51
|
Effect of dietary chia supplementation on glucose metabolism and adipose tissue function markers in non-alcoholic fatty liver disease subjects. NUTR HOSP 2022; 39:1280-1288. [PMID: 36250773 DOI: 10.20960/nh.04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: adipose tissue dysfunction is a key factor for diabetes and non-alcoholic fatty liver disease (NAFLD) development. Chia (Salvia hispanica) is an abundant source of omega-3 fatty acids, antioxidants, and fiber which could improve adipose tissue functionality. Aim: to analyze the effect of an isocaloric chia-supplemented diet on glucose metabolism, adipose tissue inflammation, and endothelial function markers in patients with NAFLD and early stages of diabetes. Methods: in 32 patients with previous NAFLD diagnosis, without known diabetes, the effect of a diet supplemented with ground chia (25 g/day/8 weeks) was evaluated. Visceral (VAF) and liver fat, plasma lipids, fatty acids, and cytokine profiles, oral glucose tolerance test (OGTT), insulinogenic index (IGI30), insulin disposition index (DIO), and endothelial progenitor cells (EPC) were analyzed. Before and after eight weeks of diet supplementation. Results: chia supplementation promoted increases in plasma alpha-linolenic acid (75 %) and fiber consumption (55 %), and a higher number of EPC (+126 %). Basal OGTT showed that nine patients had normal OGTT, 17 pre-diabetes, and six newly diagnosed diabetes. In patients with diabetes, chia favored a healthier adipose tissue (VAF -7 %, NAFLD -100 %, adiponectin +47 %, resistin -30 %, IL-6 -44 %, IL-1β -22 %) and upturn glucose metabolism through the improvement of beta-cell function (IGI30 +50 %, DIO +66 %). Conclusions: dietary supplementation with 25 g/day of ground chia may promote a healthier adipose tissue and improve pancreatic β-cell and endothelial function. Among patients with early metabolic abnormalities, phytochemical properties of chia may retard diabetes progression and advanced stages of liver damage.
Collapse
|
52
|
Fuentes-Romero B, Muñoz-Prieto A, Cerón JJ, Martín-Cuervo M, Iglesias-García M, Aguilera-Tejero E, Díez-Castro E. Measurement of Plasma Resistin Concentrations in Horses with Metabolic and Inflammatory Disorders. Animals (Basel) 2021; 12:ani12010077. [PMID: 35011183 PMCID: PMC8744951 DOI: 10.3390/ani12010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Obesity and its associated complications, such as metabolic syndrome, are an increasing problem in both humans and horses in the developed world. Adipose tissue is a key endocrine organ that communicates with other organs by multiple endocrine substances called adipokines. There is evidence to suggest that adipokines may contribute to the regulation of biological processes, such as metabolism, immunity, and inflammation. The aim of this study was to investigate the usefulness of one of these adipokines in horses, resistin, and its relationship with insulin dysregulation (ID) and inflammation. Seventy-two horses, included in one of the four following groups, were studied: healthy controls, horses with inflammatory conditions, horses with mild, and horses with severe ID. Plasma resistin concentrations were significantly different between groups, and the highest values were recorded in the inflammatory and severe ID groups. The lack of correlation of resistin with basal insulin concentration and the significant correlation of resistin with the inflammatory marker serum amyloid A suggest that, as is the case in humans, plasma resistin concentrations in horses are predominantly related to inflammatory conditions and not to ID. Abstract Obesity and its associated complications, such as metabolic syndrome, are an increasing problem in both humans and horses in the developed world. The expression patterns of resistin differ considerably between species. In rodents, resistin is expressed by adipocytes and is related to obesity and ID. In humans, resistin is predominantly produced by inflammatory cells, and resistin concentrations do not reflect the degree of obesity, although they may predict cardiovascular outcomes. The aim of this study was to investigate the usefulness of resistin and its relationship with ID and selected indicators of inflammation in horses. Seventy-two horses, included in one of the four following groups, were studied: healthy controls (C, n = 14), horses with inflammatory conditions (I, n = 21), horses with mild ID (ID1, n = 18), and horses with severe ID (ID2, n = 19). Plasma resistin concentrations were significantly different between groups and the higher values were recorded in the I and ID2 groups (C: 2.38 ± 1.69 ng/mL; I: 6.85 ± 8.38 ng/mL; ID1: 2.41 ± 2.70 ng/mL; ID2: 4.49 ± 3.08 ng/mL). Plasma resistin was not correlated with basal insulin concentrations. A significant (r = 0.336, p = 0.002) correlation was found between resistin and serum amyloid A. Our results show that, as is the case in humans, plasma resistin concentrations in horses are predominantly related to inflammatory conditions and not to ID. Horses with severe ID showed an elevation in resistin that may be secondary to the inflammatory status associated with metabolic syndrome.
