99951
|
Shao Q, Zhu W. Assessing AMBER force fields for protein folding in an implicit solvent. Phys Chem Chem Phys 2018; 20:7206-7216. [PMID: 29480910 DOI: 10.1039/c7cp08010g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Molecular dynamics (MD) simulation implemented with a state-of-the-art protein force field and implicit solvent model is an attractive approach to investigate protein folding, one of the most perplexing problems in molecular biology. But how well can force fields developed independently of implicit solvent models work together in reproducing diverse protein native structures and measuring the corresponding folding thermodynamics is not always clear. In this work, we performed enhanced sampling MD simulations to assess the ability of six AMBER force fields (FF99SBildn, FF99SBnmr, FF12SB, FF14ipq, FF14SB, and FF14SBonlysc) as coupled with a recently improved pair-wise GB-Neck2 model in modeling the folding of two helical and two β-sheet peptides. Whilst most of the tested force fields can yield roughly similar features for equilibrium conformational ensembles and detailed folding free-energy profiles for short α-helical TC10b in an implicit solvent, the measured counterparts are significantly discrepant in the cases of larger or β-structured peptides (HP35, 1E0Q, and GTT). Additionally, the calculated folding/unfolding thermodynamic quantities can only partially match the experimental data. Although a combination of the force fields and GB-Neck2 implicit model able to describe all aspects of the folding transitions towards the native structures of all the considered peptides was not identified, we found that FF14SBonlysc coupled with the GB-Neck2 model seems to be a reasonably balanced combination to predict peptide folding preferences.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | | |
Collapse
|
99952
|
Kitanaka N, Nakano R, Kitanaka T, Namba S, Konno T, Nakayama T, Sugiya H. NF-κB p65 and p105 implicate in interleukin 1β-mediated COX-2 expression in melanoma cells. PLoS One 2018; 13:e0208955. [PMID: 30562372 PMCID: PMC6298655 DOI: 10.1371/journal.pone.0208955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory and microenvironmental factors produced by cancer cells are thought to directly or indirectly promote cancer cell growth. Prostaglandins, including prostaglandin E2, have key roles as a microenvironment factor in influencing the development of tumors, and are produced by the rate limiting enzyme cyclooxygenase 2 (COX-2). In this study, we used canine melanoma cells treated with the proinflammatory cytokine interleukin 1β (IL-1β) and investigated the transcriptional factor nuclear factor-κB (NF-κB) signaling in IL-1β-induced COX-2 expression. IL-1β induced prostaglandin E2 release and COX-2 mRNA expression in a time- and dose-dependent manner. In the cells treated with the NF-κB inhibitors BAY11-7082 and TPC-1, IL-1β-mediated prostaglandin E2 release and COX-2 mRNA expression were inhibited. IL-1β also provoked phosphorylation of p65/RelA and p105/NF-κB1, which are members of the NF-κB families. The IL-1β-induced phosphorylation of p65 and p105 was attenuated in the presence of both NF-κB inhibitors. In melanoma cells transfected with siRNA of p65 or p105, IL-1β-mediated COX-2 mRNA expression was inhibited. These findings suggest that canonical activation of NF-κB signaling plays a crucial role for inflammatory states in melanoma cells.
Collapse
Affiliation(s)
- Nanako Kitanaka
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
99953
|
Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. Int J Mol Sci 2018; 19:ijms19124110. [PMID: 30567377 PMCID: PMC6320797 DOI: 10.3390/ijms19124110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Many of the links between diet and cancer are controversial and over simplified. To date, human epidemiological studies consistently reveal that patients who suffer diet-related obesity and/or type II diabetes have an increased risk of cancer, suffer more aggressive cancers, and respond poorly to current therapies. However, the underlying molecular mechanisms that increase cancer risk and decrease the response to cancer therapies in these patients remain largely unknown. Here, we review studies in mouse cancer models in which either dietary or genetic manipulation has been used to model obesity and/or type II diabetes. These studies demonstrate an emerging role for the conserved insulin and insulin-like growth factor signaling pathways as links between diet and cancer progression. However, these models are time consuming to develop and expensive to maintain. As the world faces an epidemic of obesity and type II diabetes we argue that the development of novel animal models is urgently required. We make the case for Drosophila as providing an unparalleled opportunity to combine dietary manipulation with models of human metabolic disease and cancer. Thus, combining diet and cancer models in Drosophila can rapidly and significantly advance our understanding of the conserved molecular mechanisms that link diet and diet-related metabolic disorders to poor cancer patient prognosis.
Collapse
|
99954
|
Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev 2018; 47:9137-9157. [PMID: 30298157 DOI: 10.1039/c8cs00523k] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Owing to their outstanding performances in molecular recognition, antibodies are extensively used in research and applications in molecular biology, biotechnology and medicine. Recent advances in experimental and computational methods are making it possible to complement well-established in vivo (first generation) and in vitro (second generation) methods of antibody discovery with novel in silico (third generation) approaches. Here we describe the principles of computational antibody design and review the state of the art in this field. We then present Modular, a method that implements the rational design of antibodies in a modular manner, and describe the opportunities offered by this approach.
Collapse
Affiliation(s)
- Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|
99955
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
99956
|
Yildirim A, Brenner N, Sutherland R, Feig M. Role of protein interactions in stabilizing canonical DNA features in simulations of DNA in crowded environments. BMC BIOPHYSICS 2018; 11:8. [PMID: 30555686 PMCID: PMC6286541 DOI: 10.1186/s13628-018-0048-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Abstract
Background Cellular environments are highly crowded with biological macromolecules resulting in frequent non-specific interactions. While the effect of such crowding on protein structure and dynamics has been studied extensively, very little is known how cellular crowding affects the conformational sampling of nucleic acids. Results The effect of protein crowding on the conformational preferences of DNA (deoxyribonucleic acid) is described from fully atomistic molecular dynamics simulations of systems containing a DNA dodecamer surrounded by protein crowders. From the simulations, it was found that DNA structures prefer to stay in B-like conformations in the presence of the crowders. The preference for B-like conformations results from non-specific interactions of crowder proteins with the DNA sugar-phosphate backbone. Moreover, the simulations suggest that the crowder interactions narrow the conformational sampling to canonical regions of the conformational space. Conclusions The overall conclusion is that crowding effects may stabilize the canonical features of DNA that are most important for biological function. The results are complementary to a previous study of DNA in reduced dielectric environments where reduced dielectric environments alone led to a conformational shift towards A-DNA. Such a shift was not observed here suggested that the reduced dielectric response of cellular environments is counteracted by non-specific interactions with protein crowders under in vivo conditions. Electronic supplementary material The online version of this article (10.1186/s13628-018-0048-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asli Yildirim
- 1Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
| | - Nathalie Brenner
- 2Faculty of Mathematics and Natural Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany.,3Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, Room BCH 218, East Lansing, MI 48824 USA
| | - Robert Sutherland
- 3Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, Room BCH 218, East Lansing, MI 48824 USA
| | - Michael Feig
- 3Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, Room BCH 218, East Lansing, MI 48824 USA
| |
Collapse
|
99957
|
Zhang QW, Ye ZD, Shen C, Tie HX, Wang L, Shi L. Synthesis of novel 6,7-dimethoxy-4-anilinoquinolines as potent c-Met inhibitors. J Enzyme Inhib Med Chem 2018; 34:124-133. [PMID: 30422010 PMCID: PMC6237173 DOI: 10.1080/14756366.2018.1533822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HGF/c-Met signalling pathway plays an important role in the development of cancers. A series of 6,7-dimethoxy-4-anilinoquinolines possessing benzimidazole moiety were synthesised and identified as potent inhibitors of the tyrosine kinase c-Met. Their in vitro biological activities against three cancer cell lines (A549, MCF-7, and MKN-45) were also evaluated. Most of these compounds exhibited moderate to remarkable potency. Among them, compound 12n showed the most potent inhibitory activity against c-Met with IC50 value of 0.030 ± 0.008 µM and it also showed excellent anticancer activity against the tested cancer cell lines at low micromolar concentration. Molecular docking verified the results and revealed the possible binding mode of the most promising compound 12n into the ATP-binding site of c-Met kinase.
