51
|
Kim ST, Muñoz-Grajales C, Dunn SE, Schneider R, Johnson SR, Touma Z, Ahmad Z, Bonilla D, Atenafu EG, Hiraki LT, Bookman A, Wither J. Interferon and interferon-induced cytokines as markers of impending clinical progression in ANA + individuals without a systemic autoimmune rheumatic disease diagnosis. Arthritis Res Ther 2023; 25:21. [PMID: 36765391 PMCID: PMC9912609 DOI: 10.1186/s13075-023-02997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Elevated levels of interferons (IFNs) are a characteristic feature of systemic autoimmune rheumatic diseases (SARDs) and may be useful in predicting impending symptomatic progression in anti-nuclear antibody-positive (ANA+) individuals lacking a SARD diagnosis. Typically, these are measured by their effect on gene expression in the blood, which has limited their utility in clinical settings. Here, we assessed whether the measurement of serum IFN-α or selected IFN-induced cytokines accurately mirrors IFN-induced gene expression in ANA+ individuals and investigated their utility as biomarkers of clinical progression. METHODS A total of 280 subjects were studied, including 50 ANA- healthy controls, 160 ANA+ individuals without a SARD diagnosis (96 asymptomatic, 64 with undifferentiated connective tissue disease), and 70 SARD patients. IFN-induced gene expression was measured by nanoString and cytokine levels by ELISA or Simoa. ANA+ individuals lacking a SARD diagnosis who had the new onset of SARD criteria over the subsequent 2 years were defined as progressors. RESULTS Measurement of IFN-α levels by high-sensitivity ELISA or Simoa correlated much better with IFN-induced gene expression than measurement of CXCL-10 or Galectin-9 levels. Despite this, high CXCL-10 and Galectin-9 levels were better predictors of subsequent progression in ANA+ individuals than measures of IFN-α or IFN-induced gene expression with the optimal combination of predictive cytokines (CXCL-10 and IFN-α as measured by ELISA), resulting in a specificity and positive predictive value of 100%. CONCLUSION Easily performed ELISA assays for CXCL-10 and IFN-α can be used to predict ANA+ individuals at high risk of imminent symptomatic progression.
Collapse
Affiliation(s)
- Sonya T. Kim
- grid.231844.80000 0004 0474 0428Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8 Canada
| | - Carolina Muñoz-Grajales
- grid.231844.80000 0004 0474 0428Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8 Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Shannon E. Dunn
- grid.17063.330000 0001 2157 2938Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.415502.7Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Raphael Schneider
- grid.415502.7Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada ,grid.415502.7Division of Neurology, St. Michael’s Hospital Unity Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sindhu R. Johnson
- grid.17063.330000 0001 2157 2938Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,Toronto Scleroderma Program, Division of Rheumatology, Toronto Western and Mount Sinai Hospitals, Toronto, ON Canada
| | - Zahi Touma
- grid.17063.330000 0001 2157 2938Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428University of Toronto Lupus Clinic, Centre for Prognosis Studies in Rheumatic Diseases, Schroeder Arthritis Institute, University Health Network, Toronto, ON Canada
| | - Zareen Ahmad
- grid.17063.330000 0001 2157 2938Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,Toronto Scleroderma Program, Division of Rheumatology, Toronto Western and Mount Sinai Hospitals, Toronto, ON Canada
| | - Dennisse Bonilla
- grid.231844.80000 0004 0474 0428Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8 Canada
| | - Eshetu G. Atenafu
- grid.231844.80000 0004 0474 0428Biostatistics Department, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Linda T. Hiraki
- grid.17063.330000 0001 2157 2938Division of Rheumatology, The Hospital for Sick Children, and Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Arthur Bookman
- grid.17063.330000 0001 2157 2938Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON Canada
| | - Joan Wither
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada. .,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
52
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
53
|
Infante B, Mercuri S, Dello Strologo A, Franzin R, Catalano V, Troise D, Cataldo E, Pontrelli P, Alfieri C, Binda V, Frontini G, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Unraveling the Link between Interferon-α and Systemic Lupus Erythematosus: From the Molecular Mechanisms to Target Therapies. Int J Mol Sci 2022; 23:ijms232415998. [PMID: 36555640 PMCID: PMC9783870 DOI: 10.3390/ijms232415998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease with a wide range of clinical expressions. The kidney is often affected, usually within 5 years of the onset of SLE, and lupus nephropathy (LN) carries a high risk for increased morbidity. The clinical heterogeneity of the disease is accompanied by complex disturbances affecting the immune system with inflammation and tissue damage due to loss of tolerance to nuclear antigens and the deposition of immune complexes in tissues. Several studies have reported that in human SLE, there is an important role of the Type-I-interferons (INF) system suggested by the upregulation of INF-inducible genes observed in serial gene expression microarray studies. This review aims to describe the transduction pathways of Type-I-interferons, in particular INFα, and its immune-regulatory function in the pathogenesis of SLE and, in particular, in LN. In addition, recent novelties concerning biologic therapy in LN will be discussed.
Collapse
Affiliation(s)
- Barbara Infante
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Andrea Dello Strologo
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Dario Troise
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Emanuela Cataldo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Valentina Binda
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giulia Frontini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0255034551; Fax: +39-0255034550
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
54
|
Crow MK. Advances in lupus therapeutics: Achieving sustained control of the type I interferon pathway. Curr Opin Pharmacol 2022; 67:102291. [PMID: 36183477 DOI: 10.1016/j.coph.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023]
Abstract
Achieving sustained control of disease activity in patients with systemic lupus erythematosus has been impeded by the complexity of its immunopathogenesis as well its clinical heterogeneity. In spite of these challenges, gains in understanding disease mechanisms have identified immune targets that are currently under study in trials of candidate therapeutics. Defining the type I interferon (IFN-I) pathway and autoantibodies specific for nucleic acid binding proteins as core pathogenic mediators allows an analysis of approaches that could control production of those mediators and improve patient outcomes. This review describes therapeutic targets and agents that could achieve control of the IFN-I pathway. Toll-like receptor 7, involved in IFN-I production and differentiation of B cells, and long-lived plasma cells, the producers of autoantibodies specific for RNA-binding proteins, components of the immune complex drivers of IFN-I, are particularly attractive therapeutic targets.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
55
|
Suzuki E, Zhang XK, Yashiro-Furuya M, Asano T, Kanno T, Kobayashi H, Migita K, Ohira H. The expression of Ets-1 and Fli-1 is associated with interferon-inducible genes in peripheral blood mononuclear cells from Japanese patients with systemic lupus erythematosus. Medicine (Baltimore) 2022; 101:e31522. [PMID: 36397345 PMCID: PMC9666161 DOI: 10.1097/md.0000000000031522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Transcription factors E26 transformation-specific-1 (Ets-1) and Friend leukemia insertion site-1 (Fli-1) and type I interferon (IFN) have been implicated in systemic lupus erythematosus (SLE). We examined the expression of these genes in peripheral blood mononuclear cells (PBMCs) from Japanese patients with SLE and analyzed their association with SLE. We enrolled 53 Japanese patients with SLE, 42 patients with rheumatoid arthritis (RA), and 30 healthy donors (HDs) (as controls) in this study. PBMCs were collected from all participants, and the expressions of Ets-1, Fli-1, and three interferon-inducible genes (IFIGs) (interferon-inducible protein with tetratricopeptide 1 [IFIT1], interferon-inducible protein 44 [IFI44], and eukaryotic translation initiation factor 2 alpha kinase 2 [EIF2AK2]) were measured using real-time polymerase chain reaction (PCR). The relationships of each molecule with clinical symptoms, laboratory data, and treatments were analyzed. The expression of Ets-1 and Fli-1 was significantly lower in the PBMCs from patients with SLE than that in the PBMCs from patients with RA and HDs. The expression of the three IFIGs was significantly higher in the PBMCs from patients with SLE than that in the PBMCs from patients with RA and HDs. For patients with SLE, significantly positive correlations were found between Ets-1 and three IFIGs; a similar trend was observed between Fli-1 and IFIGs. IFIG expression in the PBMCs was significantly higher in patients with SLE than that in other participants, and the expression of Ets-1 and Fli-1 was positively associated with IFN expression. Therefore, it was suggested that Ets-1 and Fli-1 were associated with the pathophysiology of SLE by regulating the type I IFN pathway.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Rheumatology, Ohta-Nishinouchi Hospital, Fukushima, Japan
| | - Xian K. Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Makiko Yashiro-Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Kanno
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
56
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
57
|
Chan AR, Cohen Tervaert JW, Redmond D, Yacyshyn E, Ferrara G, Hwang PM, Osman M, Gniadecki R. A case series of dermatomyositis following SARS-CoV-2 vaccination. Front Med (Lausanne) 2022; 9:1013378. [PMID: 36419787 PMCID: PMC9676274 DOI: 10.3389/fmed.2022.1013378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND/OBJECTIVE The most significant adverse events following SARS-CoV-2 vaccination are myocarditis and pericarditis. Myositis and dermatomyositis have been reported following SARS-CoV-2 infection, but vaccine-induced dermatomyositis (DM) has not been reported. Our case series aimed to characterize new onset dermatomyositis or disease-related flares following SARS-CoV-2 vaccination. MATERIALS AND METHODS A total of 53 patients from our institution with a new or pre-existing diagnosis of DM were recruited and consented. Phone interviews were conducted to obtain vaccination status and symptoms following vaccination. Electronic medical records were reviewed to extract age, sex, autoantibody profiles, comorbidities, immunomodulatory therapies, creatine kinase (CK) values, and SARS-CoV-2 vaccination dates from the provincial vaccination registry. For patients who reported disease flares, records were reviewed for the onset and nature of symptoms, extent of organ involvement and changes in immunomodulation. RESULTS On average, patients received 2.62 vaccine doses (range 1-3 doses). A total of 3 of 51 patients (5.88%) experienced dermatomyositis symptoms following vaccination. Two patients were newly diagnosed with dermatomyositis, one requiring hospitalization. Reported symptom onset following vaccination ranged from 1 to 30 days. Of note, all of these patients had normal CK values, even though there was muscle biopsy-confirmed myositis in one patient. Eight patients in the cohort (15.1%) had asymptomatic CK elevation (<1.5 X ULN). CONCLUSION New onset dermatomyositis or flare up of pre-existing dermatomyositis may be a rare complication in SARS-CoV-2 vaccination although no studies can support a true correlation. Several pathophysiologic mechanisms are proposed.
