51
|
Pinar E, Sahin A, Unal S, Gunduz O, Harman F, Kaptanoglu E. The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Safdari F, Gholipour MD, Ghadami A, Saeed M, Zandi M. Multi-antibacterial agent-based electrospun polycaprolactone for active wound dressing. Prog Biomater 2022; 11:27-41. [PMID: 35094315 DOI: 10.1007/s40204-021-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples. Natural antibacterial compounds, such as curcumin, piperine, eugenol, and rutin were loaded in electrospun nano-fibrous based on polycaprolactone. Three-component novel systems of curcumin-piperine-eugenol (PCPiEu), and curcumin-piperine-rutin (PCPiR) were designed and prepared. Their synergistic effect was investigated and also compared with one- and two-component systems. The results showed that medium diameter nanofibers of PCPiEu and PCPiR samples was 198.38 and 142.60, respectively, and they were obtained in smooth, uniform and bead free morphology using optimization of process parameters. The amount of water absorption and water vapor permeability of the three-component samples were in the appropriate range (8.33-10.42 mg cm2 h-1) for wound dressings. The mechanical properties of samples were reduced compared to the control sample, which required further investigation. Antibacterial tests showed good results for partial toxicity of PCPiEu and PCPiR samples. Antibacterial tests showed minor toxicity in PCPiR samples and good results were obtained for PCPiEu samples. In addition, the results showed that PCPiEu and PCPiR samples exhibited antibacterial activity against Gram-positive bacterium Staphylococcus aureus and Gram-negative Enterococcus faecalis bacterium, so that killing ability of 74% and 75% against Gram-positive bacterium and 99.47% and 96.88% against Gram-negative bacterium were obtained for these three systems, respectively.
Collapse
Affiliation(s)
- Fatemeh Safdari
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Darya Gholipour
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran. .,Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
53
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
54
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
55
|
Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
56
|
Sadeghinia Z, Emadi R, Shamoradi F. A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211063506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness ( Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Zahra Sadeghinia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fatemeh Shamoradi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
57
|
Huang YJ, Huang CL, Lai RY, Zhuang CH, Chiu WH, Lee KM. Microstructure and Biological Properties of Electrospun In Situ Polymerization of Polycaprolactone-Graft-Polyacrylic Acid Nanofibers and Its Composite Nanofiber Dressings. Polymers (Basel) 2021; 13:4246. [PMID: 34883754 PMCID: PMC8659835 DOI: 10.3390/polym13234246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, polycaprolactone (PCL)- and poly(acrylic acid) (PAA)-based electrospun nanofibers were prepared for the carriers of antimicrobials and designed composite nanofiber mats for chronic wound care. The PCL- and PAA-based electrospun nanofibers were prepared through in situ polymerization starting from PCL and acrylic acid (AA). Different amounts of AA were introduced to improve the hydrophilicity of the PCL electrospun nanofibers. A compatibilizer and a photoinitiator were then added to the electrospinning solution to form a grafted structure composed of PCL and PAA (PCL-g-PAA). The grafted PAA was mainly located on the surface of a PCL nanofiber. The optimization of the composition of PCL, AA, compatibilizer, and photoinitiator was studied, and the PCL-g-PAA electrospun nanofibers were characterized through scanning electron microscopy and 1H-NMR spectroscopy. Results showed that the addition of AA to PCL improved the hydrophilicity of the electrospun PCL nanofibers, and a PCL/AA ratio of 80/20 presented the best composition and had smooth nanofiber morphology. Moreover, poly[2 -(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets (GO-g-PTA) functioned as an antimicrobial agent and was used as filler for PCL-g-PAA nanofibers in the preparation of composite nanofiber mats, which exerted synergistic effects promoted by the antibacterial properties of GO-g-PTA and the hydrophilicity of PCL-g-PAA electrospun nanofibers. Thus, the composite nanofiber mats had antibacterial properties and absorbed body fluids in the wound healing process, thereby promoting cell proliferation. The biodegradation of the PCL-g-PAA electrospun nanofibers also demonstrated an encouraging result of three-fold weight reduction compared to the neat PCL nanofiber. Our findings may serve as guidelines for the fabrication of electrospun nanofiber composites that can be used mats for chronic wound care.
Collapse
Affiliation(s)
- Yi-Jen Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Chien-Lin Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Ruo-Yu Lai
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Cheng-Han Zhuang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Wei-Hao Chiu
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Kun-Mu Lee
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
58
|
Effects of Montmorillonite and Gentamicin Addition on the Properties of Electrospun Polycaprolactone Fibers. MATERIALS 2021; 14:ma14226905. [PMID: 34832307 PMCID: PMC8618055 DOI: 10.3390/ma14226905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.
Collapse
|
59
|
Pinzón-García AD, Sinisterra R, Cortes M, Mesa F, Ramírez-Clavijo S. Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells. PeerJ 2021; 9:e12124. [PMID: 34760343 PMCID: PMC8556714 DOI: 10.7717/peerj.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled release devices because they enable highly efficient drug loading. The purpose of the present study was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically using different techniques. In addition, an in vitro study of TMX release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber was cytotoxic toPBMCs and MCF-7. Based on these results, the PCL-TMX nanofibers developed have potential as an alternative for local chronic TMX use for breast cancer treatment, however tissue tests must be done.
Collapse
Affiliation(s)
- Ana D Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruben Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cortes
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fredy Mesa
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
60
|
Motloung MP, Mofokeng TG, Ojijo V, Ray SS. A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Vincent Ojijo
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
61
|
Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112540. [DOI: 10.1016/j.msec.2021.112540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
|
62
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
63
|
Hanuman S, Nune M. Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering.
Methods
Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds.
Results
Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth.
Conclusion
Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration.
Lay Summary and Future Work
Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development.