Collapse
Affiliation(s)
- Qing-Wen Zhang
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Zi-Dan Ye
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Chang Shen
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Hong-Xia Tie
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Lei Wang
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| | - Lei Shi
- a Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , P. R. China
| |
Collapse
|
99958
|
Velasco G, Francastel C. Genetics meets DNA methylation in rare diseases. Clin Genet 2018; 95:210-220. [DOI: 10.1111/cge.13480] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Velasco
- Sorbonne Paris Cité, Epigenetics and Cell Fate; UMR 7216 CNRS, Université Paris Diderot; Paris France
| | - Claire Francastel
- Sorbonne Paris Cité, Epigenetics and Cell Fate; UMR 7216 CNRS, Université Paris Diderot; Paris France
| |
Collapse
|
99959
|
Whittington AC, Rokyta DR. Biophysical Spandrels form a Hot-Spot for Kosmotropic Mutations in Bacteriophage Thermal Adaptation. J Mol Evol 2018; 87:27-36. [PMID: 30564861 DOI: 10.1007/s00239-018-9882-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
Abstract
Temperature plays a dominating role in protein structure and function, and life has evolved myriad strategies to adapt proteins to environmental thermal stress. Cellular systems can utilize kosmotropic osmolytes, the products of complex biochemical pathways, to act as chemical chaperones. These extrinsic molecules, e.g., trehalose, alter local water structure to modulate the strength of the hydrophobic effect and increase protein stability. In contrast, simpler genetic systems must rely on intrinsic mutation to affect protein stability. In naturally occurring microvirid bacteriophages of the subfamily Bullavirinae, capsid stability is randomly distributed across the phylogeny, suggesting it is not phylogenetically linked and could be altered through adaptive mutation. We hypothesized that these phages could utilize an adaptive mechanism that mimics the stabilizing effects of the kosmotrope trehalose through mutation. Kinetic stability of wild-type ID8, a relative of ΦX174, displays a saturable response to trehalose. Thermal adaptation mutations in ID8 improve capsid stability and reduce responsiveness to trehalose suggesting the mutations move stability closer to the kosmotropic saturation point, mimicking the kosmotropic effect of trehalose. These mutations localize to and modulate the hydrophobicity of a cavern formation at the interface of phage coat and spike proteins-an evolutionary spandrel. Across a series of genetically distinct phages, responsiveness to trehalose correlates positively with cavern hydrophobicity suggesting that the level of hydrophobicity of the cavern may provide a biophysical gating mechanism constraining or permitting adaptation in a lineage-specific manner. Our results demonstrate that a single mutation can exploit pre-existing, non-adaptive structural features to mimic the adaptive effects of complex biochemical pathways.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA.
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| |
Collapse
|
99960
|
Liu L, Hong YL, Liu GY. Role of rational diet in postoperative treatment of gastric cancer and application prospect of traditional Chinese medicine diet. Shijie Huaren Xiaohua Zazhi 2018; 26:2057-2063. [DOI: 10.11569/wcjd.v26.i35.2057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The toxic side effects of postoperative radiotherapy and chemotherapy in gastric cancer (GC) often cause patients to have cancer cachexia and poor quality of life. Dietary adjuvant therapy can significantly promote GC patients to recover the body function, alleviate inflammation, improve anticancer treatment tolerance, improve postoperative quality of life and prolong survival. Given the advantages of diet in the postoperative treatment of GC, this paper discusses the role of modern medicine's elemental nutrition diet and traditional Chinese medicine diet in the postoperative treatment of GC, which can help clinicians better understand traditional Chinese medicine treatment in relieving the overall dysfunction of the body. Furthermore, the combination of traditional Chinese medicine diet with the modern medical nutrition diet evaluation system can expand the use of traditional Chinese medicine diet in the clinical treatment of GC.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmaceutical Sciences Xiamen University, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, Xiamen 361000, Fujian Province, China
| | - Yu-Ling Hong
- School of Pharmaceutical Sciences Xiamen University, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, Xiamen 361000, Fujian Province, China
| | - Guo-Yan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
| |
Collapse
|
99961
|
Molano-Arevalo JC, Gonzalez W, Jeanne Dit Fouque K, Miksovska J, Maitre P, Fernandez-Lima F. Insights from ion mobility-mass spectrometry, infrared spectroscopy, and molecular dynamics simulations on nicotinamide adenine dinucleotide structural dynamics: NAD +vs. NADH. Phys Chem Chem Phys 2018; 20:7043-7052. [PMID: 29473073 DOI: 10.1039/c7cp05602h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is found in all living cells where the oxidized (NAD+) and reduced (NADH) forms play important roles in many enzymatic reactions. However, little is known about NAD+ and NADH conformational changes and kinetics as a function of the cell environment. In the present work, an analytical workflow is utilized to study NAD+ and NADH dynamics as a function of the organic content in solution using fluorescence lifetime spectroscopy and in the gas-phase using trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) and infrared multiple photon dissociation (IRMPD) spectroscopy. NAD solution time decay studies showed a two-component distribution, assigned to changes from a "close" to "open" conformation with the increase of the organic content. NAD gas-phase studies using nESI-TIMS-MS displayed two ion mobility bands for NAD+ protonated and sodiated species, while four and two ion mobility bands were observed for NADH protonated and sodiated species, respectively. Changes in the mobility profiles were observed for NADH as a function of the starting solution conditions and the time after desolvation, while NAD+ profiles showed no dependence. IRMPD spectroscopy of NAD+ and NADH protonated species in the 800-1800 and 3200-3700 cm-1 spectral regions showed common and signature bands between the NAD forms. Candidate structures were proposed for NAD+ and NADH kinetically trapped intermediates of the protonated and sodiated species, based on their collision cross sections and IR profiles. Results showed that NAD+ and NADH species exist in open, stack, and closed conformations and that the driving force for conformational dynamics is hydrogen bonding of the N-H-O and O-H-O forms with ribose rings.
