016/j.jad.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic, severe, and multifactorial psychiatric disorder. Although biological rhythms alterations, sodium potassium pump (Na+, K+-ATPase) changes, and oxidative stress appear to play a critical role in the etiology and pathophysiology of BD, the inter-connection between them has not been described. Therefore this study evaluated the association between biological rhythms, Na+, K+-ATPase, and oxidative stress parameters in BD patients and the preclinical paradoxical sleep deprivation model (PSD). METHODS A translational study was conducted, including a case-control protocol with 36 BD and 46 healthy controls (HC). Subjects completed the Biological Rhythm Interview of Assessment in Neuropsychiatry (BRIAN). In addition, Erythrocyte Na+, K+-ATPase activity, and oxidative and nitrosative stress markers were assessed (4-hydroxynonenal [4-HNE], 8-isoprostane [8-ISO], thiobarbituric acid reactive substances [TBARS], carbonyl, 3-nitrotyrosine [3-nitro]). In the preclinical protocol, the same biomarkers were evaluated in the frontal cortex, hippocampus, and striatum from mice submitted to the PSD. RESULTS BD patients had a significantly higher total score of BRIAN versus HCs. Additionally, individuals with BD showed decreased Na+, K+-ATPase activity and increased oxidative stress parameters compared to HC without psychiatric disorders. This difference was driven by actively depressed BD subjects. The mice submitted to the PSD also demonstrated decreased Na+, K+-ATPase activity and increased oxidative stress parameters. LIMITATIONS BRIAN biological underpinning is less well characterized; We did not control for medication status; Sample size is limited; PSD it is not a true model of BD. CONCLUSIONS The present study found a significant correlation between Na+, K+-ATPase and oxidative stress with changes in biological rhythms, reinforcing the importance of these parameters to BD.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Hilsendeger
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience-King's College London, London, UK
| | - Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
54
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
55
|
Silkuniene G, Mangalanathan UM, Pakhomov AG, Pakhomova ON. Silencing of ATP1A1 attenuates cell membrane disruption by nanosecond electric pulses. Biochem Biophys Res Commun 2023; 677:93-97. [PMID: 37566922 DOI: 10.1016/j.bbrc.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
This study explored the role of the Na/K-ATPase (NKA) in membrane permeabilization induced by nanosecond electric pulses. Using CRISPR/Cas9 and shRNA, we silenced the ATP1A1 gene, which encodes α1 NKA subunit in U937 human monocytes. Silencing reduced the rate and the cumulative uptake of YoPro-1 dye after electroporation by 300-ns, 7-10 kV/cm pulses, while ouabain, a specific NKA inhibitor, enhanced YoPro-1 entry. We conclude that the α1 subunit supports the electropermeabilized membrane state, by forming or stabilizing electropores or by hindering repair mechanisms, and this role is independent of NKA's ion pump function.
Collapse
Affiliation(s)
- Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania
| | - Uma M Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| |
Collapse
|
56
|
Mahato DR, Andersson M. Dynamic lipid interactions in the plasma membrane Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119545. [PMID: 37481079 DOI: 10.1016/j.bbamcr.2023.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1β1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1β1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.
Collapse
Affiliation(s)
- Dhani Ram Mahato
- Department of Chemistry, Umeå University, Umeå, Sweden; Institut de Química Computacional i Catàlisi, Universitat de Girona, Girona, 17003, Spain
| | | |
Collapse
|
57
|
Collier C, Wucherer K, McWhorter M, Jenkins C, Bartlett A, Roychoudhuri R, Eil R. Intracellular K + limits T cell exhaustion and preserves antitumor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.556997. [PMID: 37745435 PMCID: PMC10515789 DOI: 10.1101/2023.09.13.556997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The cancer-killing activity of T cells is often compromised within tumors, allowing disease progression. We previously found that intratumoral elevations in extracellular K + related to ongoing cell death constrained CD8 + T cell Akt-mTOR signaling and effector function (1,2). To alleviate K + mediated T cell suppression, we pursued genetic means to lower intracellular K + . Transcriptomic analysis of CD8 + T cells demonstrated the Na + /K + ATPase to be robustly and dynamically expressed. CRISPR-Cas9 mediated deletion of the catalytic alpha subunit of the Na + /K + ATPase lowered intracellular K + but produced tonic hyperactivity in multiple signal transduction cascades along with the acquisition of co-inhibitory receptors and terminal differentiation in mouse and human CD8 + T cells. Mechanistically, Na + /K + ATPase disruption led to ROS accumulation due to depletion of intracellular K + in T cells. Antioxidant treatment or high K + media prevented Atp1a1 deficient T cells from exhausted T (T Ex ) cell formation. Consistent with transcriptional and proteomic data suggesting a T Ex cell phenotype, T cells lacking Atp1a1 had compromised persistence and antitumor activity in a syngeneic model of orthotopic murine melanoma. Translational application of these findings will include efforts to lower intracellular K + while limiting ROS accumulation within tumor specific T cells. Synopsis High extracellular K + (↑[K + ] e ) is found within tumors and suppresses T cell effector function. Collier et al. find that deletion of the Na + /K + ATPase in T cells lowers intracellular K + and promotes ROS accumulation, tonic signal transduction and T cell exhaustion owing to ROS accumulation. Engineering T cell ion transport is an important consideration for cancer immunotherapy.
Collapse
|
58
|
Wen XP, Li M, Zhang RQ, Wan QQ. Insulin reverses impaired alveolar fluid clearance in ARDS by inhibiting LPS-induced autophagy and inflammatory. Front Immunol 2023; 14:1162159. [PMID: 37654494 PMCID: PMC10466042 DOI: 10.3389/fimmu.2023.1162159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Until now, acute respiratory distress syndrome (ARDS) has been a difficult clinical condition with a high mortality and morbidity rate, and is characterized by a build-up of alveolar fluid and impaired clearance. The underlying mechanism is not yet fully understood and no effective medications available. Autophagy activation is associated with ARDS caused by different pathogenic factors. It represents a new direction of prevention and treatment of ARDS to restrain autophagy to a reasonable level through pharmacological and molecular genetic methods. Na, K-ATPase is the main gradient driver of pulmonary water clearance in ARDS and could be degraded by the autophagy-lysosome pathway to affect its abundance and enzyme activity. As a normal growth hormone in human body, insulin has been widely used in clinical for a long time. To investigate the association of insulin with Na, K-ATPase, autophagy and inflammatory markers in LPS-treated C57BL/6 mice by survival assessment, proteomic analysis, histologic examination, inflammatory cell counting, myeloperoxidase, TNF-α and IL-1β activity analysis etc. This was also verified on mouse alveolar epithelial type II (AT II) and A549 cells by transmission electron microscopy. We found that insulin restored the expression of Na, K-ATPase, inhibited the activation of autophagy and reduced the release of inflammatory factors caused by alveolar epithelial damage. The regulation mechanism of insulin on Na, K-ATPase by inhibiting autophagy function may provide new drug targets for the treatment of ARDS.
