99951
|
Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, He Y. PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. MOLECULAR PLANT 2014; 7:616-25. [PMID: 24157606 PMCID: PMC3973492 DOI: 10.1093/mp/sst142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/07/2013] [Indexed: 05/21/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is an important component in the phytochrome signaling pathway and mediates plant responses to various environmental conditions. We found that PIF3 is involved in the inhibition of root growth of Arabidopsis thaliana seedlings induced by nitric oxide (NO) in light. Overexpression of PIF3 partially alleviated the inhibitory effect of NO on root growth, whereas the pif3-1 mutant displayed enhanced sensitivity to NO in terms of root growth. During phytochrome signaling, the photoreceptor PHYB mediates the degradation of PIF3. We found that the phyB-9 mutant had a similar phenotype to that of PIF3ox in terms of responsiveness to NO. Furthermore, NO treatment promoted the accumulation of PHYB, and thus reduced PIF3 content. Our results further show that the activity of PIF3 is regulated by the DELLA protein RGL3[RGA (repressor of ga1-3) LIKE 3]. Therefore, we speculate that PIF3 lies downstream of PHYB and RGL3, and plays an important role in the inhibitory effect of NO on root growth of Arabidopsis seedlings in light.
Collapse
Affiliation(s)
- Sulan Bai
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Tao Yao
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Miaomiao Li
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Xiaomin Guo
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yaochuan Zhang
- Beijing Vocational College of Agriculture, Beijing 102442, PR China
| | - Shengwei Zhu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100731, PR China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| |
Collapse
|
99952
|
Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FDS, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. MOLECULAR PLANT 2014; 7:709-21. [PMID: 24253199 PMCID: PMC3973494 DOI: 10.1093/mp/sst160] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³⁺, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice.
Collapse
Affiliation(s)
- Rafael Augusto Arenhart
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Yang Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Luiz Felipe Valter de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Lauro Bucker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Mariana Schunemann
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | | | - Jorge Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Adriano Silverio
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- To whom correspondence should be addressed. E-mail , fax 55-51-3308-7311, tel. 55 (51) 3308–9814
| |
Collapse
|
99953
|
Amin NM, Tandon P, Osborne Nishimura E, Conlon FL. RNA-seq in the tetraploid Xenopus laevis enables genome-wide insight in a classic developmental biology model organism. Methods 2014; 66:398-409. [PMID: 23792920 PMCID: PMC3884041 DOI: 10.1016/j.ymeth.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/07/2013] [Accepted: 06/13/2013] [Indexed: 01/08/2023] Open
Abstract
Advances in sequencing technology have significantly advanced the landscape of developmental biology research. The dissection of genetic networks in model and non-model organisms has been greatly enhanced with high-throughput sequencing technologies. RNA-seq has revolutionized the ability to perform developmental biology research in organisms without a published genome sequence. Here, we describe a protocol for developmental biologists to perform RNA-seq on dissected tissue or whole embryos. We start with the isolation of RNA and generation of sequencing libraries. We further show how to interpret and analyze the large amount of sequencing data that is generated in RNA-seq. We explore the abilities to examine differential expression, gene duplication, transcript assembly, alternative splicing and SNP discovery. For the purposes of this article, we use Xenopus laevis as the model organism to discuss uses of RNA-seq in an organism without a fully annotated genome sequence.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Panna Tandon
- University of North Carolina, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | - Frank L Conlon
- University of North Carolina, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA; Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
99954
|
Chen JH, Wang CH, Li YL, Wang HM, Zhang XJ, Yan BL. cDNA cloning and expression characterization of serum transferrin gene from oriental weatherfish Misgurnus anguillicaudatus. JOURNAL OF FISH BIOLOGY 2014; 84:885-896. [PMID: 24673686 DOI: 10.1111/jfb.12307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Abstract
In this study, the cDNA coding serum transferrin (stf) of Misgurnus anguillicaudatus (mastf) was cloned. mastf cDNA is composed of 2326 bp with a 2007 bp open reading frame encoding 668 amino acids. The deduced Mastf protein consists of a signal peptide, two lobes (N and C-lobes) and signature motifs of transferrin (Tf) family. The results of tissue distribution indicated that mastf mRNA was predominantly expressed in the liver. The results indicate that the mastf expression increased significantly in liver, blood, spleen and head kidney after the challenge with Aeromonas sobria, acting as a positive acute protein, suggesting that mastf is related to the immune response. The cloning and expression analysis of mastf further demonstrates the evolutionary conservation of Stf and immune function in vertebrates.
Collapse
Affiliation(s)
- J H Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang 222005, China; Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China; Jiangsu Province R & D Institute of Marine Resources, Huaihai Institute of Technology, Lianyungang 222005, China
| | | | | | | | | | | |
Collapse
|
99955
|
Ballesteros NA, Rodriguez Saint-Jean S, Perez-Prieto SI. Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). FISH & SHELLFISH IMMUNOLOGY 2014; 37:220-228. [PMID: 24561129 DOI: 10.1016/j.fsi.2014.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
A DNA vaccine based on the VP2 gene of infectious pancreatic necrosis virus (IPNV) was incorporated into feed to evaluate the effectiveness of this oral delivery method in rainbow trout. Lyophilized alginate-plasmid complexes were added to feed dissolved in water and the mixture was then lyophilized again. We compared rainbow trout that were fed for 3 consecutive days with vaccine pellets with fish that received the empty plasmid or a commercial pellet. VP2 gene expression could be detected in tissues of different organs in the rainbow trout that received the pcDNA-VP2 coated feed (kidney, spleen, gut and gill) throughout the 15 day time-course of the experiments. This pcDNA-VP2 vaccine clearly induced an innate and specific immune-response, significantly up-regulating IFN-1, IFN-γ, Mx-1, IL8, IL12, IgM and IgT expression. Strong protection, with relative survival rates of 78%-85.9% were recorded in the vaccinated trout, which produced detectable levels of anti-IPNV neutralizing antibodies during 90 days at least. Indeed, IPNV replication was significantly down-regulated in the vaccinated fish 45 days pi.
Collapse
Affiliation(s)
- Natalia A Ballesteros
- Dept. Microbiología Molecular y Biología de las infecciones, Centro de Investigaciones Biológicas (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sylvia Rodriguez Saint-Jean
- Dept. Microbiología Molecular y Biología de las infecciones, Centro de Investigaciones Biológicas (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara I Perez-Prieto
- Dept. Microbiología Molecular y Biología de las infecciones, Centro de Investigaciones Biológicas (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
99956
|
Kim J, Kang HS, Lee YJ, Lee HJ, Yun J, Shin JH, Lee CW, Kwon BM, Hong SH. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett 2014; 349:35-44. [PMID: 24704156 DOI: 10.1016/j.canlet.2014.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/17/2014] [Accepted: 03/23/2014] [Indexed: 01/17/2023]
Abstract
There has been little evidence to support EGR1 and PTEN function on the EMT of cancer cells. We tried to evaluate how these genes affect cancer cell invasion and EMT through investigating the molecular mechanism(s) of 2'-benzoyloxycinnamaldehyde (BCA). Matrigel invasion and wound healing assay, and in vivo mice model were used to evaluate the effect of BCA on colon cancer cell migration. The molecular mechanism(s) of BCA were evaluated by knock-down or overexpression of EGR1 and PTEN. BCA at 50 nM increased E-cadherin and EGR1 expression without cytotoxicity. Cell migration was inhibited significantly by BCA both in vitro and in vivo. Moreover, BCA inhibits Snail and Vimentin expression, as well as β-catenin nuclear accumulation. Suppression of EGR1 by siRNA attenuated the inhibition of matrigel invasion by BCA, indicating that EGR1 is responsible for BCA effect. PTEN was upregulated by BCA treatment or EGR1 overexpression. In addition, shPTEN transfection stimulated EMT and cell invasion in vitro. Our data suggest that BCA leads to a remarkable upregulation of EGR1 expression, and that EMT and invasion is decreased via EGR1-dependent PTEN activation. These data showed a critical role of EGR1-PTEN signaling pathway in the EMT of colon cancer, as well as metastasis.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| | - Hye Suk Kang
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| | - Yu-Jin Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, South Korea.
| | - Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| | - Jieun Yun
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, South Korea.
| | - Jung Hyu Shin
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, South Korea.
| | - Chang Woo Lee
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, South Korea.