Collapse
|
99962
|
Shemetun OV, Talan OA, Demchenko OM, Kurinnyi DA, Papuga MS, Pilinska MA. Frequency of Spontaneous and Radiation-Induced Chromosomal Aberrations in Peripheral Blood Lymphocytes of Individuals of Different Ages. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
99963
|
Bedini A, Fraternale A, Crinelli R, Mari M, Bartolucci S, Chiarantini L, Spadoni G. Design, Synthesis, and Biological Activity of Hydrogen Peroxide Responsive Arylboronate Melatonin Hybrids. Chem Res Toxicol 2018; 32:100-112. [DOI: 10.1021/acs.chemrestox.8b00216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Silvia Bartolucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Laura Chiarantini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| |
Collapse
|
99964
|
Nomikos NN, Nikolaidis PT, Sousa CV, Papalois AE, Rosemann T, Knechtle B. Exercise, Telomeres, and Cancer: "The Exercise-Telomere Hypothesis". Front Physiol 2018; 9:1798. [PMID: 30618810 PMCID: PMC6305363 DOI: 10.3389/fphys.2018.01798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are genomic complex at the end of chromosomes that protects the DNA and telomere length (TL) is related to several age-related diseases, lifespan, and cancer. On the other hand, cancer is a multifactorial disease that is responsible for reduce the quality of life and kills millions of people every year. Both, shorter TL and cancer are related and could be treated or prevented depending of the lifestyle. In this review we discuss the possible role of exercise in the relationship between shorter telomeres, telomerase activity, and cancer. In summary, there is evidence that exercise leads to less telomere attrition and exercise also may diminish the risk of cancer, these two outcomes are possible intermediated by a reduction in oxidative stress, and chronic inflammation. Although, there is evidence that shorter TL are associated with cancer, the possible mechanisms that one may lead to the other remains to be clarified. We assume that humans under cancer treatment may suffer a great decrease in quality of life, which may increase sedentary behavior and lead to increased telomere attrition. And those humans with already shorter TL likely lived under a poor lifestyle and might have an increased risk to have cancer.
Collapse
Affiliation(s)
- Nikitas N Nomikos
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Caio V Sousa
- Graduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zürich, Zürich, Switzerland.,Mebase St. Gallen Am Vadianplatz St. Gallen, Switzerland
| |
Collapse
|
99965
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
99966
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
99967
|
Peris E, Micallef P, Paul A, Palsdottir V, Enejder A, Bauzá-Thorbrügge M, Olofsson CS, Wernstedt Asterholm I. Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes. J Biol Chem 2018; 294:2340-2352. [PMID: 30559295 DOI: 10.1074/jbc.ra118.004253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
β-Adrenergic stimulation of adipose tissue increases mitochondrial density and activity (browning) that are associated with improved whole-body metabolism. Whereas chronically elevated levels of reactive oxygen species (ROS) in adipose tissue contribute to insulin resistance, transient ROS elevation stimulates physiological processes such as adipogenesis. Here, using a combination of biochemical and cell and molecular biology-based approaches, we studied whether ROS or antioxidant treatment affects β3-adrenergic receptor (β3-AR) stimulation-induced adipose tissue browning. We found that β3-AR stimulation increases ROS levels in cultured adipocytes, but, unexpectedly, pretreatment with different antioxidants (N-acetylcysteine, vitamin E, or GSH ethyl ester) did not prevent this ROS increase. Using fluorescent probes, we discovered that the antioxidant treatments instead enhanced β3-AR stimulation-induced mitochondrial ROS production. This pro-oxidant effect of antioxidants was, even in the absence of β3-AR stimulation, associated with decreased oxygen consumption and increased lactate production in adipocytes. We observed similar antioxidant effects in WT mice: N-acetylcysteine blunted β3-AR stimulation-induced browning of white adipose tissue and reduced mitochondrial activity in brown adipose tissue even in the absence of β3-AR stimulation. Furthermore, N-acetylcysteine increased the levels of peroxiredoxin 3 and superoxide dismutase 2 in adipose tissue, indicating increased mitochondrial oxidative stress. We interpret this negative impact of antioxidants on oxygen consumption in vitro and adipose tissue browning in vivo as essential adaptations that prevent a further increase in mitochondrial ROS production. In summary, these results suggest that chronic antioxidant supplementation can produce a paradoxical increase in oxidative stress associated with mitochondrial dysfunction in adipocytes.
Collapse
Affiliation(s)
- Eduard Peris
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| | - Peter Micallef
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| | - Alexandra Paul
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Vilborg Palsdottir
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| | - Annika Enejder
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Marco Bauzá-Thorbrügge
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| | - Charlotta S Olofsson
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| | - Ingrid Wernstedt Asterholm
- From the Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30 Gothenburg, Sweden and
| |
Collapse
|
99968
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
99969
|
Martínez-Fábregas J, Prescott A, van Kasteren S, Pedrioli DL, McLean I, Moles A, Reinheckel T, Poli V, Watts C. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun 2018; 9:5343. [PMID: 30559339 PMCID: PMC6297226 DOI: 10.1038/s41467-018-07741-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Diverse cellular processes depend on the lysosomal protease system but how cells regulate lysosomal proteolytic capacity is only partly understood. We show here that cells can respond to protease/substrate imbalance in this compartment by de novo expression of multiple lysosomal hydrolases. This response, exemplified here either by loss of asparagine endopeptidase (AEP) or other lysosomal cysteine proteases, or by increased endocytic substrate load, is not dependent on the transcription factor EB (TFEB) but rather is triggered by STAT3 activation downstream of lysosomal oxidative stress. Similar lysosomal adaptations are seen in mice and cells expressing a constitutively active form of STAT3. Our results reveal how cells can increase lysosomal protease capacity under ‘fed’ rather than ‘starved’ conditions that activate the TFEB system. In addition, STAT3 activation due to lysosomal stress likely explains the hyperproliferative kidney disease and splenomegaly observed in AEP-deficient mice. How cells regulate their lysosomal proteolytic capacity is only partly understood. Here, the authors show that lysosomal protease deficiency or substrate overload induces lysosomal stress leading to activation of a STAT3-dependent, TFEB-independent pathway of lysosomal hydrolase expression.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sander van Kasteren
- Division of Bio-Organic Chemistry, Leiden Institute of Chemistry, Einsteinweg 55, Leiden, 2333CC, Netherlands
| | - Deena Leslie Pedrioli
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurestrasse190, 8057 Zurich, Switzerland
| | - Irwin McLean
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Biomedical Research of Barcelona, Spanish Research Council, Barcelona, 08036, Spain
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University, Freiburg, D-79104, Germany
| | - Valeria Poli
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
99970
|
Cornell RB, Taneva SG, Dennis MK, Tse R, Dhillon RK, Lee J. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. J Biol Chem 2018; 294:1490-1501. [PMID: 30559292 DOI: 10.1074/jbc.ra118.006457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme's response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada.