Graphical Abstract
Collapse
|
64
|
Comini S, Sparti R, Coppola B, Mohammadi M, Scutera S, Menotti F, Banche G, Cuffini AM, Palmero P, Allizond V. Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications. Int J Mol Sci 2021; 22:10176. [PMID: 34576339 PMCID: PMC8471985 DOI: 10.3390/ijms221810176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we designed and developed novel poly(ε-caprolactone) (PCL)-based biomaterials, for use as bone scaffolds, through modification with both biphasic calcium phosphate (BCP), to impart bioactive/bioresorbable properties, and with silver nitrate, to provide antibacterial protection against Staphylococcus aureus, a microorganism involved in prosthetic joint infections (PJIs). Field emission scanning electron microscopy (FESEM) showed that the samples were characterized by square-shaped macropores, and energy dispersive X-ray spectroscopy analysis confirmed the presence of PCL and BCP phases, while inductively coupled plasma-mass spectrometry (ICP-MS) established the release of Ag+ in the medium (~0.15-0.8 wt% of initial Ag content). Adhesion assays revealed a significant (p < 0.0001) reduction in both adherent and planktonic staphylococci on the Ag-functionalized biomaterials, and the presence of an inhibition halo confirmed Ag release from enriched samples. To assess the potential outcome in promoting bone integration, preliminary tests on sarcoma osteogenic-2 (Saos-2) cells indicated PCL and BCP/PCL biocompatibility, but a reduction in viability was observed for Ag-added biomaterials. Due to their combined biodegrading and antimicrobial properties, the silver-enriched BCP/PCL-based scaffolds showed good potential for engineering of bone tissue and for reducing PJIs as a microbial anti-adhesive tool used in the delivery of targeted antimicrobial molecules, even if the amount of silver needs to be tuned to improve osteointegration.
Collapse
Affiliation(s)
- Sara Comini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Bartolomeo Coppola
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Mehdi Mohammadi
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Sara Scutera
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Francesca Menotti
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Anna Maria Cuffini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Paola Palmero
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Valeria Allizond
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| |
Collapse
|
65
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
66
|
Vidal-Gutiérrez X, Prado-Prone G, Rodil SE, Velasquillo C, Clemente I, Silva-Bermudez P, Almaguer-Flores A. Bismuth subsalicylate incorporated in polycaprolactone-gelatin membranes by electrospinning to prevent bacterial colonization. Biomed Mater 2021; 16. [PMID: 34038883 DOI: 10.1088/1748-605x/ac058d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/26/2021] [Indexed: 01/23/2023]
Abstract
Periodontitis is a chronic, multifactorial, inflammatory disease characterized by the progressive destruction of the periodontal tissues. Guided tissue regeneration (GTR), involving the use of barrier membranes, is one of the most successful clinical procedures for periodontal therapy. Nevertheless, rapid degradation of the membranes and membrane-related infections are considered two of the major reasons for GTR clinical failure. Recently, integration of non-antibiotic, antimicrobial materials to the membranes has emerged as a novel strategy to face the bacterial infection challenge, without increasing bacterial resistance. In this sense, bismuth subsalicylate (BSS) is a non-antibiotic, metal-based antimicrobial agent effective against different bacterial strains, that has been long safely used in medical treatments. Thus, the aim of the present work was to fabricate fibrillar, non-rapidly bioresorbable, antibacterial GTR membranes composed of polycaprolactone (PCL), gelatin (Gel), and BSS as the antibacterial agent. PCL-G-BSS membranes with three different BSS concentrations (2 wt./v%, 4 wt./v%, and 6 wt./v%) were developed by electrospinning and their morphology, composition, water wettability, mechanical properties, Bi release and degradation rate were characterized. The Cytotoxicity of the membranes was studiedin vitrousing human osteoblasts (hFOB) and gingival fibroblasts (HGF-1), and their antibacterial activity was tested againstAggregatibacter actinomycetemcomitans, Escherichia coli, Porphyromonas gingivalisandStaphylococcus aureus.The membranes obtained exhibited adequate mechanical properties for clinical application, and appropriate degradation rates for allowing periodontal defects regeneration. The hFOB and HGF-1 cells displayed adequate viability when in contact with the lixiviated products from the membranes, and, in general, displayed antibacterial activity against the four bacteria strains tested. Thus, the PCL-G-BSS membranes showed to be appropriate as potential barrier membranes for periodontal GTR treatments.
Collapse
Affiliation(s)
- Ximena Vidal-Gutiérrez
- Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Ciencias Odontológicas, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Gina Prado-Prone
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Ibarra Clemente
- Dirección General, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México
| |
Collapse
|
67
|
Liu Z, Liu J, Liu N, Zhu X, Tang R. Tailoring electrospun mesh for a compliant remodeling in the repair of full-thickness abdominal wall defect - The role of decellularized human amniotic membrane and silk fibroin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112235. [PMID: 34225876 DOI: 10.1016/j.msec.2021.112235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Tailored electrospun meshes have been increasingly explored for abdominal wall defect repair in preclinical and clinical studies. However, the fabrication of a bioengineered mesh adapts to the intraperitoneal repair for a compliant remodeling remains a great challenge. In this study, we fabricated a functional mesh by combining polycaprolactone (PCL) with silk fibroin (SF) and decellularized human amniotic membrane (HAM) proportionally via electrospinning. SF was integrated with PCL (40:60 w/w) to regulate the structural flexibility. Micronized HAM was incorporated to PCL/SF (10:90 w/w) to provide a biocompatible milieu with functions being conferred to facilitate intraperitoneal repair. After the blend electrospinning, the PCL/SF/HAM mesh was characterized in vitro and implanted into the rat model with a full-thickness defect for a comprehensive evaluation in comparison to the PCL and PCL/SF meshes. The results demonstrated that electrospinning fabricated PCL stabilized the mechanical elongation toward approximating the native counterparts after integrating with SF. After integrating with HAM, which is coupled with diverse biomolecular compositions, the developed PCL/SF/HAM mesh provided a better microenvironment for cell proliferation and vasculogenic network over other meshes without HAM addition and possessed the functions capable of inhibiting transforming growth factor β1 (TGF-β1) expression and collagen secretion under inflammatory conditions. Moreover, the functional mesh developed less-intensive adhesion along with histologically weaker inflammatory response and foreign body reaction than the PCL and PCL/SF meshes after 90 days in vivo. During the remodeling process, the bioactive structure induced more pronounced neovascularization and remarkable incorporation of collagen and elastin fibers and contractile filaments for a mechanically sufficient and physiologically stiffness-matched healing. This tailor-made mesh expands the intraperitoneal applicability of conventional electrospun meshes for a compliant remodeling in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nan Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China.