Collapse
Affiliation(s)
- Beatriz Fuentes-Romero
- Department of Equine Internal Medicine, University of Extremadura, 10004 Cáceres, Spain;
- Correspondence:
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30003 Murcia, Spain; (A.M.-P.); (J.J.C.)
| | - José J. Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30003 Murcia, Spain; (A.M.-P.); (J.J.C.)
| | - María Martín-Cuervo
- Department of Equine Internal Medicine, University of Extremadura, 10004 Cáceres, Spain;
| | | | | | - Elisa Díez-Castro
- Department of Equine Internal Medicine, University of Córdoba, 14014 Córdoba, Spain; (E.A.-T.); (E.D.-C.)
| |
Collapse
|
53
|
Kural A, Khan I, Seyit H, Caglar TR, Toklu P, Vural M. Changes in the gut microbiota of morbidly obese patients after laparoscopic sleeve gastrectomy. Future Microbiol 2021; 17:5-15. [PMID: 34877878 DOI: 10.2217/fmb-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Permanent treatment of morbid obesity with medication or diet is nearly impossible. Laparoscopic sleeve gastrectomy (LSG) is becoming a widely accepted treatment option. This study profiled and compared gut microbiota composition before and after LSG. Methods & results: A total of 54 stool samples were collected from 27 morbidly obese individuals before and after LSG. The gut microbiota was profiled with 16S amplicon sequencing. After LSG, patients demonstrated a significant decrease (p < 0.001) in BMI and an increase in bacterial diversity. An increased Firmicutes/Bacteroidetes ratio was also noticed after LSG. The families Prevotellaceae and Veillonellaceae predominated in preoperative samples but were markedly lowered after LSG. A marked increase in Akkermansia, Alistipes, Streptococcus, Ruminococcus and Parabacteroides was observed after LSG. Conclusion: In addition to lowering BMI, LSG remodeled gut microbiota composition.
Collapse
Affiliation(s)
- Alev Kural
- Dr Sadi Konuk Research & Training Hospital, University of Health Sciences Bakırköy, Istanbul, Turkey
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Hakan Seyit
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Tuba R Caglar
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Pınar Toklu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| | - Meltem Vural
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, People's Republic of China
| |
Collapse
|
54
|
van Bilsen JHM, van den Brink W, van den Hoek AM, Dulos R, Caspers MPM, Kleemann R, Wopereis S, Verschuren L. Mechanism-Based Biomarker Prediction for Low-Grade Inflammation in Liver and Adipose Tissue. Front Physiol 2021; 12:703370. [PMID: 34858196 PMCID: PMC8631400 DOI: 10.3389/fphys.2021.703370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic disorders, such as obesity and type 2 diabetes have a large impact on global health, especially in industrialized countries. Tissue-specific chronic low-grade inflammation is a key contributor to complications in metabolic disorders. To support therapeutic approaches to these complications, it is crucial to gain a deeper understanding of the inflammatory dynamics and to monitor them on the individual level. To this end, blood-based biomarkers reflecting the tissue-specific inflammatory dynamics would be of great value. Here, we describe an in silico approach to select candidate biomarkers for tissue-specific inflammation by using a priori mechanistic knowledge from pathways and tissue-derived molecules. The workflow resulted in a list of candidate markers, in part consisting of literature confirmed biomarkers as well as a set of novel, more innovative biomarkers that reflect inflammation in the liver and adipose tissue. The first step of biomarker verification was on murine tissue gene-level by inducing hepatic inflammation and adipose tissue inflammation through a high-fat diet. Our data showed that in silico predicted hepatic markers had a strong correlation to hepatic inflammation in the absence of a relation to adipose tissue inflammation, while others had a strong correlation to adipose tissue inflammation in the absence of a relation to liver inflammation. Secondly, we evaluated the human translational value by performing a curation step in the literature using studies that describe the regulation of the markers in human, which identified 9 hepatic (such as Serum Amyloid A, Haptoglobin, and Interleukin 18 Binding Protein) and 2 adipose (Resistin and MMP-9) inflammatory biomarkers at the highest level of confirmation. Here, we identified and pre-clinically verified a set of in silico predicted biomarkers for liver and adipose tissue inflammation which can be of great value to study future development of therapeutic/lifestyle interventions to combat metabolic inflammatory complications.