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Randeep K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
99971
|
Duraipandy N, Dharunya G, Lakra R, Korapatti PS, Syamala Kiran M. Fabrication of plumbagin on silver nanoframework for tunable redox modulation: Implications for therapeutic angiogenesis. J Cell Physiol 2018; 234:13110-13127. [PMID: 30556909 DOI: 10.1002/jcp.27981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions. In physiological conditions, the redox modulators induced the angiogenic response by establishing ECs cell-cell contact in tube formation model, chorio allontoic membrane, and aortic ring model. The molecular mechanism of angiogenic response was induced by vascular endothelial growth factor receptor 2 (VEGFR2)/p42-mitogen-activated protein kinase signaling pathway. Under stimulation, by mimicking tumor angiogenic conditions it induced cytotoxicity by generation of excessive ROS and inhibited the angiogenic response by the loss of spatiotemporal regulation of matrix metalloproteases, which prevents the tubular network formation in ECs and poly-ADP ribose modification of VEGF. The mechanism of opposing effects of PCSN was due to modulation of PKM2 enzyme activity, which increased the EC sensitivity to ROS and inhibited EC survival in stimulated condition. In normal conditions, the endogenous reactive states of NOX4 enzyme helped the EC survival. The results indicated that a threshold ROS level exists in ECs that promote angiogenesis and any significant enhancement in its level by redox modulator inhibits angiogenesis. The study provides the cues for the development of redox-based therapeutic molecules to cure the disease-associated aberrant angiogenesis.
Collapse
Affiliation(s)
- Natarajan Duraipandy
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | - Govindarajan Dharunya
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | - Purna Sai Korapatti
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India.,Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, India
| | | |
Collapse
|
99972
|
Manzo-Merino J, Lagunas-Martínez A, Contreras-Ochoa CO, Lizano M, Castro-Muñoz LJ, Calderón-Corona C, Torres-Poveda K, Román-Gonzalez A, Hernández-Pando R, Bahena-Román M, Madrid-Marina V. The Human Papillomavirus (HPV) E6 Oncoprotein Regulates CD40 Expression via the AT-Hook Transcription Factor AKNA. Cancers (Basel) 2018; 10:cancers10120521. [PMID: 30562965 PMCID: PMC6316281 DOI: 10.3390/cancers10120521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
Persistent infection with high-risk Human Papillomavirus (HR-HPV) is the main requisite for cervical cancer development. Normally, HPV is limited to the site of infection and regulates a plethora of cellular elements to avoid the immune surveillance by inducing an anti-inflammatory state, allowing the progress through the viral cycle and the carcinogenic process. Recent findings suggest that the AT-hook transcriptional factor AKNA could play a role in the development of cervical cancer. AKNA is strongly related to the expression of co-stimulatory molecules such CD40/CD40L to achieve an anti-tumoral immune response. To date, there is no evidence demonstrating the effect of the HPV E6 oncoprotein on the AT-hook factor AKNA. In this work, minimal expression of AKNA in cervical carcinoma compared to normal tissue was found. We show the ability of E6 from high-risk HPVs 16 and 18 to interact with and down-regulate AKNA as well as its co-stimulatory molecule CD40 in a proteasome dependent manner. We also found that p53 interacts with AKNA and promotes AKNA expression. Our results indicate that the de-regulation of CD40 and AKNA is induced by the HPV E6 oncoprotein, and this event involves the action of p53 suggesting that the axis E6/p53A/AKNA might play an important role in the de-regulation of the immune system during the carcinogenic process induced by HR-HPV.
Collapse
Affiliation(s)
- Joaquin Manzo-Merino
- CONACyT-Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Alfredo Lagunas-Martínez
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Carla O Contreras-Ochoa
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Leonardo J Castro-Muñoz
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Crysele Calderón-Corona
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Kirvis Torres-Poveda
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
- CONACyT-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos 62100, Mexico.
| | - Alicia Román-Gonzalez
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Rogelio Hernández-Pando
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Margarita Bahena-Román
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| | - Vicente Madrid-Marina
- Chronic Infections and Cancer Division, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Secretaría de Salud, Avenida Universidad 655, Col. Santa María Ahuacatitlan, Cuernavaca, Morelos 62100, Mexico.
| |
Collapse
|
99973
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag-Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018; 57:16688-16692. [PMID: 30393918 PMCID: PMC6348423 DOI: 10.1002/anie.201809149] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Indexed: 12/31/2022]
Abstract
Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).
Collapse
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Martin Walko
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Mark A. Levenstein
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
99974
|
Kausar S, Wang F, Cui H. The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells 2018; 7:cells7120274. [PMID: 30563029 PMCID: PMC6316843 DOI: 10.3390/cells7120274] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are dynamic cellular organelles that consistently migrate, fuse, and divide to modulate their number, size, and shape. In addition, they produce ATP, reactive oxygen species, and also have a biological role in antioxidant activities and Ca2+ buffering. Mitochondria are thought to play a crucial biological role in most neurodegenerative disorders. Neurons, being high-energy-demanding cells, are closely related to the maintenance, dynamics, and functions of mitochondria. Thus, impairment of mitochondrial activities is associated with neurodegenerative diseases, pointing to the significance of mitochondrial functions in normal cell physiology. In recent years, considerable progress has been made in our knowledge of mitochondrial functions, which has raised interest in defining the involvement of mitochondrial dysfunction in neurodegenerative diseases. Here, we summarize the existing knowledge of the mitochondrial function in reactive oxygen species generation and its involvement in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
99975
|
The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 2018; 47:131-147. [PMID: 30559273 DOI: 10.1042/bst20180420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.
