1001
|
Abstract
OBJECTIVES Crohn's disease (CD) is a chronic relapsing-remitting gut inflammatory disorder with a heterogeneous unpredictable course. Dysbiosis occurs in CD; however, whether microbial dynamics in quiescent CD are instrumental in increasing the risk of a subsequent flare remains undefined. METHODS We analyzed the long-term dynamics of microbial composition in a prospective observational cohort of patients with quiescent CD (45 cases, 217 samples) over 2 years or until clinical flare occurred, aiming to identify whether changes in the microbiome precede and predict clinical relapse. Machine learning was used to prioritize microbial and clinical factors that discriminate between relapsers and nonrelapsers in the quiescent phase. RESULTS Patients with CD in clinical, biomarker, and mucosal remission showed significantly reduced microbial richness and increased dysbiosis index compared with healthy controls. Of the 45 patients with quiescent CD, 12 (27%) flared during follow-up. Samples in quiescent patients preceding flare showed significantly reduced abundance of Christensenellaceae and S24.7, and increased abundance of Gemellaceae compared with those in remission throughout. A composite flare index was associated with a subsequent flare. Notably, higher individualized microbial instability in the quiescent phase was associated with a higher risk of a subsequent flare (hazard ratio 11.32, 95% confidence interval 3-42, P = 0.0035) using two preflare samples. Importantly, machine learning prioritized the flare index and the intrapersonal instability over clinical factors to best discriminate between relapsers and nonrelapsers. DISCUSSION Individualized microbial variations in quiescent CD significantly increase the risk of future exacerbation and may provide a model to guide personalized preemptive therapy intensification.
Collapse
|
1002
|
Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S, Zhang F, Tang W, Ching JYL, Zhao R, Chan PKS, Sung JJY, Yu J, Chan FKL, Cao Q, Sheng JQ, Ng SC. Gut mucosal virome alterations in ulcerative colitis. Gut 2019; 68:1169-1179. [PMID: 30842211 PMCID: PMC6582748 DOI: 10.1136/gutjnl-2018-318131] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC. DESIGN Deep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2. RESULTS In UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC. CONCLUSION We demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.
Collapse
Affiliation(s)
- Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Juan Lu
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Yu Zhang
- Faculty of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Pan Cheung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Siu Lam
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fen Zhang
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Risheng Zhao
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joseph J Y Sung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qian Cao
- Faculty of Medicine, Zhejiang University, Hangzhou, China,Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
1003
|
|
1004
|
Keshteli AH, Madsen KL, Dieleman LA. Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients 2019; 11:nu11071498. [PMID: 31262022 PMCID: PMC6683258 DOI: 10.3390/nu11071498] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and experimental studies have suggested that diet is one of the environmental factors that contributes to the onset and pathophysiology of ulcerative colitis. Although many patients suffering from ulcerative colitis attribute their symptoms or disease relapse to dietary factors, only a few well-designed randomized controlled trials have been done to investigate the role of diet in the management of ulcerative colitis. Here, we review the potential mechanisms of the relationship between diet and pathogenesis of ulcerative colitis and summarize randomized controlled dietary interventions that have been conducted in ulcerative colitis patients.
Collapse
Affiliation(s)
- Ammar Hassanzadeh Keshteli
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada
| | - Levinus A Dieleman
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada.
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), Edmonton, AB T6G 2X8, Canada.
| |
Collapse
|
1005
|
Inflammatory Bowel Disease: A Stressed "Gut/Feeling". Cells 2019; 8:cells8070659. [PMID: 31262067 PMCID: PMC6678997 DOI: 10.3390/cells8070659] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition, hallmarked by a disturbance in the bidirectional interaction between gut and brain. In general, the gut/brain axis involves direct and/or indirect communication via the central and enteric nervous system, host innate immune system, and particularly the gut microbiota. This complex interaction implies that IBD is a complex multifactorial disease. There is increasing evidence that stress adversely affects the gut/microbiota/brain axis by altering intestinal mucosa permeability and cytokine secretion, thereby influencing the relapse risk and disease severity of IBD. Given the recurrent nature, therapeutic strategies particularly aim at achieving and maintaining remission of the disease. Alternatively, these strategies focus on preventing permanent bowel damage and concomitant long-term complications. In this review, we discuss the gut/microbiota/brain interplay with respect to chronic inflammation of the gastrointestinal tract and particularly shed light on the role of stress. Hence, we evaluated the therapeutic impact of stress management in IBD.
Collapse
|
1006
|
Borody TJ, Clancy A. Fecal microbiota transplantation for ulcerative colitis-where to from here? Transl Gastroenterol Hepatol 2019; 4:48. [PMID: 31304425 DOI: 10.21037/tgh.2019.06.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Thomas J Borody
- Centre for Digestive Diseases, Five Dock, Sydney, NSW, Australia
| | - Annabel Clancy
- Centre for Digestive Diseases, Five Dock, Sydney, NSW, Australia
| |
Collapse
|
1007
|
Song G, Fiocchi C, Achkar JP. Acupuncture in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1129-1139. [PMID: 30535303 DOI: 10.1093/ibd/izy371] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Scientific research into the effects and mechanisms of acupuncture for gastrointestinal diseases including inflammatory bowel disease has been rapidly growing in the past several decades. In this review, we discuss the history, theory, and methodology of acupuncture and review potentially beneficial mechanisms of action of acupuncture for managing inflammatory bowel disease. Acupuncture has been shown to decrease disease activity and inflammation via increase of vagal activity in inflammatory bowel disease. Acupuncture has demonstrated beneficial roles in the regulation of gut dysbiosis, intestinal barrier function, visceral hypersensitivity, gut motor dysfunction, depression/anxiety, and pain, all of which are factors that can significantly impact quality of life in patients with inflammatory bowel disease. A number of clinical trials have been performed to investigate the therapeutic effects of acupuncture in ulcerative colitis and Crohn's disease. Although the data from these trials are promising, more studies are needed given the heterogeneous and multifactorial aspects of inflammatory bowel disease. There is also an important need to standardize acupuncture methodology, study designs, and outcome measurements.
Collapse
Affiliation(s)
- Gengqing Song
- Department of Gastroenterology, Hepatology & Nutrition, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Gastroenterology, Hepatology & Nutrition, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Jean-Paul Achkar
- Department of Gastroenterology, Hepatology & Nutrition, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
1008
|
Wardill HR, Choo JM, Dmochowska N, Mavrangelos C, Campaniello MA, Bowen JM, Rogers GB, Hughes PA. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflamm Bowel Dis 2019; 25:1196-1207. [PMID: 30794280 DOI: 10.1093/ibd/izz011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has a remitting and relapsing disease course; however, relatively little is understood regarding how inflammatory damage in acute colitis influences the microbiota, epithelial barrier, and immune function in subsequent colitis. METHODS Mice were administered trinitrobenzene sulphonic acid (TNBS) via enema, and inflammation was assessed 2 days (d2) or 28 days (d28) later. Colitis was reactivated in some mice by re-treating at 28 days with TNBS and assessing 2 days later (d30). Epithelial responsiveness to secretagogues, microbiota composition, colonic infiltration, and immune activation was compared between all groups. RESULTS At day 28, the distal colon had healed, mucosa was restored, and innate immune response had subsided, but colonic transepithelial transport (P = 0.048), regulatory T-cell (TREG) infiltration (P = 0.014), adherent microbiota composition (P = 0.0081), and responsiveness of stimulated innate immune bone marrow cells (P < 0.0001 for IL-1β) differed relative to health. Two days after subsequent instillation of TNBS (d30 mice), the effects on inflammatory damage (P < 0.0001), paracellular permeability (P < 0.0001), and innate immune infiltration (P < 0.0001 for Ly6C+ Ly6G- macrophages) were reduced relative to d2 colitis. However, TREG infiltration was increased (P < 0.0001), and the responsiveness of stimulated T cells in the mesenteric lymph nodes shifted from pro-inflammatory at d2 to immune-suppressive at d30 (P < 0.0001 for IL-10). These effects were observed despite similar colonic microbiota composition and degradation of the mucosal layer between d2 and d30. CONCLUSIONS Collectively, these results indicate that acute colitis chronically alters epithelial barrier function and both innate and adaptive immune responses. These effects reduce the consequences of a subsequent colitis event, warranting longitudinal studies in human IBD subjects.