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, South Korea.
| | - Su-Hyung Hong
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
99957
|
Liu H, Murthi P, Qin S, Kusuma GD, Borg AJ, Knöfler M, Haslinger P, Manuelpillai U, Pertile MD, Abumaree M, Kalionis B. A novel combination of homeobox genes is expressed in mesenchymal chorionic stem/stromal cells in first trimester and term pregnancies. Reprod Sci 2014; 21:1382-94. [PMID: 24692208 DOI: 10.1177/1933719114526471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues. In adult tissues and organs, stem cells proliferate at low levels in their niche until they receive cues from the microenvironment to differentiate. The homeobox genes that are expressed in the CMSC niche in placental tissues have not been identified. We used the novel strategy of laser capture microdissection to isolate the stromal component of first trimester villi and excluded the cytotrophoblast and syncytiotrophoblast layers that comprise the outer layer of the chorionic villi. Microarray analysis was then used to screen for homeobox genes in the microdissected tissue. Candidate homeobox genes were selected for further RNA analysis. Immunohistochemistry of candidate genes in first trimester placental villous stromal tissue revealed homeobox genes Meis1, myeloid ectropic viral integration site 1 homolog 2 (MEIS2), H2.0-like Drosophila (HLX), transforming growth factor β-induced factor (TGIF), and distal-less homeobox 5 (DLX5) were expressed in the vascular niche where CMSCs have been shown to reside. Expression of MEIS2, HLX, TGIF, and DLX5 was also detected in scattered stromal cells. Real-time polymerase chain reaction and immunocytochemistry verified expression of MEIS2, HLX, TGIF, and DLX5 homeobox genes in first trimester and term CMSCs. These data suggest a combination of regulatory homeobox genes is expressed in CMSCs from early placental development to term, which may be required for stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Obstetrics and Gynaecology, QiLu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Padma Murthi
- Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women's Hospital, Parkville, Victoria, Australia Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sharon Qin
- Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women's Hospital, Parkville, Victoria, Australia Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Gina D Kusuma
- Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women's Hospital, Parkville, Victoria, Australia Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Anthony J Borg
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Ursula Manuelpillai
- Centre for Genetic Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria
| | - Mark D Pertile
- VCGS, Murdoch Children's Research Institute, Royal Childrens Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Mohamed Abumaree
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences/ King Abdulla International Medical Research Center, Riyadh, Saudi Arabia
| | - Bill Kalionis
- Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women's Hospital, Parkville, Victoria, Australia Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
99958
|
Sturtz LA, Deyarmin B, van Laar R, Yarina W, Shriver CD, Ellsworth RE. Gene expression differences in adipose tissue associated with breast tumorigenesis. Adipocyte 2014; 3:107-14. [PMID: 24719783 DOI: 10.4161/adip.28250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/29/2022] Open
Abstract
Long thought to function only as an inert energy storage depot, the role of adipose tissue in breast tumorigenesis has been largely ignored. In light of increasing rates of obesity and use of breast conserving therapy and autologous fat grafting, improved understanding of the role of adipose tissue in tumor etiology is crucial. Thus, adipose tissue adjacent to and distant from invasive breast tumors (n = 20), or adjacent to non-malignant diagnoses (n = 20) was laser microdissected from post-menopausal women. Gene expression data were generated using microarrays and data analyzed to identify significant patterns of differential expression between adipose tissue groups at the individual gene and molecular pathway level. Pathway analysis revealed significant differences in immune response between non-malignant, distant, and tumor-adjacent adipose tissue, with the highest response in tumor-adjacent and lowest in non-malignant adipose tissue. Adipose tissue from invasive breasts exhibits increased expression of anti-inflammatory genes such as MARCO and VSIG4 while genes differentially expressed between tumor-adjacent and distant adipose tissue such as SPP1, RRM2, and MMP9, are associated with increased cellular proliferation, invasion, and angiogenesis. These data suggest that molecular profiles of adipose tissue differ depending on presence of or proximity to tumor cells. Heightened immunotolerance in adipose tissue from invasive breasts provides a microenvironment favorable to tumorigenesis. In addition, tumor-adjacent adipose tissue demonstrates expression of genes associated with tumor growth and progression. Thus, adipose tissue is not an inert component of the breast microenvironment but plays an active role in tumorigenesis.
Collapse
|
99959
|
Hansson C, Alvarez-Crespo M, Taube M, Skibicka KP, Schmidt L, Karlsson-Lindahl L, Egecioglu E, Nissbrandt H, Dickson SL. Influence of ghrelin on the central serotonergic signaling system in mice. Neuropharmacology 2014; 79:498-505. [DOI: 10.1016/j.neuropharm.2013.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 02/09/2023]
|
99960
|
Metabolic consequences of timed feeding in mice. Physiol Behav 2014; 128:188-201. [DOI: 10.1016/j.physbeh.2014.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 01/02/2023]
|
99961
|
Aranjuelo I, Doustaly F, Cela J, Porcel R, Müller M, Aroca R, Munné-Bosch S, Bourguignon J. Glutathione and transpiration as key factors conditioning oxidative stress in Arabidopsis thaliana exposed to uranium. PLANTA 2014; 239:817-30. [PMID: 24389672 DOI: 10.1007/s00425-013-2014-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/12/2013] [Indexed: 05/23/2023]
Abstract
Although oxidative stress has been previously described in plants exposed to uranium (U), some uncertainty remains about the role of glutathione and tocopherol availability in the different responsiveness of plants to photo-oxidative damage. Moreover, in most cases, little consideration is given to the role of water transport in shoot heavy metal accumulation. Here, we investigated the effect of uranyl nitrate exposure (50 μM) on PSII and parameters involved in water transport (leaf transpiration and aquaporin gene expression) of Arabidopsis wild type (WT) and mutant plants that are deficient in tocopherol (vte1: null α/γ-tocopherol and vte4: null α-tocopherol) and glutathione biosynthesis (high content: cad1.3 and low content: cad2.1). We show how U exposure induced photosynthetic inhibition that entailed an electron sink/source imbalance that caused PSII photoinhibition in the mutants. The WT was the only line where U did not damage PSII. The increase in energy thermal dissipation observed in all the plants exposed to U did not avoid photo-oxidative damage of mutants. The maintenance of control of glutathione and malondialdehyde contents probed to be target points for the overcoming of photoinhibition in the WT. The relationship between leaf U content and leaf transpiration confirmed the relevance of water transport in heavy metals partitioning and accumulation in leaves, with the consequent implication of susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31192, Mutilva Baja, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
99962
|
Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Fälth M, Stindt J, Königer C, Nassal M, Kubitz R, Sültmann H, Urban S. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014; 146:1070-83. [PMID: 24361467 DOI: 10.1053/j.gastro.2013.12.024] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatitis B and D viruses (HBV and HDV) are human pathogens with restricted host ranges and high selectivity for hepatocytes; the HBV L-envelope protein interacts specifically with a receptor on these cells. We aimed to identify this receptor and analyze whether it is the recently described sodium-taurocholate co-transporter polypeptide (NTCP), encoded by the SLC10A1 gene. METHODS To identify receptor candidates, we compared gene expression patterns between differentiated HepaRG cells, which express the receptor, and naïve cells, which do not. Receptor candidates were evaluated by small hairpin RNA silencing in HepaRG cells; the ability of receptor expression to confer binding and infection were tested in transduced hepatoma cell lines. We used interspecies domain swapping to identify motifs for receptor-mediated host discrimination of HBV and HDV binding and infection. RESULTS Bioinformatic analyses of comparative expression arrays confirmed that NTCP, which was previously identified through a biochemical approach is a bona fide receptor for HBV and HDV. NTCPs from rat, mouse, and human bound Myrcludex B, a peptide ligand derived from the HBV L-protein. Myrcludex B blocked NTCP transport of bile salts; small hairpin RNA-mediated knockdown of NTCP in HepaRG cells prevented their infection by HBV or HDV. Expression of human but not mouse NTCP in HepG2 and HuH7 cells conferred a limited cell-type-related and virus-dependent susceptibility to infection; these limitations were overcome when cells were cultured with dimethyl sulfoxide. We identified 2 short-sequence motifs in human NTCP that were required for species-specific binding and infection by HBV and HDV. CONCLUSIONS Human NTCP is a specific receptor for HBV and HDV. NTCP-expressing cell lines can be efficiently infected with these viruses, and might be used in basic research and high-throughput screening studies. Mapping of motifs in NTCPs have increased our understanding of the species specificities of HBV and HDV, and could lead to small animal models for studies of viral infection and replication.