Collapse
|
99976
|
Administration of Enalapril Started Late in Life Attenuates Hypertrophy and Oxidative Stress Burden, Increases Mitochondrial Mass, and Modulates Mitochondrial Quality Control Signaling in the Rat Heart. Biomolecules 2018; 8:biom8040177. [PMID: 30563025 PMCID: PMC6315620 DOI: 10.3390/biom8040177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is a relevant mechanism in cardiac aging. Here, we investigated the effects of late-life enalapril administration at a non-antihypertensive dose on mitochondrial genomic stability, oxidative damage, and mitochondrial quality control (MQC) signaling in the hearts of aged rats. The protein expression of selected mediators (i.e., mitochondrial antioxidant enzymes, energy metabolism, mitochondrial biogenesis, dynamics, and autophagy) was measured in old rats randomly assigned to receive enalapril (n = 8) or placebo (n = 8) from 24 to 27 months of age. We also assessed mitochondrial DNA (mtDNA) content, citrate synthase activity, oxidative lesions to protein and mtDNA (i.e., carbonyls and the abundance of mtDNA4834 deletion), and the mitochondrial transcription factor A (TFAM) binding to specific mtDNA regions. Enalapril attenuated cardiac hypertrophy and oxidative stress-derived damage (mtDNA oxidation, mtDNA4834 deletion, and protein carbonylation), while increasing mitochondrial antioxidant defenses. The binding of mitochondrial transcription factor A to mtDNA regions involved in replication and deletion generation was enhanced following enalapril administration. Increased mitochondrial mass as well as mitochondriogenesis and autophagy signaling were found in enalapril-treated rats. Late-life enalapril administration mitigates age-dependent cardiac hypertrophy and oxidative damage, while increasing mitochondrial mass and modulating MQC signaling. Further analyses are needed to conclusively establish whether enalapril may offer cardioprotection during aging.
Collapse
|
99977
|
Delorme-Axford E, Klionsky DJ. On the edge of degradation: Autophagy regulation by RNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1522. [PMID: 30560575 DOI: 10.1002/wrna.1522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
Cells must dynamically adapt to altered environmental conditions, particularly during times of stress, to ensure their ability to function effectively and survive. The macroautophagy/autophagy pathway is highly conserved across eukaryotic cells and promotes cell survival during stressful conditions. In general, basal autophagy occurs at a low level to sustain cellular homeostasis and metabolism. However, autophagy is robustly upregulated in response to nutrient deprivation, pathogen infection and increased accumulation of potentially toxic protein aggregates and superfluous organelles. Within the cell, RNA decay maintains quality control to remove aberrant transcripts and regulate appropriate levels of gene expression. Recent evidence has identified components of the cellular mRNA decay machinery as novel regulators of autophagy. Here, we review current findings that demonstrate how autophagy is modulated through RNA decay. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
99978
|
Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting. Biochem Soc Trans 2018; 46:1753-1770. [PMID: 30545934 PMCID: PMC6299260 DOI: 10.1042/bst20180004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 01/22/2023]
Abstract
The receptor tyrosine kinase family of fibroblast growth factor receptors (FGFRs) play crucial roles in embryonic development, metabolism, tissue homeostasis and wound repair via stimulation of intracellular signalling cascades. As a consequence of FGFRs' influence on cell growth, proliferation and differentiation, FGFR signalling is frequently dysregulated in a host of human cancers, variously by means of overexpression, somatic point mutations and gene fusion events. Dysregulation of FGFRs is also the underlying cause of many developmental dysplasias such as hypochondroplasia and achondroplasia. Accordingly, FGFRs are attractive pharmaceutical targets, and multiple clinical trials are in progress for the treatment of various FGFR aberrations. To effectively target dysregulated receptors, a structural and mechanistic understanding of FGFR activation and regulation is required. Here, we review some of the key research findings from the last couple of decades and summarise the strategies being explored for therapeutic intervention.
Collapse
Affiliation(s)
- Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
99979
|
Combination of Epigallocatechin Gallate and Sulforaphane Counteracts In Vitro Oxidative Stress and Delays Stemness Loss of Amniotic Fluid Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5263985. [PMID: 30647811 PMCID: PMC6311758 DOI: 10.1155/2018/5263985] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/30/2022]
Abstract
Amniotic fluid stem cells (AFSCs) are characterized in vivo by a unique niche guarantying their homeostatic role in the body. Maintaining the functionality of stem cells ex vivo for clinical applications requires a continuous improvement of cell culture conditions. Cellular redox status plays an important role in stem cell biology as long as reactive oxygen species (ROS) concentration is finely regulated and their adverse effects are excluded. The aim of this study was to investigate the protective effect of two antioxidants, sulforaphane (SF) and epigallocatechin gallate (EGCG), against in vitro oxidative stress due to hyperoxia and freeze-thawing cycles in AFSCs. Human AFSCs were isolated and characterized from healthy subjects. Assays of metabolic function and antioxidant activity were performed to investigate the effect of SF and EGCG cotreatment on AFSCs. Real-time PCR was used to investigate the effect of the cotreatment on pluripotency, senescence, osteogenic and adipogenic markers, and antioxidant enzymes. Alkaline phosphatase assays and Alizarin Red staining were used to confirm osteogenic differentiation. The cotreatment with SF and EGCG was effective in reducing ROS production, increasing GSH levels, and enhancing the endogenous antioxidant defences through the upregulation of glutathione reductase, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase. Intriguingly, the cotreatment sustained the stemness state by upregulating pluripotency markers such as OCT4 and NANOG. Moreover, the cotreatment influenced senescence-associated gene markers in respect to untreated cells. The cotreatment upregulated osteogenic gene markers and promoted osteogenic differentiation in vitro. SF and EGCG can be used in combination in AFSC culture as a strategy to preserve stem cell functionality.
Collapse
|
99980
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Brassica rapa L.) with Different Freezing-Tolerance. Int J Mol Sci 2018; 19:E4077. [PMID: 30562938 PMCID: PMC6321220 DOI: 10.3390/ijms19124077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Yaozhao Xu
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Fenqin Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
99981
|
Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE. Rapid Mapping of Protein Interactions Using Tag‐Transfer Photocrosslinkers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jim E. Horne
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Martin Walko
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Mark A. Levenstein
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of Leeds Leeds LS2 9JT UK
| | - Andrew J. Wilson
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
99982
|
Andersson U, Degerman S, Dahlin AM, Wibom C, Johansson G, Bondy ML, Melin BS. The association between longer relative leukocyte telomere length and risk of glioma is independent of the potentially confounding factors allergy, BMI, and smoking. Cancer Causes Control 2018; 30:177-185. [PMID: 30560391 DOI: 10.1007/s10552-018-1120-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Previous studies have suggested an association between relative leukocyte telomere length (rLTL) and glioma risk. This association may be influenced by several factors, including allergies, BMI, and smoking. Previous studies have shown that individuals with asthma and allergy have shortened relative telomere length, and decreased risk of glioma. Though, the details and the interplay between rLTL, asthma and allergies, and glioma molecular phenotype is largely unknown. METHODS rLTL was measured by qPCR in a Swedish population-based glioma case-control cohort (421 cases and 671 controls). rLTL was related to glioma risk and health parameters associated with asthma and allergy, as well as molecular events in glioma including IDH1 mutation, 1p/19q co-deletion, and EGFR amplification. RESULTS Longer rLTL was associated with increased risk of glioma (OR = 1.16; 95% CI 1.02-1.31). Similar to previous reports, there was an inverse association between allergy and glioma risk. Specific, allergy symptoms including watery eyes was most strongly associated with glioma risk. High body mass index (BMI) a year prior diagnosis was significantly protective against glioma in our population. Adjusting for allergy, asthma, BMI, and smoking did not markedly change the association between longer rLTL and glioma risk. rLTL among cases was not associated with IDH1 mutation, 1p/19q co-deletion, or EGFR amplification, after adjusting for age at diagnosis and sex. CONCLUSIONS In this Swedish glioma case-control cohort, we identified that long rLTL increases the risk of glioma, an association not confounded by allergy, BMI, or smoking. This highlights the complex interplay of the immune system, rLTL and cancer risk.