Collapse
Affiliation(s)
- Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jocelyn M Choo
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
1009
|
Chen T, Shi N, Afzali A. Chemopreventive Effects of Strawberry and Black Raspberry on Colorectal Cancer in Inflammatory Bowel Disease. Nutrients 2019; 11:E1261. [PMID: 31163684 PMCID: PMC6627270 DOI: 10.3390/nu11061261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer-related death in the United States and the fourth globally with a rising incidence. Inflammatory bowel disease (IBD) is a chronic immunologically mediated disease that imposes a significant associated health burden, including the increased risk for colonic dysplasia and CRC. Carcinogenesis has been attributed to chronic inflammation and associated with oxidative stress, genomic instability, and immune effectors as well as the cytokine dysregulation and activation of the nuclear factor kappa B (NFκB) signaling pathway. Current anti-inflammation therapies used for IBD treatment have shown limited effects on CRC chemoprevention, and their long-term toxicity has limited their clinical application. However, natural food-based prevention approaches may offer significant cancer prevention effects with very low toxicity profiles. In particular, in preclinical and clinical pilot studies, strawberry and black raspberry have been widely selected as food-based interventions because of their potent preventive activities. In this review, we summarize the roles of strawberry, black raspberry, and their polyphenol components on CRC chemoprevention in IBD.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Ni Shi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Anita Afzali
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH 43210, USA.
- Inflammatory Bowel Disease Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
1010
|
Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. MARINE POLLUTION BULLETIN 2019; 143:193-203. [PMID: 31789155 DOI: 10.1016/j.marpolbul.2019.04.030] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 05/20/2023]
Abstract
As small pieces of plastics known as microplastics pollute even the remotest parts of Earth, research currently focuses on unveiling how this pollution may affect biota. Despite increasing awareness, one potentially major consequence of chronic exposure to microplastics has been largely neglected: the impact of the disruption of the symbiosis between host and the natural community and abundance pattern of the gut microbiota. This so-called dysbiosis might be caused by the consumption of microplastics, associated mechanical disruption within the gastrointestinal tract, the ingestion of foreign and potentially pathogenic bacteria, as well as chemicals, which make-up or adhere to microplastics. Dysbiosis may interfere with the host immune system and trigger the onset of (chronic) diseases, promote pathogenic infections, and alter the gene capacity and expression of gut microbiota. We summarize how chronically exposed species may suffer from microplastics-induced gut dysbiosis, deteriorating host health, and highlight corresponding future directions of research.
Collapse
Affiliation(s)
- Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
1011
|
Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, Yuan J, Li M. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef Microbes 2019; 10:543-553. [DOI: 10.3920/bm2018.0122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human inflammatory bowel disease (IBD) and experimental colitis models in mice are associated with shifts in gut microbiota composition, and several probiotics are widely used to improve gastrointestinal health. Here, we investigated whether the probiotic Bacillus licheniformis Zhengchangsheng® (BL) ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. Experimental colitis was induced in BALB/C mice by dissolving 3% DSS in their drinking water for 7 days, which were gavaged with 0.2 ml phosphate-buffered saline or BL (3×107 cfu/ml) once a day. Administration of BL attenuated several effects of DSS-induced colitis, including weight loss, increased disease activity index, and disrupted intestinal barrier integrity. In addition, BL mitigated the reduction in faecal microbiota richness in DSS treated mice. Interestingly, BL was found to reduce the elevated circulating endotoxin level in mice with colitis by modulating the microbial composition of the microbiota, and this was highly associated with a proportional decrease in gut Bacteroidetes. Our results demonstrate that BL can attenuate DSS-induced colitis and provide valuable insight into microbiota interactions during IBD.
Collapse
Affiliation(s)
- Y. Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China P.R
| | - M. Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - J. Zhou
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - B. Hou
- Department of Dermatology and Venerology, the First Affiliated Hospital of Dalian Medical University, Dalian, China P.R
| | - X. Su
- Research Institute of Northeastern Pharmaceutical Group (NEPG), Shenyang, China P.R
| | - Z. Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China P.R
| | - J. Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| | - M. Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China P.R
| |
Collapse
|
1012
|
Kellermayer R. Fecal microbiota transplantation: great potential with many challenges. Transl Gastroenterol Hepatol 2019; 4:40. [PMID: 31231707 DOI: 10.21037/tgh.2019.05.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
In January of 2019, Samuel P. Costello and colleagues published a wonderfully executed, double blind placebo-controlled trial on fecal microbiota transplantation (FMT) versus autologous stool as placebo in mild to moderately active adult ulcerative colitis [UC: one type of inflammatory bowel disease (IBD)] patients. This review-commentary examines the current state of knowledge on human gut microbiome (live microbiota + their products and surrounding environment, i.e., fecal matter) and microbial therapeutics from a gastrointestinal (GI) clinician's standpoint. The varied forms of dysbiosis as the target of FMT, recipient donor and placebo considerations are also discussed in respect to randomized control trials in IBD [and the lack thereof in Crohn's disease (CD)] with this unconventional treatment modality.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine, Houston, TX, USA.,USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
1013
|
Spalinger MR, Schmidt TS, Schwarzfischer M, Hering L, Atrott K, Lang S, Gottier C, Geirnaert A, Lacroix C, Dai X, Rawlings DJ, Chan AC, von Mering C, Rogler G, Scharl M. Protein tyrosine phosphatase non-receptor type 22 modulates colitis in a microbiota-dependent manner. J Clin Invest 2019; 129:2527-2541. [PMID: 31107248 DOI: 10.1172/jci123263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is crucial for our health, and well-balanced interactions between the host's immune system and the microbiota are essential to prevent chronic intestinal inflammation, as observed in inflammatory bowel diseases (IBD). A variant in protein tyrosine phosphatase non-receptor type 22 (PTPN22) is associated with reduced risk of developing IBD, but promotes the onset of autoimmune disorders. While the role of PTPN22 in modulating molecular pathways involved in IBD pathogenesis is well studied, its impact on shaping the intestinal microbiota has not been addressed in depth. Here, we demonstrate that mice carrying the PTPN22 variant (619W mice) were protected from acute dextran sulfate sodium (DSS) colitis, but suffered from pronounced inflammation upon chronic DSS treatment. The basal microbiota composition was distinct between genotypes, and DSS-induced dysbiosis was milder in 619W mice than in WT littermates. Transfer of microbiota from 619W mice after the first DSS cycle into treatment-naive 619W mice promoted colitis, indicating that changes in microbial composition enhanced chronic colitis in those animals. This indicates that presence of the PTPN22 variant affects intestinal inflammation by modulating the host's response to the intestinal microbiota.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thomas Sb Schmidt
- Institute of Molecular Life Science and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Claudia Gottier
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Xuezhi Dai
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew C Chan
- Research, Genentech Inc., South San Francisco, California, USA
| | - Christian von Mering
- Institute of Molecular Life Science and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.,Zurich Institute for Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.,Zurich Institute for Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
1014
|
Enaud R, Hooks KB, Barre A, Barnetche T, Hubert C, Massot M, Bazin T, Clouzeau H, Bui S, Fayon M, Berger P, Lehours P, Bébéar C, Nikolski M, Lamireau T, Delhaes L, Schaeverbeke T. Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn's-Like Microbiota Disturbances. J Clin Med 2019; 8:jcm8050645. [PMID: 31083321 PMCID: PMC6572243 DOI: 10.3390/jcm8050645] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a systemic genetic disease that leads to pulmonary and digestive disorders. In the majority of CF patients, the intestine is the site of chronic inflammation and microbiota disturbances. The link between gut inflammation and microbiota dysbiosis is still poorly understood. The main objective of this study was to assess gut microbiota composition in CF children depending on their intestinal inflammation. We collected fecal samples from 20 children with CF. Fecal calprotectin levels were measured and fecal microbiota was analyzed by 16S rRNA sequencing. We observed intestinal inflammation was associated with microbiota disturbances characterized mainly by increased abundances of Staphylococcus, Streptococcus, and Veillonella dispar, along with decreased abundances of Bacteroides, Bifidobacterium adolescentis, and Faecalibacterium prausnitzii. Those changes exhibited similarities with that of Crohn's disease (CD), as evidenced by the elevated CD Microbial-Dysbiosis index that we applied for the first time in CF. Furthermore, the significant over-representation of Streptococcus in children with intestinal inflammation appears to be specific to CF and raises the issue of gut-lung axis involvement. Taken together, our results provide new arguments to link gut microbiota and intestinal inflammation in CF and suggest the key role of the gut-lung axis in the CF evolution.