| |
Collapse
|
68
|
Abstract
Abstract
Polycaprolactone (PCL) is a biodegradable polyester that has advantages over other biopolymers, making it an extensively researched polymer. PCL is a hydrophobic, slow-degrading, synthetic polymer making it particularly interesting for the preparation of long-term implantable devices and a variety of drug delivery systems. Recently, PCL has been used for additional applications including food packaging and tissue engineering. In this chapter, the processing methods and characterization of PCL will be discussed. The chapter will summarize the synthesis of poly(α-hydroxy acid) and the ring-opening polymerization of PCL. Discussion on the biodegradability of PCL will be reviewed. The biomedical applications of PCL, such as, drug-delivery systems, medical devices, and tissue engineering will be also summarized. Finally, the chapter will conclude with a characterization section outlining recent studies focusing on PCL based composites and films.
Collapse
|
69
|
Tissue Engineering 3D Porous Scaffolds Prepared from Electrospun Recombinant Human Collagen (RHC) Polypeptides/Chitosan Nanofibers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrospinning, the only method that can continuously produce nanofibers, has been widely used to prepare nanofibers for tissue engineering applications. However, electrospinning is not suitable for preparing clinically relevant three-dimensional (3D) nanofibrous scaffolds with hierarchical pore structures. In this study, recombinant human collagen (RHC)/chitosan nanofibers prepared by electrospinning were combined with porous scaffolds produced by freeze drying to fabricate 3D nanofibrous scaffolds. These scaffolds exhibited high porosity (over 80%) and an interconnected porous structure (ranging from sub-micrometers to 200 μm) covered with nanofibers. As confirmed by the characterization results, these scaffolds showed good swelling ability, stability, and adequate mechanical strength, making it possible to use the 3D nanofibrous scaffolds in various tissue engineering applications. In addition, after seven days of cell culturing, NIH 3T3 was infiltrated into the scaffolds while maintaining its morphology and with superior proliferation and viability. These results indicated that the 3D nanofibrous scaffolds hold great promise for tissue engineering applications.
Collapse
|
70
|
Opálková Šišková A, Bučková M, Kroneková Z, Kleinová A, Nagy Š, Rydz J, Opálek A, Sláviková M, Eckstein Andicsová A. The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application. NANOMATERIALS 2021; 11:nano11040922. [PMID: 33916638 PMCID: PMC8066245 DOI: 10.3390/nano11040922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats made by electrospinning and determines the effect of medicament on the fiber morphology, chemical, mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous mats were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis, and contact angle measurements. Electron paramagnetic resonance measurements confirmed the lifetime of DSS before and after application of high voltage during the electrospinning process. In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation. Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa, was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus (Gram-positive) have been exterminated.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 51 Bratislava, Slovakia;
| | - Zuzana Kroneková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Angela Kleinová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| |
Collapse
|
71
|
Czarnecka K, Wojasiński M, Ciach T, Sajkiewicz P. Solution Blow Spinning of Polycaprolactone-Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1463. [PMID: 33802725 PMCID: PMC8002481 DOI: 10.3390/ma14061463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
The growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds. Rheological methods are completed with extensive image analysis to determine the spinnability window for a polymer-solvent system and qualitatively establish the influence of polymer solution concentration and collector rotational speed on fiber morphology, diameter, and alignment. Process parameter selection for a tissue engineering scaffold target application is discussed, considering the varying structural properties of the native extracellular matrix of the tissue of interest.
Collapse
Affiliation(s)
- Katarzyna Czarnecka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warsaw, Poland;
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Warsaw University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warsaw, Poland;
| |
Collapse
|
72
|
Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers (Basel) 2021; 13:polym13040662. [PMID: 33672211 PMCID: PMC7926916 DOI: 10.3390/polym13040662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this work is to investigate the effect of the applied voltage on the morphological and mechanical properties of electrospun polycaprolactone (PCL) scaffolds for potential use in tissue engineering. The morphology of the scaffolds was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and the BET techniques for measuring the surface area and pore volume. Stress-strain curves from tensile tests were obtained for estimating the mechanical properties. Additional studies for detecting changes in the chemical structure of the electrospun PCL scaffolds by Fourier transform infrared were performed, while contact angle and X-ray diffraction analysis were realized for determining the wettability and crystallinity, respectively. The SEM, AFM and BET results demonstrate that the electrospun PCL fibers exhibit morphological changes with the applied voltage. By increasing the applied voltage (10 to 25 kV) a significate influence was observed on the fiber diameter, surface roughness, and pore volume. In addition, tensile strength, elongation, and elastic modulus increase with the applied voltage, the crystalline structure of the fibers remains constant, and the surface area and wetting of the scaffolds diminish. The morphological and mechanical properties show a clear correlation with the applied voltage and can be of great relevance for tissue engineering.