Collapse
Affiliation(s)
- Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Mehrle
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Shirin Nkongolo
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christina Kaufman
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Fälth
- German Cancer Research Center and National Center for Tumor Diseases, Unit Cancer Genome Research, Heidelberg, Germany
| | - Jan Stindt
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Königer
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Michael Nassal
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Ralf Kubitz
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Holger Sültmann
- German Cancer Research Center and National Center for Tumor Diseases, Unit Cancer Genome Research, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
99963
|
Srinivasan P, Subramanian VS, Said HM. Mechanisms involved in the inhibitory effect of chronic alcohol exposure on pancreatic acinar thiamin uptake. Am J Physiol Gastrointest Liver Physiol 2014; 306:G631-9. [PMID: 24525018 PMCID: PMC3962591 DOI: 10.1152/ajpgi.00420.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic acinar cells (PAC) obtain thiamin from the circulation via a carrier-mediated process that involves thiamin transporters 1 and 2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3, respectively). Chronic alcohol exposure of PAC inhibits thiamin uptake, and, on the basis of in vitro studies, this inhibition appears to be transcriptionally mediated. The aim of this study was to confirm the involvement of a transcriptional mechanism in mediating the chronic alcohol effect in in vivo settings and to delineate the molecular mechanisms involved. Using transgenic mice carrying full-length SLC19A2 and SLC19A3 promoters, we found that chronic alcohol feeding led to a significant reduction in the activity of SLC19A2 and SLC19A3 promoters (as well as in thiamin uptake and expression of THTR-1 and -2). Similar findings were seen in 266-6 cells chronically exposed to alcohol in vitro. In the latter studies, the alcohol inhibitory effect was found to be mediated via the minimal SLC19A2 and SLC19A3 promoters and involved the cis-regulatory elements stimulating protein 1 (SP1)/gut-enriched Kruppel-like factor and SP1-GG-box and SP1/GC, respectively. Chronic alcohol exposure of PAC also led to a significant reduction in the expression of the SP1 transcription factor, which upon correction (via expression) led to the prevention of alcohol inhibitory effects on not only the activity of SLC19A2 and SLC19A3 promoters but also on the expression of THTR-1 and -2 mRNA and thiamin uptake. These results demonstrate that the inhibitory effect of chronic alcohol exposure on physiological/molecular parameters of thiamin uptake by PAC is mediated via specific cis-regulatory elements in SLC19A2 and SLC19A3 minimal promoters.
Collapse
Affiliation(s)
- Padmanabhan Srinivasan
- Department of Medical Research, VA Medical Center, Long Beach; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Veedamali S. Subramanian
- Department of Medical Research, VA Medical Center, Long Beach; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Hamid M. Said
- Department of Medical Research, VA Medical Center, Long Beach; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| |
Collapse
|
99964
|
Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Müller C, de Jong M, Jahr H, Weinans H. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage 2014; 22:591-600. [PMID: 24561282 DOI: 10.1016/j.joca.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. METHODS Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. RESULTS FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. CONCLUSION FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA.
Collapse
Affiliation(s)
- M Siebelt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A E van der Windt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H C Groen
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Sandker
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H Waarsing
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Müller
- Center for Radiopharmaceutical Sciences PSI-ETH-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - M de Jong
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Jahr
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Orthopedic Surgery, University Hospital RWTH, Aachen, Germany
| | - H Weinans
- Department of Biomechanical Engineering, TU Delft, The Netherlands; Department of Orthopaedics, UMC Utrecht, The Netherlands; Department of Rheumatology, UMC Utrecht, The Netherlands
| |
Collapse
|
99965
|
Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 2014; 447:139-44. [DOI: 10.1016/j.bbrc.2014.03.133] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 01/18/2023]
|
99966
|
Nkongolo S, Ni Y, Lempp FA, Kaufman C, Lindner T, Esser-Nobis K, Lohmann V, Mier W, Mehrle S, Urban S. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol 2014; 60:723-31. [PMID: 24295872 DOI: 10.1016/j.jhep.2013.11.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis B and hepatitis D are global health problems caused by the human hepatitis B and hepatitis D virus. The myristoylated preS1 domain of the large envelope protein mediates specific binding to hepatocytes by sodium taurocholate co-transporting polypeptide (NTCP). NTCP is a bile salt transporter known to be inhibited by cyclosporin A. This study aimed to characterize the effect of cyclosporin A on HBV/HDV infection. METHODS HepaRG cells, primary human hepatocytes, and susceptible NTCP-expressing hepatoma cell lines were applied for infection experiments. The mode of action of cyclosporin A was studied by comparing the effect of different inhibitors, cyclophilin A/B/C-silenced cell lines as well as NTCP variants and mutants. Bile salt transporter and HBV receptor functions were investigated by taurocholate uptake and quantification of HBVpreS binding. RESULTS Cyclosporin A inhibited hepatitis B and D virus infections during and--less pronounced--prior to virus inoculation. Binding of HBVpreS to NTCP was blocked by cyclosporin A concentrations at 8 μM. An NTCP variant deficient in HBVpreS binding but competent for bile salt transport showed resistance to cyclosporin A. Silencing of cyclophilins A/B/C did not abrogate transporter and receptor inhibition. In contrast, tacrolimus, a cyclophilin-independent calcineurin inhibitor, was inactive. CONCLUSIONS HBV and HDV entry via sodium taurocholate co-transporting polypeptide is inhibited by cyclosporin A. The interaction between the drug and the viral receptor is direct and overlaps with a functional binding site of the preS1 domain, which mediates viral entry.
Collapse
Affiliation(s)
- Shirin Nkongolo
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Christina Kaufman
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany; Department of Nuclear Medicine, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Katharina Esser-Nobis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Stefan Mehrle
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, D 69120 Heidelberg, Germany.
| |
Collapse
|
99967
|
Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 2014; 155:1476-88. [PMID: 24437491 DOI: 10.1210/en.2013-1959] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Females with differentiated ovary of a gonochoristic fish, Nile tilapia, were masculinized by long-term treatment with an aromatase inhibitor (Fadrozole) in the present study. The reversed gonads developed into functional testes with fertile sperm. The longer the fish experienced sex differentiation, the longer treatment time was needed for successful sex reversal. Furthermore, Fadrozole-induced sex reversal, designated as secondary sex reversal (SSR), was successfully rescued by supplement of exogenous 17β-estradiol. Gonadal histology, immunohistochemistry, transcriptome, and serum steroid level were analyzed during SSR. The results indicated that spermatogonia were transformed from oogonia or germline stem cell-like cells distributed in germinal epithelium, whereas Leydig and Sertoli cells probably came from the interstitial cells and granulosa cells of the ovarian tissue, respectively. The transdifferentiation of somatic cells, as indicated by the appearance of doublesex- and Mab-3-related transcription factor 1 (pre-Sertoli cells) and cytochrome P450, family 11, subfamily B, polypeptide 2 (pre-Leydig cells)-positive cells in the ovary, provided microniche for the transdifferentiation of germ cells. Decrease of serum 17β-estradiol was detected earlier than increase of serum 11-ketotestosterone, indicating that decrease of estrogen was the cause, whereas increase of androgen was the consequence of SSR. The sex-reversed gonad displayed more similarity in morphology and histology with a testis, whereas the global gene expression profiles remained closer to the female control. Detailed analysis indicated that transdifferentiation was driven by suppression of female pathway genes and activation of male pathway genes. In short, SSR provides a good model for study of sex reversal in teleosts and for understanding of sex determination and differentiation in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Li-Na Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) (L.-N.S., X.-L.J., Q.-P.X., J.Y., B.-F.H., W.-J.T., L.-Y.Z., D.-S.W.), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715 Chongqing, People's Republic of China; Solution-Oriented Research for Science and Technology (Y.N.) and Laboratory of Reproductive Biology (Y.N.), National Institute for Basic Biology, Okazaki 444-8585, Japan; and South Ehime Fisheries Research Center (Y.N.), Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
99968
|
Klanert G, Jadhav V, Chanoumidou K, Grillari J, Borth N, Hackl M. Endogenous microRNA clusters outperform chimeric sequence clusters in Chinese hamster ovary cells. Biotechnol J 2014; 9:538-44. [PMID: 24323929 PMCID: PMC4282078 DOI: 10.1002/biot.201300216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/18/2013] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (∼22 nucleotides) which regulate gene expression by silencing mRNA translation. MiRNAs are transcribed as long primary transcripts, which are enzymatically processed by Drosha/Dgcr8, in the nucleus, and by Dicer in the cytoplasm, into mature miRNAs. The importance of miRNAs for coordinated gene expression is commonly accepted. Consequentially, there is a growing interest in the application of miRNAs to improve phenotypes of mammalian cell factories such as Chinese hamster ovary (CHO) cells. Few studies have reported the targeted over-expression of miRNAs in CHO cells using vector-based systems. These approaches were hampered by limited sequence availability, and required the design of "chimeric" miRNA genes, consisting of the mature CHO miRNA sequence encompassed by murine flanking and loop sequences. Here we show that the substitution of chimeric sequences with CHO-specific sequences for expression of miRNA clusters yields significantly higher expression levels of the mature miRNA in the case of miR-221/222 and miR-15b/16. Our data suggest that the Drosha/Dgcr8-mediated excision from primary transcripts is reduced for chimeric miRNA sequences compared to the endogenous sequence. Overall, this study provides important guidelines for the targeted over-expression of clustered miRNAs in CHO cells. See accompanying commentary by Baik and Lee DOI: 10.1002/biot.201300503.