Collapse
Affiliation(s)
- Raphaël Enaud
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Katarzyna B Hooks
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Aurélien Barre
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thomas Barnetche
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Christophe Hubert
- INSERM, MRGM, University Bordeaux, U1211, F-33000 Bordeaux, France.
- PGTB, University Bordeaux, F-33000 Bordeaux, France.
| | - Marie Massot
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France.
| | - Thomas Bazin
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Haude Clouzeau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Stéphanie Bui
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Michael Fayon
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Philippe Lehours
- BaRITOn, INSERM, University Bordeaux, UMR1053, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Cécile Bébéar
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Macha Nikolski
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thierry Lamireau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Thierry Schaeverbeke
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
1015
|
Henriksson G, Bredberg J, Wullt M, Lyrenäs E, Hindorf U, Ohlsson B, Grip O. Humoral response to Clostridium difficile in inflammatory bowel disease, including correlation with immunomodulatory treatment. JGH OPEN 2019; 3:154-158. [PMID: 31061891 PMCID: PMC6487827 DOI: 10.1002/jgh3.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/18/2023]
Abstract
Background and Aim An abnormal immune response to intestinal bacteria has been observed in Crohn's disease (CD). Clostridium difficile infection incidence and severity are increased in CD, but reports on the humoral response have provided conflicting results. We aimed to shed light on the possible role of C. difficile in CD pathogenesis by paying attention to the influence of immunomodulatory treatment on the humoral response. Methods A total of 71 consecutive outpatients with CD, 67 with ulcerative colitis (UC), and 121 healthy controls were analyzed for serum IgA and IgG to C. difficile toxins A and B. Results IgA levels were similar in all study groups. IgG to toxin A was increased similarly in CD and UC (P = 0.02 for both). In contrast, IgG to toxin B was elevated only in CD patients not receiving disease-modifying anti-inflammatory bowel disease drugs (DMAID) (n = 16) (P = 0.0001), while the CD medication subgroup (n = 47) had a level similar to healthy controls. The UC results were not influenced by DMAID treatment. Conclusion Our findings add support to the idea of a disturbed interaction between intestinal cells and the microbiota being part of the CD disease mechanism. An abnormal immune response to C. difficile toxin B may be a critical component of this interaction.
Collapse
Affiliation(s)
| | - Johan Bredberg
- Department of Education, Østfold University College Halden Norway
| | - Marlene Wullt
- Department of Clinical Sciences Malmö Lund University Malmö Sweden
| | - Ebbe Lyrenäs
- Department of Gastroenterology Central Hospital Kristianstad Kristianstad Sweden
| | - Ulf Hindorf
- Department of Gastroenterology Lund University Lund Sweden
| | - Björn Ohlsson
- Department of Surgery Blekinge Hospital Karlshamn Sweden
| | - Olof Grip
- Department of Clinical Sciences Malmö Lund University Malmö Sweden
| |
Collapse
|
1016
|
A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. Inflammopharmacology 2019; 27:465-473. [PMID: 31054010 PMCID: PMC6554453 DOI: 10.1007/s10787-019-00595-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Background There is considerable interest in the possible importance of the gut microflora in the pathophysiology of the inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD). Probiotics offer a potential adjuvant treatment in these patients by modifying the intestinal milieu, but reports of their efficacy are conflicting. Aims To assess the efficacy of a multi-strain probiotic (Symprove™, Symprove Ltd, Farnham, United Kingdom) in quality of life issues and intestinal inflammation in patients with asymptomatic UC and CD. Methods A single-centre, randomised, double-blind, placebo-controlled trial of adult patients with asymptomatic IBD. Patients received 4 weeks of treatment with the probiotic or placebo (1 ml/kg/day). The primary efficacy measure was the difference in change in the IBD Quality of Life Questionnaire results (QOL) between probiotic vs. placebo at week 4. Secondary outcome measures included analyses of the change in laboratory findings, including faecal calprotectin (FCAL). Results Over 500 patients were recruited to the study and 81 and 61 patients with UC and CD, respectively were randomised and completed the study. There were no significant differences in IBD-QOL scores between placebo and the probiotic groups. Similarly, there were no significant changes observed in the laboratory data. However, the differences in FCAL between patients with UC before and after probiotics versus placebo approached statistical significance with a p value of 0.076. Post-hoc analyses showed that the FCAL levels were significantly (p < 0.015) reduced in the UC patients receiving the probiotic as opposed to placebo. No significant changes were seen in CD. No serious adverse events were observed. Conclusion This multi-strain probiotic is associated with decreased intestinal inflammation in patients with UC, but not in CD and is well tolerated. Further research is required to see if the probiotic reduces the incidence of clinical relapses in asymptomatic IBD patients.
Collapse
|
1017
|
Schwerd T, Koletzko S. Darmmikrobiom und chronisch-entzündliche Darmerkrankungen. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0683-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
1018
|
Lovisa S, Genovese G, Danese S. Role of Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:659-668. [PMID: 30520951 DOI: 10.1093/ecco-jcc/jjy201] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn's disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
1019
|
A Review of Dietary Therapy for IBD and a Vision for the Future. Nutrients 2019; 11:nu11050947. [PMID: 31035465 PMCID: PMC6566428 DOI: 10.3390/nu11050947] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition affecting the gastrointestinal tract. The rising incidence of IBD has been associated with urbanization and shifts toward a Westernized diet. The intestinal microbiome has been a focus of disease pathogenesis and also therapeutic intervention. Dietary therapy for IBD has been well-studied with exclusive enteral nutrition, a formula-based diet with the exclusion of foods. In addition, interest in food-based exclusion diets has been increasing, with patients and families leading the charge. Challenges with dietary therapy for IBD include the lack of understanding of a detailed mechanistic pathway to explain the impact of diet on IBD pathogenesis and the difficult nature of designing and implementing dietary clinical trials. Epidemiological studies have demonstrated associations and intervention studies have demonstrated efficacy, but specific dietary targets remain as hypotheses at present. Current IBD therapy focuses on suppression of the immune system, yet the incomplete efficacy of present drugs suggests that other therapies must be developed and employed. Dietary interventions, with known ability to modulate the intestinal microbiome, are a unique opportunity to improve outcomes in IBD. Dietary intervention trials are challenging, and capturing both broad dietary patterns as well as exposure to individual food compounds is important. With increasing patient interest and preliminary research in dietary therapy indicating efficacy, it is imperative to further advance the science of utilizing diet in IBD, as well as to support patients by proactively addressing diet within their care plan.