Collapse
Affiliation(s)
- Ulrika Andersson
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden.
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | - Anna M Dahlin
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| | - Gunnar Johansson
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Beatrice S Melin
- Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
| |
Collapse
|
99983
|
Feng XL, Deng HB, Wang ZG, Wu Y, Ke JJ, Feng XB. Suberoylanilide Hydroxamic Acid Triggers Autophagy by Influencing the mTOR Pathway in the Spinal Dorsal Horn in a Rat Neuropathic Pain Model. Neurochem Res 2018; 44:450-464. [PMID: 30560396 DOI: 10.1007/s11064-018-2698-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n = 100 nmol/day or n = 200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang-Lan Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Hong-Bo Deng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Zheng-Gang Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Yun Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Jian-Juan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Xiao-Bo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China.
| |
Collapse
|
99984
|
Krachtus D, Smith JC, Imhof P. Quantum Mechanical/Molecular Mechanical Analysis of the Catalytic Mechanism of Phosphoserine Phosphatase. Molecules 2018; 23:E3342. [PMID: 30563005 PMCID: PMC6321591 DOI: 10.3390/molecules23123342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphoserine phosphatase (PSP), a member of the haloacid dehalogenase (HAD) superfamily that comprises the vast majority of phosphotransferases, is likely a steady-state regulator of the level of d-serine in the brain. The proposed catalytic cycle of PSP consists of a two-step mechanism: formation of a phospho-enzyme intermediate by phosphate transfer to Asp11 and its subsequent hydrolysis. Our combined quantum mechanical/molecular mechanical (QM/MM) calculations of the reaction pathways favour a dissociative mechanism of nucleophilic substitution via a trigonal-planar metaphosphate-like configuration for both steps, associated with proton transfer to the leaving group or from the nucleophile. This proton transfer is facilitated by active site residue Asp13 that acts as both a general base and a general acid. Free energy calculation on the reaction pathways further support the structural role of the enzymatic environment and the active site architecture. The choice of a proper reaction coordinate along which to bias the free energy calculations can be guided by a projection of the canonical reaction coordinate obtained from a chain-of-state optimisation onto important internal coordinates.
Collapse
Affiliation(s)
- Dieter Krachtus
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
| | - Jeremy C Smith
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831-6255, USA.
| | - Petra Imhof
- Freie Universität Berlin, Institute for Theoretical Physics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
99985
|
Zhang J, Chen C, Gadi MR, Gibbons C, Guo Y, Cao X, Edmunds G, Wang S, Liu D, Yu J, Wen L, Wang PG. Machine‐Driven Enzymatic Oligosaccharide Synthesis by Using a Peptide Synthesizer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiabin Zhang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Congcong Chen
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | | | | | - Yuxi Guo
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Xuefeng Cao
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Garrett Edmunds
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Shuaishuai Wang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Ding Liu
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Jin Yu
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Liuqing Wen
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Peng G. Wang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| |
Collapse
|
99986
|
Isolation and characterization of bacteriophage NTR1 infectious for Nocardia transvalensis and other Nocardia species. Virus Genes 2018; 55:257-265. [DOI: 10.1007/s11262-018-1625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
99987
|
Warmerdam DO, Wolthuis RMF. Keeping ribosomal DNA intact: a repeating challenge. Chromosome Res 2018; 27:57-72. [PMID: 30556094 PMCID: PMC6394564 DOI: 10.1007/s10577-018-9594-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
More than half of the human genome consists of repetitive sequences, with the ribosomal DNA (rDNA) representing two of the largest repeats. Repetitive rDNA sequences may form a threat to genomic integrity and cellular homeostasis due to the challenging aspects of their transcription, replication, and repair. Predisposition to cancer, premature aging, and neurological impairment in ataxia-telangiectasia and Bloom syndrome, for instance, coincide with increased cellular rDNA repeat instability. However, the mechanisms by which rDNA instability contributes to these hereditary syndromes and tumorigenesis remain unknown. Here, we review how cells govern rDNA stability and how rDNA break repair influences expansion and contraction of repeat length, a process likely associated with human disease. Recent advancements in CRISPR-based genome engineering may help to explain how cells keep their rDNA intact in the near future.
Collapse
Affiliation(s)
- Daniël O Warmerdam
- CRISPR Platform, University of Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Rob M F Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
99988
|
Qulsum U, Tsukahara T. Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in Arabidopsis thaliana. Biosci Trends 2018; 12:569-579. [PMID: 30555111 DOI: 10.5582/bst.2018.01178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alternative splicing is a post- and co-transcriptional regulatory mechanism of gene expression. Pentatricopeptide repeat (PPR) family proteins were recently found to be involved in RNA editing in plants. The aim of this study was to investigate the tissue-specific expression and alternative splicing of PPR family genes and their effects on protein structure and functionality. Of the 27 PPR genes in Arabidopsis thaliana, we selected six PPR genes of the P subfamily that are likely alternatively spliced, which were confirmed by sequencing. Four of these genes show intron retention, and the two remaining genes have 3' alternative-splicing sites. Alternative-splicing events occurred in the coding regions of three genes and in the 3' UTRs of the three remaining genes. We also identified five previously unannotated alternatively spliced isoforms of these PPR genes, which were confirmed by PCR and sequencing. Among these, three contain 3' alternative-splicing sites, one contains a 5' alternative-splicing site, and the remaining gene contains a 3'-5' alternative-splicing site. The new isoforms of two genes affect protein structure, and three other alternative-splicing sites are located in 3' UTRs. These findings suggest that tissue-specific expression of different alternatively spliced transcripts occurs in Arabidopsis, even at different developmental stages.