Collapse
Affiliation(s)
- Gerald Klanert
- Department of BiotechnologyBoku University Vienna, Austria
- ACIB GmbH, Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Vaibhav Jadhav
- Department of BiotechnologyBoku University Vienna, Austria
| | | | | | - Nicole Borth
- Department of BiotechnologyBoku University Vienna, Austria
- ACIB GmbH, Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Matthias Hackl
- Department of BiotechnologyBoku University Vienna, Austria
| |
Collapse
|
99969
|
Snell TW, Johnston RK, Rabeneck B, Zipperer C, Teat S. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp Gerontol 2014; 52:55-69. [PMID: 24486130 PMCID: PMC3970784 DOI: 10.1016/j.exger.2014.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/30/2022]
Abstract
The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent marker MitoTracker and lysosome activity using LysoTracker. Treatment of rotifers with JNK inhibitor enhanced mitochondria activity nearly 3-fold, whereas rapamycin treatment had no significant effect. Treatment of rotifers with rapamycin or JNK inhibitor reduced lysosome activity in 1, 3 and 8 day old animals, but treatment with both inhibitors did not produce any additive effect. We conclude that inhibition of TOR and JNK pathways significantly extends the lifespan of B. manjavacas. These pathways interact so that inhibition of both simultaneously acts additively to extend rotifer lifespan more than the inhibition of either alone.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | - Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Brett Rabeneck
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Cody Zipperer
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Stephanie Teat
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
99970
|
Schneider A, Steinberger I, Strissel H, Kunz HH, Manavski N, Meurer J, Burkhard G, Jarzombski S, Schünemann D, Geimer S, Flügge UI, Leister D. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:344-356. [PMID: 24612058 DOI: 10.1111/tpj.12474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/04/2014] [Indexed: 05/28/2023]
Abstract
Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling-lethal. This phenotype was rescued by expressing TerC fused C-terminally to GFP in the terc-1 background, and the resulting terc-1TerC- GFP line and an artificial miRNA-based knockdown allele (amiR-TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR-TerC plants and terc-1TerC- GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two-hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co-immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR-TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.
Collapse
Affiliation(s)
- Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig Maximilians Universität München, 82152, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99971
|
Min JH, Ju HW, Yang KY, Chung JS, Cho BH, Kim CS. Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:7-14. [PMID: 24525351 DOI: 10.1016/j.plaphy.2014.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/18/2014] [Indexed: 05/28/2023]
Abstract
Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. LsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase LsRZF1 is an important regulator of water deficit stress during early seedling development.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jung-Sung Chung
- Department of Agronomy, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Baik-Ho Cho
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
99972
|
Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. MOLECULAR PLANT PATHOLOGY 2014; 15:255-64. [PMID: 24118790 PMCID: PMC6638815 DOI: 10.1111/mpp.12085] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute of Plant Protection (IPP), National Research Council of Italy (CNR), Via G. Amendola 122/D, 70126, Bari, Italy
| | | | | |
Collapse
|
99973
|
Ludtmann MHR, Otto GP, Schilde C, Chen ZH, Allan CY, Brace S, Beesley PW, Kimmel AR, Fisher P, Killick R, Williams RSB. An ancestral non-proteolytic role for presenilin proteins in multicellular development of the social amoeba Dictyostelium discoideum. J Cell Sci 2014; 127:1576-84. [PMID: 24463814 PMCID: PMC3970561 DOI: 10.1242/jcs.140939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/29/2013] [Indexed: 11/20/2022] Open
Abstract
Mutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism Dictyostelium discoideum. We show that the block in Dictyostelium development caused by the ablation of both Dictyostelium presenilins is rescued by the expression of human presenilin 1, restoring the terminal differentiation of multiple cell types. This developmental role is independent of proteolytic activity, because the mutation of both catalytic aspartates does not affect presenilin ability to rescue development, and the ablation of nicastrin, a γ-secretase component that is crucial for proteolytic activity, does not block development. The role of presenilins during Dictyostelium development is therefore independent of their proteolytic activity. However, presenilin loss in Dictyostelium results in elevated cyclic AMP (cAMP) levels and enhanced stimulation-induced calcium release, suggesting that presenilins regulate these intracellular signalling pathways. Our data suggest that presenilin proteins perform an ancient non-proteolytic role in regulating intracellular signalling and development, and that Dictyostelium is a useful model for analysing human presenilin function.
Collapse
Affiliation(s)
- Marthe H. R. Ludtmann
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Grant P. Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | | | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Claire Y. Allan
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Selina Brace
- Centre for Ecology and Evolution, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Philip W. Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Alan R. Kimmel
- NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Fisher
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Richard Killick
- Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| |
Collapse
|
99974
|
Liu X, Wang J, Xu J, Shi J. FgIlv5 is required for branched-chain amino acid biosynthesis and full virulence in Fusarium graminearum. Microbiology (Reading) 2014; 160:692-702. [DOI: 10.1099/mic.0.075333-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this study, we characterized FgIlv5, a homologue of the Saccharomyces cerevisiae keto-acid reductoisomerase (KARI) from the important wheat head scab fungus Fusarium graminearum. KARI is a key enzyme in the branched-chain amino acid (BCAA, including leucine, isoleucine and valine) biosynthetic pathway that exists in a variety of organisms from bacteria to fungi and higher plants, but not in mammals. The FgILV5 deletion mutant ΔFgIlv5-4 failed to grow when the culture medium was nutritionally limited for BCAAs. When grown on potato-dextrose agar plates, ΔFgIlv5-4 exhibited a significant decrease in aerial hyphae formation and red pigmentation. Conidia formation was also blocked in ΔFgIlv5-4. Exogenous addition of 1 mM isoleucine and valine was able to rescue the defects of mycelial growth and conidial morphogenesis. Cellular stress assays showed that ΔFgIlv5-4 was more sensitive to osmotic and oxidative stresses than the wild-type strain. In addition, virulence of ΔFgIlv5-4 was dramatically reduced on wheat heads, and a low level of deoxynivalenol production was detected in ΔFgIlv5-4 in wheat kernels. The results of this study indicate that FgIlv5 is involved in valine and isoleucine biosynthesis and is required for full virulence in F. graminearum.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture/Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China
| | - Jian Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture/Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China
| | - Jianhong Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture/Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China
| | - Jianrong Shi
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Nanjing), Ministry of Agriculture/Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China
| |
Collapse
|
99975
|
Pautasso C, Rossi S. Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:275-87. [DOI: 10.1016/j.bbagrm.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
|
99976
|
Iwakami S, Uchino A, Kataoka Y, Shibaike H, Watanabe H, Inamura T. Cytochrome P450 genes induced by bispyribac-sodium treatment in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. PEST MANAGEMENT SCIENCE 2014; 70:549-58. [PMID: 23650123 DOI: 10.1002/ps.3572] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/27/2013] [Accepted: 05/06/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Incremental herbicide metabolism by cytochrome P450 monooxygenases (P450s) has been proposed as the basis for resistance to bispyribac-sodium (bispyribac) in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. Upon exposure to bispyribac, strong induction of bispyribac-metabolising P450 activity has been reported in the resistant line, indicating that P450s induced by bispyribac are involved in the bispyribac resistance. RESULTS A polymerase chain reaction (PCR)-based cloning strategy was used to isolate 39 putative P450 genes from the bispyribac-resistant line of E. phyllopogon. Expression analysis by real-time PCR revealed that seven of the isolated genes were upregulated in response to bispyribac treatment of seedlings at the three-leaf stage. The transcript levels and protein sequences of the seven genes were compared between the bispyribac-resistant line and a susceptible line. CYP71AK2 and CYP72A254 were transcribed prominently in the bispyribac-resistant line. Amino acid polymorphisms were found in three genes, including CYP72A254. CONCLUSION Upregulated expression of these genes is consistent with the inducible herbicide-metabolising P450 activity under bispyribac stress that was reported in a previous study. This is the first study to compare P450 genes in arable weed species in order to elucidate the mechanism for P450-mediated herbicide resistance.