Collapse
|
73
|
Saleh M, Demir D, Ozay Y, Yalvac M, Bolgen N, Dizge N. Fabrication of basalt embedded composite fiber membrane using electrospinning method and response surface methodology. J Appl Polym Sci 2021. [DOI: 10.1002/app.50599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohammed Saleh
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Didem Demir
- Department of Chemical Engineering Mersin University Mersin Turkey
| | - Yasin Ozay
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Mutlu Yalvac
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Nimet Bolgen
- Department of Chemical Engineering Mersin University Mersin Turkey
| | - Nadir Dizge
- Department of Environmental Engineering Mersin University Mersin Turkey
| |
Collapse
|
74
|
Voniatis C, Barczikai D, Gyulai G, Jedlovszky-Hajdu A. Fabrication and characterisation of electrospun Polycaprolactone/Polysuccinimide composite meshes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
75
|
Smart Fibrous Structures Produced by Electrospinning Using the Combined Effect of PCL/Graphene Nanoplatelets. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the years, the development of adaptable monitoring systems to be integrated into soldiers’ body gear, making them as comfortable and lightweight as possible (avoiding the use of rigid electronics), has become essential. Electrospun microfibers are a great material for this application due to their excellent properties, especially their flexibility and lightness. Their functionalization with graphene nanoplatelets (GNPs) makes them a fantastic alternative for the development of innovative conductive materials. In this work, electrospun membranes based on polycaprolactone (PCL) were impregnated with different GNPs concentrations in order to create an electrically conductive surface with piezoresistive behavior. All the samples were properly characterized, demonstrating the homogeneous distribution and the GNPs’ adsorption onto the membrane’s surfaces. Additionally, the electrical performance of the developed systems was studied, including the electrical conductivity, piezoresistive behavior, and Gauge Factor (GF). A maximum electrical conductivity value of 0.079 S/m was obtained for the 2%GNPs-PCL sample. The developed piezoresistive sensor showed high sensitivity to external pressures and excellent durability to repetitive pressing. The best value of GF (3.20) was obtained for the membranes with 0.5% of GNPs. Hence, this work presents the development of a flexible piezoresistive sensor, based on electrospun PCL microfibers and GNPs, utilizing simple methods.
Collapse
|
76
|
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111738. [PMID: 33545881 DOI: 10.1016/j.msec.2020.111738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Biomolecule carrier structures have attracted substantial interest owing to their potential utilizations in the field of bone tissue engineering. In this study, MOF-embedded electrospun fiber scaffold for the controlled release of BMP-6 was developed for the first time, to enrich bone regeneration efficacy. The scaffolds were achieved by first, one-pot rapid crystallization of BMP-6 encapsulated ZIF-8 nanocrystals-as a novel carrier for growth factor molecules- and then electrospinning of the blending solution composed of poly (ε-caprolactone) and BMP-6 encapsulated ZIF-8 nanocrystals. BMP-6 molecule encapsulation efficiency for ZIF-8 nanocrystals was calculated as 98%. The in-vitro studies showed that, the bioactivity of BMP-6 was preserved and the release lasted up to 30 days. The release kinetics fitted the Korsmeyer-Peppas model exhibiting a pseudo-Fickian behavior. The in-vitro osteogenesis studies revealed the superior effect of sustained release of BMP-6 towards osteogenic differentiation of MC3T3-E1 pre-osteoblasts. In-vivo studies also revealed that the sustained slow release of BMP-6 was responsible for the generation of well-mineralized, new bone formation in a rat cranial defect. Our results proved that; MOF-carriers embedded in electrospun scaffolds can be used as an effective platform for bone regeneration in bone tissue engineering applications. The proposed approach can easily be adapted for various growth factor molecules for different tissue engineering applications.
Collapse
Affiliation(s)
- Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Yanad Abou Monsef
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06110 Ankara, Turkey
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
77
|
Mikeš P, Brož A, Sinica A, Asatiani N, Bačáková L. In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomed Mater 2020; 15:065023. [PMID: 32434166 DOI: 10.1088/1748-605x/ab950f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have prepared a candidate biocompatible construct for skin wound healing based on electrospun polycaprolactone (PCL) nanofibrous membranes. The membrane material was loaded either with L-arginine or with alaptide, or with a mixture of both bioactive components. Alaptide is a spirocyclic synthetic dipeptide, an analogue of melanocyte-stimulating hormone release-inhibiting factor. L-arginine is an amino acid with a basic guanidine side chain. It is a direct precursor of nitric oxide, which plays a pivotal role in skin repair. The presence and the distribution of the additives were proved with high-performance liquid chromatography, Fourier-transform infrared spectroscopy and Raman spectroscopy. The influence of L-arginine and alaptide on the morphology of the membrane was characterized using scanning electron microscopy. No statistically significant correlation between fiber diameter and drug concentration was observed. The membranes were then tested in vitro for their cytotoxicity, using primary human dermal fibroblasts, in order to obtain the optimal concentrations of the additives for in vivo tests in a rat model. The membranes with the highest concentration of L-arginine (10 wt. %) proved to be cytotoxic. The membranes with alaptide in concentrations from 0.1 to 2.5 wt.%, and with the other L-arginine concentrations (1 and 5 wt.%), did not show high toxicity. In addition, there was no observed improvement in cell proliferation on the membranes. The in vivo experiments revealed that membranes with 1.5 wt.% of alaptide or with 1.5 wt.% of alaptide in combination with 5 wt.% of L-arginine markedly accelerated the healing of skin incisions, and particularly the healing of skin burns, i.e. wounds of relatively large extent. These results indicate that our newly-developed nanofibrous membranes are promising for treating wounds with large damaged areas, where a supporting material is needed.