Collapse
|
1020
|
The Diversity of Gut Microbiome is Associated With Favorable Responses to Anti-Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. J Thorac Oncol 2019; 14:1378-1389. [PMID: 31026576 DOI: 10.1016/j.jtho.2019.04.007] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gut microbiome affecting the responses to immune checkpoint inhibitors against advanced NSCLC has been investigated in the Western population. However, considering pre-existing genetic and gut microbiota variation, the relevance remains unknown in the East-Asian NSCLC population. This study is designed to explore the relationship between gut microbiome and clinical outcomes in Chinese patients with NSCLC who have received treatment using an anti-programmed death 1 (PD-1) blockade. METHODS Thirty-seven patients with advanced NSCLC receiving treatment with nivolumab were enrolled in CheckMate 078 (NCT02613507) and CheckMate 870 (NCT03195491). Fecal samples were collected at the starting point, when patients received nivolumab, at clinical evaluation, and when disease progression was noted. 16S ribosome RNA gene sequencing was applied to assess gut microbiota profiles. Peripheral immune signatures were determined by multicolor flow cytometry in parallel. RESULTS When subgrouping patients into responder (R) and nonresponder according to the clinical response assessed using Response Evaluation Criteria in Solid Tumor version 1.1, R patients harbored higher diversity of gut microbiome at the starting point with stable composition during the treatment. Patients with high microbiome diversity had significantly prolonged progression-free survival when compared to those with low diversity. Compositional difference was observed between the two groups as well with the enrichment of Alistipes putredinis, Bifidobacterium longum, and Prevotella copri in R whereas Ruminococcus_unclassified enriched in nonresponding patients. Analysis of systemic immune responses using multicolor flow cytometry revealed that patients with a high abundance of microbiome diversity in the gut had a greater frequency of unique memory CD8+ T cell and natural killer cell subsets in the periphery in response to anti-PD-1 therapy. CONCLUSIONS Our results reveal strong correlation between gut microbiome diversity and the responses to anti-PD-1 immunotherapy in Chinese patients with advanced NSCLC. Patients with favorable gut microbiome (such as those with high diversity) exhibit enhanced memory T cell and natural killer cell signatures in the periphery. These findings provide important implications for the prediction and the evaluation of anti-PD-1 immunotherapy against NSCLC in the Chinese population.
Collapse
|
1021
|
Mendes V, Galvão I, Vieira AT. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J Interferon Cytokine Res 2019; 39:393-409. [PMID: 31013453 DOI: 10.1089/jir.2019.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.
Collapse
Affiliation(s)
- Viviani Mendes
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- 3 Department of Cellular Biology ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelica Thomaz Vieira
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
1022
|
Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 2019; 10:696-711. [PMID: 30939976 PMCID: PMC6866707 DOI: 10.1080/19490976.2019.1589281] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We evaluated immunometabolic functions of novel Lactobacillus fermentum strains (KBL374 and KBL375) isolated from feces of healthy Koreans. The levels of inflammatory cytokines, such as interleukin (IL)-2, interferon-γ, IL-4, IL-13, and IL-17A, were decreased, and that of the anti-inflammatory cytokine IL-10 was increased, in human peripheral blood mononuclear cells (PBMCs) treated with the L. fermentum KBL374 or KBL375 strain. When these strains were orally administered to mice with dextran sulfate sodium (DSS)-induced colitis, both L. fermentum KBL374 and KBL375 showed beneficial effects on body weight, disease activity index score, colon length, cecal weight, and histological scores. Furthermore, both L. fermentum KBL374 and KBL375 modulated the innate immune response by improving gut barrier function and reducing leukocyte infiltration. Consistent with the PBMC data, both L. fermentum KBL374- and KBL375-treated DSS mice demonstrated decreased Th1-, Th2-, and Th17-related cytokine levels and increased IL-10 in the colon compared with the DSS control mice. Administration of L. fermentum KBL374 or KBL375 to mice increased the CD4+CD25+Foxp3+Treg cell population in mesenteric lymph nodes. Additionally, L. fermentum KBL374 or KBL375 administration reshaped and increased the diversity of the gut microbiota. In particular, L. fermentum KBL375 increased the abundance of beneficial microorganisms, such as Lactobacillus spp. and Akkermansia spp. Both L. fermentum KBL374 and KBL375 may alleviate inflammatory diseases, such as inflammatory bowel disease, in the gut by regulating immune responses and altering the composition of gut microbiota.
Collapse
Affiliation(s)
- You Jin Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kiuk Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gwangpyo Ko
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs, Inc., Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea,Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea,CONTACT GwangPyo Ko Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
1023
|
Gut Microbiota-Mediated NLRP12 Expression Drives the Attenuation of Dextran Sulphate Sodium-Induced Ulcerative Colitis by Qingchang Wenzhong Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9839474. [PMID: 31061672 PMCID: PMC6466890 DOI: 10.1155/2019/9839474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Qingchang Wenzhong Decoction (QCWZD) is a newly developed, effective traditional Chinese herbal formulation for ulcerative colitis (UC). In earlier studies, we found that QCWZD could relieve the clinical symptoms of UC patients, reduce inflammation, and improve the intestinal barrier function in dextran sulphate sodium (DSS)-induced UC rats. However, the relationship between QCWZD and the gut microbiota in colitis was not clarified. In this study, we established a rat model of DSS-induced UC and then investigated the regulatory effects of QCWZD on the gut microbiota using 16S rRNA analysis. We also determined the expression of NLRP12 after QCWZD administration. Our findings suggested that QCWZD administration could modulate gut microbiota composition and selectively promote the protective strains such as Butyricimonas, Blautia, and Odoribacter, whereas the enteric pathogens including Clostridium and Dorea were significantly reduced after QCWZD treatment. It is noteworthy that QCWZD administration was identified to promote gut microbiota-mediated NLRP12 expression by inhibiting the activity of the TLR4/Blimp-1 axis. In conclusion, our study supports the potential of QCWZD administration as a beneficial therapeutic strategy for UC.
Collapse
|
1024
|
Neumann C, Blume J, Roy U, Teh PP, Vasanthakumar A, Beller A, Liao Y, Heinrich F, Arenzana TL, Hackney JA, Eidenschenk C, Gálvez EJC, Stehle C, Heinz GA, Maschmeyer P, Sidwell T, Hu Y, Amsen D, Romagnani C, Chang HD, Kruglov A, Mashreghi MF, Shi W, Strowig T, Rutz S, Kallies A, Scheffold A. c-Maf-dependent T reg cell control of intestinal T H17 cells and IgA establishes host-microbiota homeostasis. Nat Immunol 2019; 20:471-481. [PMID: 30778241 DOI: 10.1038/s41590-019-0316-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Foxp3+ regulatory T cells (Treg cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal Treg cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (TH17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal Treg cell populations, including RORγt+ Treg cells and follicular regulatory T cells, were c-Maf dependent. c-Maf controlled Treg cell-derived IL-10 production and prevented excessive signaling via the kinases PI(3)K (phosphatidylinositol-3-OH kinase) and Akt and the metabolic checkpoint kinase complex mTORC1 (mammalian target of rapamycin) and expression of inflammatory cytokines in intestinal Treg cells. c-Maf deficiency in Treg cells led to profound dysbiosis of the intestinal microbiota, which when transferred to germ-free mice was sufficient to induce exacerbated intestinal TH17 responses, even in a c-Maf-competent environment. Thus, c-Maf acts to preserve the identity and function of intestinal Treg cells, which is essential for the establishment of host-microbe symbiosis.