Collapse
Affiliation(s)
- Satoshi Iwakami
- Kyoto University, Graduate School of Agriculture, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
99977
|
Profiling of differentially expressed genes in ectomycorrhizal fungus Pisolithus tinctorius responding to mycorrhiza helper Brevibacillus reuszeri MPt17. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0344-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99978
|
Huang B, Huang WS, Nie P. Cloning and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production. FISH & SHELLFISH IMMUNOLOGY 2014; 37:239-247. [PMID: 24565894 DOI: 10.1016/j.fsi.2014.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel.
Collapse
Affiliation(s)
- Bei Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - Wen Shu Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - P Nie
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
99979
|
Nogo receptor homolog NgR2 expressed in sensory DRG neurons controls epidermal innervation by interaction with Versican. J Neurosci 2014; 34:1633-46. [PMID: 24478347 DOI: 10.1523/jneurosci.3094-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor homolog NgR2 is essential for proper cutaneous innervation. NgR2(-/-) mice display increased density of nonpeptidergic nociceptors in the footpad and exhibit enhanced sensitivity to mechanical force and innocuous cold temperatures. These sensory deficits are not associated with any abnormality in morphology or density of DRG neurons. However, deletion of NgR2 renders nociceptive nonpeptidergic sensory neurons insensitive to the outgrowth repulsive activity of skin-derived Versican. Biochemical evidence shows that NgR2 specifically interacts with the G3 domain of Versican. The data suggest that Versican/NgR2 signaling at the dermo-epidermal junction acts in vivo as a local suppressor of axonal plasticity to control proper density of epidermal sensory fiber innervation. Our findings not only reveal the existence of a novel and unsuspected mechanism regulating epidermal target innervation, but also provide the first evidence for a physiological role of NgR2 in the peripheral nervous system.
Collapse
|
99980
|
Aïello V, Moreno-Asso A, Servitja JM, Martín M. Thyroid hormones promote endocrine differentiation at expenses of exocrine tissue. Exp Cell Res 2014; 322:236-48. [DOI: 10.1016/j.yexcr.2014.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/17/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
|
99981
|
Elevated expression level of microRNA-196a is predictive of intestinal-type intraductal papillary mucinous neoplasm of the pancreas. Pancreas 2014; 43:361-6. [PMID: 24622064 DOI: 10.1097/mpa.0000000000000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Aberrant expression of several microRNAs (miRs) has been reported in various neoplasms including intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. MicroRNA-196a (miR-196a) is up-regulated in Barrett esophagus (characterized by intestinal metaplasia) and in colorectal cancer; this relationship between intestinal characteristics and miR-196a might also be applicable to intestinal-type IPMNs. The aim of this study was to evaluate whether intestinal-type IPMNs can be discriminated from non-intestinal-type IPMNs by the expression level of miR-196a in tissue and pancreatic juice samples. METHODS Thirty-seven formalin-fixed paraffin-embedded tissue samples (including 3 of normal pancreatic ducts) and 36 pancreatic juice samples were obtained. The expression level of miR-196a measured by quantitative reverse transcription-polymerase chain reaction assays was compared between intestinal-type and non-intestinal-type IPMNs. RESULTS MicroRNA-196a expression in intestinal-type IPMN tissue samples (n = 18) was significantly higher than that of non-intestinal-type IPMNs (n = 16) (P < 0.001). Similarly, miR-196a expression in pancreatic juice samples of intestinal-type IPMNs (n = 6) was significantly higher than that of non-intestinal-type IPMNs (n = 30) (P = 0.008), and the sensitivity and specificity for prediction of intestinal-type IPMNs using pancreatic juice samples were both 83%. CONCLUSIONS Elevated expression of miR-196a in pancreatic juice samples is predictive of intestinal-type IPMNs.
Collapse
|
99982
|
Tuñón-Le Poultel D, Cannata-Andía JB, Román-García P, Díaz-López JB, Coto E, Gómez C, Naves-Díaz M, Rodríguez I. Association of matrix Gla protein gene functional polymorphisms with loss of bone mineral density and progression of aortic calcification. Osteoporos Int 2014; 25:1237-46. [PMID: 24281054 DOI: 10.1007/s00198-013-2577-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
Abstract
UNLABELLED Two matrix Gla protein (MGP) polymorphisms were associated with progression of aortic calcification and femoral neck bone loss in men. All these findings were also functionally corroborated in two vascular and bone in vitro systems indicating that MGP genetic variations can be partly responsible of higher risk of bone loss and vascular calcification. INTRODUCTION MGP plays an important role in bone and vascular mineralization as confirmed by MGP-deficient murine model. We therefore aimed to find a genetic association among -138T>C, -7G>A, and Thr83Ala MGP single-nucleotide polymorphisms (SNPs), bone loss, and progression of aortic calcification in a randomly selected general population of 296 individuals who participated in the European Vertebral Osteoporosis Study. METHODS To evaluate the rate of change in bone mineral density (BMD) and the progression of aortic calcification, dual X-ray absorptiometry and lateral spine X-rays were performed at baseline and after 4 years of follow-up. Genotyping for the three polymorphisms was carried out using polymerase chain reaction and restriction fragment length analysis. In addition, functional studies of MGP-7G>A and Thr83Ala SNPs were performed on transiently transfected osteoblast-like UMR-106 and vascular smooth muscle A7r5 cells. RESULTS The proportion of men who had lost BMD in the femoral neck was higher among homozygous -7AA and 83Ala-Ala (p = 0.039 and p = 0.009, respectively), and also featured a higher risk of progression of aortic calcifications (OR = 5.6, 95% CI = 1.2-27.8 and OR = 6.8, 95% CI = 1.4-32.3, respectively). No effect was observed in women. The MGP-7A allele produced a reduction in luciferase activity compared to MGP-7G: 47% less in vascular cells and 34% less in bone cells (p = 0.001 and 0.012, respectively). In vascular cells under calcifying conditions, the MGP 83Thr allele showed a slightly higher, although not significant, inhibition than the MGP 83 Ala allele in calcium content suggesting functional differences between both variants. CONCLUSION These results suggest that MGP genetic variations could predict a higher risk of bone loss and progression of vascular calcification in men.
Collapse
Affiliation(s)
- D Tuñón-Le Poultel
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN from ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
99983
|
Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci Rep 2014; 4:4549. [PMID: 25008545 PMCID: PMC4091094 DOI: 10.1038/srep04549] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/13/2014] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) replication is dependent on the formation of specialized membrane structures; however, the host factor requirements for the formation of these HCV complexes remain unclear. Herein, we demonstrate that inhibition of stearoyl-CoA desaturase 1 (SCD-1) halts the biosynthesis of unsaturated fatty acids, such as oleic acid, and negatively modulates HCV replication. Unsaturated fatty acids play key roles in membrane curvature and fluidity. Mechanistically, we demonstrate that SCD-1 inhibition disrupts the integrity of membranous HCV replication complexes and renders HCV RNA susceptible to nuclease-mediated degradation. Our work establishes a novel function for unsaturated fatty acids in HCV replication.
Collapse
|
99984
|
Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA. Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 2014; 29:892-901. [PMID: 23996396 PMCID: PMC4541795 DOI: 10.1002/jbmr.2088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Odontoblasts, cementoblasts, ameloblasts, and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wntless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin (OCN), which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-Cre;Wls(fl/fl) mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt-mediated misregulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits dentin sialoprotein (DSP); this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wls(fl/fl) mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex.