Collapse
Affiliation(s)
- Petr Mikeš
- Department of Chemistry, Technical University of Liberec, Liberec, Czech Republic
| | - Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Author to whom any correspondence should be addressed
| | - Alla Sinica
- University of Chemistry and Technology, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nikifor Asatiani
- Department of Chemistry, Technical University of Liberec, Liberec, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
78
|
Rezk AI, Kim KS, Kim CS. Poly(ε-Caprolactone)/Poly(Glycerol Sebacate) Composite Nanofibers Incorporating Hydroxyapatite Nanoparticles and Simvastatin for Bone Tissue Regeneration and Drug Delivery Applications. Polymers (Basel) 2020; 12:polym12112667. [PMID: 33198091 PMCID: PMC7697945 DOI: 10.3390/polym12112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Herein, we report a drug eluting scaffold composed of a composite nanofibers of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) loaded with Hydroxyapatite nanoparticles (HANPs) and simvastatin (SIM) mimicking the bone extracellular matrix (ECM) to improve bone cell proliferation and regeneration process. Indeed, the addition of PGS results in a slight increase in the average fiber diameter compared to PCL. However, the presence of HANPs in the composite nanofibers induced a greater fiber diameter distribution, without significantly changing the average fiber diameter. The in vitro drug release result revealed that the sustained release of SIM from the composite nanofiber obeying the Korsemeyer–Peppas and Kpocha models revealing a non-Fickian diffusion mechanism and the release mechanism follows diffusion rather than polymer erosion. Biomineralization assessment of the nanofibers was carried out in simulated body fluid (SBF). SEM and EDS analysis confirmed nucleation of the hydroxyapatite layer on the surface of the composite nanofibers mimicking the natural apatite layer. Moreover, in vitro studies revealed that the PCL-PGS-HA displayed better cell proliferation and adhesion compared to the control sample, hence improving the regeneration process. This suggests that the fabricated PCL-PGS-HA could be a promising future scaffold for control drug delivery and bone tissue regeneration application.
Collapse
Affiliation(s)
- Abdelrahman I. Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Korea;
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Korea
| | - Kyung-Suk Kim
- Department of Molecular Biology, College of Natural Sciences, Jeonbuk National University, Jeonju 561-756, Korea
- Correspondence: (K.-S.K.); (C.S.K.); Tel.: +82-63-270-4284 (C.S.K.); Fax: +82-63-270-2460 (C.S.K.)
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Korea
- Correspondence: (K.-S.K.); (C.S.K.); Tel.: +82-63-270-4284 (C.S.K.); Fax: +82-63-270-2460 (C.S.K.)
| |
Collapse
|
79
|
Chen B, Wang Y, Tuo X, Gong Y, Guo J. Tensile properties and corrosion resistance of
PCL
‐based
3D
printed composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.50253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bicheng Chen
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yiyang Wang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| |
Collapse
|
80
|
Kirsh I, Frolova Y, Beznaeva O, Bannikova O, Gubanova M, Tveritnikova I, Romanova V, Filinskaya Y. Influence of the Ultrasonic Treatment on the Properties of Polybutylene Adipate Terephthalate, Modified by Antimicrobial Additive. Polymers (Basel) 2020; 12:E2412. [PMID: 33086696 PMCID: PMC7589592 DOI: 10.3390/polym12102412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022] Open
Abstract
Particular attention is paid to biodegradable materials from the environmental point of view and antimicrobial materials that ensure the microbiological safety of packaged products. The aim of the work was to study the properties of the composition, based on biodegradable polybutylene adipate terephthalate (PBAT) and the antimicrobial additive-birch bark extract (BBE). Test samples of materials were obtained on the laboratory extruder by extrusion with ultrasonic treatment of the melt. The concentration of the antimicrobial additive in the polymer matrix was 1 wt %. A complex research was carried out to study the structural, physico-mechanical characteristics, antimicrobial properties and biodegradability of the modified PBAT. Comparative assessment of the physico-mechanical characteristics of samples based on PBAT showed that the strength and elongation at break indices slightly decrease when the ultrasonic treatment of the melt is introduced. It was found out, that the antimicrobial additive in the composition of the polymer matrix at the concentration of 1 wt % has a static effect on the development of microorganisms on the surface of the studied modified films. Studies of the biodegradability of modified PBAT by composting for 4 months have shown that the decomposition period of modified materials increased, compared to pure PBAT. The developed modified polymer material can be recommended as an alternative replacement for materials based on polyethylene for food packaging.
Collapse
Affiliation(s)
- Irina Kirsh
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Yuliya Frolova
- Laboratory of Food Biotechnology and Specialized Products, Federal Research Center of Nutrition and Biotechnology, 109240 Moscow, Russia;
| | - Olga Beznaeva
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Olga Bannikova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Marina Gubanova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Isabella Tveritnikova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Valentina Romanova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Yulia Filinskaya
- Department of Automated Control Systems, Moscow State University of Technologies and Management K.G. Razumovsky, 109004 Moscow, Russia;
| |
Collapse
|
81
|
Elnaggar MA, El-Fawal HAN, Allam NK. Biocompatible PCL-nanofibers scaffold with immobilized fibronectin and laminin for neuronal tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111550. [PMID: 33321614 DOI: 10.1016/j.msec.2020.111550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Recent advances in regenerative medicine have given hope in overcoming and rehabilitating complex medical conditions. In this regard, the biopolymer poly-ε-caprolactone (PCL) may be a promising candidate for tissue regeneration, despite lacking the essential bioactivity. The present study used PCL nanofibers (NFs) scaffold decorated with the extracellular matrix proteins fibronectin and laminin combined for neuronal regeneration. The potential for the dual proteins to support neuronal cells and promote axonal growth was investigated. Two NFs scaffolds were produced with PLC concentrations of 12% or 15%. Under scanning electron microscopy, both scaffolds evidenced uniform diameter distribution in the range of 358 nm and 887 nm, respectively, with >80% porosity. The Brunauer-Emmett-Teller (BET) test confirmed that the fabricated NFs mats had a high surface area, especially for the 12% NFs with 652 m2/g compared to 254 m2/g for the 15% NFs. The proteins of interest were successfully conjugated to the 12% PCL scaffold through chemical carbodiimide reaction as confirmed by Fourier-transform infrared spectroscopy. The addition of fibronectin and laminin together was shown to be the most favorable for cellular attachment and elongation of neuroblastoma SH-SY5Y cells compared to other formulations. Light microscopy revealed longer neurite outgrowth, higher cellular projected area, and lower shape index for the cells cultured on the combined proteins conjugated fibers, indicating enhanced cellular spread on the scaffold. This preliminary study suggests that PCL nanoscaffolding conjugated with matrix proteins can support neuronal cell viability and neurite growth.