Collapse
Affiliation(s)
- Umme Qulsum
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
99989
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
99990
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
99991
|
Tuo L, Xiang J, Pan X, Gao Q, Zhang G, Yang Y, Liang L, Xia J, Wang K, Tang N. PCK1 Downregulation Promotes TXNRD1 Expression and Hepatoma Cell Growth via the Nrf2/Keap1 Pathway. Front Oncol 2018; 8:611. [PMID: 30619751 PMCID: PMC6304441 DOI: 10.3389/fonc.2018.00611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Gluconeogenesis, generates glucose from small carbohydrate substrates, and drives the metabolic flux in parallel but opposite to glycolysis. The cytoplasmic isoform of phosphoenolpyruvate carboxykinase (PCK1 or PEPCK-C), a rate-limiting enzyme in gluconeogenesis, initiates the gluconeogenesis process and is reportedly dysregulated in multiple types of cancer. Gluconeogenesis mainly occurs in the liver during fasting, and previous studies have demonstrated that PCK1 acts as a tumor suppressor in hepatocellular carcinoma (HCC); however, the role of PCK1 in cancer progression remains incompletely understood. In the current study, we found that PCK1 expression was decreased in HCC as compared to adjacent normal liver tissues, and low PCK1 expression correlated with poor patient prognosis. Furthermore, overexpression of PCK1 suppressed reactive oxygen species (ROS) production and nuclear translocation of Nrf2 in hepatoma cells. In addition, thioredoxin reductase 1 (TXNRD1), an antioxidant enzyme regulated by the Nrf2/Keap1 pathway, was downregulated upon overexpression of PCK1 in HCC cell lines. Furthermore, we verified this axis using nude mouse xenograft model. Finally, we found that auranofin, a TXNRD1 inhibitor, enhanced the sensitivity of PCK1-knockout hepatoma cells to sorafenib-induced apoptosis. Taken together, our findings suggest that PCK1 deficiency promotes hepatoma cell proliferation via the induction of oxidative stress and the activation of transcription factor Nrf2, and that targeting the TXNRD1 antioxidant pathway sensitizes PCK1-knockout hepatoma cells to sorafenib treatment in vitro.
Collapse
Affiliation(s)
- Lin Tuo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
99992
|
Chun BJ, Stewart BD, Vaughan DD, Bachstetter AD, Kekenes-Huskey PM. Simulation of P2X-mediated calcium signalling in microglia. J Physiol 2018; 597:799-818. [PMID: 30462840 DOI: 10.1113/jp277377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS A computational model of P2X channel activation in microglia was developed that includes downfield Ca2+ -dependent signalling pathways. This model provides quantitative insights into how diverse signalling pathways in microglia converge to control microglial function. ABSTRACT Microglia function is orchestrated through highly coupled signalling pathways that depend on calcium (Ca2+ ). In response to extracellular ATP, transient increases in intracellular Ca2+ driven through the activation of purinergic receptors, P2X and P2Y, are sufficient to promote cytokine synthesis. Although the steps comprising the pathways bridging purinergic receptor activation with transcriptional responses have been probed in great detail, a quantitative model for how these steps collectively control cytokine production has not been established. Here we developed a minimal computational model that quantitatively links extracellular stimulation of two prominent ionotropic purinergic receptors, P2X4 and P2X7, with the graded production of a gene product, namely the tumour necrosis factor α (TNFα) cytokine. In addition to Ca2+ handling mechanisms common to eukaryotic cells, our model includes microglia-specific processes including ATP-dependent P2X4 and P2X7 activation, activation of nuclear factor of activated T-cells (NFAT) transcription factors, and TNFα production. Parameters for this model were optimized to reproduce published data for these processes, where available. With this model, we determined the propensity for TNFα production in microglia, subject to a wide range of ATP exposure amplitudes, frequencies and durations that the cells could encounter in vivo. Furthermore, we have investigated the extent to which modulation of the signal transduction pathways influence TNFα production. Our results suggest that pulsatile stimulation of P2X4 via micromolar ATP may be sufficient to promote TNFα production, whereas high-amplitude ATP exposure is necessary for production via P2X7. Furthermore, under conditions that increase P2X4 expression, for instance, following activation by pathogen-associated molecular factors, P2X4-associated TNFα production is greatly enhanced. Given that Ca2+ homeostasis in microglia is profoundly important to its function, this computational model provides a quantitative framework to explore hypotheses pertaining to microglial physiology.
Collapse
Affiliation(s)
- Byeong Jae Chun
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | - Darin D Vaughan
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
99993
|
Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2'-O-methylation): Occurrence, biosynthesis and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:253-269. [PMID: 30572123 DOI: 10.1016/j.bbagrm.2018.11.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Methylation of riboses at 2'-OH group is one of the most common RNA modifications found in number of cellular RNAs from almost any species which belong to all three life domains. This modification was extensively studied for decades in rRNAs and tRNAs, but recent data revealed the presence of 2'-O-methyl groups also in low abundant RNAs, like mRNAs. Ribose methylation is formed in RNA by two alternative enzymatic mechanisms: either by stand-alone protein enzymes or by complex assembly of proteins associated with snoRNA guides (sno(s)RNPs). In that case one catalytic subunit acts at various RNA sites, the specificity is provided by base pairing of the sno(s)RNA guide with the target RNA. In this review we compile available information on 2'-OH ribose methylation in different RNAs, enzymatic machineries involved in their biosynthesis and dynamics, as well as on the physiological functions of these modified residues.
Collapse
Affiliation(s)
- Lilia Ayadi
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Adeline Galvanin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florian Pichot
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
99994
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
99995
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
99996
|
Knorr AG, Schmidt C, Tesina P, Berninghausen O, Becker T, Beatrix B, Beckmann R. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol 2018; 26:35-39. [PMID: 30559462 DOI: 10.1038/s41594-018-0165-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
The majority of eukaryotic proteins are N-terminally α-acetylated by N-terminal acetyltransferases (NATs). Acetylation usually occurs co-translationally and defects have severe consequences. Nevertheless, it is unclear how these enzymes act in concert with the translating ribosome. Here, we report the structure of a native ribosome-NatA complex from Saccharomyces cerevisiae. NatA (comprising Naa10, Naa15 and Naa50) displays a unique mode of ribosome interaction by contacting eukaryotic-specific ribosomal RNA expansion segments in three out of four binding patches. Thereby, NatA is dynamically positioned directly underneath the ribosomal exit tunnel to facilitate modification of the emerging nascent peptide chain. Methionine amino peptidases, but not chaperones or signal recognition particle, would be able to bind concomitantly. This work assigns a function to the hitherto enigmatic ribosomal RNA expansion segments and provides mechanistic insights into co-translational protein maturation by N-terminal acetylation.