Collapse
Affiliation(s)
- Xu-peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ru-qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qi-quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
59
|
Socha MW, Chmielewski J, Pietrus M, Wartęga M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2023; 24:12743. [PMID: 37628922 PMCID: PMC10454430 DOI: 10.3390/ijms241612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE), the most severe presentation of hypertensive disorders of pregnancy, is the major cause of morbidity and mortality linked to pregnancy, affecting both mother and fetus. Despite advances in prophylaxis and managing PE, delivery of the fetus remains the only causative treatment available. Focus on complex pathophysiology brought the potential for new treatment options, and more conservative options allowing reduction of feto-maternal complications and sequelae are being investigated. Endogenous digitalis-like factors, which have been linked to the pathogenesis of preeclampsia since the mid-1980s, have been shown to play a role in the pathogenesis of various cardiovascular diseases, including congestive heart failure and chronic renal disease. Elevated levels of EDLF have been described in pregnancy complicated by hypertensive disorders and are currently being investigated as a therapeutic target in the context of a possible breakthrough in managing preeclampsia. This review summarizes mechanisms implicating EDLFs in the pathogenesis of preeclampsia and evidence for their potential role in treating this doubly life-threatening disease.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Jakub Chmielewski
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie- Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
60
|
Barlow IL, Mackay E, Wheater E, Goel A, Lim S, Zimmerman S, Woods I, Prober DA, Rihel J. The zebrafish mutant dreammist implicates sodium homeostasis in sleep regulation. eLife 2023; 12:RP87521. [PMID: 37548652 PMCID: PMC10406431 DOI: 10.7554/elife.87521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Sleep is a nearly universal feature of animal behaviour, yet many of the molecular, genetic, and neuronal substrates that orchestrate sleep/wake transitions lie undiscovered. Employing a viral insertion sleep screen in larval zebrafish, we identified a novel gene, dreammist (dmist), whose loss results in behavioural hyperactivity and reduced sleep at night. The neuronally expressed dmist gene is conserved across vertebrates and encodes a small single-pass transmembrane protein that is structurally similar to the Na+,K+-ATPase regulator, FXYD1/Phospholemman. Disruption of either fxyd1 or atp1a3a, a Na+,K+-ATPase alpha-3 subunit associated with several heritable movement disorders in humans, led to decreased night-time sleep. Since atpa1a3a and dmist mutants have elevated intracellular Na+ levels and non-additive effects on sleep amount at night, we propose that Dmist-dependent enhancement of Na+ pump function modulates neuronal excitability to maintain normal sleep behaviour.
Collapse
Affiliation(s)
- Ida L Barlow
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Emily Wheater
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Aimee Goel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steve Zimmerman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - David A Prober
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
61
|
Harich OO, Gavriliuc OI, Ordodi VL, Tirziu A, Paunescu V, Panaitescu C, Bojin MF. In Vitro Study of the Multimodal Effect of Na +/K + ATPase Blocker Ouabain on the Tumor Microenvironment and Malignant Cells. Biomedicines 2023; 11:2205. [PMID: 37626702 PMCID: PMC10452365 DOI: 10.3390/biomedicines11082205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Na+/K+ ATPase is a protein involved in the active transport of ions across the cellular membrane. Ouabain is a cardiotonic glycoside that, by inhibiting the Na+/K+ pump, interferes with cell processes mediated directly by the pump, but also indirectly influences other cellular processes such as cell cycle and proliferation, growth, cell differentiation, angiogenesis, migration, adhesion, and invasion. We used the SK-BR-3 breast cancer cell line, mesenchymal stem cells (MSCs), and tumor-associated fibroblasts (TAFs) in vitro to determine the effects of ouabain exposure on these cellular types. The results showed a multi-level effect of ouabain mainly on tumor cells, in a dose-dependent manner, while the TAFs and their normal counterparts were not significantly influenced. Following exposure to ouabain, the SK-BR-3 cells changed their morphologic appearance, decreased the expression of immunophenotypic markers (CD29, Her2, VEGF), the proliferation rate was significantly decreased (Ki67 index), the cells were blocked in the G0 phase of the cell cycle and suffered necrosis. These data were correlated with the variable expression of α and β Na+/K+ pump subunits in tumor cells, resulting in decreased ability to adhere to the VCAM-1 substrate in functional flow chamber studies. Being indicative of the pro-apoptotic and inhibitory effect of ouabain on tumor invasion and metastasis, the results support the addition of ouabain to the oncological therapeutic arsenal, trailing the "repurposing drugs" approach.
Collapse
Affiliation(s)
- Octavia-Oana Harich
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Oana-Isabella Gavriliuc
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Valentin-Laurentiu Ordodi
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Alexandru Tirziu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Virgil Paunescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Maria-Florina Bojin
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
62
|
Peluffo RD, Hernández JA. The Na +,K +-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophys Rev 2023; 15:539-552. [PMID: 37681108 PMCID: PMC10480117 DOI: 10.1007/s12551-023-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Almost seventy years after its discovery, the sodium-potassium adenosine triphosphatase (the sodium pump) located in the cell plasma membrane remains a source of novel mechanistic and physiologic findings. A noteworthy feature of this enzyme/transporter is its robust stoichiometric ratio under physiological conditions: it sequentially counter-transports three sodium ions and two potassium ions against their electrochemical potential gradients per each hydrolyzed ATP molecule. Here we summarize some present knowledge about the sodium pump and its physiological roles, and speculate whether energetic constraints may have played a role in the evolutionary selection of its characteristic stoichiometric ratio.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay
| | - Julio A. Hernández
- Biophysics and Systems Biology Section, Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de La República, Iguá 4225, CP: 11400 Montevideo, Uruguay
| |
Collapse
|
63
|
Calame DG, Moreno Vadillo C, Berger S, Lotze T, Shinawi M, Poupak J, Heller C, Cohen J, Person R, Telegrafi A, Phitsanuwong C, Fiala K, Thiffault I, Del Viso F, Zhou D, Fleming EA, Pastinen T, Fatemi A, Thomas S, Pascual SI, Torres RJ, Prior C, Gómez-González C, Biskup S, Lupski JR, Maric D, Holmgren M, Regier D, Yano ST. Cation leak through the ATP1A3 pump causes spasticity and intellectual disability. Brain 2023; 146:3162-3171. [PMID: 37043503 PMCID: PMC10393399 DOI: 10.1093/brain/awad124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 04/13/2023] Open
Abstract
ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Cristina Moreno Vadillo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Berger
- Children’s National Rare Disease Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Timothy Lotze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Corina Heller
- Praxis Für Humangenetik Tübingen, Tuebingen 72076, Germany
- CeGaT GmbH, Tuebingen 72076, Germany
| | - Julie Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | - Chalongchai Phitsanuwong
- Section of Pediatric Neurology, Department of Pediatrics, Comer Children’s Hospital, University of Chicago, Chicago, IL 60637, USA
| | - Kaylene Fiala
- Section of Pediatric Neurology, Department of Pediatrics, Comer Children’s Hospital, University of Chicago, Chicago, IL 60637, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Florencia Del Viso
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Dihong Zhou
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Department of Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Emily A Fleming
- Department of Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sruthi Thomas
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel I Pascual
- Department of Pediatric Neurology, La Paz University Hospital, Madrid, Spain
| | - Rosa J Torres
- La Paz University Hospital Health Research Institute (FIBHULP), IdiPaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 20829 Madrid, Spain
| | - Carmen Prior
- Department of Genetics, Genetic Service, La Paz University Hospital, Madrid, Spain
| | - Clara Gómez-González
- Department of Genetics, Genetic Service, La Paz University Hospital, Madrid, Spain
| | - Saskia Biskup
- Praxis Für Humangenetik Tübingen, Tuebingen 72076, Germany
- CeGaT GmbH, Tuebingen 72076, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miguel Holmgren
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra Regier
- Children’s National Rare Disease Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Sho T Yano
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
64
|
Richard EM, Brun E, Korchagina J, Crouzier L, Affortit C, Alves S, Cazevieille C, Mausset-Bonnefont AL, Lenoir M, Puel JL, Maurice T, Thiry M, Wang J, Delprat B. Wfs1 E864K knock-in mice illuminate the fundamental role of Wfs1 in endocochlear potential production. Cell Death Dis 2023; 14:387. [PMID: 37386014 PMCID: PMC10310813 DOI: 10.1038/s41419-023-05912-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase β1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase β1 subunit.