Collapse
Affiliation(s)
- Christian Neumann
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Jonas Blume
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Urmi Roy
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy P Teh
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alexander Beller
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Yang Liao
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Frederik Heinrich
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | | | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, San Francisco, CA, USA
| | - Celine Eidenschenk
- Department of Biochemical and Cellular Pharmacology, Genentech, San Francisco, CA, USA
| | - Eric J C Gálvez
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Stehle
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Gitta A Heinz
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Patrick Maschmeyer
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Tom Sidwell
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Yifang Hu
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Derk Amsen
- Sanquin Research, Department of Hematopoiesis and Landsteiner Laboratory, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chiara Romagnani
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
- Medical Department I, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Andrey Kruglov
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mir-Farzin Mashreghi
- German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Wei Shi
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, San Francisco, CA, USA.
| | - Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel & Universitätsklinik Schleswig Holstein, Kiel, Germany.
| |
Collapse
|
1025
|
Dermatological Disorders following Liver Transplantation: An Update. Can J Gastroenterol Hepatol 2019; 2019:9780952. [PMID: 31058114 PMCID: PMC6463607 DOI: 10.1155/2019/9780952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/24/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Patients undergoing liver transplantation (LT) are at a high risk of dermatological complications compared to the general population as a result of long-term use of immunosuppressant. However, the risk is not as high as other solid organ transplantations (SOT), particularly for skin cancer. The liver is considered as an immune privileged organ since it has a low prevalence of humoral rejection in contrast to other SOT, and thus, LT requires a minimal amount of immunosuppressants compared to other SOT recipients. However, because of the large volume of the liver, patients with LT have higher donor lymphocytes that sometimes may trigger graft-versus-host-disease, yet it is rare. On the other hand, the vast majority of the nonspecific dermatological lesions linked with cirrhosis improve after removal of diseased liver or due to the immunosuppressant used after LT. Nevertheless, dermatological infections related to bacteria, viruses, and fungus after LT are not uncommon. Additionally, the incidence of IgE-mediated food allergies develops in 12.2% of LT patients and may present as life-threatening conditions such as urticaria and/or angioedema and hypersensitivity. Moreover, skin malignancies after LT are a matter of concern. Thus, posttransplant dermatological care should be provided to all LT patients for any suspicious dermatological lesions. Our goal is to give an outline of the dermatological manifestation associated with LT for the clinicians by collecting the published data from all archived case reports.
Collapse
|
1026
|
Abstract
Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut-liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.
Collapse
|
1027
|
Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019; 12:1756284819836620. [PMID: 30936943 PMCID: PMC6435874 DOI: 10.1177/1756284819836620] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023] Open
Abstract
The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK Gut Health Group, The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Jonathan P. Segal
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, Norfolk, UK Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Ailsa L. Hart
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | | |
Collapse
|
1028
|
Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 2019; 20:ijms20061482. [PMID: 30934533 PMCID: PMC6471396 DOI: 10.3390/ijms20061482] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the “gut-brain axis” it is now renamed the “microbiota-gut-brain axis” considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.
Collapse
|
1029
|
Identification of Differentiating Metabolic Pathways between Infant Gut Microbiome Populations Reveals Depletion of Function-Level Adaptation to Human Milk in the Finnish Population. mSphere 2019; 4:4/2/e00152-19. [PMID: 30894435 PMCID: PMC6429046 DOI: 10.1128/mspheredirect.00152-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Knowing the limitations of taxonomy-based research, there is an emerging need for the development of higher-resolution techniques. The significance of this research is demonstrated by the novel method used for the analysis of function-level metagenomes. BiomeScout—the presented technology—utilizes proprietary algorithms for the detection of differences between functionalities present in metagenomic samples. A variety of autoimmune and allergy events are becoming increasingly common, especially in Western countries. Some pieces of research link such conditions with the composition of microbiota during infancy. In this period, the predominant form of nutrition for gut microbiota is oligosaccharides from human milk (HMO). A number of gut-colonizing strains, such as Bifidobacterium and Bacteroides, are able to utilize HMO, but only some Bifidobacterium strains have evolved to digest the specific composition of human oligosaccharides. Differences in the proportions of the two genera that are able to utilize HMO have already been associated with the frequency of allergies and autoimmune diseases in the Finnish and the Russian populations. Our results show that differences in terms of the taxonomic annotation do not explain the reason for the differences in the Bifidobacterium/Bacteroides ratio between the Finnish and the Russian populations. In this paper, we present the results of function-level analysis. Unlike the typical workflow for gene abundance analysis, BiomeScout technology explains the differences in the Bifidobacterium/Bacteroides ratio. Our research shows the differences in the abundances of the two enzymes that are crucial for the utilization of short type 1 oligosaccharides. IMPORTANCE Knowing the limitations of taxonomy-based research, there is an emerging need for the development of higher-resolution techniques. The significance of this research is demonstrated by the novel method used for the analysis of function-level metagenomes. BiomeScout—the presented technology—utilizes proprietary algorithms for the detection of differences between functionalities present in metagenomic samples.
Collapse
|
1030
|
Duarte-Silva M, Afonso PC, de Souza PR, Peghini BC, Rodrigues-Júnior V, de Barros Cardoso CR. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn's disease. Autoimmunity 2019; 52:37-47. [PMID: 30884988 DOI: 10.1080/08916934.2019.1588889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A clear correlation exists between microbiota and the dysregulation of the immune response in Inflammatory Bowel Diseases (IBD), which comprise Crohn's disease (CD) and ulcerative colitis (UC). These unbalanced reactions also involve humoral responses, with antibodies against Saccharomyces cerevisiae. Thus, here we aimed to quantify IgA and IgG specific to S. cerevisiae (ASCA) in quiescent CD and UC, to correlate the production of these antibodies with patient's inflammatory response and disease clinical presentation. Twenty-nine subjects (16 CD and 13 UC) and 45 healthy controls were enrolled in this study and had plasma samples tested for ASCA and cytokines (IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α), besides clinical evaluation. IBD patients had increase IgA and IgG ASCA, especially those with colonic (L2) and fistulizing (B3) CD. Similarly, patients who dropped out the treatment had augmented ASCA, while IgG was reduced in those receiving sulfasalazine treatment. Furthermore, the quiescent CD patients had elevated IL-6 on plasma, especially in the absence of treatment, together with increased counter regulatory response of IL-10. There was a positive correlation between IgA and IgG on CD but not UC, as well as between IgA and TNF in total IBD patients. In addition, the levels of IgG x TNF, IgA x IL-10 and IgG x IL-10 were also correlated in CD, indicating that ASCA production may be influenced by the inflammatory response. Finally, we concluded that ASCA could be pointed as relevant biomarker of CD presentation and residual inflammation, even in clinical remission patients.
Collapse
Affiliation(s)
- Murillo Duarte-Silva
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil.,b Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Poliana Cristina Afonso
- c Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro , Uberaba , Brazil
| | - Patrícia Reis de Souza
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil.,c Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro , Uberaba , Brazil
| | - Bethânea Crema Peghini
- c Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro , Uberaba , Brazil
| | - Virmondes Rodrigues-Júnior
- c Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro , Uberaba , Brazil
| | - Cristina Ribeiro de Barros Cardoso
- a Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
1031
|
Aschard H, Laville V, Tchetgen ET, Knights D, Imhann F, Seksik P, Zaitlen N, Silverberg MS, Cosnes J, Weersma RK, Xavier R, Beaugerie L, Skurnik D, Sokol H. Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genet 2019; 15:e1008018. [PMID: 30849075 PMCID: PMC6426259 DOI: 10.1371/journal.pgen.1008018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/20/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Several bacteria in the gut microbiota have been shown to be associated with inflammatory bowel disease (IBD), and dozens of IBD genetic variants have been identified in genome-wide association studies. However, the role of the microbiota in the etiology of IBD in terms of host genetic susceptibility remains unclear. Here, we studied the association between four major genetic variants associated with an increased risk of IBD and bacterial taxa in up to 633 IBD cases. We performed systematic screening for associations, identifying and replicating associations between NOD2 variants and two taxa: the Roseburia genus and the Faecalibacterium prausnitzii species. By exploring the overall association patterns between genes and bacteria, we found that IBD risk alleles were significantly enriched for associations concordant with bacteria-IBD associations. To understand the significance of this pattern in terms of the study design and known effects from the literature, we used counterfactual principles to assess the fitness of a few parsimonious gene-bacteria-IBD causal models. Our analyses showed evidence that the disease risk of these genetic variants were likely to be partially mediated by the microbiome. We confirmed these results in extensive simulation studies and sensitivity analyses using the association between NOD2 and F. prausnitzii as a case study.