Collapse
Affiliation(s)
- Manar A Elnaggar
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hassan A N El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
82
|
Design and development of a reinforced tubular electrospun construct for the repair of ruptures of deep flexor tendons. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111504. [PMID: 33321603 DOI: 10.1016/j.msec.2020.111504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
This research aims at developing a more potent solution for deep flexor tendon repair by combining a mechanical and biological approach. A reinforced, multi-layered electrospun tubular construct is developed, composed of three layers: an inner electrospun layer containing an anti-inflammatory component (Naproxen), a middle layer of braided monofilament as reinforcement and an outer electrospun layer containing an anti-adhesion component (hyaluronic acid, HA). In a first step, a novel acrylate endcapped urethane-based precursor (AUP) is developed and characterized by measuring molar mass, acrylate content and thermo-stability. The AUP material is benchmarked against commercially available poly(ε-caprolactone) (PCL). Next, the materials are processed into multi-layered, tubular constructs with bio-active components (Naproxen and HA) using electrospinning. In vitro assays using human fibroblasts show that incorporation of the bio-active components is successful and not-cytotoxic. Moreover, tensile testing using ex vivo sheep tendons prove that the developed multi-layered constructs fulfill the required strength for tendon repair (i.e. 2.79-3.98 MPa), with an ultimate strength of 8.56 ± 1.92 MPa and 8.36 ± 0.57 MPa for PCL and AUP/PCL constructs respectively. In conclusion, by combining a mechanical approach (improved mechanical properties) with the incorporation of bio-active compounds (biological approach), this solution shows its potential for application in deep flexor tendon repair.
Collapse
|
83
|
Politi S, Carotenuto F, Rinaldi A, Di Nardo P, Manzari V, Albertini MC, Araneo R, Ramakrishna S, Teodori L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1781. [PMID: 32916791 PMCID: PMC7558997 DOI: 10.3390/nano10091781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.
Collapse
Affiliation(s)
- Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Rinaldi
- Department of Sustainability (SSPT), ENEA, 00123 Rome, Italy;
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, Moscow 119991, Russia
| | - Vittorio Manzari
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | | | - Rodolfo Araneo
- Department of Astronautics Electrical and Energy Engineering (DIAEE), University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
84
|
Zaarour B, Zhu L, Jin X. Direct fabrication of electrospun branched nanofibers with tiny diameters for oil absorption. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1798779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bilal Zaarour
- Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus, Syria
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Songjiang, Shanghai, China
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Songjiang, Shanghai, China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Songjiang, Shanghai, China
| |
Collapse
|
85
|
Comparative Study on Protein-Rich Electrospun Fibers for in Vitro Applications. Polymers (Basel) 2020; 12:polym12081671. [PMID: 32727080 PMCID: PMC7463886 DOI: 10.3390/polym12081671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Electrospinning is the leading technology to fabricate fibrous scaffolds that mimic the architecture of the extracellular matrix of natural tissues. In order to improve the biological response, a consolidated trend involves the blending of synthetic polymers with natural proteins to form protein-rich fibers that include selected biochemical cues able to more actively support in vitro cell interaction. In this study, we compared protein-rich fibers fabricated via electrospinning by the blending of poly ε-caprolactone (PCL) with three different proteins, i.e., gelatin, zein, and keratin, respectively. We demonstrated that the peculiar features of the proteins used significantly influence the morphological properties, in terms of fiber size and distribution. Moreover, keratin drastically enhances the fiber hydrophilicity (water contact angle equal to 44.3° ± 3.9°) with positive effects on cell interaction, as confirmed by the higher proliferation of human mesenchymal stem cells (hMSC) until 7 days. By contrast, gelatin and zein not equally contribute to the fiber wettability (water contact angles equal to 95.2° ± 1.2° and 76.3° ± 4.0°, respectively) due to morphological constraints, i.e., broader fiber diameter distribution ascribable to the non-homogeneous presence of the protein along the fibers, or chemical constrains, i.e., large amount of non-polar amino acids. According to in vitro experimental studies, which included SEM and confocal microscopy analyses and vitality assay, we concluded that keratin is the most promising protein to be combined with PCL for the fabrication of biologically instructive fibers for in vitro applications.
Collapse
|
86
|
Dodero A, Alloisio M, Castellano M, Vicini S. Multilayer Alginate-Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31162-31171. [PMID: 32573197 PMCID: PMC8008386 DOI: 10.1021/acsami.0c07352] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A multilayer nanofibrous membrane consisting of a layer of polycaprolactone and one of physically cross-linked alginate-embedding ZnO nanoparticles is prepared via electrospinning technique as potential wound healing patches with drug delivery capabilities. A washing-cross-linking protocol is developed to obtain stable materials at the same time removing poly(ethylene oxide), which was used here as a cospinning agent for alginate, without interfering with the membrane's peculiar nanofibrous structure. The mechanical behavior of the samples is assessed via a uniaxial tensile test showing appropriate resistance and manageability together with a good thermal stability as proved via thermogravimetric analysis. The polycaprolactone external layer enriches the samples with good liquid-repellent properties, whereas the alginate layer is able to promote tissue regeneration owing to its capability to promote cell viability and allow exudate removal and gas exchanges. Moreover, using methylene blue and methyl orange as model molecules, promising drug delivery abilities are observed for the mats. Indeed, depending on the nature and on the dye-loading concentration, the release kinetic can be easily tuned to obtain a slow controlled or a fast burst release. Consequently, the proposed alginate-polycaprolactone membrane represents a promising class of innovative, simple, and cost-effective wound healing patches appropriate for large-scale production.