Collapse
Affiliation(s)
| | - Emilie Brun
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Stacy Alves
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Marc Lenoir
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Liège, Belgique
| | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Benjamin Delprat
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
- INM, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
65
|
Maor G, Dubreuil RR, Feany MB. α-synuclein promotes neuronal dysfunction and death by disrupting the binding of ankyrin to ß-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543481. [PMID: 37333277 PMCID: PMC10274672 DOI: 10.1101/2023.06.02.543481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
α-synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila. Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies leads to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ronald R. Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
66
|
Abdel-Rasoul AA, Saleh NA, Hosny EN, El-Gizawy MM, Ibrahim EA. Cardamom oil ameliorates behavioral and neuropathological disorders in a rat model of depression induced by reserpine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116254. [PMID: 36781058 DOI: 10.1016/j.jep.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is a public health problem. Despite the availability of treatment options, its prevalence is increasing. A high rate of treatment failure is often reported, along with considerable side effects associated with synthetic antidepressants. Therefore, developing effective and safe antidepressants from traditional herbs or natural products as an alternative strategy is warranted to avoid side effects and increase drug efficacy. In traditional medicine, cardamom has traditionally been used to treat conditions like asthma, tooth and gum infections, cataracts, nausea, diarrhea, and even depression and anxiety as well as some problems with the heart, kidneys, and digestive system. AIM OF THE STUDY The current study aimed to evaluate the antidepressant activity of cardamom oil in a rat model of depression induced by reserpine and compare it with the activity of the antidepressant drug fluoxetine. MATERIALS AND METHODS Depression-like symptoms were induced in male rats by daily i. p. injection of reserpine (0.2 mg/kg/d for 15 d followed by 0.1 mg/kg/d for 21 d to maintain the depressive state), and the rats were treated with cardamom oil (oral dose = 200 mg/kg/d) for 21 d along with the maintenance dose of reserpine. We performed behavioral tests (forced swimming test and open-field test) and evaluated biochemical markers of depression. RESULTS Our findings revealed that cardamom oil attenuated depression-like symptoms in reserpine-injected rats by improving the behavioral changes measured by the forced swimming test and the locomotor activities measured by the open-field test. In reserpine-injected rats, cardamom oil exerted antidepressant-like effects by modulating lower levels of brain monoamine neurotransmitters (serotonin, norepinephrine, and dopamine), GSH, and higher oxido-nitrosative stress parameters (malondialdehyde and nitric oxide). Moreover, cardamom oil alleviated depression-like behaviors by lowering monoamine oxidase activity and raising the activities of Na+/K+-ATPase and acetylcholinesterase and levels of a brain-derived neurotrophic factor in the cortex and hippocampus. CONCLUSION We recommend the use of cardamom oil as a safe and reliable treatment or an adjuvant for preventing depression-like symptoms in patients suffering from depression.
Collapse
Affiliation(s)
- Alaa A Abdel-Rasoul
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nabil A Saleh
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
67
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
68
|
Baloglu E. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease. Int J Mol Sci 2023; 24:ijms24097855. [PMID: 37175562 PMCID: PMC10177966 DOI: 10.3390/ijms24097855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
69
|
Leng B, Deng L, Tan J, Lee WT, Cao CR, Wang ZP, Huang DJ, Nie XW, Bian JS. Targeting the Na +/K + ATPase DR-region with DR-Ab improves doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2023; 204:38-53. [PMID: 37100355 DOI: 10.1016/j.freeradbiomed.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic drug for various cancers. Yet, the cardiotoxic side effects limit its application in clinical uses, in which ferroptosis serves as a crucial pathological mechanism in DOX-induced cardiotoxicity (DIC). A reduction of Na+/K + ATPase (NKA) activity is closely associated with DIC progression. However, whether abnormal NKA function was involved in DOX-induced cardiotoxicity and ferroptosis remains unknown. Here, we aim to decipher the cellular and molecular mechanisms of dysfunctional NKA in DOX-induced ferroptosis and investigate NKA as a potential therapeutic target for DIC. A decrease activity of NKA further aggravated DOX-triggered cardiac dysfunction and ferroptosis in NKAα1 haploinsufficiency mice. In contrast, antibodies against the DR-region of NKAα-subunit (DR-Ab) attenuated the cardiac dysfunction and ferroptosis induced by DOX. Mechanistically, NKAα1 interacted with SLC7A11 to form a novel protein complex, which was directly implicated in the disease progression of DIC. Furthermore, the therapeutic effect of DR-Ab on DIC was mediated by reducing ferroptosis by promoting the association of NKAα1/SLC7A11 complex and maintaining the stability of SLC7A11 on the cell surface. These results indicate that antibodies targeting the DR-region of NKA may serve as a novel therapeutic strategy to alleviate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Bin Leng
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China
| | - Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianxin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Cheng-Rui Cao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zi-Ping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - De-Jian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China.
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
70
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
71
|
Rajanathan R, Riera CVI, Pedersen TM, Staehr C, Bouzinova EV, Nyengaard JR, Thomsen MB, Bøtker HE, Matchkov VV. Hypercontractile Cardiac Phenotype in Mice with Migraine-Associated Mutation in the Na +,K +-ATPase α 2-Isoform. Cells 2023; 12:cells12081108. [PMID: 37190017 DOI: 10.3390/cells12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Two α-isoforms of the Na+,K+-ATPase (α1 and α2) are expressed in the cardiovascular system, and it is unclear which isoform is the preferential regulator of contractility. Mice heterozygous for the familial hemiplegic migraine type 2 (FHM2) associated mutation in the α2-isoform (G301R; α2+/G301R mice) have decreased expression of cardiac α2-isoform but elevated expression of the α1-isoform. We aimed to investigate the contribution of the α2-isoform function to the cardiac phenotype of α2+/G301R hearts. We hypothesized that α2+/G301R hearts exhibit greater contractility due to reduced expression of cardiac α2-isoform. Variables for contractility and relaxation of isolated hearts were assessed in the Langendorff system without and in the presence of ouabain (1 µM). Atrial pacing was performed to investigate rate-dependent changes. The α2+/G301R hearts displayed greater contractility than WT hearts during sinus rhythm, which was rate-dependent. The inotropic effect of ouabain was more augmented in α2+/G301R hearts than in WT hearts during sinus rhythm and atrial pacing. In conclusion, cardiac contractility was greater in α2+/G301R hearts than in WT hearts under resting conditions. The inotropic effect of ouabain was rate-independent and enhanced in α2+/G301R hearts, which was associated with increased systolic work.