Collapse
Affiliation(s)
- Jolanda H M van Bilsen
- Department of Risk Assessment for Products in Development, The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Willem van den Brink
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Remon Dulos
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
55
|
Kirk B, Mooney K, Vogrin S, Jackson M, Duque G, Khaiyat O, Amirabdollahian F. Leucine-enriched whey protein supplementation, resistance-based exercise, and cardiometabolic health in older adults: a randomized controlled trial. J Cachexia Sarcopenia Muscle 2021; 12:2022-2033. [PMID: 34520104 PMCID: PMC8718053 DOI: 10.1002/jcsm.12805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Increasing protein intake (above the Recommended Dietary Amount) alone or with resistance-based exercise is suggested to improve cardiometabolic health; however, randomized controlled trials (RCTs) are needed to confirm this. METHODS The Liverpool Hope University-Sarcopenia Aging Trial (LHU-SAT) was a 16 week RCT (ClinicalTrials.gov Identifier: NCT02912130) of 100 community-dwelling older adults [mean age: 68.73 ± 5.80 years, body mass index: 27.06 ± 5.18 kg/m2 (52% women)] who were randomized to four independent groups [Control (C), Exercise (E), Exercise + Protein (EP), Protein (P)]. E and EP completed supervised and progressive resistance-based exercise (resistance exercise: two times per week, functional circuit exercise: once per week), while EP and P were supplemented with a leucine-enriched whey protein drink (three times per day) based on individual body weight (0.50 g/kg/meal, 1.50 g/kg/day). Outcome measures including arterial stiffness (pulse wave velocity), fasting plasma/serum biomarkers [glucose/glycated haemoglobin, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein, insulin, resistin, leptin, adiponectin, C-reactive protein, tumour necrosis factor-alpha, interleukin-6, cystatin-C, & ferritin], insulin resistance (HOMA-IR), and kidney function (eGFR) were measured before and after intervention. RESULTS Total protein intake (habitual diet plus supplementation) increased to 1.55 ± 0.69 g/kg/day in EP and to 1.93 ± 0.72 g/kg/day in P, and remained significantly lower (P < 0.001) in unsupplemented groups (E: 1.08 ± 0.33 g/kg/day, C: 1.00 ± 0.26 g/kg/day). At 16 weeks, there was a group-by-time interaction whereby absolute changes in LDL-cholesterol were lower in EP [mean difference: -0.79 mmol/L, 95% confidence interval (CI): -1.29, -0.28, P = 0.002] and P (mean difference: -0.76 mmol/L, 95% CI: -1.26, -0.26, P = 0.003) vs. C. Serum insulin also showed group-by-time interactions at 16 weeks whereby fold changes were lower in EP (mean difference: -0.40, 95% CI: -0.65, -0.16, P = 0.001) and P (mean difference: -0.32, 95% CI: -0.56, -0.08, P = 0.009) vs. C, and fold changes in HOMA-IR improved in EP (mean difference: -0.37, 95% CI: -0.64, -0.10, P = 0.007) and P (mean difference: -0.27, 95% CI: -0.53, -0.00, P = 0.048) vs. C. Serum resistin declined in P only (group-by-time interaction at 16 weeks: P = 0.009). No other interactions were observed in outcome measures (P > 0.05), and kidney function (eGFR) remained unaltered. CONCLUSIONS Sixteen weeks of leucine-enriched whey protein supplementation alone and combined with resistance-based exercise improved cardiometabolic health markers in older adults.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia.,School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Kate Mooney
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Sara Vogrin
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Matthew Jackson
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Gustavo Duque
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Omid Khaiyat
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | | |
Collapse
|
56
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
57
|
Almby KE, Katsogiannos P, Pereira MJ, Karlsson FA, Sundbom M, Wiklund U, Kamble PG, Eriksson JW. Time Course of Metabolic, Neuroendocrine, and Adipose Effects During 2 Years of Follow-up After Gastric Bypass in Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e4049-e4061. [PMID: 34086911 PMCID: PMC8475218 DOI: 10.1210/clinem/dgab398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Roux-en-Y gastric bypass surgery (RYGB) markedly improves glycemia in patients with type 2 diabetes (T2D), but underlying mechanisms and changes over time are incompletely understood. OBJECTIVE Integrated assessment of neuroendocrine and metabolic changes over time in T2D patients undergoing RYGB. DESIGN AND SETTING Follow-up of single-center randomized study. PATIENTS Thirteen patients with obesity and T2D compared to 22 healthy subjects. INTERVENTIONS Blood chemistry, adipose biopsies, and heart rate variability were obtained before and 4, 24, and 104 weeks post-RYGB. RESULTS After RYGB, glucose-lowering drugs were discontinued and hemoglobin A1c fell from mean 55 to 41 mmol/mol by 104 weeks (P < 0.001). At 4 weeks, morning cortisol (P < 0.05) and adrenocorticotropin (P = 0.09) were reduced by 20%. Parasympathetic nerve activity (heart rate variability derived) increased at 4 weeks (P < 0.05) and peaked at 24 weeks (P < 0.01). C-reactive protein (CRP) and white blood cells were rapidly reduced (P < 0.01). At 104 weeks, basal and insulin-stimulated adipocyte glucose uptake increased by 3-fold vs baseline and expression of genes involved in glucose transport, fatty acid oxidation, and adipogenesis was upregulated (P < 0.01). Adipocyte volume was reduced by 4 weeks and more markedly at 104 weeks, by about 40% vs baseline (P < 0.01). CONCLUSIONS We propose this order of events: (1) rapid glucose lowering (days); (2) attenuated cortisol axis activity and inflammation and increased parasympathetic tone (weeks); and (3) body fat and weight loss, increased adipose glucose uptake, and whole-body insulin sensitivity (months-years; similar to healthy controls). Thus, neuroendocrine pathways can partly mediate early glycemic improvement after RYGB, and adipose factors may promote long-term insulin sensitivity and normoglycemia.