Collapse
|
87
|
Zaarour B, Zhu L, Jin X. Direct generation of electrospun branched nanofibers for energy harvesting. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education College of Textiles, Donghua University, Songjiang Shanghai China
- Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical Engineering Damascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education College of Textiles, Donghua University, Songjiang Shanghai China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education College of Textiles, Donghua University, Songjiang Shanghai China
| |
Collapse
|
88
|
Ghaffarinovin Z, Soltaninia O, Mortazavi Y, Esmaeilzadeh A, Nadri S. Repair of rat cranial bone defect by using amniotic fluid-derived mesenchymal stem cells in polycaprolactone fibrous scaffolds and platelet-rich plasma. ACTA ACUST UNITED AC 2020; 11:209-217. [PMID: 34336609 PMCID: PMC8314035 DOI: 10.34172/bi.2021.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/20/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Introduction: Tissue regenerative medicine strategies, as a promising alternative has become of major interest to the reconstruction of critical size bone defects. This study evaluated the effects of the simultaneous application of polycaprolactone (PCL), amniotic fluid mesenchymal stem cells (AF-MSCs) and platelet-rich plasma (PRP) on the repair of rat cranial bone defects. Methods: The AF-MSCs were isolated at the end of the second week of pregnancy in rats. PRP obtained from rat blood and the random PCL fibrous scaffolds were prepared using the electrospinning method. Circular full thickness (5 mm) bone defects were developed on both sides of the parietal bones (animal number=24) and the scaffolds containing AF-MSCs and PRP were implanted in the right lesions. Thereafter, after eight weeks the histological and immunohistochemistry studies were performed to evaluate the bone formation and collagen type I expression. Results: The spindle-shaped mesenchymal stem cells were isolated and the electron microscope images indicated the preparation of a random PCL scaffold. Immunohistochemical findings showed that collagen type I was expressed by AF-MSCs cultured on the scaffold. The results of hematoxylin and eosin (H&E) staining indicated the formation of blood vessels in the presence of PRP. Additionally, immunofluorescence findings suggested that PRP had a positive effect on collagen type I expression. Conclusion: The simultaneous application of fibrous scaffold + AF-MSCs + PRP has positive effects on bone regeneration. This study showed that PRP can affect the formation of new blood vessels in the scaffold transplanted in the bone defect.
Collapse
Affiliation(s)
- Zeinab Ghaffarinovin
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Soltaninia
- Department of Oral & Maxillofacial Surgery, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
89
|
Golchin A, Nourani MR. Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on
full‐thickness
wound healing. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine Urmia University of Medical Sciences Urmia Iran
- Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mohammad Reza Nourani
- Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
90
|
Oh YS, Choi MH, Shin JI, Maza PAMA, Kwak JY. Co-Culturing of Endothelial and Cancer Cells in a Nanofibrous Scaffold-Based Two-Layer System. Int J Mol Sci 2020; 21:ijms21114128. [PMID: 32531897 PMCID: PMC7312426 DOI: 10.3390/ijms21114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is critical for local tumor growth. This study aimed to develop a three-dimensional two-layer co-culture system to investigate effects of cancer cells on the growth of endothelial cells (ECs). Poly(ε-caprolactone) (PCL) nanofibrous membranes were generated via electrospinning of PCL in chloroform (C-PCL-M) and chloroform and dimethylformamide (C/DMF-PCL-M). We assembled a two-layer co-culture system using C-PCL-M and C/DMF-PCL-M for EC growth in the upper layer with co-cultured cancer cells in the lower layer. In the absence of vascular endothelial growth factor (VEGF), growth of bEND.3 ECs decreased on C/DMF-PCL-M but not on C-PCL-M with time. Growth of bEND.3 cells on C/DMF-PCL-M was enhanced through co-culturing of CT26 cancer cells and enhanced growth of bEND.3 cells was abrogated with anti-VEGF antibodies and sorafenib. However, EA.hy926 ECs displayed steady growth and proliferation on C/DMF-PCL-M, and their growth was not further increased through co-culturing of cancer cells. Moreover, chemical hypoxia in CT26 cancer cells upon treatment with CoCl2 enhanced the growth of co-cultured bEND.3 cells in the two-layer system. Thus, EC growth on the nanofibrous scaffold is dependent on the types of ECs and composition of nanofibers and this co-culture system can be used to analyze EC growth induced by cancer cells.
Collapse
Affiliation(s)
- Ye-Seul Oh
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Min-Ho Choi
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
| | - Jung-In Shin
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Perry Ayn Mayson A. Maza
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5064
| |
Collapse
|
91
|
Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. NANOMATERIALS 2020; 10:nano10050978. [PMID: 32438673 PMCID: PMC7279550 DOI: 10.3390/nano10050978] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/28/2023]
Abstract
Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.
Collapse
|
92
|
Tympanic Membrane Collagen Expression by Dynamically Cultured Human Mesenchymal Stromal Cell/Star-Branched Poly(ε-Caprolactone) Nonwoven Constructs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tympanic membrane (TM) primes the sound transmission mechanism due to special fibrous layers mainly of collagens II, III, and IV as a product of TM fibroblasts, while type I is less represented. In this study, human mesenchymal stromal cells (hMSCs) were cultured on star-branched poly(ε-caprolactone) (*PCL)-based nonwovens using a TM bioreactor and proper differentiating factors to induce the expression of the TM collagen types. The cell cultures were carried out for one week under static and dynamic conditions. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were used to assess collagen expression. A Finite Element Model was applied to calculate the stress distribution on the scaffolds under dynamic culture. Nanohydroxyapatite (HA) was used as a filler to change density and tensile strength of *PCL scaffolds. In dynamically cultured *PCL constructs, fibroblast surface marker was overexpressed, and collagen type II was revealed via IHC. Collagen types I, III and IV were also detected. Von Mises stress maps showed that during the bioreactor motion, the maximum stress in *PCL was double that in HA/*PCL scaffolds. By using a *PCL nonwoven scaffold, with suitable physico-mechanical properties, an oscillatory culture, and proper differentiative factors, hMSCs were committed into fibroblast lineage-producing TM-like collagens.