Collapse
Affiliation(s)
| | - Clàudia Vilaseca I Riera
- Department of Basic Science, School of Medicine and Health Sciences, International University of Catalonia, 08195 Barcelona, Spain
| | | | - Christian Staehr
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Jens Randel Nyengaard
- Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, 8000 Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Morten B Thomsen
- Biomedical Sciences, University of Copenhagen, 1168 Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | |
Collapse
|
72
|
Bai L, Wu Q, Zhang X, Zhao Y. Autosis as a selective type of cell death. Front Cell Dev Biol 2023; 11:1164681. [PMID: 37091978 PMCID: PMC10120328 DOI: 10.3389/fcell.2023.1164681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
|
73
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
75
|
Sim SI, Park E. P5-ATPases: Structure, substrate specificities, and transport mechanisms. Curr Opin Struct Biol 2023; 79:102531. [PMID: 36724561 DOI: 10.1016/j.sbi.2023.102531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
76
|
Garcia IJP, Kinoshita PF, Valadares JMDM, de Carvalho LED, Cortes VF, Barbosa LA, Scavone C, Santos HDL. Effect of Ouabain on Glutamate Transport in the Hippocampus of Rats with LPS-Induced Neuroinflammation. Biomedicines 2023; 11:biomedicines11030920. [PMID: 36979899 PMCID: PMC10045517 DOI: 10.3390/biomedicines11030920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
A lipopolysaccharide (LPS)-induced neuroinflammation rat model was used to study the effects of ouabain (OUA) at low concentrations, which can interact with the Na,K-ATPase, causing the modulation of intracellular signalling pathways in the Central Nervous System. Our study aimed to analyse the effects of OUA on glutamate transport in the hippocampus of rats with LPS-induced neuroinflammation. Adult male Wistar rats were divided into four groups: OUA (1.8 µg/kg), saline (CTR), LPS (200 µg/kg), and OUA + LPS (OUA 20 min before LPS). The animals were sacrificed after 2 h, and the hippocampus was collected for analysis. After treatment, we determined the activities of Na,K-ATPase and glutamine synthetase (GS). In addition, expression of the α1, α2, and α3 isoforms of Na,K-ATPase and the glutamate transporters, EAAT1 and EAAT2, were also analysed. Treatment with OUA caused a specific increase in the α2 isoform expression (~20%), whereas LPS decreased its expression (~22%), and treatment with OUA before LPS prevented the effects of LPS. Moreover, LPS caused a decrease of approximately 50% in GS activity compared with that in the CTR group; however, OUA pre-treatment attenuated this effect of LPS. Notably, it was found that treatment with OUA caused an increase in the expression of EAAT1 (~30%) and EAAT2 (~25%), whereas LPS caused a decrease in the expression of EAAT1 (~23%) and EAAT2 (~25%) compared with that in the CTR group. When treated with OUA, the effects of LPS were abrogated. In conclusion, the OUA pre-treatment abolished the effect caused by LPS, suggesting that this finding may be related to the restoration of the interaction between FXYD2 and the studied membrane proteins.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Paula Fernanda Kinoshita
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica Martins de Moura Valadares
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Luciana Estefani Drumond de Carvalho
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Vanessa Faria Cortes
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| | - Hérica de Lima Santos
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| |
Collapse
|
77
|
Maor G, Dubreuil RR, Feany MB. α-Synuclein Promotes Neuronal Dysfunction and Death by Disrupting the Binding of Ankyrin to β-Spectrin. J Neurosci 2023; 43:1614-1626. [PMID: 36653193 PMCID: PMC10008058 DOI: 10.1523/jneurosci.1922-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to β-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that β-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of β-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to β-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to β-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald R Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
78
|
Karaica D, Mihaljević I, Vujica L, Bošnjak A, Dragojević J, Otten C, Babić N, Lončar J, Smital T. Stage-dependent localization of F-actin and Na + /K + -ATPase in zebrafish embryos detected using optimized cryosectioning immunostaining protocol. Microsc Res Tech 2023; 86:294-310. [PMID: 36453864 DOI: 10.1002/jemt.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The increasing use of the zebrafish model in biomedical and (eco)toxicological studies aimed at understanding the function of various proteins highlight the importance of optimizing existing methods to study gene and protein expression and localization in this model. In this context, zebrafish cryosections are still underutilized compared with whole-mount preparations. In this study, we used zebrafish embryos (24-120 hpf) to determine key factors for the preparation of high-quality zebrafish cryosections and to determine the optimal protocol for (immuno)fluorescence analyses of Na+ /K+ -ATPase and F-actin, across developmental stages from 1 to 5 dpf. The results showed that the highest quality zebrafish cryosections were obtained after the samples were fixed in 4% paraformaldehyde (PFA) for 1 h, incubated in 2.5% bovine gelatin/25% sucrose mixture, embedded in OCT, and then sectioned to 8 μm thickness at -20°C. Fluorescence microscopy analysis of phalloidin-labeled zebrafish skeletal muscle revealed that 1-h-4% PFA-fixed samples allowed optimal binding of phalloidin to F-actin. Further immunofluorescence analyses revealed detailed localization of F-actin and Na+ /K+ -ATPase in various tissues of the zebrafish and a stage-dependent increase in their respective expression in the somitic muscles and pronephros. Finally, staining of zebrafish cryosections and whole-mount samples revealed organ-specific and zone-dependent localizations of the Na+ /K+ -ATPase α1-subunit. RESEARCH HIGHLIGHTS: This study brings optimization of existing protocols for preparation and use of zebrafish embryos cryosections in (immuno)histological analyses. It reveals stage-dependent localization/expression of F-actin and Na+ /K+ -ATPase in zebrafish embryos.