Collapse
Affiliation(s)
- Kristina E Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Correspondence: Jan W Eriksson, MD, Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
58
|
Abdalla MMI. Salivary resistin level and its association with insulin resistance in obese individuals. World J Diabetes 2021; 12:1507-1517. [PMID: 34630903 PMCID: PMC8472494 DOI: 10.4239/wjd.v12.i9.1507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global burden of type 2 diabetes mellitus necessitates the implementation of strategies that are both more reliable and faster in order to improve the early identification of insulin resistance (IR) in high-risk groups, including overweight and obese individuals. The use of salivary biomarkers offers a promising alternative to serum collection because it is safer, more comfortable, and less painful to obtain saliva samples. As obesity is the foremost contributory factor in IR development, the adipocytokines such as leptin, adiponectin, resistin, and visfatin secreted from the adipose tissue have been studied as potential reliable biomarkers for IR. Measurement of salivary adipokines as predictors for IR has attracted widespread attention because of the strong correlation between their blood and salivary concentrations. One of the adipokines that is closely related to IR is resistin. However, there are conflicting findings on resistin’s potential role as an etiological link between obesity and IR and the reliability of measuring salivary resistin as a biomarker for IR. Hence this study reviewed the available evidence on the potential use of salivary resistin as a biomarker for IR in order to attempt to gain a better understanding of the role of resistin in the development of IR in obese individuals.
Collapse
|
59
|
Giandalia A, Alibrandi A, Giorgianni L, Lo Piano F, Consolo F, Longo Elia G, Asztalos B, Cucinotta D, Squadrito G, Russo GT. Resistin levels and inflammatory and endothelial dysfunction markers in obese postmenopausal women with type 2 diabetes mellitus. Diabetol Metab Syndr 2021; 13:98. [PMID: 34496965 PMCID: PMC8427860 DOI: 10.1186/s13098-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity-associated coronary heart disease (CHD) risk is higher in women than in men with type 2 diabetes (T2DM). Resistin, an adipokine secreted by adispose tissue, may contribute to this higher risk. AIMS To explore the relationships among resistin levels and common inflammatory and endothelial dysfunction markers and CHD risk in obese post-menopausal T2DM women. METHODS Serum levels of resistin, hsCRP, IL-6, Soluble vascular cell adhesion molecule (sVCAM), homocysteine (tHcy), HOMA-IR and metabolic parameters were determined in a group of 132 T2DM women with and without documented CHD and in 55 non-diabetic women. RESULTS Resistin, sVCAM, IL-6 and tHcy levels were comparable in T2DM and controls. CHD women showed higher resistin, sVCAM and tHcy levels than those without CHD, and for resistin this difference remained significant after age-adjustment (P = 0.013); conversely hsCRP were ~ 2X higher in T2DM women than in controls (P = 0.0132) without any difference according to CHD history. At univariate analysis resistin levels were significantly associated with age, waist circumference, hypertension, tHcy, hsPCR, sVCAM, IL-6, HDL-cholesterol, triglycerides and creatinine levels, but only creatinine, triglycerides, hsCRP, IL-6 and sVCAM were independently associated to resistin levels at stepwise regression analysis. Resistin levels were independently associated to CHD, increasing the risk by 1.15 times (0.986-1.344 95% CI), together with age, tHcy, LDL-C and hypertension. CONCLUSIONS Circulating resistin levels were comparable in obese/overweight T2DM and control women. In T2DM women, resistin levels correlated with markers of renal function, systemic inflammation and endothelial dysfunction and were independently associated with a higher CHD risk.