Collapse
|
93
|
Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers (Basel) 2020; 12:E620. [PMID: 32182751 PMCID: PMC7182904 DOI: 10.3390/polym12030620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of "one-matches-all" referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
94
|
Zaarour B, Zhu L, Huang C, Jin X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
- Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical EngineeringDamascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University Shanghai China
| |
Collapse
|
95
|
Lee SJ, Choi JS, Eom MR, Jo HH, Kwon IK, Kwon SK, Park SA. Dexamethasone loaded bilayered 3D tubular scaffold reduces restenosis at the anastomotic site of tracheal replacement: in vitro and in vivo assessments. NANOSCALE 2020; 12:4846-4858. [PMID: 32016227 DOI: 10.1039/c9nr10341d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite recent developments in the tracheal tissue engineering field, the creation of a patient specific substitute possessing both appropriate mechanical and biointerfacial properties remains challenging. Most tracheal replacement therapies fail due to restenosis at the anastomosis site. In this study, we designed a robust, biodegradable, 3D tubular scaffold by combining electrospinning (ELSP) and 3D (three-dimensional) printing techniques for use in transplantation therapy. After that, we loaded dexamethasone (DEX) onto the 3D tubular scaffold using mild surface modification reactions by using polydopamine (PDA), polyethyleneimine (PEI), and carboxymethyl-β-cyclodextrin (βCD). As a result, the fabricated 3D tubular scaffold had robust mechanical properties and the chemical modifications were confirmed to have proceeded successfully by physico-chemical analysis. The surface treatments allowed for a larger amount of DEX to be loaded onto the βCD modified scaffold as compared to the bare group. In vitro and in vivo studies demonstrated that the DEX loaded 3D tubular scaffold exhibited significantly enhanced anti-inflammation activity, enhanced tracheal mucosal regeneration, and formation of a patent airway. From our results, we believe that our system may represent an innovative paradigm in tracheal tissue engineering by providing proper mechanical properties and successful formation of tracheal tissue as a means of remodeling and healing tracheal defects for use in transplantation therapy.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea. and Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Suk Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Min Rye Eom
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Ha Hyeon Jo
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. and Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| |
Collapse
|
96
|
Serban A, Evanghelidis A, Onea M, Diculescu V, Enculescu I, Barsan MM. Electrospun conductive gold covered polycaprolactone fibers as electrochemical sensors for O2 monitoring in cell culture media. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
97
|
Kostopoulos V, Kotrotsos A, Fouriki K, Kalarakis A, Portan D. Fabrication and Characterization of Polyetherimide Electrospun Scaffolds Modified with Graphene Nano-Platelets and Hydroxyapatite Nano-Particles. Int J Mol Sci 2020; 21:E583. [PMID: 31963248 PMCID: PMC7014066 DOI: 10.3390/ijms21020583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Solution electrospinning process (SEP) is a versatile technique for generating non-woven fibrous materials intended to a wide range of applications. One of them is the production of fibrous and porous scaffolds aiming to mimic bone tissue, as artificial extracellular matrices (ECM). In the present work, pure and nano-modified electrospun polyetherimide (PEI) scaffolds have been successfully fabricated. The nano-modified ones include (a) graphene nano-platelets (GNPs), (b) hydroxyapatite (HAP), and (c) mixture of both. After fabrication, the morphological characteristics of these scaffolds were revealed by using scanning electron (SEM) and transmission electron (TEM) microscopies, while porosity and mean fiber diameter were also calculated. In parallel, contact angle experiments were conducted so that the hydrophilicity level of these materials to be determined. Finally, the mechanical performance of the fabricated scaffolds was investigated by conducting uniaxial tensile tests. Ιn future work, the fabricated scaffolds will be further utilized for investigation as potential candidate materials for cell culture with perspective in orthopedic applications.
Collapse
Affiliation(s)
- Vassilis Kostopoulos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
- Foundation of Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., GR-26504 Patras, Greece;
| | - Athanasios Kotrotsos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| | - Kalliopi Fouriki
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| | - Alexandros Kalarakis
- Foundation of Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., GR-26504 Patras, Greece;
- Department of Mechanical Engineering, School of Engineering, University of Peloponnese, M. Alexandrou 1, Koukouli, GR-26334 Patras, Greece
| | - Diana Portan
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras University Campus, GR-26504 Patras, Greece; (A.K.); (K.F.); (D.P.)
| |
Collapse
|
98
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
99
|
Impact of UV sterilization and short term storage on the in vitro release kinetics and bioactivity of biomolecules from electrospun scaffolds. Sci Rep 2019; 9:15117. [PMID: 31641201 PMCID: PMC6805903 DOI: 10.1038/s41598-019-51513-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
To effectively translate bioactive scaffolds into a preclinical setting, proper sterilization techniques and storage conditions need to be carefully considered, as the chosen sterilization technique and storage condition might affect the structural and mechanical properties of the scaffolds, as well as the bioactivity and release kinetics of the incorporated biomolecules. Since rarely tested or quantified, we show here in a proof-of-concept study how these parameters are affected by UV sterilization and one week storage at different temperatures using bioactive electrospun DegraPol scaffolds that were specifically designed for application in the field of tendon rupture repair. Even though UV sterilization and the different storage conditions did not impact the morphology or the physicochemical properties of the bioactive scaffolds, UV sterilization caused significant attenuation of the growth factor release kinetics, here platelet derived growth factor (PDGF-BB) release (by approx. 85%) and slight decrease in ascorbic acid release (by approx. 20%). In contrast, 4 °C and −20 °C storage did not have a major effect on the release kinetics of PDGF-BB, while storage at room temperature caused increase in PDGF-BB released. All storage conditions had little effect on ascorbic acid release. Equally important, neither UV sterilization nor storage affected the bioactivity of the released PDGF-BB, suggesting stability of the bioactive scaffolds for at least one week and showing potential for bioactive DegraPol scaffolds to be translated into an off-the-shelf available product. These parameters are expected to be scaffold and protein-dependent.
Collapse
|