Collapse
Affiliation(s)
- Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lana Vujica
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Arvena Bošnjak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Cecile Otten
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nency Babić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jovica Lončar
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
79
|
Inanc ME, Guzel FN, Gungor S, Herdogan M, Mart FN, Kahraman D, Cay HA, Ata A. The interaction between seminal plasma biochemical constituents and short-term semen preservation in Honamli and hair goats. Reprod Domest Anim 2023; 58:387-395. [PMID: 36447389 DOI: 10.1111/rda.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
This study investigated the short-term storage of Honamli and Hair buck semen based on the relationships among the biochemical constituents of the seminal plasma. In total, 12 Honamli and Hair goat bucks (six of each breed) were used. Collected individual semen samples were divided into two parts, one placed in short-term storage and the other centrifuged to determine the biochemical constituents of the seminal plasma. Diluted semen samples were cooled to +4°C; the samples were stored at this temperature; the spermatological parameters (i.e., motility, plasma membrane and acrosome integrity [PMAI], viability and high mitochondrial membrane potential) were assessed at 0, 24, 48, 72 and 144 h. A significant positive correlation was determined between the PMAI, motility and viability with globulin, chlorine, alanine aminotransferase (AST) and aspartate aminotransferase (ALT). A positive correlation was detected between the PMAI and viability with total protein. In contrast, a negative correlation was determined between the motility and viability with sodium values in buck semen (p ˂ .05). Also, it was evaluated the Hair buck samples became inviable across all parameters at 72 h, while the Honamli buck samples continued to be viable at 144 h. In conclusion, the seminal plasma biochemical parameters of total protein chlorine, globulin, albumin, sodium, AST and ALT correlated with spermatological parameters in buck semen. The factors of animal (p ˂ .05) and time (p ˂ .001) affected the spermatological parameters, but there was no interaction between the two factors (p > .05) during the short-term storage period. Also, it was determined that Honamli buck semen was more resistant to cold injury than Hair buck semen against cold injury during storage.
Collapse
Affiliation(s)
- Muhammed Enes Inanc
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatma Nur Guzel
- Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sukru Gungor
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mine Herdogan
- Department of Reproduction and Artificial Insemination, Burdur Mehmet Akif Ersoy University Health Science Institue, Burdur, Turkey
| | - Feyza Nur Mart
- Department of Reproduction and Artificial Insemination, Burdur Mehmet Akif Ersoy University Health Science Institue, Burdur, Turkey
| | - Durmus Kahraman
- Department of Reproduction and Artificial Insemination, Burdur Mehmet Akif Ersoy University Health Science Institue, Burdur, Turkey
| | - Hasan Ali Cay
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.,Department of Reproduction and Artificial Insemination, Burdur Mehmet Akif Ersoy University Health Science Institue, Burdur, Turkey
| | - Ayhan Ata
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
80
|
Sushadi PS, Kuwabara M, Iimura H, Asano A. Factors affecting cryopreservation-associated damages in sperm motility of cockerels ( Gallus gallus domesticus). Br Poult Sci 2023; 64:129-136. [PMID: 36103116 DOI: 10.1080/00071668.2022.2124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. Sperm are exposed to severe osmotic stress during cryopreservation, which results in impairment of fertilisation ability, including motility and viability, in poultry. Sperm osmotolerance is regulated by many extracellular factors and varies widely in birds, leading to uncertainty in the nature of the osmotic injury.2. Tail bending is a primary response resulting from cell swelling from excessive osmotic stress. However, the underlying mechanism responsible for tail bending is largely unknown. This study examined the relationship between osmotic stress and post-thaw motility, with a particular focus on the role of Na+/K+ ATPase (NKA) in the tail bending response.3. Cryopreserved sperm exhibited rapidly reduced motility when maintained at 37°C. The combination of temperature change and osmotic stress was a primary factor responsible for tail bending. This work tested a hypothesis known to be associated with post-thaw tail abnormality in other species and found that cold shock, that is not accompanied by an apoptotic response, may occur. Ouabain inhibition of Na+/K+ ATPase activity alleviated the tail bending response in fresh and post-thaw sperm.4. These results demonstrated that the combination of temperature change and osmotic stress has a primary impact on the reduction of post-thaw motility, with a particular role in NKA activity, in the tail bending response of chicken sperm. These results provide a foundation for establishing cryopreservation methodology to ensure the optimal fertilisation potential of cryopreserved chicken sperm.
Collapse
Affiliation(s)
- P S Sushadi
- Graduate School of Life and Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - M Kuwabara
- College of Agro-biological Resource Sciences, University of Tsukuba, Tsukuba, Japan
| | - H Iimura
- Graduate School of Life and Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - A Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
81
|
Willems DJ, Kumar A, Nugegoda D. Mixture Toxicity of Three Unconventional Gas Fracking Chemicals, Barium, O-Cresol, and Sodium Chloride, to the Freshwater Shrimp Paratya australiensis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:481-494. [PMID: 36511521 PMCID: PMC10107621 DOI: 10.1002/etc.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The 96-h acute toxicity of barium (Ba2+ ), o-cresol, and sodium chloride (NaCl) to Paratya australiensis was assessed in single, binary, and ternary combinations in addition to three biochemical assays: glutathione S-transferase, acetylcholinesterase, and sodium-potassium adenosine triphosphatase. The 96-h lethal concentrations that expressed 50% mortality (LC50) in the single-toxicant exposures were Ba2+ = 23.4 mg/L, o-cresol = 12.2 mg/L, and NaCl = 4198 mg/L. Mortality from o-cresol exposure occurred between 11 and 22 mg/L, whereas Ba2+ was more gradual across 10-105 mg/L, and most of the NaCl mortality occurred between 2050 and 4100 mg/L. Toxic units were used to assess the binary and ternary interactions of the toxicants. A more than additive effect was observed for most combinations in the binary chemical exposures, with the ternary combinations yielding highly synergistic interactions. Greater synergism was observed with the 96-h LC50 of o-cresol in combination with the three concentrations of NaCl (1025, 2050, and 3075 mg/L) compared with Ba2+ , with toxic units of 0.38, 0.48, and 0.10 (o-cresol) and 0.71, 0.67, and 0.50 (Ba2+ ). No notable enzyme activity trends were observed in the enzyme biomarker responses from both individual and mixture exposures. Although acute single-species toxicity tests tend to underestimate the effects of Ba2+ , o-cresol, and NaCl on populations, communities, and ecosystems in seminatural (e.g., mesocosms) and natural systems, there are currently no published acute toxicity data available for P. australiensis and the three toxicants used in the present study. The present study shows that chemicals with different toxicity mechanisms can potentially lead to more synergistic responses. Environ Toxicol Chem 2023;42:481-494. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Willems
- Ecotoxicology Research Group, School of Science, Bundoora West CampusRoyal Melbourne Institute of Technology UniversityBundooraVictoriaAustralia
- Environment Business UnitCommonwealth Scientific and Industrial Research OrganisationUrrbraeSouth AustraliaAustralia
| | - Anupama Kumar
- Environment Business UnitCommonwealth Scientific and Industrial Research OrganisationUrrbraeSouth AustraliaAustralia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Bundoora West CampusRoyal Melbourne Institute of Technology UniversityBundooraVictoriaAustralia
| |
Collapse
|
82
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
83
|
Rajanathan R, Pedersen TM, Guldbrandsen HO, Olesen LF, Thomsen MB, Bøtker HE, Matchkov VV. Augmented Ouabain-Induced Vascular Response Reduces Cardiac Efficiency in Mice with Migraine-Associated Mutation in the Na +, K +-ATPase α 2-Isoform. Biomedicines 2023; 11:biomedicines11020344. [PMID: 36830881 PMCID: PMC9953359 DOI: 10.3390/biomedicines11020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Heterozygous mice (α2+/G301R mice) for the migraine-associated mutation (G301R) in the Na+,K+-ATPase α2-isoform have decreased expression of cardiovascular α2-isoform. The α2+/G301R mice exhibit a pro-contractile vascular phenotype associated with decreased left ventricular ejection fraction. However, the integrated functional cardiovascular consequences of this phenotype remain to be addressed in vivo. We hypothesized that the vascular response to α2-isoform-specific inhibition of the Na+,K+-ATPase by ouabain is augmented in α2+/G301R mice leading to reduced cardiac efficiency. Thus, we aimed to assess the functional contribution of the α2-isoform to in vivo cardiovascular function of wild-type (WT) and α2+/G301R mice. Blood pressure, stroke volume, heart rate, total peripheral resistance, arterial dP/dt, and systolic time intervals were assessed in anesthetized WT and α2+/G301R mice. To address rate-dependent cardiac changes, cardiovascular variables were compared before and after intraperitoneal injection of ouabain (1.5 mg/kg) or vehicle during atrial pacing. The α2+/G301R mice showed an enhanced ouabain-induced increase in total peripheral resistance associated with reduced efficiency of systolic development compared to WT. When the hearts were paced, ouabain reduced stroke volume in α2+/G301R mice. In conclusion, the ouabain-induced vascular response was augmented in α2+/G301R mice with consequent suppression of cardiac function.