Collapse
Affiliation(s)
- Hugues Aschard
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (HA); (DS); (HS)
| | - Vincent Laville
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Eric Tchetgen Tchetgen
- Department of Statistics, The Wharton School at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Philippe Seksik
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
| | - Noah Zaitlen
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Mark S. Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jacques Cosnes
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ramnik Xavier
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurent Beaugerie
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - David Skurnik
- Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
- Massachusetts Technology and Analytics, Brookline, Massachusetts, United States of America
- Department of Microbiology, Necker Hospital and University Paris Descartes, Paris, France
- INSERM U1151-Equipe 11, Institut Necker-Enfants Malades, Paris, France
- * E-mail: (HA); (DS); (HS)
| | - Harry Sokol
- Department of Gastroenterology, Saint Antoine Hospital, Paris, France
- Sorbonne Université, Paris, France
- Micalis Institute, AgroParisTech, Jouy-en-Josas, France
- INSERM CRSA UMRS U938, Paris, France
- * E-mail: (HA); (DS); (HS)
| |
Collapse
|
1032
|
Nielsen HL, Dalager-Pedersen M, Nielsen H. Risk of inflammatory bowel disease after Campylobacter jejuni and Campylobacter concisus infection: a population-based cohort study. Scand J Gastroenterol 2019; 54:265-272. [PMID: 30905214 DOI: 10.1080/00365521.2019.1578406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: In this population-based cohort study, we aimed to examine the risk of IBD following a positive stool culture with Campylobacter jejuni or Campylobacter concisus, as well as following culture-negative stool testing. Materials and methods: Patients with a first-time positive stool culture with C. jejuni or C. concisus, as well as negative stool testing, from 2009 through 2013 in North Denmark Region, Denmark, were identified. Patients diagnosed with IBD during follow-up (to 1 March 2018) were identified using national registries. For each case, we selected ten population comparisons matched by age, gender, and calendar-time. Results: We identified 1693 patients with C. jejuni, 910 C. concisus-positive patients, and 11,383 patients with culture-negative stools. During the first year of follow-up C. jejuni-positive patients had higher risk of IBD (HR 2.2, 95% CI 1.3-3.7) compared to population comparisons, but not after exclusion of the first year (HR 1.1, 95% CI 0.5-2.3). Campylobacter concisus-positive patients and culture-negative patients had similar risk of IBD (HR 12.9, 95% CI 7.2-22.9 and HR 8.7, 95% CI 7.5-10.2), during the first year, which decreased to (HR 3.3, 95% CI 1.3-8.5 and HR 3.2, 95% CI 2.6-4.0) after exclusion of the first year. Conclusions: This study does not support exposure of C. jejuni or C. concisus infection as a causal trigger in subsequent development of IBD, since culture-negative patients had similar risk for IBD on long term follow-up. Additional studies including C. concisus exposures for an evaluation of the specific risk of IBD are needed.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- a Department of Clinical Microbiology , Aalborg University Hospital , Aalborg , Denmark.,b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Michael Dalager-Pedersen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Henrik Nielsen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| |
Collapse
|
1033
|
A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. MICROBIOME 2019; 7:31. [PMID: 30808411 PMCID: PMC6391833 DOI: 10.1186/s40168-019-0620-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/03/2019] [Indexed: 05/26/2023]
Abstract
The National Institutes of Health (NIH) is the primary federal government agency for biomedical research in the USA. NIH provides extensive support for human microbiome research with 21 of 27 NIH Institutes and Centers (ICs) currently funding this area through their extramural research programs. This analysis of the NIH extramural portfolio in human microbiome research briefly reviews the early history of this field at NIH, summarizes the program objectives and the resources developed in the recently completed 10-year (fiscal years 2007-2016) $215 M Human Microbiome Project (HMP) program, evaluates the scope and range of the $728 M NIH investment in extramural human microbiome research activities outside of the HMP over fiscal years 2012-2016, and highlights some specific areas of research which emerged from this investment. This analysis closes with a few comments on the technical needs and knowledge gaps which remain for this field to be able to advance over the next decade and for the outcomes of this research to be able to progress to microbiome-based interventions for treating disease and supporting health.
Collapse
|
1034
|
Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease-Focusing on Intestinal Barrier Function. Cells 2019; 8:cells8020193. [PMID: 30813280 PMCID: PMC6407030 DOI: 10.3390/cells8020193] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
The human gut relies on several cellular and molecular mechanisms to allow for an intact and dynamical intestinal barrier. Normally, only small amounts of luminal content pass the mucosa, however, if the control is broken it can lead to enhanced passage, which might damage the mucosa, leading to pathological conditions, such as inflammatory bowel disease (IBD). It is well established that genetic, environmental, and immunological factors all contribute in the pathogenesis of IBD, and a disturbed intestinal barrier function has become a hallmark of the disease. Genetical studies support the involvement of intestinal barrier as several susceptibility genes for IBD encode proteins with key functions in gut barrier and homeostasis. IBD patients are associated with loss in bacterial diversity and shifts in the microbiota, with a possible link to local inflammation. Furthermore, alterations of immune cells and several neuro-immune signaling pathways in the lamina propria have been demonstrated. An inappropriate immune activation might lead to mucosal inflammation, with elevated secretion of pro-inflammatory cytokines that can affect the epithelium and promote a leakier barrier. This review will focus on the main cells and molecular mechanisms in IBD and how these can be targeted in order to improve intestinal barrier function and reduce inflammation.
Collapse
|
1035
|
Zhu W, Yan J, Zhi C, Zhou Q, Yuan X. 1,25(OH) 2D 3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model. Gut Pathog 2019; 11:8. [PMID: 30828386 PMCID: PMC6381729 DOI: 10.1186/s13099-019-0291-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background The relationship between disturbances of the gut microbiota and 1,25(OH)2D3 deficiency has been established both in humans and animal models with a vitamin D poor diet or a lack of sun exposure. Our prior study has demonstrated that Cyp27b1−/− (Cyp27b1 knockout) mice that could not produce 1,25(OH)2D3 had significant colon inflammation phenotypes. However, whether and how 1,25(OH)2D3 deficiency due to the genetic deletion controls the gut homeostasis and modulates the composition of the gut microbiota remains to be explored. Results 1,25(OH)2D3 deficiency impair the composition of the gut microbiota and metabolite in Cyp27b1−/− mice, including Akkermansia muciniphila, Solitalea Canadensis, Bacteroides-acidifaciens, Bacteroides plebeius and SCFA production. 1,25(OH)2D3 deficiency cause the thinner colonic mucus layer and increase the translocation of the bacteria to the mesenteric lymph nodes. We also found 1,25(OH)2D3 supplement significantly decreased Akkermansia muciniphila abundance in fecal samples of Cyp27b1−/− mice. Conclusion Deficiency in 1,25(OH)2D3 impairs the composition of gut microbiota leading to disruption of intestinal epithelial barrier homeostasis and induction of colonic inflammation. This study highlights the association between 1,25(OH)2D3 status, the gut microbiota and the colonic mucus barrier that is regarded as a primary defense against enteric pathogens.
Collapse
Affiliation(s)
- Wenjing Zhu
- 1Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China
| | - Jiayao Yan
- 2Department of Clinical Medicine, First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166 China
| | - Chunchun Zhi
- 4Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 China
| | - Qianwen Zhou
- 1Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China
| | - Xiaoqin Yuan
- 1Department of Anatomy, Histology and Embryology, Nanjing Medical University, Xuehai Building, Rm D509, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 China.,3Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
1036
|
Abboud M, Papandreou D. Gut Microbiome, Probiotics and Bone: An Updated Mini Review. Open Access Maced J Med Sci 2019; 7:478-481. [PMID: 30834022 PMCID: PMC6390135 DOI: 10.3889/oamjms.2019.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 01/12/2019] [Indexed: 01/29/2023] Open
Abstract
The gut microbiome is now considered as a large organ that has a direct effect on gastrointestinal tract, immune and endocrine system. There is no evidence that gut microbiota regulates the immune system and is responsible for bone formation and destruction. Probiotics have been shown through the gastrointestinal tract to have a positive effect on the management of the healthy bone. This article discusses the latest data available from PubMed and Scopus databases regarding gut microbiome, probiotics and bone briefly.