Collapse
Affiliation(s)
- Airiss R. Chan
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | | | - Desiree Redmond
- Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Elaine Yacyshyn
- Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Giovanni Ferrara
- Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| | - Peter M. Hwang
- Division of General Internal Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Osman
- Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
58
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
59
|
Gao M, Liu S, Chatham WW, Mountz JD, Hsu HC. IL-4-Induced Quiescence of Resting Naive B Cells Is Disrupted in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1513-1522. [PMID: 36165181 PMCID: PMC9741951 DOI: 10.4049/jimmunol.2200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-β in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.
Collapse
Affiliation(s)
- Min Gao
- University of Alabama at Birmingham, Birmingham, AL; and
| | - Shanrun Liu
- University of Alabama at Birmingham, Birmingham, AL; and
| | - W Winn Chatham
- University of Alabama at Birmingham, Birmingham, AL; and
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
60
|
MacLauchlan S, Fitzgerald KA, Gravallese EM. Intracellular Sensing of DNA in Autoinflammation and Autoimmunity. Arthritis Rheumatol 2022; 74:1615-1624. [PMID: 35656967 PMCID: PMC9529773 DOI: 10.1002/art.42256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022]
Abstract
Evidence has shown that DNA is a pathogen-associated molecular pattern, posing a unique challenge in the discrimination between endogenous and foreign DNA. This challenge is highlighted by certain autoinflammatory diseases that arise from monogenic mutations and result in periodic flares of inflammation, typically in the absence of autoantibodies or antigen-specific T lymphocytes. Several autoinflammatory diseases arise due to mutations in genes that normally prevent the accrual of endogenous DNA or are due to mutations that cause activation of intracellular DNA-sensing pathway components. Evidence from genetically modified murine models further support an ability of endogenous DNA and DNA sensing to drive disease pathogenesis, prompting the question of whether endogenous DNA can also induce inflammation in human autoimmune diseases. In this review, we discuss the current understanding of intracellular DNA sensing and downstream signaling pathways as they pertain to autoinflammatory disease, including the development of monogenic disorders such as Stimulator of interferon genes-associated vasculopathy with onset in infancy and Aicardi-Goutières syndrome. In addition, we discuss systemic rheumatic diseases, including certain forms of systemic lupus erythematosus, familial chilblain lupus, and other diseases with established links to intracellular DNA-sensing pathways, and highlight the lessons learned from these examples as they apply to the development of therapies targeting these pathways.
Collapse
Affiliation(s)
- Susan MacLauchlan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School
| | - Ellen M. Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
61
|
Liu Z, Cheng R, Liu Y. Evaluation of anifrolumab safety in systemic lupus erythematosus: A meta-analysis and systematic review. Front Immunol 2022; 13:996662. [PMID: 36211347 PMCID: PMC9537685 DOI: 10.3389/fimmu.2022.996662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, and type I interferon plays an important role in its pathogenesis. Anifrolumab is a new strategy for the treatment of systemic lupus erythematosus. It could antagonize the activity of all type 1 interferons by binding with type I interferon receptor subunit 1. The aim of our study was to evaluate the safety of anifrolumab in patients with moderate to severe SLE (excluding patients with active severe lupus nephritis or central nervous system lupus). Methods Four databases (Embase, Cochrane, PubMed, Web of Science) were systematically searched from inception until December 2021 for randomized controlled trials (RCTs) evaluating the safety of anifrolumab versus placebo in SLE patients. Then, the incidence of adverse events in each study was aggregated using meta-analysis. Results A total of 1160 SLE patients from four RCTs were included in the analysis. Serious adverse events were less common in the anifrolumab group than in the placebo group (RR: 0.76, 95% CI: 0.59-0.98, p<0.03). The most common adverse events included upper respiratory tract infection (RR: 1.48, 95% CI: 1.13-1.94, P=0.004), nasopharyngitis (RR: 1.66, 95% CI: 1.25-2.20, P=0.0004), bronchitis (RR: 1.96, 95% CI: 1.32-2.92, P=0.0009), and herpes zoster (RR: 3.40, 95% CI: 1.90-6.07, P<0.0001). Conclusion Anifrolumab is considered a well-tolerated option for the treatment of SLE patients with good safety. Systematic Review Registration https://inplasy.com, identifier 202230054.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Chia YL, Tummala R, Mai TH, Rouse T, Streicher K, White WI, Morand EF, Furie RA. Relationship Between Anifrolumab Pharmacokinetics, Pharmacodynamics, and Efficacy in Patients With Moderate to Severe Systemic Lupus Erythematosus. J Clin Pharmacol 2022; 62:1094-1105. [PMID: 35352835 PMCID: PMC9545691 DOI: 10.1002/jcph.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to elucidate the pharmacokinetic/pharmacodynamic and pharmacodynamic/efficacy relationships of anifrolumab, a type I interferon receptor antibody, in patients with moderate to severe systemic lupus erythematosus. Data were pooled from the randomized, 52-week, placebo-controlled TULIP-1 and TULIP-2 trials of intravenous anifrolumab (150 mg/300 mg, every 4 weeks for 48 weeks). Pharmacodynamic neutralization was measured with a 21-gene type I interferon gene signature (21-IFNGS) in patients with high IFNGS. The pharmacokinetic/pharmacodynamic relationship was analyzed graphically and modeled with a nonlinear mixed-effects model. British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response rates were compared across 21-IFNGS neutralization quartiles. Overall, 819 patients received ≥1 dose of anifrolumab or placebo, of whom 676 were IFNGS high. Over 52 weeks, higher average anifrolumab serum concentrations were associated with increased median 21-IFNGS neutralization, which was rapid and sustained with anifrolumab 300 mg (>80%, weeks 12-52), lower and delayed with anifrolumab 150 mg (>50%, week 52), and minimal with placebo. The proportion of patients with week 24 anifrolumab trough concentration exceeding the IC80 (3.88 μg/mL) was greater with anifrolumab 300 mg vs anifrolumab 150 mg (≈83% vs ≈27%), owing to the higher estimated median trough concentration (15.6 vs 0.2 μg/mL). BICLA response rates increased with 21-IFNGS neutralization; more patients had a BICLA response in the highest vs lowest neutralization quartiles at week 52 (58.1% vs 37.6%). In conclusion, anifrolumab 300 mg every 4 weeks rapidly, substantially, and sustainably neutralized the 21-IFNGS and was associated with clinical efficacy, supporting this dosing regimen in patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yen Lin Chia
- BioPharmaceuticals R&DAstraZeneca USSouth San FranciscoCaliforniaUSA
- SeagenSouth San FranciscoCaliforniaUSA
| | - Raj Tummala
- BioPharmaceuticals R&DAstraZeneca USGaithersburgMarylandUSA
| | - Tu H. Mai
- BioPharmaceuticals R&DAstraZeneca USSouth San FranciscoCaliforniaUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Tomas Rouse
- BioPharmaceuticals R&DAstraZeneca R&DGothenburgSweden
| | | | - Wendy I. White
- BioPharmaceuticals R&DAstraZeneca USGaithersburgMarylandUSA
| | - Eric F. Morand
- Centre for Inflammatory Disease Monash HealthMonash UniversityMelbourneVictoriaAustralia
| | - Richard A. Furie
- Division of RheumatologyDonald and Barbara Zucker School of Medicine at Hofstra/Northwell HealthGreat NeckNew YorkUSA
| |
Collapse
|
63
|
Nakano M, Ota M, Takeshima Y, Iwasaki Y, Hatano H, Nagafuchi Y, Itamiya T, Maeda J, Yoshida R, Yamada S, Nishiwaki A, Takahashi H, Takahashi H, Akutsu Y, Kusuda T, Suetsugu H, Liu L, Kim K, Yin X, Bang SY, Cui Y, Lee HS, Shoda H, Zhang X, Bae SC, Terao C, Yamamoto K, Okamura T, Ishigaki K, Fujio K. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 2022; 185:3375-3389.e21. [PMID: 35998627 DOI: 10.1016/j.cell.2022.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.