Collapse
Affiliation(s)
- A Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - A Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, Messina, Italy
| | - L Giorgianni
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Lo Piano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Consolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Longo Elia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Asztalos
- Lipid Metabolism Laboratory, JM-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - D Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
60
|
Martins LB, Delevati Colpo G, Calarge CA, Teixeira AL. Inflammatory Markers Profile in Older Adolescents During Treatment with Selective Serotonin Reuptake Inhibitors. J Child Adolesc Psychopharmacol 2021; 31:439-444. [PMID: 34166063 PMCID: PMC8403204 DOI: 10.1089/cap.2020.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: This study aimed to investigate the serum levels of inflammatory markers in adolescents with major depressive disorder (MDD) using selective serotonin reuptake inhibitors. Methods: This was an 8-month observational study, involving 30 adolescents with and 38 without (control) MDD diagnosis. Demographic (age and gender) and anthropometric data (weight, height, and calculated body mass index [BMI] z score) were collected. Body composition was assessed with whole-body DXA scan. Depressive and anxiety symptoms were assessed using the Beck Depression and Anxiety Inventories (BDI-II and BAI), respectively. Serum levels of interleukin (IL)-6, IL-8, IL-1β, tumor necrosis factor, monocyte chemoattractant protein-1 (MCP-1), leptin, resistin, and adiponectin were measured using Bio-Plex Multiplex Immunoassays at baseline and after 8 months. Results: At baseline, patients with MDD and controls did not differ in age, gender, BMI z score, and fat mass index (FMI) z score. At follow-up, 58.3% (21/36) of patients with MDD were in full remission. Patients with MDD had higher levels of resistin at baseline (26274.16 pg/mL [16162.68-54252.72]) than controls (21678.53 pg/mL [11221.17-37343.27]; p < 0.01). This difference remained statistically significant after adjustment for sex, age, and FMI z score. No differences in other inflammatory markers were observed between the groups. By follow up, depressive and anxiety symptom severity had decreased significantly in patients with MDD in parallel with a decrease in the serum levels of TNF (p = 0.02), IL-8 (p < 0.01) and MCP-1 (p = 0.04). Among these markers, BDI-II score was positively correlated with serum levels of MCP-1. Conclusion: These results corroborate the view of involvement of peripheral inflammatory mechanisms in the pathophysiology of MDD in adolescents. This trial is registered at ClinicalTrials.gov: NCT02147184.
Collapse
Affiliation(s)
- Lais Bhering Martins
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Address correspondence to: Lais Bhering Martins, PhD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Road, Suite 3270, Houston, TX 77054, USA
| | - Gabriela Delevati Colpo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chadi A. Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Antonio Lúcio Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
61
|
Rzepa Ł, Peller M, Eyileten C, Rosiak M, Kondracka A, Mirowska-Guzel D, Opolski G, Filipiak KJ, Postuła M, Kapłon-Cieslicka A. Resistin is Associated with Inflammation and Renal Function, but not with Insulin Resistance in Type 2 Diabetes. Horm Metab Res 2021; 53:478-484. [PMID: 34169498 DOI: 10.1055/a-1492-3077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the study was to investigate the association of adipokines (resistin, leptin and adiponectin) with obesity, insulin resistance (IR) and inflammation in type 2 diabetes mellitus (T2DM). A total of 284 patients with T2DM were included. Concentrations of resistin, leptin, adiponectin, and inflammatory markers [high sensitivity C-reactive protein (hsCRP), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6)] were measured and homeostatic model assessment for IR (HOMA-IR) index was calculated. Resistin correlated negatively with estimated glomerular filtration rate (eGFR) and positively with hsCRP, TNF-α, IL-6, and white blood cell count (WBC). Leptin correlated positively with HOMA-IR, whereas adiponectin correlated negatively. Leptin also correlated positively with body mass index (BMI), waist circumference, IL-6, WBC and negatively with eGFR. Adiponectin correlated negatively with waist circumference, WBC, and eGFR. Multivariate logistic regression indicated lower eGFR and higher WBC and IL-6 as independent predictive factors of resistin concentration above the upper quartile (CAQ3), whereas female sex and higher BMI and HOMA-IR of leptin CAQ3, and lower HOMA-IR and older age of adiponectin CAQ3. In conclusion, in contrast to leptin and adiponectin, in T2DM patients, resistin is not associated with BMI and IR, but with inflammation and worse kidney function.