Collapse
Affiliation(s)
- Won Hee Lim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA; Department of Orthodontics, School of Dentistry & Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99985
|
Cassone BJ, Michel AP, Stewart LR, Bansal R, Mian MR, Redinbaugh MG. Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect. Genome Biol Evol 2014; 6:873-85. [PMID: 24682151 PMCID: PMC4007533 DOI: 10.1093/gbe/evu057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogens and their vectors have coevolutionary histories that are intricately intertwined with their ecologies, environments, and genetic interactions. The soybean aphid, Aphis glycines, is native to East Asia but has quickly become one of the most important aphid pests in soybean-growing regions of North America. In this study, we used bioassays to examine the effects of feeding on soybean infected with a virus it vectors (Soybean mosaic virus [SMV]) and a virus it does not vector (Bean pod mottle virus [BPMV]) have on A. glycines survival and fecundity. The genetic underpinnings of the observed changes in fitness phenotype were explored using RNA-Seq. Aphids fed on SMV-infected soybean had transcriptome and fitness profiles that were similar to that of aphids fed on healthy control plants. Strikingly, a significant reduction in fecundity was seen in aphids fed on BPMV-infected soybean, concurrent with a large and persistent downregulation of A. glycines transcripts involved in regular cellular activities. Although molecular signatures suggested a small regulatory RNA pathway defense response was repressed in aphids feeding on infected plants, BPMV did not appear to be replicating in the vector. These results suggest that incompatibilities with BPMV or the effects of BPMV infection on soybean caused A. glycines to allot available energy resources to survival rather than reproduction and other core cellular processes. Ultimately, the detrimental impacts to A. glycines may reflect the short tritrophic evolutionary histories between the insect, plant, and virus.
Collapse
Affiliation(s)
- Bryan J. Cassone
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Present address: Center for Applied Plant Sciences, Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH
| | - Andrew P. Michel
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Lucy R. Stewart
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| | - Raman Bansal
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - M.A. Rouf Mian
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Margaret G. Redinbaugh
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| |
Collapse
|
99986
|
Short-Term Evaluation of Grafts Fixed With Either N-Butyl-2-Cyanocrylate or Screws. J Oral Maxillofac Surg 2014; 72:676-82. [DOI: 10.1016/j.joms.2013.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/08/2013] [Accepted: 11/15/2013] [Indexed: 11/21/2022]
|
99987
|
Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH. Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comp Biochem Physiol C Toxicol Pharmacol 2014; 161:53-7. [PMID: 24521933 DOI: 10.1016/j.cbpc.2014.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Cadmium is a heavy metal abundant in the environment that can induce endocrine disorder and toxicity in aquatic organisms at low levels. However, its effects on the thyroid system in fish are still unclear. In this study, the thyroid hormone (TH) levels and the expression profiles of genes related to hypothalamic- pituitary-thyroid (HPT) axis, including corticotropin-releasing hormone (crh), thyroid stimulating hormone beta (tshβ), solute carrier family 5 (sodium iodide symporter) member 5 (slc5a5), thyroglobulin (tg), thyroid hormone receptor alpha (trα) and thyroid hormone receptor beta (trβ), were determined in whole body of Chinese rare minnow (Gobiocypris rarus) larvae after exposure to different levels of Cd(2+) (0, 0.5 and 2.5mg/L) for 4days. And the 96-h lethal concentration of Cd(2+) on rare minnow larvae was determined as 2.59mg/L. The results showed that crh, slc5a5, tg and tshβ mRNA levels were significantly up-regulated in the larvae, but the gene expression of trα and trβ was down-regulated in a concentration-dependent manner. Besides, the THs levels decreased in the whole-body of fish, especially the thyroxine (T4) level. The above results indicated that Cd(2+) could alter gene expression in the HPT axis that might subsequently contribute to thyroid disruption.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Lu Chen
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan-Hua Wu
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Yun-Feng Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhao-Hui Ni
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
99988
|
Murik O, Elboher A, Kaplan A. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2014; 202:471-484. [PMID: 24345283 DOI: 10.1111/nph.12649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 05/06/2023]
Abstract
Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ahinoam Elboher
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
99989
|
D'Agostino M, Sponziello M, Puppin C, Celano M, Maggisano V, Baldan F, Biffoni M, Bulotta S, Durante C, Filetti S, Damante G, Russo D. Different expression of TSH receptor and NIS genes in thyroid cancer: role of epigenetics. J Mol Endocrinol 2014; 52:121-31. [PMID: 24353283 DOI: 10.1530/jme-13-0160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The TSH receptor (TSHR) and sodium/iodide symporter (NIS) are key players in radioiodine-based treatment of differentiated thyroid cancers. While NIS (SLC5AS) expression is diminished/lost in most thyroid tumors, TSHR is usually preserved. To examine the mechanisms that regulate the expression of NIS and TSHR genes in thyroid tumor cells, we analyzed their expression after inhibition of ras-BRAF-MAPK and PI3K-Akt-mTOR pathways and the epigenetic control occurring at the gene promoter level in four human thyroid cancer cell lines. Quantitative real-time PCR was used to measure NIS and TSHR mRNA in thyroid cancer cell lines (TPC-1, BCPAP, WRO, and FTC-133). Western blotting was used to assess the levels of total and phosphorylated ERK and Akt. Chromatin immunoprecipitation was performed for investigating histone post-translational modifications of the TSHR and NIS genes. ERK and Akt inhibitors elicited different responses of the cells in terms of TSHR and NIS mRNA levels. Akt inhibition increased NIS transcript levels and reduced those of TSHR in FTC-133 cells but had no significant effects in BCPAP. ERK inhibition increased the expression of both genes in BCPAP cells but had no effects in FTC-133. Histone post-translational modifications observed in the basal state of the four cell lines as well as in BCPAP treated with ERK inhibitor and FTC-133 treated with Akt inhibitor show cell- and gene-specific differences. In conclusion, our data indicate that in thyroid cancer cells the expression of TSHR and NIS genes is differently controlled by multiple mechanisms, including epigenetic events elicited by major signaling pathways involved in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Maria D'Agostino
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', Campus 'S. Venuta', Viale Europa, Germaneto, 88100 Catanzaro, Italy Departments of Internal Medicine and Medical Specialties Surgical Sciences, University of Roma 'Sapienza', 00161 Roma, Italy Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99990
|
RIG-I detects mRNA of intracellular Salmonella enterica serovar Typhimurium during bacterial infection. mBio 2014; 5:e01006-14. [PMID: 24692634 PMCID: PMC3977358 DOI: 10.1128/mbio.01006-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytoplasmic helicase RIG-I is an established sensor for viral 5'-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I. Here we show that RNA of Salmonella enterica serovar Typhimurium activates production of beta interferon in a RIG-I-dependent fashion only in nonphagocytic cells. In phagocytic cells, RIG-I is obsolete for detection of Salmonella infection. We further demonstrate that Salmonella mRNA reaches the cytoplasm during infection and is thus accessible for RIG-I. The results from next-generation sequencing analysis of RIG-I-associated RNA suggest that coding bacterial mRNAs represent the activating PAMP. IMPORTANCE S. Typhimurium is a major food-borne pathogen. After fecal-oral transmission, it can infect epithelial cells in the gut as well as immune cells (mainly macrophages, dendritic cells, and M cells). The innate host immune system relies on a growing number of sensors that detect pathogen-associated molecular patterns (PAMPs) to launch a first broad-spectrum response to invading pathogens. Successful detection of a given pathogen depends on colocalization of host sensors and PAMPs as well as potential countermeasures of the pathogen during infection. RIG-I-like helicases were mainly associated with detection of RNA viruses. Our work shows that S. Typhimurium is detected by RIG-I during infection specifically in nonimmune cells.