Collapse
Affiliation(s)
- Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Takeshima
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Junko Maeda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Aya Nishiwaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Haruka Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Akutsu
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Kusuda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Hamanomachi hospital, Fukuoka 810-8539, Japan
| | - Lu Liu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul 02447, South Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, South Korea
| | - Xianyong Yin
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Xuejun Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, South Korea; Hanyang University Institute of Bioscience and Biotechnology & Hanyang University Institute for Rheumatology Research, Seoul 04763, South Korea
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan; The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyoshi Ishigaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
64
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
65
|
Shen M, Duan C, Xie C, Wang H, Li Z, Li B, Wang T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13:962393. [PMID: 35967341 PMCID: PMC9365928 DOI: 10.3389/fimmu.2022.962393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical symptoms and severity. There is complex pathogenesis of SLE, one of which is IFNs overproduction and downstream IFN-stimulated genes (ISGs) upregulation. Identifying the key ISGs differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with SLE and healthy people could help to further understand the role of the IFN pathway in SLE and discover potential diagnostic biomarkers.The differentially expressed ISGs (DEISG) in PBMCs of SLE patients and healthy persons were screened from two datasets of the Gene Expression Omnibus (GEO) database. A total of 67 DEISGs, including 6 long noncoding RNAs (lncRNAs) and 61 messenger RNAs (mRNAs) were identified by the “DESeq2” R package. According to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, those DEISGs were mainly concentrated in the response to virus and immune system processes. Protein-protein interaction (PPI) network showed that most of these DEISGs could interact strongly with each other. Then, IFIT1, RSAD2, IFIT3, USP18, ISG15, OASL, MX1, OAS2, OAS3, and IFI44 were considered to be hub ISGs in SLE by “MCODE” and “Cytohubba” plugins of Cytoscape, Moreover, the results of expression correlation suggested that 3 lncRNAs (NRIR, FAM225A, and LY6E-DT) were closely related to the IFN pathway.The lncRNA NRIR and mRNAs (RSAD2, USP18, IFI44, and ISG15) were selected as candidate ISGs for verification. RT-qPCR results showed that PBMCs from SLE patients had substantially higher expression levels of 5 ISGs compared to healthy controls (HCs). Additionally, statistical analyses revealed that the expression levels of these ISGs were strongly associated to various clinical symptoms, including thrombocytopenia and facial erythema, as well as laboratory indications, including the white blood cell (WBC) count and levels of autoantibodies. The Receiver Operating Characteristic (ROC) curve demonstrated that the IFI44, USP18, RSAD2, and IFN score had good diagnostic capabilities of SLE.According to our study, SLE was associated with ISGs including NRIR, RSAD2, USP18, IFI44, and ISG15, which may contribute to the future diagnosis and new personalized targeted therapies.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Congcong Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Changhao Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- *Correspondence: Tao Wang,
| |
Collapse
|
66
|
de Brito CB, Ascenção FR, Arifa RDN, Lima RL, Menezes Garcia Z, Fagundes M, Resende BG, Bezerra RO, Queiroz-Junior CM, Dos Santos ACPM, Oliveira MAP, Teixeira MM, Fagundes CT, Souza DG. FcᵧRIIb protects from reperfusion injury by controlling antibody and type I IFN-mediated tissue injury and death. Immunol Suppl 2022; 167:428-442. [PMID: 35831251 DOI: 10.1111/imm.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal ischemia and reperfusion (I/R) is accompanied by an exacerbated inflammatory response characterized by deposition of IgG, release of inflammatory mediators, and intense neutrophil influx in the small intestine, resulting in severe tissue injury and death. We hypothesized that FcᵧRIIb activation by deposited IgG could inhibit tissue damage during I/R. Our results showed that I/R induction led to the deposition of IgG in intestinal tissue during the reperfusion phase. Death upon I/R occurred earlier and was more frequent in FcᵧRIIb-/- than WT mice. The higher lethality rate was associated with greater tissue injury and bacterial translocation to other organs. FcᵧRIIb-/- mice presented changes in the amount and repertoire of circulating IgG, leading to increased IgG deposition in intestinal tissue upon reperfusion in these mice. Depletion of intestinal microbiota prevented antibody deposition and tissue damage in FcᵧRIIb-/- mice submitted to I/R. We also observed increased production of ROS on neutrophils harvested from the intestines of FcᵧRIIb-/- mice submitted to I/R. In contrast, FcᵧRIII-/- mice presented reduced tissue damage and neutrophil influx after reperfusion injury, a phenotype reversed by FcᵧRIIb blockade. In addition, we observed reduced IFN-β expression in the intestines of FcᵧRIII-/- mice after I/R, a phenotype that was also reverted by blocking FcᵧRIIb. IFNAR-/- mice submitted to I/R presented reduced lethality and TNF release. Altogether our results demonstrate that antibody deposition triggers FcᵧRIIb to control IFN-β and IFNAR activation and subsequent TNF release, tailoring tissue damage, and death induced by reperfusion injury.
Collapse
Affiliation(s)
- Camila Bernardo de Brito
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Roque Ascenção
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raquel Duque Nascimento Arifa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Lacerda Lima
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Zélia Menezes Garcia
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Micheli Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Brenda Gonçalves Resende
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Oliveira Bezerra
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Clara Paiva Menezes Dos Santos
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton A P Oliveira
- Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caio Tavares Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniele G Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
67
|
Beydon M, Nicaise-Roland P, Mageau A, Farkh C, Daugas E, Descamps V, Dieude P, Dossier A, Goulenok T, Farhi F, Mutuon P, Timsit JF, Papo T, Sacre K. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: a retrospective case-control study. Sci Rep 2022; 12:11244. [PMID: 35788140 PMCID: PMC9253327 DOI: 10.1038/s41598-022-15508-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
IFNα and anti-IFNα autoantibodies have been implicated in susceptibility both for systemic lupus erythematosus (SLE) and viral infection. We aimed to analyze the SLE disease phenotype and risk for infection associated with anti-IFN-α IgG autoantibodies in SLE patients In this multidisciplinary retrospective single referral center study, all consecutive patients with SLE admitted between January 1st and November 30th 2020 were considered. All subjects fulfilled the ACR/EULAR 2019 criteria for SLE. Anti-IFNα IgG autoantibodies were quantified at admission by ELISA. Demographic, medical history, laboratory, treatment, and outcome data were extracted from electronic medical records using a standardized data collection form. 180 patients [female 87.2%, median age of 44.4 (34-54.2) years] were included. The median disease duration was 10 years [4-20] with a median SLEDAI score of 2 [0-4] at study time. Fifty-four (30%) patients had a past-history of lupus nephritis. One hundred and forty-four (80%) had received long-term glucocorticoids and 99 (55%) immunosuppressive drugs. Overall, 127 infections-mostly bacterial and viral-were reported in 95 (52.8%) patients. Twenty SLE patients (11.1%) had positive anti-IFNα IgG autoantibodies with a titer ranging from 10 to 103 UA/mL. Age, sex, SLE phenotype and treatment did not significantly differ between SLE patients with or without anti-IFNα. Infection rate was similar in both groups except for tuberculosis which was more frequent in patients with anti-IFNα (20% vs. 3.1%, p = 0.01). The prevalence of autoantibodies against IFNα is high in SLE and associated with a higher frequency of tuberculosis.
Collapse
Affiliation(s)
- Maxime Beydon
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
| | - Pascale Nicaise-Roland
- Service d'Immunologie « Autoimmunité, Hypersensibilités et Biothérapies », Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
- INSERM UMR1152, Université de Paris, Paris, France
| | - Arthur Mageau
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
- Laboratoire d'Excellence Inflamex, Faculté de Médecine Site Bichat, Centre de Recherche Sur L'Inflammation, INSERM UMR1149, CNRS ERL8252, Université de Paris, Paris, France
- IAME UMR1137, Equipe DeScID, Université de Paris, Paris, France
| | - Carine Farkh
- Service d'Immunologie « Autoimmunité, Hypersensibilités et Biothérapies », Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eric Daugas
- Laboratoire d'Excellence Inflamex, Faculté de Médecine Site Bichat, Centre de Recherche Sur L'Inflammation, INSERM UMR1149, CNRS ERL8252, Université de Paris, Paris, France
- Département de Néphrologie, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Vincent Descamps
- Département de Dermatologie, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philippe Dieude
- Département de Rhumatologie, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Antoine Dossier
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
| | - Tiphaine Goulenok
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
| | - Fatima Farhi
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
| | - Pierre Mutuon
- Département d'Information Médicale, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Francois Timsit
- IAME UMR1137, Equipe DeScID, Université de Paris, Paris, France
- Département de Réanimation Médicale Et Infectieuse, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Thomas Papo
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France
- Laboratoire d'Excellence Inflamex, Faculté de Médecine Site Bichat, Centre de Recherche Sur L'Inflammation, INSERM UMR1149, CNRS ERL8252, Université de Paris, Paris, France
| | - Karim Sacre
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, 46 rue Henri Huchard, 75018, Paris, France.
- Laboratoire d'Excellence Inflamex, Faculté de Médecine Site Bichat, Centre de Recherche Sur L'Inflammation, INSERM UMR1149, CNRS ERL8252, Université de Paris, Paris, France.
| |
Collapse
|
68
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
69
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
70
|
Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, Ye CJ, Westra HJ, Franke L, van der Wijst MGP. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat Commun 2022; 13:3267. [PMID: 35672358 PMCID: PMC9174272 DOI: 10.1038/s41467-022-30893-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.
Collapse
Affiliation(s)
- Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Dylan H de Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Harm Brugge
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Grace Gordon
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Vochteloo
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Chun J Ye
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
71
|
Bruce IN, Golam S, Steenkamp J, Wang P, Worthington E, Desta B, Psachoulia K, Erhardt W, Tummala R. Indirect treatment comparison of anifrolumab efficacy versus belimumab in adults with systemic lupus erythematosus. J Comp Eff Res 2022; 11:765-777. [PMID: 35546484 DOI: 10.2217/cer-2022-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Assess the comparative efficacy of anifrolumab 300 mg versus belimumab 10 mg/kg in adults with moderate-to-severe systemic lupus erythematosus (SLE) receiving standard therapy. Patients and methods: Population-adjusted simulated treatment comparisons (primary analyses) and matching-adjusted indirect comparisons (supporting analyses) were conducted using individual patient data from TULIP-1/TULIP-2 and summary-level data from BLISS-52/BLISS-76. Results: Compared with belimumab-treated patients, anifrolumab-treated patients were more than twice as likely to achieve a reduction of four or more points in SLE Disease Activity Index 2000 score (simulated treatment comparison odds ratio: 2.47; 95% CI: 1.16-5.25) and SLE Responder Index-4 response (odds ratio: 2.61; 95% CI: 1.22-5.58) at 52 weeks. Conclusion: Patients with moderate-to-severe SLE are more likely to achieve an improvement in disease activity with anifrolumab than with belimumab.
Collapse
Affiliation(s)
- Ian N Bruce
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal & Dermatological Sciences, The University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Sarowar Golam
- Global Market Access & Pricing, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 50, Sweden
| | | | - Pearl Wang
- EVERSANA™, Burlington, ON, L7N 3H8, Canada
| | | | - Barnabas Desta
- BioPharmaceuticals Business Unit, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Konstantina Psachoulia
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Wilma Erhardt
- Global Market Access & Pricing, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 50, Sweden
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
72
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea.,ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
73
|
Chen YY, Ding Y, Li LL, Han SS, Huang M, Wong CCL, Yu F, Zhao MH. Proteomic profiling of kidney samples in patients with pure membranous and proliferative lupus nephritis. Lupus 2022; 31:837-847. [PMID: 35446734 DOI: 10.1177/09612033221094711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Renal injury in lupus nephritis (LN) does not manifest as one uniform entity. The clinical presentation, management, and prognosis of membranous LN (MLN) differ from that of the proliferative LN (PLN). Differentiating the molecular mechanisms involved in MLN and PLN and discovering the reliable biomarkers for early diagnosis and target therapy are important. We compared the kidney protein expression patterns of 11 pure MLN and 12 pure PLN patients on formalin-fixed paraffin-embedded (FFPE) kidney tissues using label-free liquid chromatography-mass spectrometry (LC-MS) for quantitative proteomics analysis. FunRich software was used to identify proteins in differentially expressed pathways. Quantitative comparisons of differentially expressed proteins in each patient were further analyzed based on protein intensity levels determined by LC-MS. The protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was established through Search Tool for the Retrieval of Interacting Genes database (STRING) website, visualized by Cytoscape. A total of 5112 proteins were identified. In total, 12 significantly upregulated (fold change ≥2, p < 0.05) proteins were identified in the MLN group and 220 proteins (fold change ≥2, p < 0.05) were upregulated in the PLN group. Further analysis showed that the most significant upregulated pathway involved in MLN was histone deacetylase (HDAC) class I pathway, and the three most significant upregulated pathways in PLN were interferon signaling, interferon gamma signaling, and the immune system. Next, we selected sirtuin-2 (SIRT2) in MLN, and vascular cell adhesion protein 1 (VCAM1) and Bcl-xl in PLN for further mass spectrometry (MS) intensity and PPI analysis. SIRT2 expression was significantly increased in the MLN group compared with the PLN group, and VCAM1, Bcl-xl expression was significantly increased in the PLN group compared with the MLN group, based on MS intensity. These results may help to improve our understanding of the underlying molecular mechanisms of MLN and PLN and provide potential targets for the diagnosis and treatment of different subclasses of LN.