Collapse
Affiliation(s)
- Alexandra G Knorr
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Christian Schmidt
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Petr Tesina
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| | - Birgitta Beatrix
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| |
Collapse
|
99997
|
Williams DE, Boon EM. Towards Understanding the Molecular Basis of Nitric Oxide-Regulated Group Behaviors in Pathogenic Bacteria. J Innate Immun 2018; 11:205-215. [PMID: 30557874 DOI: 10.1159/000494740] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria have many strategies for causing disease in humans. One such strategy is the ability to live both as single-celled motile organisms or as part of a community of bacteria called a biofilm. Biofilms are frequently adhered to biotic or abiotic surfaces and are extremely antibiotic resistant. Upon biofilm dispersal, bacteria become more antibiotic susceptible but are also able to readily infect another host. Various studies have shown that low, nontoxic levels of nitric oxide (NO) may induce biofilm dispersal in many bacterial species. While the molecular details of this phenotype remain largely unknown, in several species, NO has been implicated in biofilm-to-planktonic cell transitions via ligation to 1 of 2 characterized NO sensors, NosP or H-NOX. Based on the data available to date, it appears that NO binding to H-NOX or NosP triggers a downstream response based on changes in cellular cyclic di-GMP concentrations and/or the modulation of quorum sensing. In order to develop applications for control of biofilm infections, the identification and characterization of biofilm dispersal mechanisms is vital. This review focuses on the efforts made to understand NO-mediated control of H-NOX and NosP pathways in the 3 pathogenic bacteria Legionella pneumophila, Vibrio cholerae, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Dominique E Williams
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology and Drug Design, Stony Brook University, Stony Brook, New York, USA,
| |
Collapse
|
99998
|
Stonik VA, Stonik IV. Sterol and Sphingoid Glycoconjugates from Microalgae. Mar Drugs 2018; 16:E514. [PMID: 30563009 PMCID: PMC6315552 DOI: 10.3390/md16120514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Microalgae are well known as primary producers in the hydrosphere. As sources of natural products, microalgae are attracting major attention due to the potential of their practical applications as valuable food constituents, raw material for biofuels, drug candidates, and components of drug delivery systems. This paper presents a short review of a low-molecular-weight steroid and sphingolipid glycoconjugates, with an analysis of the literature on their structures, functions, and bioactivities. The discussed data on sterols and the corresponding glycoconjugates not only demonstrate their structural diversity and properties, but also allow for a better understanding of steroid biogenesis in some echinoderms, mollusks, and other invertebrates which receive these substances from food and possibly from their microalgal symbionts. In another part of this review, the structures and biological functions of sphingolipid glycoconjugates are discussed. Their role in limiting microalgal blooms as a result of viral infections is emphasized.
Collapse
Affiliation(s)
- Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
| | - Inna V Stonik
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, 690041 Vladivostok, Russia.
| |
Collapse
|
99999
|
Shen L, Qian C, Cao H, Wang Z, Luo T, Liang C. Upregulation of the solute carrier family 7 genes is indicative of poor prognosis in papillary thyroid carcinoma. World J Surg Oncol 2018; 16:235. [PMID: 30558624 PMCID: PMC6297957 DOI: 10.1186/s12957-018-1535-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background The solute carrier (SLC) 7 family genes comprise 14 members and function as cationic amino acid/glycoprotein transporters in many cells, they are essential for the maintenance of amino acid nutrition and survival of tumor cells. This study was conducted to analyze the associations of SLC7 family gene expression with mortality in papillary thyroid carcinoma (PTC). Methods Clinical features, somatic mutations, and SLC7 family gene expression data were downloaded from The Cancer Genome Atlas database. Linear regression model analysis was performed to analyze the correlations between SLC7 family gene expression and clinicopathologic features. Kaplan-Meier survival and logistic regression analyses were performed to characterize the associations between gene expression and patients’ overall survival. Results Patient mortality was negatively associated with age and tumor size but positively increased cancer stage and absence of thyroiditis in PTC patients. Kaplan-Meier survival analysis indicated that patients with high SLC7A3, SLC7A5, and SLC7A11 expression levels exhibited poorer survival than those with low SLC7A3, SLC7A5, and SLC7A11 expression levels (P < 0.05 for all cases). Logistic regression analysis showed that SLC7A3, SLC7A5, and SLC7A11 were associated with increased mortality (odds ratio [OR] 8.61, 95% confidence interval [CI] 2.3–55.91; OR 3.87, 95% CI 1.18–17.31; and OR 3.87, 95% CI 1.18–17.31, respectively. Conclusion Upregulation of SLC7A3, SLC7A5, and SLC7A11 expression was associated with poor prognosis in PTC patients, and SLC7 gene expression levels are potentially useful prognostic biomarkers.
Collapse
Affiliation(s)
- Lei Shen
- Department of Thyroid Breast Oncology, Shanghai East Hospital, School of Medicine, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, China
| | - Chunhua Qian
- Department of Endocrinolgy and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Cao
- Department of Thyroid and Breast, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Department of Thyroid Breast Oncology, Shanghai East Hospital, School of Medicine, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, China
| | - Tingxian Luo
- Department of Thyroid Breast Oncology, Shanghai East Hospital, School of Medicine, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, China
| | - Chunli Liang
- Department of Thyroid Breast Oncology, Shanghai East Hospital, School of Medicine, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
100000
|
Strebitzer E, Rangadurai A, Plangger R, Kremser J, Juen MA, Tollinger M, Al‐Hashimi HM, Kreutz C. 5-Oxyacetic Acid Modification Destabilizes Double Helical Stem Structures and Favors Anionic Watson-Crick like cmo 5 U-G Base Pairs. Chemistry 2018; 24:18903-18906. [PMID: 30300940 PMCID: PMC6348377 DOI: 10.1002/chem.201805077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 01/20/2023]
Abstract
Watson-Crick like G-U mismatches with tautomeric Genol or Uenol bases can evade fidelity checkpoints and thereby contribute to translational errors. The 5-oxyacetic acid uridine (cmo5 U) modification is a base modification at the wobble position on tRNAs and is presumed to expand the decoding capability of tRNA at this position by forming Watson-Crick like cmo5 Uenol -G mismatches. A detailed investigation on the influence of the cmo5 U modification on structural and dynamic features of RNA was carried out by using solution NMR spectroscopy and UV melting curve analysis. The introduction of a stable isotope labeled variant of the cmo5 U modifier allowed the application of relaxation dispersion NMR to probe the potentially formed Watson-Crick like cmo5 Uenol -G base pair. Surprisingly, we find that at neutral pH, the modification promotes transient formation of anionic Watson-Crick like cmo5 U- -G, and not enolic base pairs. Our results suggest that recoding is mediated by an anionic Watson-Crick like species, as well as bring an interesting aspect of naturally occurring RNA modifications into focus-the fine tuning of nucleobase properties leading to modulation of the RNA structural landscape by adoption of alternative base pairing patterns.
Collapse
Affiliation(s)
- Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Atul Rangadurai
- Department of Biochemistry and Department of ChemistryDuke University School of Medicine, Nanaline H. Duke Building307 Research DriveDurhamNC27710USA
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Hashim M. Al‐Hashimi
- Department of Biochemistry and Department of ChemistryDuke University School of Medicine, Nanaline H. Duke Building307 Research DriveDurhamNC27710USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|