Collapse
Affiliation(s)
- Łukasz Rzepa
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Peller
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Rosiak
- Department of Cardiology and Hypertension, Central Clinical Hospital, Warsaw, Poland
| | - Agnieszka Kondracka
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
62
|
Para I, Albu A, Porojan MD. Adipokines and Arterial Stiffness in Obesity. ACTA ACUST UNITED AC 2021; 57:medicina57070653. [PMID: 34202323 PMCID: PMC8305474 DOI: 10.3390/medicina57070653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Adipokines are active molecules with pleiotropic effects produced by adipose tissue and involved in obesity-related metabolic and cardiovascular diseases. Arterial stiffness, which is a consequence of arteriosclerosis, has been shown to be an independent predictor of cardiovascular morbidity and mortality. The pathogenesis of arterial stiffness is complex but incompletely understood. Adipokines dysregulation may induce, by various mechanisms, vascular inflammation, endothelial dysfunction, and vascular remodeling, leading to increased arterial stiffness. This article summarizes literature data regarding adipokine-related pathogenetic mechanisms involved in the development of arterial stiffness, particularly in obesity, as well as the results of clinical and epidemiological studies which investigated the relationship between adipokines and arterial stiffness.
Collapse
Affiliation(s)
- Ioana Para
- 4th Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Adriana Albu
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihai D. Porojan
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
63
|
Dzięgielewska-Gęsiak S, Wyszomirska K, Fatyga E, Wysocka E, Muc-Wierzgoń M. The role of oxidant-antioxidant markers and resistin in metabolic syndrome elderly individuals. Sci Prog 2021; 104:368504211006510. [PMID: 33913390 PMCID: PMC10364936 DOI: 10.1177/00368504211006510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In elderly, hormones and oxidant-antioxidant interplay are suggested to mediate biochemical balance between adipose tissue to other tissues. Thus the study attempts to explore metabolic traits, plasma resistin, and oxidant-antioxidant markers in metabolic syndrome (MetS) in comparison to non-metabolic syndrome (non-MetS) elderly individuals. A total of 541 healthy elderly Caucasians, with no acute and/or chronic disorders were invited. After taking into account inclusion/exclusion criteria's the MetS was defined as the presence of three out of five abnormal findings and allowed to divided groups into: non-metabolic syndrome, non-MetS (n = 25, median age 69.0 years), and newly diagnosed MetS (n = 29; median age 70.5 years) individuals. Glucose, plasma lipids, resistin (Res), thiobarbituric acid-reacting substances (TBARS), total antioxidant status (TAS), and Cu,Zn-superoxide dismutase (SOD-1) were measured. The MetS had higher resistin than non-MetS (p < 0.04). The linear correlation (all at p < 0.05) showed correlation for Res&triacylglycerols (R = 0.44), and for Res&diastolic blood pressure (R = -0.58) and for SOD-1&fasting glucose (R = -0.34) in MetS, while in the non-MetS group fasting glucose correlates with Res (R = 0.58) and with TAS (R = -0.43). The multiple regression analysis (alone and in combination) showed that independently from other factors resistin correlated positively with fasting glucose (β = 0.37; R = 0.58; R2 = 0.23; p < 0.01) in all investigated elderly participants. In the MetS resistin correlated negatively with diastolic blood pressure (β = -0.68; R = 0.80; R2 = 0.53; p = 0.0004) moreover in that group TAS correlated negatively with HDL-C (β = -0.71; R = 0.72; R2 = 0.37; p = 0.01). While age correlated negatively with systolic blood pressure (β = -0.60; R = 0.62; R2 = 0.14; p = 0.03) independently from other factors in the non-MetS group. Various metabolic factors contribute to maintain serum resistin and oxidant-antioxidant balance in the elderly people in the presence or absence of MetS. Resistin may serve as a predictor of MetS in the elderly, while strong antioxidant defense interactions in older individuals may indicate good health.