Collapse
Affiliation(s)
- Yun-Ying Chen
- Renal Division, Department of medicine, Peking University First Hospital; Institute of Nephrology, 26447Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR, China
| | - Ying Ding
- Department of Nephrology, Peking University International Hospital, Beijing, P.R. China
| | - Lin-Lin Li
- Renal Division, Department of medicine, Peking University First Hospital; Institute of Nephrology, 26447Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR, China
| | - Sha-Sha Han
- Department of Nephrology, 117555Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Huang
- State Key Laboratory of Natural and Biomimeric Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Catherine C L Wong
- State Key Laboratory of Natural and Biomimeric Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Feng Yu
- Renal Division, Department of medicine, Peking University First Hospital; Institute of Nephrology, 26447Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR, China.,Department of Nephrology, Peking University International Hospital, Beijing, P.R. China
| | - Ming-Hui Zhao
- Renal Division, Department of medicine, Peking University First Hospital; Institute of Nephrology, 26447Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, PR, China.,Peking-Tsinghua Center for Life Sciences, PR. China Renal Division, Department of Medicine, 26447Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| |
Collapse
|
74
|
Tassinari V, Cerboni C, Soriani A. Self or Non-Self? It Is also a Matter of RNA Recognition and Editing by ADAR1. BIOLOGY 2022; 11:biology11040568. [PMID: 35453767 PMCID: PMC9024829 DOI: 10.3390/biology11040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023]
Abstract
Simple Summary A fundamental feature of innate immune cells is to detect the presence of non-self, such as potentially harmful nucleic acids, by germline-encoded specialized receptors called pattern recognition receptors (PRRs). ADAR1 is one key enzyme avoiding aberrant type I interferon (IFN-I) production and immune cell activation by the conversion of adenosine to inosine (A-to-I) in double-stranded RNA (dsRNA) structures that arise in self mRNA containing specific repetitive elements. This review intends to give an up-to-date and detailed overview of the ADAR1-mediated ability to modulate the immune response in autoimmune diseases and cancer progression. Abstract A-to-I editing is a post-transcriptional mechanism affecting coding and non-coding dsRNAs, catalyzed by the adenosine deaminases acting on the RNA (ADAR) family of enzymes. A-to-I modifications of endogenous dsRNA (mainly derived from Alu repetitive elements) prevent their recognition by cellular dsRNA sensors, thus avoiding the induction of antiviral signaling and uncontrolled IFN-I production. This process, mediated by ADAR1 activity, ensures the activation of an innate immune response against foreign (non-self) but not self nucleic acids. As a consequence, ADAR1 mutations or its de-regulated activity promote the development of autoimmune diseases and strongly impact cell growth, also leading to cancer. Moreover, the excessive inflammation promoted by Adar1 ablation also impacts T and B cell maturation, as well as the development of dendritic cell subsets, revealing a new role of ADAR1 in the homeostasis of the immune system.
Collapse
|
75
|
Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: risks, outcomes, treatment considerations. Nat Rev Rheumatol 2022; 18:191-204. [PMID: 35217850 PMCID: PMC8874732 DOI: 10.1038/s41584-022-00755-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has brought challenges for people with rheumatic disease in addition to those faced by the general population, including concerns about higher risks of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poor outcomes of COVID-19. The data that are now available suggest that rheumatic disease is associated with a small additional risk of SARS-CoV-2 infection, and that outcomes of COVID-19 are primarily influenced by comorbidities and particular disease states or treatments. Despite considerable advances in our knowledge of which therapeutic agents provide benefits in COVID-19, and of what constitutes effective vaccination strategies, the specific considerations that apply to people with rheumatic disease are yet to be definitively addressed. An overview of the most important COVID-19 studies to date that relate to people with rheumatic disease can contribute to our understanding of the clinical-care requirements of this population.
Collapse
Affiliation(s)
- Rebecca Grainger
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Richard Conway
- Department of Rheumatology, St James's Hospital, Dublin, Ireland
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Philip C Robinson
- University of Queensland School of Clinical Medicine, Faculty of Medicine, Herston, Queensland, Australia.
- Royal Brisbane & Women's Hospital, Metro North Hospital & Health Service, Herston Road, Herston, Queensland, Australia.
| |
Collapse
|
76
|
Mageau A, Papo T, Ruckly S, Strukov A, van Gysel D, Sacre K, Timsit JF. Survival after COVID-19-associated organ failure among inpatients with systemic lupus erythematosus in France: a nationwide study. Ann Rheum Dis 2022; 81:569-574. [PMID: 34893471 PMCID: PMC8668411 DOI: 10.1136/annrheumdis-2021-221599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We analysed the incidence of, the specific outcomes and factors associated with COVID-19-associated organ failure (AOF) in patients with systemic lupus erythematosus (SLE) in France. METHODS We performed a cohort study using the French national medical/administrative hospital database for the January 2011-November 2020 period. Each patient with SLE diagnosed in a French hospital with a COVID-19-AOF until November 2020 was randomly matched with five non-SLE patients with COVID-19-AOF. We performed an exact matching procedure taking age ±2 years, gender and comorbidities as matching variables. COVID-19-AOF was defined as the combination of at least one code of COVID-19 diagnosis with one code referring to an organ failure diagnosis. RESULTS From March to November 2020, 127 380 hospital stays in France matched the definition of COVID-19-AOF, out of which 196 corresponded with patients diagnosed with SLE. Based on the presence of comorbidities, we matched 908 non-SLE patients with COVID-19-AOF with 190 SLE patients with COVID-19-AOF. On day 30, 43 in-hospital deaths (22.6%) occurred in SLE patients with COVID-19-AOF vs 198 (21.8%) in matched non-SLE patients with COVID-19-AOF: HR 0.98 (0.71-1.34). Seventy-five patients in the SLE COVID-19-AOF group and 299 in the matched control group were followed up from day 30 to day 90. During this period, 19 in-hospital deaths occurred in the SLE group (25.3%) vs 46 (15.4%) in the matched control group; the HR associated with death occurring after COVID-19-AOF among patients with SLE was 1.83 (1.05-3.20). CONCLUSIONS COVID-19-AOF is associated with a poor late-onset prognosis among patients with SLE.
Collapse
Affiliation(s)
- Arthur Mageau
- Département de Médecine Interne, Assistance Publique Hôpitaux de Paris, Hôpital Bichat - Claude-Bernard, Paris, France
- Infection, antimicrobiens, modélisation, évolution (IAME), UMR 1137, Université de Paris, INSERM, Paris, France
- Centre de Recherche sur l'Inflammation, UMR1149, CNRS ERL8252, Université de Paris, Laboratoire d'Excellence Inflamex, INSERM, Paris, France
| | - Thomas Papo
- Département de Médecine Interne, Assistance Publique Hôpitaux de Paris, Hôpital Bichat - Claude-Bernard, Paris, France
- Centre de Recherche sur l'Inflammation, UMR1149, CNRS ERL8252, Université de Paris, Laboratoire d'Excellence Inflamex, INSERM, Paris, France
| | - Stephane Ruckly
- Infection, antimicrobiens, modélisation, évolution (IAME), UMR 1137, Université de Paris, INSERM, Paris, France
| | - Andrey Strukov
- Département d'Information Médicale, Assistance Publique Hôpitaux de Paris, Université de Paris, Hôpital Bichat - Claude-Bernard, Paris, France
| | - Damien van Gysel
- Département d'Information Médicale, Assistance Publique Hôpitaux de Paris, Université de Paris, Hôpital Bichat - Claude-Bernard, Paris, France
| | - Karim Sacre
- Département de Médecine Interne, Assistance Publique Hôpitaux de Paris, Hôpital Bichat - Claude-Bernard, Paris, France
- Centre de Recherche sur l'Inflammation, UMR1149, CNRS ERL8252, Université de Paris, Laboratoire d'Excellence Inflamex, INSERM, Paris, France
| | - Jean-François Timsit
- Infection, antimicrobiens, modélisation, évolution (IAME), UMR 1137, Université de Paris, INSERM, Paris, France
- Département de Réanimation Médicale et Infectieuse, Assistance Publique Hôpitaux de Paris, Université de Paris, Hopital Bichat - Claude-Bernard, Paris, France
| |
Collapse
|
77
|
Takeshima Y, Iwasaki Y, Nakano M, Narushima Y, Ota M, Nagafuchi Y, Sumitomo S, Okamura T, Elkon K, Ishigaki K, Suzuki A, Kochi Y, Yamamoto K, Fujio K. Immune cell multiomics analysis reveals contribution of oxidative phosphorylation to B-cell functions and organ damage of lupus. Ann Rheum Dis 2022; 81:845-853. [PMID: 35236659 DOI: 10.1136/annrheumdis-2021-221464] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease. While the long-term prognosis has greatly improved, better long-term survival is still necessary. The type I interferon (IFN) signature, a prominent feature of SLE, is not an ideal therapeutic target or outcome predictor. To explore immunological pathways in SLE more precisely, we performed transcriptomic, epigenomic and genomic analyses using 19 immune cell subsets from peripheral blood. METHODS We sorted 19 immune cell subsets and identified the mRNA expression profiles and genetic polymorphisms in 107 patients with SLE and 92 healthy controls. Combined differentially expressed genes and expression quantitative trait loci analysis was conducted to find key driver genes in SLE pathogenesis. RESULTS We found transcriptomic, epigenetic and genetic importance of oxidative phosphorylation (OXPHOS)/mitochondrial dysfunction in SLE memory B cells. Particularly, we identified an OXPHOS-regulating gene, PRDX6 (peroxiredoxin 6), as a key driver in SLE B cells. Prdx6-deficient B cells showed upregulated mitochondrial respiration as well as antibody production. We revealed OXPHOS signature was associated with type I IFN signalling-related genes (ISRGs) signature in SLE memory B cells. Furthermore, the gene sets related to innate immune signalling among ISRGs presented correlation with OXPHOS and these two signatures showed associations with SLE organ damage as well as specific clinical phenotypes. CONCLUSION This work elucidated the potential prognostic marker for SLE. Since OXPHOS consists of the electron transport chain, a functional unit in mitochondria, these findings suggest the importance of mitochondrial dysfunction as a key immunological pathway involved in SLE.