Collapse
Affiliation(s)
- Rajkumar Rajanathan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| | | | | | | | - Morten B. Thomsen
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | | |
Collapse
|
84
|
Mesenchymal Stem/Stromal Cells in Three-Dimensional Cell Culture: Ion Homeostasis and Ouabain-Induced Apoptosis. Biomedicines 2023; 11:biomedicines11020301. [PMID: 36830836 PMCID: PMC9953635 DOI: 10.3390/biomedicines11020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
This study describes the changes in ion homeostasis of human endometrial mesenchymal stem/stromal cells (eMSCs) during the formation of three-dimensional (3D) cell structures (spheroids) and investigates the conditions for apoptosis induction in 3D eMSCs. Detached from the monolayer culture, (2D) eMSCs accumulate Na+ and have dissipated transmembrane ion gradients, while in compact spheroids, eMSCs restore the lower Na+ content and the high K/Na ratio characteristic of functionally active cells. Organized as spheroids, eMSCs are non-proliferating cells with an active Na/K pump and a lower K+ content per g cell protein, which is typical for quiescent cells and a mean lower water content (lower hydration) in 3D eMSCs. Further, eMSCs in spheroids were used to evaluate the role of K+ depletion and cellular signaling context in the induction of apoptosis. In both 2D and 3D eMSCs, treatment with ouabain (1 µM) results in inhibition of pump-mediated K+ uptake and severe K+ depletion as well as disruption of the mitochondrial membrane potential. In 3D eMSCs (but not in 2D eMSCs), ouabain initiates apoptosis via the mitochondrial pathway. It is concluded that, when blocking the Na/K pump, cardiac glycosides prime mitochondria to apoptosis, and whether a cell enters the apoptotic pathway depends on the cell-specific signaling context, which includes the type of apoptotic protein expressed.
Collapse
|
85
|
Paukszto Ł, Wiśniewska J, Liszewska E, Majewska M, Jastrzębski J, Jankowski J, Ciereszko A, Słowińska M. Specific expression of alternatively spliced genes in the turkey (Meleagris gallopavo) reproductive tract revealed their function in spermatogenesis and post-testicular sperm maturation. Poult Sci 2023; 102:102484. [PMID: 36709584 PMCID: PMC9922982 DOI: 10.1016/j.psj.2023.102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
The tissue-specific profile of alternatively spliced genes (ASGs) and their involvement in reproduction processes characteristic of turkey testis, epididymis, and ductus deferens were investigated for the first time in birds. Deep sequencing of male turkey reproductive tissue RNA samples (n = 6) was performed using Illumina RNA-Seq with 2 independent methods, rMATs and SUPPA2, for differential alternative splicing (DAS) event prediction. The expression of selected ASGs was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. The testis was found to be the site of the highest number of posttranscriptional splicing events within the reproductive tract, and skipping exons were the most frequently occurring class of alternative splicing (AS) among the reproductive tract. Statistical analysis revealed 86, 229, and 6 DAS events in the testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparison, respectively. Alternative splicing was found to be a mechanism of gene expression regulation within the turkey reproduction tract. In testis, modification was observed for spermatogenesis specific genes; the changes in 5' UTR could act as regulator of MEIG1 expression (a player during spermatocytes meiosis), and modification of 3' UTR led to diversification of CREM mRNA (modulator of gene expression related to the structuring of mature spermatozoa). Sperm tail formation can be regulated by changes in the 5' UTR of testicular SLC9A3R1 and gene silencing by producing dysfunctional variants of ODF2 in the testis and ATP1B3 in the epididymis. Predicted differentially ASGs in the turkey reproductive tract seem to be involved in the regulation of spermatogenesis, including acrosome formation and sperm tail formation and binding of sperm to the zona pellucida. Several ASGs were classified as cilia by actin and microtubule cytoskeleton organization. Such genes may play a role in the organization of sperm flagellum and post-testicular motility development. To our knowledge, this is the first functional investigation of alternatively spliced genes associated with tissue-specific processes in the turkey reproductive tract.
Collapse
Affiliation(s)
- Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum; University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland.
| |
Collapse
|
86
|
Martinez NP, Pinch M, Kandel Y, Hansen IA. Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti. INSECTS 2023; 14:50. [PMID: 36661978 PMCID: PMC9862990 DOI: 10.3390/insects14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA (nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2 in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2 mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results, coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein (YPP) synthesis and yolk deposition.