Collapse
Affiliation(s)
| | - Karolina Wyszomirska
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Fatyga
- Department of Internal Medicine, Medical University of Silesia in Katowice, Bytom, Poland
| | - Ewa Wysocka
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
64
|
Srivastava AK, Chand Yadav T, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118:102614. [PMID: 33578119 DOI: 10.1016/j.jaut.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease with complex pathogenesis and multiple etiological factors. Besides the essential role of autoreactive T cells and constellation of cytokines, the discovery of IL-23/Th17 axis as a central signaling pathway has unraveled the mechanism of accelerated inflammation in psoriasis. This has provided insights into psoriasis pathogenesis and revolutionized the development of effective biological therapies. Moreover, genome-wide association studies have identified several candidate genes and susceptibility loci associated with this disease. Although involvement of cellular innate and adaptive immune responses and dysregulation of immune cells have been implicated in psoriasis initiation and maintenance, there is still a lack of unifying mechanism for understanding the pathogenesis of this disease. Emerging evidence suggests that psoriasis is a high-mortality disease with additional burden of comorbidities, which adversely affects the treatment response and overall quality of life of patients. Furthermore, changing trends of psoriasis-associated comorbidities and shared patterns of genetic susceptibility, risk factors and pathophysiological mechanisms manifest psoriasis as a multifactorial systemic disease. This review highlights the recent progress in understanding the crucial role of different immune cells, proinflammatory cytokines and microRNAs in psoriasis pathogenesis. In addition, we comprehensively discuss the involvement of various complex signaling pathways and their interplay with immune cell markers to comprehend the underlying pathophysiological mechanism, which may lead to exploration of new therapeutic targets and development of novel treatment strategies to reduce the disastrous nature of psoriasis and associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Centre at InStem, Bangalore, 560065, Karnataka, India; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune, 411057, Maharashtra, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
65
|
Abdelazeem AH, Abuelsaad ASA, Abdel-Moniem A, Abdel-Gabbar M. Association of metabolic syndrome components with alterations in oxidative stress and cytokines expression. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2009680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ahmed H. Abdelazeem
- Biochemistry Department Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | | | - Adel Abdel-Moniem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
66
|
Saeidi A, Haghighi MM, Kolahdouzi S, Daraei A, Abderrahmane AB, Essop MF, Laher I, Hackney AC, Zouhal H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes Rev 2021; 22:e13090. [PMID: 32662238 DOI: 10.1111/obr.13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
This narrative review summarizes current knowledge on the effects of physical activity (PA) on adipokine levels in individuals with overweight and obesity. Approximately 90 investigations including randomized control, cross-sectional and longitudinal studies that reported on the effects of a single session of PA (acute) or long-term PA (chronic) on adipokine levels in individuals with overweight/obesity were reviewed. The findings support the notion that there is consensus on the benefits of chronic exercise training-regardless of the mode (resistance vs. aerobic), intensity and cohort (healthy vs. diabetes)-on adipokine levels (such as tumour necrosis factor-alpha, interleukin-6, adiponectin, visfatin, omentin-1 and leptin). However, several confounding factors (frequency, intensity, time and type of exercise) can alter the magnitude of the effects of an acute exercise session. Available evidence suggests that PA, as a part of routine lifestyle behaviour, improves obesity complications by modulating adipokine levels. However, additional research is needed to help identify the most effective interventions to elicit the most beneficial changes in adipokine levels in individuals with overweight/obesity.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Marjan Mosalman Haghighi
- Faculty of Medicine and Health, Cardiology Centre, The University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Sarkawt Kolahdouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Rennes, Rennes, France
| |
Collapse
|
67
|
Abstract
Diabetes is on the rise across the globe affecting more than 463 million people and crucially increasing morbidities of diabetes-associated diseases. Urgent and immense actions are needed to improve diabetes prevention and treatment. Regarding the correlation of diabetes with many associated diseases, inhibition of the disease progression is more crucial than controlling symptoms. Currently, anti-diabetic drugs are accompanied by undesirable side-effects and target confined types of biomolecules. Thus, extensive research is demanding to identify novel disease mechanisms and molecular targets as probable candidates for effective treatment of diabetes. This review discusses the conventional molecule targets that have been applied for their therapeutic rationale in treatment of diabetes. Further, the emerging and prospective molecular targets for the future focus of library screenings are presented.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
68
|
Singh AK, Dawra S, Rana S, Gupta P, Samanta J, Sinha SK, Gupta V, Yadav TD, Kochhar R. Can serum resistin predict severity of acute pancreatitis? Biomarkers 2020; 26:31-37. [PMID: 33089708 DOI: 10.1080/1354750x.2020.1841295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Acute pancreatitis (AP) is a common disorder with high mortality in severe cases. Several markers have been studied to predict development of severe AP (SAP) including serum resistin with conflicting results. This study aimed at assessing the role of baseline serum resistin levels in predicting SAP. METHODS This prospective study collected data from 130 AP patients from July 2017 to Nov 2018. Parameters measured included demographic profile, serum resistin at admission, severity scores, hospital stay, surgery, and mortality. Patients were divided into two groups, severe and non-severe AP. The two groups were compared for baseline characteristics, serum resistin levels, hospital stay, surgery and mortality. RESULTS Among 130 patients, 53 patients had SAP. SAP patients had higher BMI, baseline CRP, APACHE II and CTSI scores (p-value 0.045, <0.001, <0.001 and 0.001, respectively). Both groups had comparable serum resistin levels. Serum resistin levels were also not different for obese and non-obese patients (p-value = 0.62). On multivariate analysis, BMI and high APACHE II score and CRP levels were found to independently predict SAP. CONCLUSION We found that serum resistin is not a useful marker for predicting the severity of AP and does not correlate with increasing body weight.