Collapse
Affiliation(s)
- Yusuke Takeshima
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan .,Department of Palliative Medicine, Saitama Medical University, Saitama, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| | - Yuta Narushima
- Research Division, Chugai Pharmaceutical Co Ltd, Kamakura, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Keith Elkon
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Kazuyoshi Ishigaki
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan.,Department of Genomic Function and Diversity, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
78
|
Rudra P, Baxter R, Hsieh EWY, Ghosh D. Compositional Data Analysis using Kernels in mass cytometry data. BIOINFORMATICS ADVANCES 2022; 2:vbac003. [PMID: 35224501 PMCID: PMC8867823 DOI: 10.1093/bioadv/vbac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 01/27/2023]
Abstract
MOTIVATION Cell-type abundance data arising from mass cytometry experiments are compositional in nature. Classical association tests do not apply to the compositional data due to their non-Euclidean nature. Existing methods for analysis of cell type abundance data suffer from several limitations for high-dimensional mass cytometry data, especially when the sample size is small. RESULTS We proposed a new multivariate statistical learning methodology, Compositional Data Analysis using Kernels (CODAK), based on the kernel distance covariance (KDC) framework to test the association of the cell type compositions with important predictors (categorical or continuous) such as disease status. CODAK scales well for high-dimensional data and provides satisfactory performance for small sample sizes (n < 25). We conducted simulation studies to compare the performance of the method with existing methods of analyzing cell type abundance data from mass cytometry studies. The method is also applied to a high-dimensional dataset containing different subgroups of populations including Systemic Lupus Erythematosus (SLE) patients and healthy control subjects. AVAILABILITY AND IMPLEMENTATION CODAK is implemented using R. The codes and the data used in this manuscript are available on the web at http://github.com/GhoshLab/CODAK/. CONTACT prudra@okstate.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Pratyaydipta Rudra
- Department of Statistics, Oklahoms State University, Stillwater, OK 74078, USA
| | - Ryan Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
79
|
Geneva-Popova MG, Popova-Belova SD, Gardzheva PN, Kraev KI. A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu. Life (Basel) 2022; 12:life12020251. [PMID: 35207538 PMCID: PMC8880517 DOI: 10.3390/life12020251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/09/2023] Open
Abstract
The role of IFN-α-induced chemokines CCL2, CXCL10 and CCL19 in different forms of SLE has not been studied in Bulgaria, with worldwide sources attributing varying degrees of importance. The aim of this study was to investigate the correlation between IFN-induced chemokines CCL2, CXCL10 and CCL19 and disease activity in patients with SLE over 24 months. Materials and methods: This study used data from 70 patients with SLE (age range 24–62 years) and a control group of 30 healthy volunteers matched for age and gender. Levels of chemokines CCL2, CXCL10 and CCL19 in lupus patients’ serum were measured by ELISA. The study examined clinical and clinical laboratory indicators, as well as measures of disease activity developed for lupus patients (SLEDAI and SLICC). Statistical program SPSS, Version 26 were used for statistical data processing with p < 0.05. At 24 months of follow-up, 12 patients were with deterioration, and they had an IFN-a of 363.76 ± 9.23 versus 116.1 ± 22.1 pg/mL of those who did not worsen, CCL2 278.3 ± 5.12 versus 89.4 ± 12.8, CXCL10 234.2 ± 6.13 versus 115.23 ± 5.9 p CCL19 776.25 ± 5.1 vs. 651.34 ± 9.0 during the first visit. Results: The mean values of CCL2, CXCL10 and CCL19 were higher in patients with SLE compared to healthy controls (p = 0.01). A strong significant association (p = 0.01) was found between the concentration of CCL2, CXCL10 and CCL19 and with patients’ age, disease duration, SLEDAI and SLICC. Conclusion: CCL2, CXCL10 and CCL19 serum levels were found to correlate with patients’ age and disease duration. The level of IFN-induced chemokines CCL2, CXCL10 and CCL19 has a prognostic value in terms of SLE disease activity and degree of organ damage.
Collapse
Affiliation(s)
- Mariela Gencheva Geneva-Popova
- Department of Propedeutics of Internal Disease, Faculty of Medicine, Medical University-Plovdiv, “Vasil Apriliv” blvd 15-A, Rheumatology, UMHAT “St. Georgi”, 4002 Plovdiv, Bulgaria;
- Correspondence: ; Tel.: +0359-898-523-128
| | - Stanislava Dimitrova Popova-Belova
- Department of Propedeutics of Internal Disease, Faculty of Medicine, Medical University-Plovdiv, “Vasil Apriliv” blvd 15-A, Rheumatology, UMHAT “St. Georgi”, 4002 Plovdiv, Bulgaria;
| | - Petya Nikolova Gardzheva
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Medicine, Medical University-Plovdiv, “Vasil Apriliv” blvd 15-A, Microbiology, UMHAT “St. Georgi”, 4002 Plovdiv, Bulgaria;
| | - Krasimir Iliev Kraev
- Department of Propedeutics of Internal Disease, Faculty of Medicine, Medical University-Plovdiv, “Vasil Apriliv” blvd 15-A, Rheumatology, UMHAT “Kaspela”, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
80
|
Hubbard EL, Pisetsky DS, Lipsky PE. Anti-RNP antibodies are associated with the interferon gene signature but not decreased complement levels in SLE. Ann Rheum Dis 2022; 81:632-643. [PMID: 35115332 DOI: 10.1136/annrheumdis-2021-221662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The goals of these studies were to elucidate the inter-relationships of specific anti-nuclear antibody (ANA), complement, and the interferon gene signature (IGS) in the pathogenesis of systemic lupus erythematosus (SLE). METHODS Data from the Illuminate trials were analysed for antibodies to dsDNA as well as RNA-binding proteins (RBP), levels of C3, C4 and various IGS. Statistical hypothesis testing, linear regression analyses and classification and regression trees analysis were employed to assess relationships between the laboratory features of SLE. RESULTS Inter-relationships of ANAs, complement and the IGS differed between patients of African Ancestry (AA) and European Ancestry (EA); anti-RNP and multiple autoantibodies were more common in AA patients and, although both related to the presence of the IGS, relationships between autoantibodies and complement differed. Whereas, anti-dsDNA had an inverse relationship to C3 and C4, levels of anti-RNP were not related to these markers. The IGS was only correlated with anti-dsDNA in EA SLE and complement was more correlated to the IGS in AA SLE. Finally, autoantibodies occurred in the presence and absence of the IGS, whereas the IGS was infrequent in anti-dsDNA/anti-RBP-negative SLE patients. CONCLUSION There is a complex relationship between autoantibodies and the IGS, with anti-RNP associated in AA and both anti-dsDNA and RNP associated in EA. Moreover, there was a difference in the relationship between anti-dsDNA, but not anti-RBP, with complement levels. The lack of a relationship of anti-RNP with C3 and C4 suggests that anti-RNP immune complexes (ICs) may drive the IGS without complement fixation, whereas anti-dsDNA ICs involve complement consumption.
Collapse
Affiliation(s)
- Erika L Hubbard
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA.,RILITE Foundation, Charlottesville, Virginia, USA
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Rheumatology, Durham VA Medical Center, Durham, North Carolina, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA .,RILITE Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
81
|
Adams DE, Shao WH. Epigenetic Alterations in Immune Cells of Systemic Lupus Erythematosus and Therapeutic Implications. Cells 2022; 11:cells11030506. [PMID: 35159315 PMCID: PMC8834103 DOI: 10.3390/cells11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that is characterized by autoantibody production and dysregulated immune cell activation. Although the exact etiology of SLE remains unknown, genetic, hormonal, and complex environmental factors are known to be critical for pathologic immune activation. In addition to the inherited genetic predisposition, epigenetic processes that do not change the genomic code, such as DNA methylation, histone modification, and noncoding RNAs are increasingly appreciated to play important roles in lupus pathogenesis. We herein focus on the up-to-date findings of lupus-associated epigenetic alterations and their pathophysiology in lupus development. We also summarize the therapeutic potential of the new findings. It is likely that advances in the epigenetic study will help to predict individual disease outcomes, promise diagnostic accuracy, and design new target-directed immunotherapies.
Collapse
|
82
|
David C, Frémond ML. Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells 2022; 11:318. [PMID: 35159128 PMCID: PMC8834229 DOI: 10.3390/cells11030318] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is a type I interferonopathy caused by gain-of-function mutations in STING1 encoding stimulator of interferon genes (STING) protein. SAVI is characterized by severe inflammatory lung disease, a feature not observed in previously described type I interferonopathies i.e., Mendelian autoinflammatory disorders defined by constitutive activation of the type I interferon (IFN) pathway. Molecular defects in nucleic acid metabolism or sensing are central to the pathophysiology of these diseases, with such defects occurring at any step of the tightly regulated pathway of type I IFN production and signaling (e.g., exonuclease loss of function, RNA-DNA hybrid accumulation, constitutive activation of adaptor proteins such as STING). Among over 30 genotypes, SAVI and COPA syndrome, whose pathophysiology was recently linked to a constitutive activation of STING signaling, are the only type I interferonopathies presenting with predominant lung involvement. Lung disease is the leading cause of morbidity and mortality in these two disorders which do not respond to conventional immunosuppressive therapies and only partially to JAK1/2 inhibitors. In human silicosis, STING-dependent sensing of self-DNA following cell death triggered by silica exposure has been found to drive lung inflammation in mice and human models. These recent findings support a key role for STING and nucleic acid sensing in the homeostasis of intrinsic pulmonary inflammation. However, mechanisms by which monogenic defects in the STING pathway lead to pulmonary damages are not yet fully elucidated, and an improved understanding of such mechanisms is fundamental to improved future patient management. Here, we review the recent insights into the pathophysiology of SAVI and outline our current understanding of self-nucleic acid-mediated lung inflammation in humans.