Collapse
Affiliation(s)
- Myriam Abboud
- Department of Health, CNHS, Zayed University, Dubai, UAE
| | | |
Collapse
|
1037
|
Woloszynek S, Zhao Z, Chen J, Rosen GL. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses. PLoS Comput Biol 2019; 15:e1006721. [PMID: 30807567 PMCID: PMC6407789 DOI: 10.1371/journal.pcbi.1006721] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 03/08/2019] [Accepted: 12/17/2018] [Indexed: 12/26/2022] Open
Abstract
Advances in high-throughput sequencing have increased the availability of microbiome sequencing data that can be exploited to characterize microbiome community structure in situ. We explore using word and sentence embedding approaches for nucleotide sequences since they may be a suitable numerical representation for downstream machine learning applications (especially deep learning). This work involves first encoding ("embedding") each sequence into a dense, low-dimensional, numeric vector space. Here, we use Skip-Gram word2vec to embed k-mers, obtained from 16S rRNA amplicon surveys, and then leverage an existing sentence embedding technique to embed all sequences belonging to specific body sites or samples. We demonstrate that these representations are meaningful, and hence the embedding space can be exploited as a form of feature extraction for exploratory analysis. We show that sequence embeddings preserve relevant information about the sequencing data such as k-mer context, sequence taxonomy, and sample class. Specifically, the sequence embedding space resolved differences among phyla, as well as differences among genera within the same family. Distances between sequence embeddings had similar qualities to distances between alignment identities, and embedding multiple sequences can be thought of as generating a consensus sequence. In addition, embeddings are versatile features that can be used for many downstream tasks, such as taxonomic and sample classification. Using sample embeddings for body site classification resulted in negligible performance loss compared to using OTU abundance data, and clustering embeddings yielded high fidelity species clusters. Lastly, the k-mer embedding space captured distinct k-mer profiles that mapped to specific regions of the 16S rRNA gene and corresponded with particular body sites. Together, our results show that embedding sequences results in meaningful representations that can be used for exploratory analyses or for downstream machine learning applications that require numeric data. Moreover, because the embeddings are trained in an unsupervised manner, unlabeled data can be embedded and used to bolster supervised machine learning tasks.
Collapse
Affiliation(s)
- Stephen Woloszynek
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Zhengqiao Zhao
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jian Chen
- Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Gail L. Rosen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
1038
|
Olbjørn C, Cvancarova Småstuen M, Thiis-Evensen E, Nakstad B, Vatn MH, Jahnsen J, Ricanek P, Vatn S, Moen AEF, Tannæs TM, Lindstrøm JC, Söderholm JD, Halfvarson J, Gomollón F, Casén C, Karlsson MK, Kalla R, Adams AT, Satsangi J, Perminow G. Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease - associations with disease phenotype, treatment, and outcome. Clin Exp Gastroenterol 2019; 12:37-49. [PMID: 30774408 PMCID: PMC6362922 DOI: 10.2147/ceg.s186235] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Imbalance in the microbiota, dysbiosis, has been identified in inflammatory bowel disease (IBD). We explored the fecal microbiota in pediatric patients with treatment-naïve IBD, non-IBD patients with gastrointestinal symptoms and healthy children, its relation to IBD subgroups, and treatment outcomes. Patients and methods Fecal samples were collected from 235 children below 18 years of age. Eighty children had Crohn’s disease (CD), 27 ulcerative colitis (UC), 3 IBD unclassified, 50 were non-IBD symptomatic patients, and 75 were healthy. The bacterial abundance of 54 predefined DNA markers was measured with a 16S rRNA DNA-based test using GA-Map™ technology at diagnosis and after therapy in IBD patients. Results Bacterial abundance was similarly reduced in IBD and non-IBD patients in 51 of 54 markers compared to healthy patients (P<0.001). Only Prevotella was more abundant in patients (P<0.01). IBD patients with ileocolitis or total colitis had more Ruminococcus gnavus (P=0.02) than patients with colonic CD or left-sided UC. CD patients with upper gastrointestinal manifestations had higher Veillonella abundance (P<0.01). IBD patients (58%) who received biologic therapy had lower baseline Firmicutes and Mycoplasma hominis abundance (P<0.01) than conventionally treated. High Proteobacteria abundance was associated with stricturing/penetrating CD, surgery (P<0.01), and nonmucosal healing (P<0.03). Low Faecalibacterium prausnitzii abundance was associated with prior antibiotic therapy (P=0.001), surgery (P=0.02), and nonmucosal healing (P<0.03). After therapy, IBD patients had unchanged dysbiosis. Conclusion Fecal microbiota profiles differentiated IBD and non-IBD symptomatic children from healthy children, but displayed similar dysbiosis in IBD and non-IBD symptomatic patients. Pretreatment fecal microbiota profiles may be of prognostic value and aid in treatment individualization in pediatric IBD as severe dysbiosis was associated with an extensive, complicated phenotype, biologic therapy, and nonmucosal healing. The dysbiosis persisted after therapy, regardless of treatments and mucosal healing.
Collapse
Affiliation(s)
- Christine Olbjørn
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway, .,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway,
| | | | - Espen Thiis-Evensen
- Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway, .,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway,
| | - Morten Harald Vatn
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway, .,Department of Gastroenterology, Akerhus University Hospital, Lørenskog, Norway
| | - Petr Ricanek
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway, .,Department of Gastroenterology, Akerhus University Hospital, Lørenskog, Norway
| | - Simen Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway, .,Department of Gastroenterology, Akerhus University Hospital, Lørenskog, Norway
| | - Aina E F Moen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Jonas C Lindstrøm
- Institute of Clinical Medicine, University of Oslo, Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jonas Halfvarson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | - Rahul Kalla
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alex T Adams
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Translational Gastroenterology Unit, Experimental Medicine Division, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Translational Gastroenterology Unit, Experimental Medicine Division, University of Oxford, Oxford, UK
| | - Gøri Perminow
- Department of Pediatrics, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
1039
|
Sun Y, Li L, Xia Y, Li W, Wang K, Wang L, Miao Y, Ma S. The gut microbiota heterogeneity and assembly changes associated with the IBD. Sci Rep 2019; 9:440. [PMID: 30679676 PMCID: PMC6345861 DOI: 10.1038/s41598-018-37143-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immunologically mediated disease and may be caused by abnormal immunological response to gut microbes. Although several studies on the ecological changes associated with IBD, such as community diversities, were reported, no previous studies have investigated the changes in the spatial heterogeneity and the mechanism of community assembly of the gut microbiota associated with IBD. In the present study, we first applied the Taylor’s power law extensions to compare the community spatial heterogeneity between the gut microbial communities of the IBD patients and those of the healthy individuals. We found that the community spatial heterogeneity of gut microbiota in IBD patients is slightly lower than in the healthy individuals. This finding suggests that IBD may lower the spatial heterogeneity of gut microbiota, possibly via lowering the abundance of dominant species. We further applied the neutral theory of biodiversity to comparatively investigate the community assembly and diversity maintenance of the gut microbiota with and without IBD, and our application suggested that deterministic factors such as host immunity should be dominant forces shaping gut microbiota assembly, and diseases such as IBD may not be strong enough to change the trend set by the deterministic host factors.