Collapse
Affiliation(s)
- Nathan P. Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
87
|
Manoj KM, Gideon DA, Bazhin NM, Tamagawa H, Nirusimhan V, Kavdia M, Jaeken L. Na,K-ATPase: A murzyme facilitating thermodynamic equilibriums at the membrane-interface. J Cell Physiol 2023; 238:109-136. [PMID: 36502470 DOI: 10.1002/jcp.30925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
The redox metabolic paradigm of murburn concept advocates that diffusible reactive species (DRS, particularly oxygen-centric radicals) are mainstays of physiology, and not mere pathological manifestations. The murburn purview of cellular function also integrates the essential principles of bioenergetics, thermogenesis, homeostasis, electrophysiology, and coherence. In this context, any enzyme that generates/modulates/utilizes/sustains DRS functionality is called a murzyme. We have demonstrated that several water-soluble (peroxidases, lactate dehydrogenase, hemogoblin, etc.) and membrane-embedded (Complexes I-V in mitochondria, Photosystems I/II in chloroplasts, rhodopsin/transducin in rod cells, etc.) proteins serve as murzymes. The membrane protein of Na,K-ATPase (NKA, also known as sodium-potassium pump) is the focus of this article, owing to its centrality in neuro-cardio-musculo electrophysiology. Herein, via a series of critical queries starting from the geometric/spatio-temporal considerations of diffusion/mass transfer of solutes in cells to an update on structural/distributional features of NKA in diverse cellular systems, and from various mechanistic aspects of ion-transport (thermodynamics, osmoregulation, evolutionary dictates, etc.) to assays/explanations of inhibitory principles like cardiotonic steroids (CTS), we first highlight some unresolved problems in the field. Thereafter, we propose and apply a minimalist murburn model of trans-membrane ion-differentiation by NKA to address the physiological inhibitory effects of trans-dermal peptide, lithium ion, volatile anesthetics, confirmed interfacial DRS + proton modulators like nitrophenolics and unsaturated fatty acid, and the diverse classes of molecules like CTS, arginine, oximes, etc. These explanations find a pan-systemic connectivity with the inhibitions/uncouplings of other membrane proteins in cells.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Nikolai M Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Antwerp, Belgium
| |
Collapse
|
88
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
89
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
90
|
Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic ER. The Na +/K +-ATPase: A potential therapeutic target in cardiometabolic diseases. Front Endocrinol (Lausanne) 2023; 14:1150171. [PMID: 36926029 PMCID: PMC10011626 DOI: 10.3389/fendo.2023.1150171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiometabolic diseases (CMD) are a direct consequence of modern living and contribute to the development of multisystem diseases such as cardiovascular diseases and diabetes mellitus (DM). CMD has reached epidemic proportions worldwide. A sodium pump (Na+/K+-ATPase) is found in most eukaryotic cells' membrane and controls many essential cellular functions directly or indirectly. This ion transporter and its isoforms are important in the pathogenesis of some pathological processes, including CMD. The structure and function of Na+/K+-ATPase, its expression and distribution in tissues, and its interactions with known ligands such as cardiotonic steroids and other suspected endogenous regulators are discussed in this review. In addition, we reviewed recent literature data related to the involvement of Na+/K+-ATPase activity dysfunction in CMD, focusing on the Na+/K+-ATPase as a potential therapeutic target in CMD.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Palermo, Italy
- *Correspondence: Manfredi Rizzo,
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
91
|
The Neuroprotective Effect Associated with Echinops spinosus in an Acute Seizure Model Induced by Pentylenetetrazole. Neurochem Res 2023; 48:273-283. [PMID: 36074199 DOI: 10.1007/s11064-022-03738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.
Collapse
|
92
|
Arystarkhova E, Toustrup-Jensen MS, Holm R, Ko JK, Lee KE, Feschenko P, Ozelius LJ, Brashear A, Vilsen B, Sweadner KJ. Temperature instability of a mutation at a multidomain junction in Na,K-ATPase isoform ATP1A3 (p.Arg756His) produces a fever-induced neurological syndrome. J Biol Chem 2023; 299:102758. [PMID: 36462665 PMCID: PMC9860391 DOI: 10.1016/j.jbc.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
ATP1A3 encodes the α3 isoform of Na,K-ATPase. In the brain, it is expressed only in neurons. Human ATP1A3 mutations produce a wide spectrum of phenotypes, but particular syndromes are associated with unique substitutions. For arginine 756, at the junction of membrane and cytoplasmic domains, mutations produce encephalopathy during febrile infections. Here we tested the pathogenicity of p.Arg756His (R756H) in isogenic mammalian cells. R756H protein had sufficient transport activity to support cells when endogenous ATP1A1 was inhibited. It had half the turnover rate of wildtype, reduced affinity for Na+, and increased affinity for K+. There was modest endoplasmic reticulum retention during biosynthesis at 37 °C but little benefit from the folding drug phenylbutyrate (4-PBA), suggesting a tolerated level of misfolding. When cells were incubated at just 39 °C, however, α3 protein level dropped without loss of β subunit, paralleled by an increase of endogenous α1. Elevated temperature resulted in internalization of α3 from the surface along with some β subunit, accompanied by cytoplasmic redistribution of a marker of lysosomes and endosomes, lysosomal-associated membrane protein 1. After return to 37 °C, α3 protein levels recovered with cycloheximide-sensitive new protein synthesis. Heating in vitro showed activity loss at a rate 20- to 30-fold faster than wildtype, indicating a temperature-dependent destabilization of protein structure. Arg756 appears to confer thermal resistance as an anchor, forming hydrogen bonds among four linearly distant parts of the Na,K-ATPase structure. Taken together, our observations are consistent with fever-induced symptoms in patients.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jae-Kyun Ko
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kyung Eun Lee
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Polina Feschenko
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
93
|
Andersen MK, Robertson RM, MacMillan HA. Plasticity in Na+/K+-ATPase thermal kinetics drives variation in the temperature of cold-induced neural shutdown of adult Drosophila melanogaster. J Exp Biol 2022; 225:285893. [PMID: 36477887 DOI: 10.1242/jeb.244923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Most insects can acclimate to changes in their thermal environment and counteract temperature effects on neuromuscular function. At the critical thermal minimum, a spreading depolarization (SD) event silences central neurons, but the temperature at which this event occurs can be altered through acclimation. SD is triggered by an inability to maintain ion homeostasis in the extracellular space in the brain and is characterized by a rapid surge in extracellular K+ concentration, implicating ion pump and channel function. Here, we focused on the role of the Na+/K+-ATPase specifically in lowering the SD temperature in cold-acclimated Drosophila melanogaster. After first confirming cold acclimation altered SD onset, we investigated the dependency of the SD event on Na+/K+-ATPase activity by injecting the inhibitor ouabain into the head of the flies to induce SD over a range of temperatures. Latency to SD followed the pattern of a thermal performance curve, but cold acclimation resulted in a left-shift of the curve to an extent similar to its effect on the SD temperature. With Na+/K+-ATPase activity assays and immunoblots, we found that cold-acclimated flies have ion pumps that are less sensitive to temperature, but do not differ in their overall abundance in the brain. Combined, these findings suggest a key role for plasticity in Na+/K+-ATPase thermal sensitivity in maintaining central nervous system function in the cold, and more broadly highlight that a single ion pump can be an important determinant of whether insects can respond to their environment to remain active at low temperatures.
Collapse
Affiliation(s)
| | | | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
94
|
Mahan B, Tacail T, Lewis J, Elliott T, Habekost M, Turner S, Chung R, Moynier F. Exploring the K isotope composition of Göttingen minipig brain regions, and implications for Alzheimer's disease. Metallomics 2022; 14:mfac090. [PMID: 36416864 PMCID: PMC9764214 DOI: 10.1093/mtomcs/mfac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Natural stable metal isotopes have shown utility in differentiation between healthy and diseased brain states (e.g. Alzheimer's disease, AD). While the AD brain accumulates some metals, it purges others, namely K (accompanied by increased serum K, suggesting brain-blood transferal). Here, K isotope compositions of Göttingen minipig brain regions for two AD models at midlife are reported. Results indicate heavy K isotope enrichment where amyloid beta (Aβ) accumulation is observed, and this enrichment correlates with relative K depletion. These results suggest preferential efflux of isotopically light K+ from the brain, a linkage between brain K concentrations and isotope compositions, and linkage to Aβ (previously shown to purge cellular brain K+). Brain K isotope compositions differ from that for serum and brain K is much more abundant than in serum, suggesting that changes in brain K may transfer a measurable K isotope excursion to serum, thereby generating an early AD biomarker.