Collapse
Affiliation(s)
- Clémence David
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
- Paediatric Immunology-Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP.Centre-Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
83
|
Yu C, Wang B, Zhu Y, Zhang C, Ren L, Lei X, Xiang Z, Zhou Z, Huang H, Wang J, Zhao Z. ID2 inhibits innate antiviral immunity by blocking TBK1- and IKKε-induced activation of IRF3. Sci Signal 2022; 15:eabh0068. [PMID: 34982578 DOI: 10.1126/scisignal.abh0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences,, Peking University, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
84
|
Gharaee-Kermani M, Estadt SN, Tsoi LC, Wolf-Fortune SJ, Liu J, Xing X, Theros J, Reed TJ, Lowe L, Gruszka D, Ward NL, Gudjonsson JE, Kahlenberg JM. IFN-κ Is a Rheostat for Development of Psoriasiform Inflammation. J Invest Dermatol 2022; 142:155-165.e3. [PMID: 34364883 PMCID: PMC8688309 DOI: 10.1016/j.jid.2021.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Psoriasis is a common, inflammatory autoimmune skin disease. Early detection of an IFN-1 signature occurs in many psoriasis lesions, but the source of IFN production remains debated. IFN-κ is an important source of IFN-1 production in the epidermis. We identified a correlation between IFN-regulated and psoriasis-associated genes in human lesional skin. We thus wanted to explore the effects of IFN-κ in psoriasis using the well-characterized imiquimod psoriasis model. Three mouse strains aged 10 weeks were used: wild-type C57Bl/6, C57Bl/6 that overexpress Ifnk in the epidermis (i.e., transgenic), and total body Ifnk-/- (i.e., knockout) strain. Psoriasis was induced by topical application of imiquimod on both ears for 8 consecutive days. Notably, the severity of skin lesions and inflammatory cell infiltration was more significantly increased in transgenic than in wild-type than in knockout mice. Gene expression analysis identified greater upregulation of Mxa, Il1b, Tnfa, Il6, Il12, Il23, Il17, and Ifng in transgenic compared to wild-type compared to knockout mice after imiquimod treatment. Furthermore, imiquimod increased CD8+ and CD4+ T-cell infiltration more in transgenic than in wild-type than in knockout mice. In summary, we identified IFN-κ as a rheostat for initiation of psoriasiform inflammation. This suggests that targeting IFN-1s early in the disease may be an effective way of controlling psoriatic inflammation.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J. Wolf-Fortune
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianhua Liu
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon Theros
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamra J. Reed
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lori Lowe
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Gruszka
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole L. Ward
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
85
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
86
|
Dauvergne M, Buob D, Rafat C, Hennino MF, Lemoine M, Audard V, Chauveau D, Ribes D, Cornec-Le Gall E, Daugas E, Pillebout E, Vuiblet V, Boffa JJ. Renal diseases secondary to interferon-β treatment: a multicentre clinico-pathological study and systematic literature review. Clin Kidney J 2021; 14:2563-2572. [PMID: 34950468 PMCID: PMC8690152 DOI: 10.1093/ckj/sfab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background The spectrum of interferon-β (IFN-β)-associated nephropathy remains poorly described and the potential features of this uncommon association remain to be determined. Methods In this study we retrospectively analysed the clinical, laboratory, histological and therapeutic data of patients with biopsy-proven renal disease in a context of IFN-β treatment administered for at least 6 months. Results Eighteen patients (13 women, median age 48 years) with biopsy-proven renal disease occurring during IFN-β therapy were included. The median exposure to IFN-β (14 patients were treated with IFN-β1a and 4 patients with IFN-β1b) was 67 months (range 23–165 months). The clinical presentation consists in hypertension (HT; 83%), malignant HT (44%), proteinuria (protU) >1 g/g (94%), reduced renal function (78%), biological hallmark suggesting thrombotic microangiopathy (TMA; 61%), oedematous syndrome (17%) or nephritic syndrome (11%). The pathological findings included typical features of isolated TMAs in 11 cases, isolated focal segmental glomerulosclerosis (FSGS) lesions in 2 cases and 5 cases with concomitant TMA and FSGS lesions. An exploration of the alternative complement pathway performed in 10 cases (63%) did not identify mutations in genes that regulate the complement system. The statistical analysis highlighted that the occurrence of IFN-β-associated TMA was significantly associated with Rebif, with a weekly dose >50 µg and with multiple weekly injections. In all cases, IFN-β therapy was discontinued. Patients with TMA lesions received other therapies, including corticosteroids (44%), eculizumab (13%) and plasma exchanges (25%). At the end of a 36-month median follow-up, persistent HT and persistent protU were observed in 61% and 22% of patients, respectively. Estimated glomerular filtration rate <60 mL/min/1.73 m2 was present in 61% of patients. Conclusions IFN-β-associated nephropathy must be sought in the case of HT and/or protU onset during treatment. When TMA and/or FSGS are observed on renal biopsy, early discontinuation of IFN-β is essential.
Collapse
Affiliation(s)
- Maxime Dauvergne
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Néphrologie et Dialyses, Paris, France
| | - David Buob
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Cédric Rafat
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Urgences Néphrologiques et Transplantation Rénale, Paris, France
| | - Marie-Flore Hennino
- Centre Hospitalier de Valenciennes, Service de Néphrologie, Valenciennes, France
| | - Mathilde Lemoine
- CHU de Rouen, Service de Néphrologie, Dialyse et Transplantation, Rouen, France
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare Syndrome Néphrotique Idiopathique, Fédération Hospitalo-Universitaire Innovative Therapy for Immune Disorders, Créteil, France
| | - Dominique Chauveau
- CHU Rangueil, Département de Néphrologie et Transplantation d'Organes et Centre de Référence Maladies Rénales Rares SORARE, Toulouse, France
| | - David Ribes
- CHU Rangueil, Département de Néphrologie et Transplantation d'Organes et Centre de Référence Maladies Rénales Rares SORARE, Toulouse, France
| | | | - Eric Daugas
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Néphrologie, Paris, France
| | - Evangéline Pillebout
- Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Louis, Service de Néphrologie, Paris, France
| | - Vincent Vuiblet
- Département de Néphro-Pathologie, Unité de Pathologie, CHU Reims, Reims, France
| | - Jean-Jacques Boffa
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Néphrologie et Dialyses, Paris, France
| | | |
Collapse
|
87
|
Hashemi S, Habibagahi Z, Heidari M, Abdollahpour-Alitappeh M, Karimi MH. Effects of combined aerobic and anaerobic exercise training on cytokine profiles in patients with systemic lupus erythematosus (SLE); a randomized controlled trial. Transpl Immunol 2021; 70:101516. [PMID: 34922023 DOI: 10.1016/j.trim.2021.101516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an inflammatory rheumatic disease characterized by production of autoantibodies and organ damage. Elevated levels of cytokines have been reported in SLE patients. Physical activity could be considered one of the factors that affect the immune system status and function. The aim of the present study was to evaluate the effects of an 8-week supervised aerobic and anaerobic training program on the immune system of SLE patients through evaluation of serum cytokine levels. METHODS This cross-sectional study included 24 SLE patients selected between September 2015 and March 2016. The patients were randomly divided into two groups, including exercise (n = 14) and control (n = 10) groups. The exercise group participated in an 8-week combined supervised exercise training program consisting of three times per week in 60-min exercise sessions. After collection of whole peripheral blood, peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples. Following RNA extraction and cDNA synthesis, the expression levels of IFN-γ, TNF-α, IL-6, IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, and IL-22 were determined using in-house SYBER Green-based real-time polymerase chain reaction (PCR). Lastly, the data obtained were analyzed using t-test. RESULTS The mean and standard deviation of age were 29.00 ± 3.19 and 21.50 ± 5.52 in the intervention and control groups, respectively. No significant differences were found among the mean serum levels of IFN-γ, IL6, IL-9, IL-17A, IL-17F and IL-21 among SLE patients in the intervention and control groups. The mean serum levels of TNF-α, IL2, IL-4, and IL-5 decreased significantly in the intervention as compared with the control group. The mean serum levels of IL-10, IL-13 and IL-22 significantly increased in the control group after eight weeks, as compared with the intervention group. CONCLUSIONS Our findings indicated that the 8-week supervised aerobic and anaerobic training program could result in decreased inflammatory cytokines.
Collapse
Affiliation(s)
- Somayeh Hashemi
- Department of Exercise Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Habibagahi
- Department of Internal Medicine, Shiraz University of Medical Sciences, Iran
| | - Mojdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
88
|
Farhat SCL, Ejnisman C, Alves AGF, Goulart MFG, Lichtenfels AJDFC, Braga ALF, Pereira LAA, Maluf Elias A, Silva CA. Air pollution influence on serum inflammatory interleukins: A prospective study in childhood-onset systemic lupus erythematous patients. Lupus 2021; 30:2268-2275. [PMID: 34879788 DOI: 10.1177/09612033211061479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess the effect of individual exposure, in real-time, to traffic-related pollutants on serum interleukin levels of childhood-onset lupus erythematous systemic (c-SLE) patients. METHODS A longitudinal and observational design was conducted in 12 repeated measures of serum samples and clinical evaluations (totaling 108 measurements) of c-SLE patients over 30 consecutive months. Real-time, individual exposure to fine particles (PM2.5) and nitrogen dioxide (NO2) was measured with portable monitors. Generalized estimating equation was used to evaluate the association between exposure to PM2.5 and NO2 and the following serum cytokine levels on the 7 days preceding clinical assessment and serum collection: MCP1, IL-6, IL-8, IL-10, IL-17, IFN-alpha, and TNF-alpha. Disease activity and other risk factors were also controlled. RESULTS An interquartile range (IQR) increase in PM2.5 daily concentration was significantly associated with increased levels of TNF-alpha on the third, fourth, and seventh day after exposure; IL-10 on the third and fourth day after exposure; IL-17 on the third and seventh day after exposure; and INF-alpha on the third day after exposure (p < 0.05). An IQR increase in 7-day moving average of PM2.5 was associated with a 6.2 pg/mL (95% CI: 0.5; 11.8; p = 0.04) increase in serum IFN-alpha level. An unexpected significant association was observed between an IQR increase in NO27-day cumulative concentration and a decrease of 1.6 pg/mL (95% CI: -2.6; -0.7; p < 0.001) in serum IL-17. CONCLUSION Real-time exposure to PM2.5 prospectively associated with increased serum TNF-alpha, INF-alpha, IL-10, and IL-17 levels in c-SLE patients.