Collapse
|
99991
|
Lambermont VA, Kuypers E, Collins JJP, Pillow JJ, Newnham JP, Polglase GR, Nitsos I, Kemp MW, Jobe AH, Kallapur SG, Kramer BW. Effects of intra-amniotic lipopolysaccharide exposure on the fetal lamb lung as gestation advances. Pediatr Res 2014; 75:500-6. [PMID: 24441106 DOI: 10.1038/pr.2014.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intra-amniotic lipopolysaccharide (LPS) exposure may affect neonatal outcome by altering fetal lung and immune system development. We hypothesized that intra-amniotic LPS exposure would cause persistent fetal pulmonary responses as the lungs develop in utero. METHODS Fetal lambs were exposed to intra-amniotic LPS at 118 or at 118 and 123 d of gestational age (GA) with delivery at 125, 133, or 140 d (term = 147 d). Immune responses, PU.1 expression, Toll-like receptor (TLR)-1,2,4,6 mRNA levels, mast cell levels, and pulmonary elastin deposition were evaluated. RESULTS After a single dose of LPS, pulmonary inflammatory responses were observed with increases of (i) PU.1 and TLR1 at 125 d GA and (ii) monocytes, lymphocytes, TLR2, and TLR6 at 133 d GA. Repetitive LPS exposure resulted in (i) increases of neutrophils, monocytes, PU.1, and TLR1 at 125 d GA; (ii) increases of neutrophils, PU.1, and TLR2 at 133 d GA; and (iii) decreases of mast cells, elastin foci, TLR4, and TLR6 at early gestation. At 140 d GA, only PU.1 was increased after repetitive LPS exposure. CONCLUSION The preterm fetal lung can respond to a single exposure or repeated exposures from intra-amniotic LPS in multiple ways, but the absence of inflammatory and structural changes in LPS-exposed fetuses delivered near term suggest that the fetus can resolve an inflammatory stimulus in utero with time.
Collapse
Affiliation(s)
- Verena A Lambermont
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jennifer J P Collins
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Jane Pillow
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - John P Newnham
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Graeme R Polglase
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Ilias Nitsos
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Matthew W Kemp
- School of Women's and Infants Health, University of Western Australia, Perth, Australia
| | - Alan H Jobe
- 1] School of Women's and Infants Health, University of Western Australia, Perth, Australia [2] Department of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Suhas G Kallapur
- 1] School of Women's and Infants Health, University of Western Australia, Perth, Australia [2] Department of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Boris W Kramer
- 1] Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands [2] School of Women's and Infants Health, University of Western Australia, Perth, Australia
| |
Collapse
|
99992
|
Yar Ahmadi P, Farahmand H, Kolangi Miandare H, Mirvaghefi A, Hoseinifar SH. The effects of dietary Immunogen on innate immune response, immune related genes expression and disease resistance of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 37:209-214. [PMID: 24560683 DOI: 10.1016/j.fsi.2014.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/01/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the effects of prebiotic Immunogen on lysozyme, TNFα and HSP70 gene expression in head kidney, humoral innate immune parameters and resistant to Aeromonas hydrophila of rainbow trout. 120 healthy rainbow trout (81.65 ± 1.49 g) were distributed in six fiberglass tanks assigned to two groups fed control or diet supplemented with 2 g kg(-1) Immunogen for 45 days. The results revealed that administration of Immunogen significantly (P < 0.05) up regulated lysozyme and TNFα gene expression. HSP70 gene expression was significantly (P < 0.05) lower in Immunogen fed fish at the end of trial. Humoral innate immune parameters (lysozyme activity, ACH50 and bactericidal activity) were significantly (P < 0.05) increased whether 15 or 45 days after feeding on Immunogen supplemented diet. However, significant (P < 0.05) increase in agglutination antibody titer observed just after 45 days feeding on Immunogen. Rainbow trout fed with 2 g kg(-1) Immunogen showed remarkably higher resistance against A. hydrophila (64.44% survival) compared to the control group (24.44% survival). These results confirm that Immunogen can up regulates immune related genes expression, stimulates immune response that per se enhances disease resistance in rainbow trout.
Collapse
Affiliation(s)
- Peyman Yar Ahmadi
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Farahmand
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Hamed Kolangi Miandare
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Mirvaghefi
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
99993
|
Chen M, Maodzeka A, Zhou L, Ali E, Wang Z, Jiang L. Removal of DELLA repression promotes leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:26-34. [PMID: 24576761 DOI: 10.1016/j.plantsci.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/19/2013] [Accepted: 11/24/2013] [Indexed: 05/23/2023]
Abstract
Leaf senescence is an integrated response of leaf cells to developmental age and various internal and environmental signals. However, the role of gibberellins (GA) in leaf senescence is not clear. In the current study, we investigated the effect of DELLA on leaf senescence. Compared with the wild type (WT), leaf senescence occurred earlier in the mutant ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 (abbreviated as Q-DELLA/ga1-3) whose DELLA repression was removed, whereas leaf senescence was retarded in the mutant ga1-3 whose GA biosynthesis was blocked and whose DELLA proteins accumulated abnormally. During leaf senescence, SAG12 and SAG29 were upregulated in Q-DELLA/ga1-3 and downregulated in ga1-3 plants. The Q-DELLA/ga1-3 senescent leaves contained more sugar but less chlorophyll and fatty acids (FAs) than those of ga1-3 and WT. Both absolute and relative contents of C18:3 in Q-DELLA/ga1-3 senescent leaves were lower compared with those of the WT and ga1-3 leaves. The genes regulating FA β-oxidation in Q-DELLA/ga1-3, such as KAT2, LACS6, LACS7, ACX1, ACX2 and MAP2, were significantly upregulated. The removal of DELLA repression highly upregulated certain genes on various hormone pathways, suggesting that GA signaling acts upstream of the jasmonic acid, salicylic acid, and ethylene pathways in regulating leaf senescence.
Collapse
Affiliation(s)
- Mingxun Chen
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Antony Maodzeka
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Longhua Zhou
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Essa Ali
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhong Wang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China.
| |
Collapse
|
99994
|
Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, Drobná Z, Currier J, Douillet C, Olshan AF, Rubio-Andrade M, Stýblo M, García-Vargas G, Fry RC. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:196-208. [PMID: 24327377 PMCID: PMC4023469 DOI: 10.1002/em.21842] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 05/17/2023]
Abstract
The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n = 40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 µg/L (mean = 51.7 µg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 µg/L (mean = 64.5 µg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.
Collapse
Affiliation(s)
- Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sloane K. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joel S. Parker
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jessica E. Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Zuzana Drobná
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jenna Currier
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
99995
|
Robinson A, Grösgen S, Mett J, Zimmer VC, Haupenthal VJ, Hundsdörfer B, P. Stahlmann C, Slobodskoy Y, Müller UC, Hartmann T, Stein R, Grimm MOW. Upregulation of PGC-1α expression by Alzheimer's disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging Cell 2014; 13:263-72. [PMID: 24304563 PMCID: PMC4331788 DOI: 10.1111/acel.12183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/19/2023] Open
Abstract
Cleavage of amyloid precursor protein (APP) by β- and γ-secretase generates amyloid-β (Aβ) and APP intracellular domain (AICD) peptides. Presenilin (PS) 1 or 2 is the catalytic component of the γ-secretase complex. Mitochondrial dysfunction is an established phenomenon in Alzheimer’s disease (AD), but the causes and role of PS1, APP, and APP’s cleavage products in this process are largely unknown. We studied the effect of these AD-associated molecules on mitochondrial features. Using cells deficient in PSs expression, expressing human wild-type PS1, or PS1 familial AD (FAD) mutants, we found that PS1 affects mitochondrial energy metabolism (ATP levels and oxygen consumption) and expression of mitochondrial proteins. These effects were associated with enhanced expression of the mitochondrial master transcriptional coactivator PGC-1α and its target genes. Importantly, PS1-FAD mutations decreased PS1’s ability to enhance PGC-1α mRNA levels. Analyzing the effect of APP and its γ-secretase-derived cleavage products Aβ and AICD on PGC-1α expression showed that APP and AICD increase PGC-1α expression. Accordingly, PGC-1α mRNA levels in cells deficient in APP/APLP2 or expressing APP lacking its last 15 amino acids were lower than in control cells, and treatment with AICD, but not with Aβ, enhanced PGC-1α mRNA levels in these and PSs-deficient cells. In addition, knockdown of the AICD-binding partner Fe65 reduced PGC-1α mRNA levels. Importantly, APP/AICD increases PGC-1α expression also in the mice brain. Our results therefore suggest that APP processing regulates mitochondrial function and that impairments in the newly discovered PS1/APP/AICD/PGC-1α pathway may lead to mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Ari Robinson
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | - Sven Grösgen
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | - Janine Mett