Collapse
Affiliation(s)
- Anupam Kumar Singh
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saurabh Dawra
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Satyavati Rana
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Gupta
- Section of GI radiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jayanta Samanta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saroj K Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Thakur Deen Yadav
- Department of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
69
|
Modified Linggui Zhugan Decoction () Ameliorates Glycolipid Metabolism and Inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α Signaling Pathways in Obese Type 2 Diabetic Rats. Chin J Integr Med 2020; 28:52-59. [PMID: 33211278 DOI: 10.1007/s11655-020-3285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the protective effects of modified Linggui Zhugan Decoction (, MLZD), a traditional Chinese medicine formula, on obese type 2 diabetes mellitus (T2DM) rats. METHODS Fifty Sprague-Dawley rats were randomly divided into 5 groups by a random number table, including normal, obese T2DM (ob-T2DM), MLZD low-dose [MLDZ-L, 4.625 g/(kg·d)], MLZD middle-dose [MLD-M, 9.25 g/(kg·d) ] and MLZD high-dose [MLD-H, 18.5 g/(kg·d)] groups, 10 rats in each group. After 4-week intervention, blood samples and liver, pancreas, muscle tissues were collected to assess the insulin resistance (IR), blood lipid, adipokines and inflammation cytokines. The alteration of phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or Akt)/the mammalian target of rapamycin (mTOR)-ribosome protein subunit 6 kinase 1 (S6K1 )/AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α) pathways were also studied. RESULTS MLZD dose-dependently reduced fasting blood glucose, fasting insulin, homeostasis model of assessment for IR index and increased insulin sensitive index compared with ob-T2DM rats (P<0.05). Similarly, total cholesterol, triglyceride, low-density lipoprotein cholesterol and free fatty acids were also decreased compared with ob-T2DM rats after 4-week treatment (P<0.05 or P<0.01). Improvements in adipokines and inflammatory cytokines were observed with a raised level of adiponectin and a reduced level of leptin, resistin, tumor necrosis factor-α and interleukin-6 (P<0.05 or P<0.01). MLZD regulated the PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways and restored the tissue structure of liver and pancreas (P<0.05 or P<0.01). CONCLUSIONS MLZD ameliorated glycolipid metabolism and inflammation, which may be attributed to the regulation of PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways.
Collapse
|
70
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
71
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
72
|
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent episodes of apnea during sleep and daytime sleepiness, seriously affects human health and may lead to systemic organ dysfunction. The pathogenesis of OSA is complex and still uncertain, but multiple surveys have shown that obesity is an important factor, and the incidence of OSA in people with obesity is as high as 30%. Adipokines are a group of proteins secreted from adipocytes, which are dysregulated in obesity and may contribute to OSA. Here, we review the most important and representative research results regarding the correlation between obesity-related adipokines including leptin, adiponectin, omentin-1, chemerin, and resistin and OSA in the past 5 years, provide an overview of these key adipokines, and analyze possible intrinsic mechanisms and influencing factors. The existing research shows that OSA is associated with an increase in the serum levels of leptin, chemerin, and resistin and a decrease in the levels of adiponectin and omentin-1; the findings presented here can be used to monitor the development of OSA and obesity, prevent future comorbidities, and identify risk factors for cardiovascular and other diseases, while different adipokines can be linked to OSA through different pathways such as insulin resistance, intermittent hypoxia, and inflammation, among others. We hope our review leads to a deeper and more comprehensive understanding of OSA based on the relevant literature, which will also provide directions for future clinical research.
Collapse
Affiliation(s)
- Xiongye Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jixiong Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
73
|
Tripathi D, Kant S, Pandey S, Ehtesham NZ. Resistin in metabolism, inflammation, and disease. FEBS J 2020; 287:3141-3149. [PMID: 32255270 DOI: 10.1111/febs.15322] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
Resistin is a small secretory protein that has a pleiotropic role in rodents and humans. Both rodent resistin and human resistin have an extremely stable and high-order multimeric structure. Moreover, there is significant variation in the source of secretion and the diversity of functions of resistin. Mouse resistin resists insulin action and contributes to type 2 diabetes mellitus, while human resistin plays a role in inflammation and also functions as a small accessory chaperone. Currently, active research in the area identified a significant role for resistin in stress biology and as a biomarker in diagnostics to evaluate disease status and treatment outcome. This review summarizes recent developments within resistin biology including their association with obesity, inflammation, stress response mechanisms, and its role in clinical diagnostics.
Collapse
Affiliation(s)
- Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| |
Collapse
|