Collapse
Affiliation(s)
- Sylvia Costa Lima Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil
| | - Carolina Ejnisman
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,428062Universidade de Santo Amaro, Sao Paulo, Brazil
| | - Andressa Guariento Ferreira Alves
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Fernanda Giacomin Goulart
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Alfésio Luis Ferreira Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, 67888Universidade Catolica de Santos, Santos, Brazil
| | - Luiz Alberto Amador Pereira
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, 37884Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil
| | - Adriana Maluf Elias
- Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 28133Universidade de Sao Paulo, São Paulo, Brazil
| | - Clovis A Silva
- Pediatric Department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 37884Universidade de Sao Paulo, São Paulo, Brazil.,Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 28133Universidade de Sao Paulo, São Paulo, Brazil.,Division of Rheumatology, Faculdade de Medicina FMUSP, 37884Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
89
|
Abernathy-Close L, Lazar S, Stannard J, Tsoi LC, Eddy S, Rizvi SM, Yee CM, Myers EM, Namas R, Lowe L, Reed TJ, Wen F, Gudjonsson JE, Kahlenberg JM, Berthier CC. B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Front Immunol 2021; 12:775353. [PMID: 34868043 PMCID: PMC8640489 DOI: 10.3389/fimmu.2021.775353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic inflammatory skin disease characterized by a diverse cadre of clinical presentations. CLE commonly occurs in patients with systemic lupus erythematosus (SLE), and CLE can also develop in the absence of systemic disease. Although CLE is a complex and heterogeneous disease, several studies have identified common signaling pathways, including those of type I interferons (IFNs), that play a key role in driving cutaneous inflammation across all CLE subsets. However, discriminating factors that drive different phenotypes of skin lesions remain to be determined. Thus, we sought to understand the skin-associated cellular and transcriptional differences in CLE subsets and how the different types of cutaneous inflammation relate to the presence of systemic lupus disease. In this study, we utilized two distinct cohorts comprising a total of 150 CLE lesional biopsies to compare discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and acute cutaneous lupus erythematosus (ACLE) in patients with and without associated SLE. Using an unbiased approach, we demonstrated a CLE subtype-dependent gradient of B cell enrichment in the skin, with DLE lesions harboring a more dominant skin B cell transcriptional signature and enrichment of B cells on immunostaining compared to ACLE and SCLE. Additionally, we observed a significant increase in B cell signatures in the lesional skin from patients with isolated CLE compared with similar lesions from patients with systemic lupus. This trend was driven primarily by differences in the DLE subgroup. Our work thus shows that skin-associated B cell responses distinguish CLE subtypes in patients with and without associated SLE, suggesting that B cell function in skin may be an important link between cutaneous lupus and systemic disease activity.
Collapse
Affiliation(s)
- Lisa Abernathy-Close
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Stephanie Lazar
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jasmine Stannard
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Syed M Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Christine M Yee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Rajaie Namas
- Division of Rheumatology, Department of Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lori Lowe
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
90
|
Abstract
Neuropsychiatric diseases have traditionally been studied from brain, and mind-centric perspectives. However, mounting epidemiological and clinical evidence shows a strong correlation of neuropsychiatric manifestations with immune system activation, suggesting a likely mechanistic interaction between the immune and nervous systems in mediating neuropsychiatric disease. Indeed, immune mediators such as cytokines, antibodies, and complement proteins have been shown to affect various cellular members of the central nervous system in multitudinous ways, such as by modulating neuronal firing rates, inducing cellular apoptosis, or triggering synaptic pruning. These observations have in turn led to the exciting development of clinical therapies aiming to harness this neuro-immune interaction for the treatment of neuropsychiatric disease and symptoms. Besides the clinic, important theoretical fundamentals can be drawn from the immune system and applied to our understanding of the brain and neuropsychiatric disease. These new frameworks could lead to novel insights in the field and further potentiate the development of future therapies to treat neuropsychiatric disease.
Collapse
|
91
|
Chen YW, Hsieh TY, Lin CH, Chen HM, Lin CC, Chen HH. Association Between a History of Dengue Fever and the Risk of Systemic Autoimmune Rheumatic Diseases: A Nationwide, Population-Based Case-Control Study. Front Med (Lausanne) 2021; 8:738291. [PMID: 34805205 PMCID: PMC8597927 DOI: 10.3389/fmed.2021.738291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose: To determine the association between a history of clinically diagnosed dengue infection and the risk of systemic autoimmune rheumatic diseases (SARDs). Methods: Using claims data from the 1997-2013 Taiwanese National Health Insurance Research Database, we included 74,422 patients who were diagnosed with SARDs and 297,688 patients without SARDs who were matched (in a 1:4 ratio) for age, sex, year of SARDs index date, and city of residence. The associations between the development of SARDs and a history of dengue infection (International Classification of Diseases, Ninth Revision, Clinical Modification code 061) were investigated using conditional logistic regression analysis shown as odds ratios (ORs) with 95% confidence intervals (CIs) after adjusting for potential confounders. Results: We included 17,126 patients with systemic lupus erythematosus (SLE), 15,531 patients with Sjogren's syndrome (SS), 37,685 patients with rheumatoid arthritis (RA), 1,911 patients with systemic sclerosis (SSc), 1,277 patients with dermatomyositis (DM), and 892 patients with polymyositis (PM). SLE (OR, 4.55; 95% CI, 2.77-7.46; p <0.001) risk was significantly associated with a history of dengue infection. However, no statistically significant association was found between dengue infection and SS (OR, 1.41; 95% CI, 0.88-2.26; p = 0.155), RA (OR, 1.03; 95% CI, 0.70-1.50; p = 0.888), SSc (OR, 1.97; 95% CI, 0.38-10.29; p = 0.420), DM (OR, 0.54; 95% CI, 0.04-7.27; p = 0.641), or PM (OR, 2.08; 95% CI, 0.23-18.79; p = 0.513). Conclusion: This study revealed that a history of dengue infection was significantly associated with the risk of SLE, but not SS, RA, SSc, DM, or PM.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.,Department of Medical Education, Taichung Veterans General Hospital, Taichung City, Taiwan.,Ph.D. Program of Business, Feng Chia University, Taichung City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Ching-Heng Lin
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan.,Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsian-Min Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Department of Computer Science and Information Engineering, National United University, Miaoli City, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung City, Taiwan
| | - Chi-Chien Lin
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
92
|
Morel L. Erythrocyte-derived mitochondria: an unexpected interferon inducer in lupus. Trends Immunol 2021; 42:1054-1056. [PMID: 34764015 DOI: 10.1016/j.it.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022]
Abstract
Type 1 interferon (IFN) is a major contributor to the pathogenesis of systemic lupus erythematosus (SLE). A landmark study by Caielli et al. now shows that erythrocytes from lupus patients that fail to switch from glycolysis to oxidative phosphorylation during differentiation retain their mitochondria. These mitochondria-containing erythrocytes represent a novel source of IFN when phagocytosed by macrophages.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
93
|
Brunekreef T, Limper M, Melchers R, Mathsson-Alm L, Dias J, Hoefer I, Haitjema S, van Laar JM, Otten H. Microarray testing in patients with systemic lupus erythematosus identifies a high prevalence of CpG DNA-binding antibodies. Lupus Sci Med 2021; 8:8/1/e000531. [PMID: 34725184 PMCID: PMC8562534 DOI: 10.1136/lupus-2021-000531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Objective Many autoantibodies are known to be associated with SLE, although their role in clinical practice is limited because of low sensitivity and weak associations with clinical manifestations. There has been great interest in the discovery of new autoantibodies to use in clinical practice. In this study, we investigated 57 new and known antibodies and their potential for diagnostics or risk stratification. Methods Between 2014 and 2017, residual sera of all anti-dsDNA tests in the UMC Utrecht were stored in a biobank. This included sera of patients with SLE, patients with a diagnosis of another immune-mediated inflammatory disease (IMID), patients with low (non-IMID) or medium levels of clinical suspicion of SLE but no IMID diagnosis (Rest), and self-reported healthy blood bank donors. Diagnosis and (presence of) symptoms at each blood draw were retrospectively assessed in the patient records with the Utrecht Patient-Oriented Database using a newly developed text mining algorithm. Sera of patients were analysed for the presence of 57 autoantibodies with a custom-made immunofluorescent microarray. Signal intensity cut-offs for all antigens on the microarray were set to the 95th percentile of the non-IMID control group. Differences in prevalence of autoantibodies between patients with SLE and control groups were assessed. Results Autoantibody profiles of 483 patients with SLE were compared with autoantibody profiles of 1397 patients from 4 different control groups. Anti-dsDNA was the most distinguishing feature between patients with SLE and other patients, followed by antibodies against Cytosine-phosphate-Guanine (anti-CpG) DNA motifs (p<0.0001). Antibodies against CMV (cytomegalovirus) and ASCA (anti-Saccharomyces cerevisiae antibodies) were more prevalent in patients with SLE with (a history of) lupus nephritis than patients with SLE without nephritis. Conclusion Antibodies against CpG DNA motifs are prevalent in patients with SLE. Anti-CMV antibodies are associated with lupus nephritis.