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | - Valerie C. Zimmer
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | | | | | | | - Yulia Slobodskoy
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | - Ulrike C. Müller
- Department of Functional Genomics Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | - Tobias Hartmann
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Reuven Stein
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Marcus O. W. Grimm
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
- Experimental Neurology Saarland University Homburg/Saar Germany
| |
Collapse
|
99996
|
Schütte U, Bisht S, Heukamp LC, Kebschull M, Florin A, Haarmann J, Hoffmann P, Bendas G, Buettner R, Brossart P, Feldmann G. Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl Oncol 2014; 7:309-21. [PMID: 24913676 PMCID: PMC4101344 DOI: 10.1016/j.tranon.2014.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
Recent work has identified dysfunctional Hippo signaling to be involved in maintenance and progression of various human cancers, although data on clear cell renal cell carcinoma (ccRCC) have been limited. Here, we provide evidence implicating aberrant Hippo signaling in ccRCC proliferation, invasiveness, and metastatic potential. Nuclear overexpression of the Hippo target Yes-associated protein (YAP) was found in a subset of patients with ccRCC. Immunostaining was particularly prominent at the tumor margins and highlighted neoplastic cells invading the tumor-adjacent stroma. Short hairpin RNA-mediated knockdown of YAP significantly inhibited proliferation, migration, and anchorage-independent growth of ccRCC cells in soft agar and led to significantly reduced murine xenograft growth. Microarray analysis of YAP knockdown versus mock-transduced ccRCC cells revealed down-regulation of endothelin 1, endothelin 2, cysteine-rich, angiogenic inducer, 61 (CYR61), and c-Myc in ccRCC cells as well as up-regulation of the cell adhesion molecule cadherin 6. Signaling pathway impact analysis revealed activation of the p53 signaling and cell cycle pathways as well as inhibition of mitogen-activated protein kinase signaling on YAP down-regulation. Our data suggest CYR61 and c-Myc as well as signaling through the endothelin axis as bona fide downstream effectors of YAP and establish aberrant Hippo signaling as a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Ute Schütte
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
| | - Savita Bisht
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
| | - Lukas C Heukamp
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Moritz Kebschull
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital of Bonn, Bonn, Germany
| | - Alexandra Florin
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Jens Haarmann
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; Department of Genomics, Life and Brain Center, University Hospital of Bonn, Bonn, Germany; Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Reinhard Buettner
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
99997
|
Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. PLANT, CELL & ENVIRONMENT 2014; 37:1022-36. [PMID: 24182190 DOI: 10.1111/pce.12218] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/04/2013] [Indexed: 05/19/2023]
Abstract
Purine catabolism is regarded as a housekeeping function that remobilizes nitrogen for plant growth and development. However, emerging evidence suggests that certain purine metabolites might contribute to stress protection of plants. Here, we show that in Arabidopsis, the intermediary metabolite allantoin plays a role in abiotic stress tolerance via activation of abscisic acid (ABA) metabolism. The aln loss-of-function of ALN, encoding allantoinase, results in increased allantoin accumulation, genome-wide up-regulation of stress-related genes and enhanced tolerance to drought-shock and osmotic stress in aln mutant seedlings. This phenotype is not caused by a general response to purine catabolism inhibition, but rather results from a specific effect of allantoin. Allantoin activates ABA production both through increased transcription of NCED3, encoding a key enzyme in ABA biosynthesis, and through post-translational activation via high-molecular-weight complex formation of BG1, a β-glucosidase hydrolysing glucose-conjugated ABA. Exogenous application of allantoin to wild-type plants also activates the two ABA-producing pathways that lead to ABA accumulation and stress-responsive gene expression, but this effect is abrogated in ABA-deficient and BG1-knockout mutants. We propose that purine catabolism functions not only in nitrogen metabolism, but also in stress tolerance by influencing ABA production, which is mediated by the possible regulatory action of allantoin.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
99998
|
Ohkura T, Ohta K, Nagao T, Kusumoto K, Koeda A, Ueda T, Jomura T, Ikeya T, Ozeki E, Wada K, Naitoh K, Inoue Y, Takahashi N, Iwai H, Arakawa H, Ogihara T. Evaluation of human hepatocytes cultured by three-dimensional spheroid systems for drug metabolism. Drug Metab Pharmacokinet 2014; 29:373-8. [PMID: 24695277 DOI: 10.2133/dmpk.dmpk-13-rg-105] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the utility of three-dimensional (3D) spheroid cultures of human hepatocytes in discovering drug metabolites. Metabolites of acetaminophen, diclofenac, lamotrigine, midazolam, propranolol and salbutamol were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) to measure enzyme activities in this system cultured for 2 and 7 days. Sequential metabolic reactions by Phase I and then Phase II enzymes were found in diclofenac [CYP2C9 and UDP-glucuronyltransferases (UGTs)], midazolam (CYP3A4 and UGTs) and propranolol (CYP1A2/2D6 and UGTs). Moreover, lamotrigine and salbutamol were metabolized to lamotrigine-N-glucuronide and salbutamol 4-O-sulfate, respectively. These metabolites, which are human specific, could be observed in clinical studies, but not in conventional hepatic culture systems as in previous reports. Acetaminophen was metabolized to glucuronide and sulfate conjugates, and N-acetyl-p-benzo-quinoneimine (NAPQI) and its metabolites were not observed. In addition, mRNA of drug-metabolism enzymes [CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, UGT1A1, UGT2B7, sulfotransferase 1A1 (SULT1A1) and glutathione S-transferase pi 1 (GSTP1)], which were measured by qRT-PCR, were expressed in the human hepatocyte spheroids. In conclusion, these results suggest that human hepatocyte spheroids are useful in discovering drug metabolites.
Collapse
|
99999
|
Nishimoto K, Harris RBS, Rainey WE, Seki T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 2014; 155:1363-72. [PMID: 24422541 PMCID: PMC3959598 DOI: 10.1210/en.2013-1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer. Although these mechanisms have been investigated, RAAS effects on zG gene expression have not been fully elucidated. In this study, we took an unbiased approach to define the complete list of zG transcripts involved in RAAS activation. Adrenal glands were collected from 11-week old Sprague-Dawley rats fed either sodium-deficient (SDef), normal sodium (NS), or high-sodium (HS) diet for 72 hours, and laser-captured zG RNA was analyzed on microarrays containing 27 342 probe sets. When the SDef transcriptome was compared with NS transcriptome (SDef/NS comparison), only 79 and 10 probe sets were found to be up- and down-regulated more than two-fold in SDef, respectively. In SDef/HS comparison, 201 and 68 probe sets were up- and down-regulated in SDef, respectively. Upon gene ontology (GO) analysis of these gene sets, we identified three groups of functionally related GO terms: cell proliferation-associated (group 1), response to stimulus-associated (group 2), and cholesterol/steroid metabolism-associated (group 3) GO terms. Although genes in group 1 may play a critical role in zG layer expansion, those in groups 2 and 3 may have important functions in aldosterone production, and further investigations on these genes are warranted.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology (R.B.S.H., T.S.), Georgia Regents University, Augusta, Georgia 30912; and Department of Urology (K.N.), Tachikawa Hospital, Tachikawa, 190-0022 Tokyo, Japan
| | | | | | | |
Collapse
|
100000
|
Gong L, Wang H, Huang J, Hu M, Hu Z, Zhong G. Camptothecin-induced expression of programmed cell death gene 11 in Spodoptera litura. PEST MANAGEMENT SCIENCE 2014; 70:603-609. [PMID: 23749428 DOI: 10.1002/ps.3588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Camptothecin, one of the main active components of extract from the bark of the Chinese camptotheca tree, has been reported as a potent insecticide against various insect species. However, the mechanism of action of camptothecin as a botanical pesticide is not completely understood. RESULTS In this study, the full-length cDNA (GeneBank number JF681972) of Spodoptera litura programmed cell death protein 11 (pcdp 11) isoform 1 was cloned, sequenced and characterised. Quantitative real-time PCR (qRT-PCR) data showed that pcdp 11 was differentially expressed during the developmental stages, with significantly high expression during the transition from egg to larva and larva to pupa. Furthermore, pcdp 11 was upregulated in a time-dependent manner in SL-1 cells after treatment with 1.2 µg mL(-1) of camptothecin. The induced expression profile of pcdp 11 in the larval midgut after feeding camptothecin was visualised by fluorescence in situ hybridisation (FISH) and further quantified by qRT-PCR. Apoptosis in camptothecin-treated larval midguts was confirmed using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. CONCLUSION The results reveal a clear functional link between pcdp 11 expression and camptothecin-induced apoptosis, and prove that camptothecin exhibits strong toxicity towards S. litura by inducing midgut epithelial cell apoptosis.
Collapse
Affiliation(s)
- Liang Gong
- Key Laboratory of Pesticide and Chemical Biology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|