Collapse
Affiliation(s)
- Brandon Mahan
- IsoTropics Geochemistry Lab, Earth and Environmental Science, James Cook University, Townsville, Queensland 4814, Australia
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Theo Tacail
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Institute of Geosciences, Johannes Gutenberg University, Mainz 55099, Germany
| | - Jamie Lewis
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Tim Elliott
- Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, 2200 Copenhagen N, Denmark
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Biomedical Research, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
95
|
Fahlke C. Membrane physiology and biophysics-Another milestone. Front Physiol 2022; 13:1081004. [PMID: 36505083 PMCID: PMC9733666 DOI: 10.3389/fphys.2022.1081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
|
96
|
Vanadium in Bipolar Disorders-Reviving an Old Hypothesis. Int J Mol Sci 2022; 23:ijms232213901. [PMID: 36430373 PMCID: PMC9697979 DOI: 10.3390/ijms232213901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.
Collapse
|
97
|
Riojas AM, Reeves KD, Shade RE, Puppala SR, Christensen CL, Birnbaum S, Glenn JP, Li C, Shaltout H, Hall-Ursone S, Cox LA. Blood pressure and the kidney cortex transcriptome response to high-sodium diet challenge in female nonhuman primates. Physiol Genomics 2022; 54:443-454. [PMID: 36062883 PMCID: PMC9639778 DOI: 10.1152/physiolgenomics.00144.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Blood pressure (BP) is influenced by genetic variation and sodium intake with sex-specific differences; however, studies to identify renal molecular mechanisms underlying the influence of sodium intake on BP in nonhuman primates (NHP) have focused on males. To address the gap in our understanding of molecular mechanisms regulating BP in female primates, we studied sodium-naïve female baboons (n = 7) fed a high-sodium (HS) diet for 6 wk. We hypothesized that in female baboons variation in renal transcriptional networks correlates with variation in BP response to a high-sodium diet. BP was continuously measured for 64-h periods throughout the study by implantable telemetry devices. Sodium intake, blood samples for clinical chemistries, and ultrasound-guided kidney biopsies were collected before and after the HS diet for RNA-Seq and bioinformatic analyses. We found that on the LS diet but not the HS diet, sodium intake and serum 17 β-estradiol concentration correlated with BP. Furthermore, kidney transcriptomes differed by diet-unbiased weighted gene coexpression network analysis revealed modules of genes correlated with BP on the HS diet but not the LS diet. Our results showed variation in BP on the HS diet correlated with variation in novel kidney gene networks regulated by ESR1 and MYC; i.e., these regulators have not been associated with BP regulation in male humans or rodents. Validation of the mechanisms underlying regulation of BP-associated gene networks in female NHP will inform better therapies toward greater precision medicine for women.
Collapse
Affiliation(s)
- Angelica M Riojas
- Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kimberly D Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert E Shade
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Sobha R Puppala
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Shifra Birnbaum
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Jeremy P Glenn
- Molecular Services Core, Texas Biomedical Research Institute, San Antonio, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Hossam Shaltout
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
98
|
Patrina АN, Veretennikova ЕА, Khamidullina LА, Puzyrev IS, Tobysheva PD, Slepukhin PА, Zhilina EF, Pestov АV. Effect of Noncovalent Interactions on the Properties of α,ω-Bis(2-acetylphenoxy)alkanes Depending on the Size of the Polymethylene Linker. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
99
|
Fletcher M, Zhu J, Rubio-Sánchez R, Sandler SE, Nahas KA, Michele LD, Keyser UF, Tivony R. DNA-Based Optical Quantification of Ion Transport across Giant Vesicles. ACS NANO 2022; 16:17128-17138. [PMID: 36222833 PMCID: PMC9620405 DOI: 10.1021/acsnano.2c07496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Accurate measurements of ion permeability through cellular membranes remains challenging due to the lack of suitable ion-selective probes. Here we use giant unilamellar vesicles (GUVs) as membrane models for the direct visualization of mass translocation at the single-vesicle level. Ion transport is indicated with a fluorescently adjustable DNA-based sensor that accurately detects sub-millimolar variations in K+ concentration. In combination with microfluidics, we employed our DNA-based K+ sensor for extraction of the permeation coefficient of potassium ions. We measured K+ permeability coefficients at least 1 order of magnitude larger than previously reported values from bulk experiments and show that permeation rates across the lipid bilayer increase in the presence of octanol. In addition, an analysis of the K+ flux in different concentration gradients allows us to estimate the complementary H+ flux that dissipates the charge imbalance across the GUV membrane. Subsequently, we show that our sensor can quantify the K+ transport across prototypical cation-selective ion channels, gramicidin A and OmpF, revealing their relative H+/K+ selectivity. Our results show that gramicidin A is much more selective to protons than OmpF with a H+/K+ permeability ratio of ∼104.
Collapse
Affiliation(s)
- Marcus Fletcher
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Jinbo Zhu
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Roger Rubio-Sánchez
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K.
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, LondonW12 0BZ, U.K.
| | - Sarah E Sandler
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Kareem Al Nahas
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Lorenzo Di Michele
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K.
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, LondonW12 0BZ, U.K.
| | - Ulrich F Keyser
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| | - Ran Tivony
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CambridgeCB3 0HE, U.K.
| |
Collapse
|
100
|
Moreno C, Jiao S, Yano S, Holmgren M. Disease mutations of human α3 Na +/K +-ATPase define extracellular Na + binding/occlusion kinetics at ion binding site III. PNAS NEXUS 2022; 1:pgac205. [PMID: 36304555 PMCID: PMC9585393 DOI: 10.1093/pnasnexus/pgac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Na+/K+-ATPase, which creates transmembrane electrochemical gradients by exchanging 3 Na+ for 2 K+, is central to the pathogenesis of neurological diseases such as alternating hemiplegia of childhood. Although Na+/K+-ATPase has 3 distinct ion binding sites I-III, the difficulty of distinguishing ion binding events at each site from the others hinders kinetic study of these transitions. Here, we show that binding of Na+ at each site in the human α3 Na+/K+-ATPase can be resolved using extracellular Na+-mediated transient currents. When Na+/K+-ATPase is constrained to bind and release only Na+, three kinetic components: fast, medium, and slow, can be isolated, presumably corresponding to the protein dynamics associated with the binding (or release depending on the voltage step direction) and the occlusion (or deocclusion) of each of the 3 Na+. Patient-derived mutations of residues which coordinate Na+ at site III exclusively impact the slow component, demonstrating that site III is crucial for deocclusion and release of the first Na+ into the extracellular milieu. These results advance understanding of Na+/K+-ATPase mutation pathogenesis and provide a foundation for study of individual ions' binding kinetics.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miguel Holmgren
- Correspondence should be addressed: Miguel Holmgren, Ph.D. Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Tel: +1-(301) 451-6259; E-mail:
| |
Collapse
|