Collapse
Affiliation(s)
- Tammo Brunekreef
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maarten Limper
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Rowena Melchers
- Center of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Jorge Dias
- ImmunoDiagnostics Division, Thermo Fisher Scientific, Uppsala, Sweden
| | - Imo Hoefer
- Clinical Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Saskia Haitjema
- Clinical Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Jacob M van Laar
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Henny Otten
- Center of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
94
|
Oh Y, Park R, Kim SY, Park SH, Jo S, Kim TH, Ji JD. B7-H3 regulates osteoclast differentiation via type I interferon-dependent IDO induction. Cell Death Dis 2021; 12:971. [PMID: 34671026 PMCID: PMC8528854 DOI: 10.1038/s41419-021-04275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
While their function, as immune checkpoint molecules, is well known, B7-family proteins also function as regulatory molecules in bone remodeling. B7-H3 is a receptor ligand of the B7 family that functions primarily as a negative immune checkpoint. While the regulatory function of B7-H3 in osteoblast differentiation has been established, its role in osteoclast differentiation remains unclear. Here we show that B7-H3 is highly expressed in mature osteoclasts and that B7-H3 deficiency leads to the inhibition of osteoclastogenesis in human osteoclast precursors (OCPs). High-throughput transcriptomic analyses reveal that B7-H3 inhibition upregulates IFN signaling as well as IFN-inducible genes, including IDO. Pharmacological inhibition of type-I IFN and IDO knockdown leads to reversal of B7-H3-deficiency-mediated osteoclastogenesis suppression. Although synovial-fluid macrophages from rheumatoid-arthritis patients express B7-H3, inhibition of B7-H3 does not affect their osteoclastogenesis. Thus, our findings highlight B7-H3 as a physiologic positive regulator of osteoclast differentiation and implicate type-I IFN-IDO signaling as its downstream mechanism.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Arthritis, Rheumatoid/pathology
- B7 Antigens/deficiency
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Cell Differentiation
- Enzyme Induction/drug effects
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon Type I/metabolism
- Interferon-beta/metabolism
- Macrophage Colony-Stimulating Factor/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Stem Cells/drug effects
- Stem Cells/metabolism
- Suppressor of Cytokine Signaling 1 Protein/metabolism
- Synovial Fluid/metabolism
- Tryptophan/metabolism
- Mice
Collapse
Affiliation(s)
- Younseo Oh
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Rheumatology, College of Medicine, Korea University, Seoul, South Korea
| | - Robin Park
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA, 01702, USA
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sung-Ho Park
- School of Life Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
| | - Jong Dae Ji
- Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
95
|
Wu YR, Hsing CH, Chiu CJ, Huang HY, Hsu YH. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2021; 74:143-156. [PMID: 34668305 DOI: 10.1002/iub.2568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that can affect nearly every organ system in the body. Besides genetic and environmental factors, unbalanced pro-inflammatory and anti-inflammatory cytokines contribute to immune dysregulation, trigger an inflammatory response, and induce tissue and organ damage. Inflammatory responses in SLE can be promoted and/or maintained by the availability of cytokines that are overproduced systemically and/or in local tissues. Several key cytokines have been considered potential targets for the reduction of chronic inflammation in SLE. Recent studies indicated that dysregulated production of several cytokines, including those of the IL-1 family and IL-10 family, orchestrate immune activation and self-tolerance, play critical roles in the pathogenesis of SLE. Among IL-1 family cytokines, IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38 had been the most thoroughly investigated in SLE. Additionally, IL-10 family cytokines, IL-10, IL-20, IL-22, IL-26, IL-28, and IL-29 are dysregulated in SLE. Therefore, a better understanding of the initiation and progression of SLE may provide suitable novel targets for therapeutic intervention. In this review, we discuss the involvement of inflammation in the pathogenesis of SLE, with a focus on IL-1 family and IL-10 family cytokines, and highlight pathophysiological approaches and therapeutic potential for treating SLE.
Collapse
Affiliation(s)
- Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
96
|
Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci 2021; 22:11286. [PMID: 34681945 PMCID: PMC8540355 DOI: 10.3390/ijms222011286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic success in treating patients with systemic lupus erythematosus (SLE) is limited by the multivariate disease etiology, multi-organ presentation, systemic involvement, and complex immunopathogenesis. Agents targeting B-cell differentiation and survival are not efficacious for all patients, indicating a need to target other inflammatory mediators. One such target is the type I interferon pathway. Type I interferons upregulate interferon gene signatures and mediate critical antiviral responses. Dysregulated type I interferon signaling is detectable in many patients with SLE and other autoimmune diseases, and the extent of this dysregulation is associated with disease severity, making type I interferons therapeutically tangible targets. The recent approval of the type I interferon-blocking antibody, anifrolumab, by the US Food and Drug Administration for the treatment of patients with SLE demonstrates the value of targeting this pathway. Nevertheless, the interferon pathway has pleiotropic biology, with multiple cellular targets and signaling components that are incompletely understood. Deconvoluting the complexity of the type I interferon pathway and its intersection with lupus disease pathology will be valuable for further development of targeted SLE therapeutics. This review summarizes the immune mediators of the interferon pathway, its association with disease pathogenesis, and therapeutic modalities targeting the dysregulated interferon pathway.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Katie Streicher
- Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Andre Nogueira da Costa
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Philip Z. Brohawn
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| |
Collapse
|
97
|
Abstract
Many skin manifestations of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection reflect activation of cutaneous and systemic immune responses involving effector pathways of both the innate and adaptive arms of the immune system. This article reviews evidence from the recent clinical and scientific literature that informs the current understanding of the consequences of coronavirus disease 2019 (COVID-19)-induced immune cell activation, as relevant to dermatology. Topics include the clinical consequences of autoantibody production in patients with COVID-19, immunologic evidence for chilblains as a manifestation of SARS-CoV-2 infection, and the relationship between type I interferons and COVID-19 disease severity.
Collapse
Affiliation(s)
- Antonia E Gallman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Medical Scientist Training Program, University of California, San Francisco, 513 Parnassus Avenue, Room HSE1001A, San Francisco, CA 94143, USA
| | - Marlys S Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, 513 Parnassus Avenue, Room HSE1001E, San Francisco, CA 94143, USA.
| |
Collapse
|
98
|
Sharma H, Bose A, Sachdeva R, Malik M, Kumar U, Pal R. Haemoglobin drives inflammation and initiates antigen spread and nephritis in lupus. Immunology 2021; 165:122-140. [PMID: 34549818 DOI: 10.1111/imm.13418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Haemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during erythrocyte lysis. Whether Hb is preferentially inflammatory in lupus and triggers broad anti-self responses was assessed. Peripheral blood mononuclear cells (PBMCs) derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with human Hb than did PBMCs derived from healthy donors, an effect negated by haptoglobin. Ferric murine Hb triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from ageing, lupus-prone NZM2410 mice, and also had mitogenic effects on B cells. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures that contain packaged autoantigens) revealed synergies-in terms of cytokine release and autoantibody production in vitro-that were also restricted to the lupus genotype. Murine ferric Hb activated multiple signalling pathways and, in combination with apoptotic blebs, preferentially triggered MAP kinase signalling specifically in splenocytes isolated from lupus-prone mice. Infusion of murine ferric Hb into lupus-prone mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, possibly in concert with lupus-associated autoantigens, triggers inflammatory responses and the generation of lupus-associated cytokines, and also stimulates the generation of potentially pathogenic lupus-associated autoantibodies, neutralization of Hb could have beneficial effects.
Collapse
Affiliation(s)
- Hritika Sharma
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Anjali Bose
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Ruchi Sachdeva
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Monika Malik
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
99
|
Lee J, Park Y, Jang SG, Hong SM, Song YS, Kim MJ, Baek S, Park SH, Kwok SK. Baricitinib Attenuates Autoimmune Phenotype and Podocyte Injury in a Murine Model of Systemic Lupus Erythematosus. Front Immunol 2021; 12:704526. [PMID: 34497607 PMCID: PMC8419414 DOI: 10.3389/fimmu.2021.704526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Baricitinib, a selective inhibitor for janus kinase (JAK) 1 and JAK2, is approved for use in rheumatoid arthritis. Systemic lupus erythematosus (SLE) is recently regarded as a potential candidate targeted by JAK inhibitors because of the relationship between its pathogenesis and JAK/signal transducer and activator of transcription (STAT) pathway-mediated cytokines such as type I interferons. The objective of this study was to determine whether baricitinib could effectively ameliorate SLE using a murine model Methods To investigate effects of baricitinib on various autoimmune features, especially renal involvements in SLE, eight-week-old MRL/Mp-Faslpr (MRL/lpr) mice were used as a lupus-prone animal model and treated with baricitinib for eight weeks. Immortalized podocytes and primary podocytes and B cells isolated from C57BL/6 mice were used to determine the in vitro efficacy of baricitinib. Results Baricitinib remarkably suppressed lupus-like phenotypes of MRL/lpr mice, such as splenomegaly, lymphadenopathy, proteinuria, and systemic autoimmunity including circulating autoantibodies and pro-inflammatory cytokines. It also modulated immune cell populations and effectively ameliorated renal inflammation, leading to the recovery of the expression of structural proteins in podocytes. According to in vitro experiments, baricitinib treatment could mitigate B cell differentiation and restore disrupted cytoskeletal structures of podocytes under inflammatory stimulation by blocking the JAK/STAT pathway. Conclusions The present study demonstrated that baricitinib could effectively attenuate autoimmune features including renal inflammation of lupus-prone mice by suppressing aberrant B cell activation and podocyte abnormalities. Thus, baricitinib as a selective JAK inhibitor could be a promising therapeutic candidate in the treatment of SLE.
Collapse
Affiliation(s)
- Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Min Hong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Seok Song
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jun Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungYe Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
100
|
Gut Microbiota Has a Crucial Role in the Development of Hypertension and Vascular Dysfunction in Toll-like Receptor 7-Driven Lupus Autoimmunity. Antioxidants (Basel) 2021; 10:antiox10091426. [PMID: 34573058 PMCID: PMC8472682 DOI: 10.3390/antiox10091426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Our group has investigated the involvement of gut microbiota in hypertension in a murine model of systemic lupus erythematosus induced by Toll-like receptor (TLR)-7 activation. Female BALB/c mice were randomly assigned to four experimental groups: an untreated control (CTR), a group treated with the TLR7 agonist imiquimod (IMQ), IMQ-treated with vancomycin, and IMQ-treated with a cocktail of broad-spectrum antibiotics. We carried out faecal microbiota transplant (FMT) from donor CTR or IMQ mice to recipient IMQ or CTR animals, respectively. Vancomycin inhibited the increase in blood pressure; improved kidney injury, endothelial function, and oxidative stress; and reduced T helper (Th)17 infiltration in aortas from IMQ-treated mice. The rise in blood pressure and vascular complications present in IMQ mice were also observed in the CTR mice recipients of IMQ microbiota. Reduced relative populations of Sutterella and Anaerovibrio were associated with high blood pressure in our animals, which were increased after stool transplantation of healthy microbiota to IMQ mice. The reduced endothelium-dependent vasodilator responses to acetylcholine induced by IMQ microbiota were normalized after interleukin-17 neutralization. In conclusion, gut microbiota plays a role in the TLR7-driven increase in Th17 cell, endothelial dysfunction, vascular inflammation, and hypertension. The vascular changes induced by IMQ microbiota were initiated by Th17 infiltrating the vasculature.
Collapse
|