Collapse
Affiliation(s)
- Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Lianwei Li
- Computational Biology and Medical Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yao Xia
- Computational Biology and Medical Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wendy Li
- Computational Biology and Medical Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Lan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China.
| | - Sam Ma
- Computational Biology and Medical Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
1040
|
Segal JP, Mullish BH, Quraishi MN, Acharjee A, Williams HRT, Iqbal T, Hart AL, Marchesi JR. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284818822250. [PMID: 30719076 PMCID: PMC6348496 DOI: 10.1177/1756284818822250] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/23/2018] [Indexed: 02/04/2023] Open
Abstract
The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient's genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn's disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Inflammatory Bowel Disease Department, St Mark’s Hospital, Harrow HA1 3UJ, UK
| | - Benjamin H. Mullish
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Mohammed Nabil Quraishi
- Institute of Immunology and Immunotherapy, University of Birmingham, Department of Gastroenterology, University Hospital, Birmingham, UK
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Horace R. T. Williams
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Tariq Iqbal
- Institute of Immunology and Immunotherapy, University of Birmingham, Department of Gastroenterology, University Hospital, Birmingham, UK
| | - Ailsa L. Hart
- Inflammatory Bowel Disease Department, St Mark’s Hospital, Harrow, UK
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Disease, Faculty of Medicine, Imperial College, London, UK
| | - Julian R. Marchesi
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Disease, Faculty of Medicine, Imperial College, London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
1041
|
Zhu X, Xiang S, Feng X, Wang H, Tian S, Xu Y, Shi L, Yang L, Li M, Shen Y, Chen J, Chen Y, Han J. Impact of Cyanocobalamin and Methylcobalamin on Inflammatory Bowel Disease and the Intestinal Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:916-926. [PMID: 30572705 DOI: 10.1021/acs.jafc.8b05730] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are usually advised to supplement various types of vitamin B12, because vitamin B12 is generally absorbed in the colon. Thus, in the current study, the influence of cyanocobalamin (CNCBL) or methylcobalamin (MECBL) ingestion on IBD symptoms will be investigated. Then, whether and how the application of various cobalamins would modify the taxonomic and functional composition of the gut microbiome in mice will be examined carefully. Dextran-sulfate-sodium-induced IBD mice were treated with MECBL or CNCBL; disease activity index (DAI) scores and intestinal inflammatory conditions of mice were evaluated. Fecal samples were collected; microbiota composition was determined with a 16s rRNA analysis; functional profiles were predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt); and short-chain fatty acids were measured. The consequence of higher relative abundances of Enterobacteriaceae and isomeric short-chain fatty acids by cobalamin treatment revealed that a high concentration of CNCBL but not MECBL supplementation obviously aggravated IBD. A microbial ecosystem rich in Escherichia/ Shigella and low in Lactobacillus, Blautia, and Clostridium XVIII was observed in IBD mice after a high concentration of CNCBL supplementation. In cobalamin-dependent enzymes, CNCBL was more efficient in the adenosylcobalamin system than MECBL and vice versa in the MECBL system. The distinct effects of various cobalamins were associated with the distribution and efficiency of vitamin-B12-dependent riboswitches. CNCBL had a strong inhibitory effect on all riboswitches, especially on btuB and pocR riboswitches from Enterobacteriaceae. CNCBL aggravated IBD via enhancing the proportion of Enterobacteriaceae organisms through riboswitch and enzyme systems. The present study provides a critical reference for offering a suitable amount and type of cobalamin during a symbiotic condition.
Collapse
Affiliation(s)
- Xuan Zhu
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Shasha Xiang
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Xiao Feng
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Huanhuan Wang
- School of Medicine , Hangzhou Normal University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Shiyi Tian
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yuanyuan Xu
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Lihua Shi
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Lu Yang
- School of Medicine , Hangzhou Normal University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Company, Limited , Kaihua, Quzhou , Zhejiang 324302 , People's Republic of China
| | - Yubiao Shen
- Yangtze Delta Region Institute of Tsinghua University , Zhejiang , Jiaxing , 314000 , China
| | - Jie Chen
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yuewen Chen
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Jianzhong Han
- School of Food Science and Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou , Zhejiang 310018 , People's Republic of China
| |
Collapse
|
1042
|
Wilson BC, Vatanen T, Cutfield WS, O'Sullivan JM. The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Front Cell Infect Microbiol 2019; 9:2. [PMID: 30719428 PMCID: PMC6348388 DOI: 10.3389/fcimb.2019.00002] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has become a highly effective bacteriotherapy for recurrent Clostridium difficile infection. Meanwhile the efficacy of FMT for treating chronic diseases associated with microbial dysbiosis has so far been modest with a much higher variability in patient response. Notably, a number of studies suggest that FMT success is dependent on the microbial diversity and composition of the stool donor, leading to the proposition of the existence of FMT super-donors. The identification and subsequent characterization of super-donor gut microbiomes will inevitably advance our understanding of the microbial component of chronic diseases and allow for more targeted bacteriotherapy approaches in the future. Here, we review the evidence for super-donors in FMT and explore the concept of keystone species as predictors of FMT success. Possible effects of host-genetics and diet on FMT engraftment and maintenance are also considered. Finally, we discuss the potential long-term applicability of FMT for chronic disease and highlight how super-donors could provide the basis for dysbiosis-matched FMTs.
Collapse
Affiliation(s)
- Brooke C. Wilson
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wayne S. Cutfield
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
1043
|
El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. Influence of subinhibitory antifungal concentrations on extracellular hydrolases and biofilm production by Candida albicans recovered from Egyptian patients. BMC Infect Dis 2019; 19:54. [PMID: 30651066 PMCID: PMC6335770 DOI: 10.1186/s12879-019-3685-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Extracellular hydrolases (phospholipase, aspartyl protease and haemolysin) and biofilm production are considered as major virulence factors of the opportunistic pathogenic fungus Candida albicans. However, the impact of antifungal therapy on such virulence attributes is not well investigated. The common antifungal agents may disturb the production of secreted hydrolases as well as biofilm formation. Accordingly, this study addressed the effect of subinhibitory concentrations (sub-MICs) of selected antifungal agents on some virulence factors of C. albicans clinical isolates. METHODS C. albicans isolates (n = 32) were recovered from different clinical samples and their identification was confirmed to the species level. Antifungal susceptibility profiles of isolates were determined against (nystatin, fluconazole and micafungin) and minimum inhibitory concentrations (MICs) were interpreted according to Clinical and Laboratory Standards Institute guidelines. Virulence determinants comprising secreted hydrolases (phospholipase, aspartyl protease and haemolysin) and biofilm formation were investigated in the presence of the sub-MICs of the tested antifungal agents. RESULTS Treatment of clinical C. albicans isolates with subinhibitory nystatin, fluconazole and micafungin concentrations significantly decreased production of extracellular hydrolases. Nystatin had the greatest inhibitory effect on phospholipase and aspartyl protease production. However, micafungin showed the highest reducing effect on the hemolytic activity of the treated clinical isolates. Moreover, nystatin and micafungin, but not fluconazole, had a noticeable significant impact on inhibiting biofilm formation of C. albicans clinical isolates. CONCLUSION Our findings highlighted the significant influences of commonly prescribed antifungal agents on some virulence factors of C. albicans. Accordingly, antifungal therapy may modulate key virulence attributes of C. albicans.
Collapse
Affiliation(s)
- Houdaii H. El-Houssaini
- Department of Microbiology and Public Health, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Road, El Horreya, Cairo, 11788 Egypt
| | - Omnia M. Elnabawy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Abbassia square, Cairo, Egypt
| | - Hebatallah A. Nasser
- Department of Microbiology and Public Health, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Road, El Horreya, Cairo, 11788 Egypt
| | - Walid F. Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566 Egypt
- Department of Microbiology and Immunology, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| |
Collapse
|
1044
|
Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, Li Z, Mortha A, Merad M, Das A, Gevers D, McGovern DPB, Singh N, Braun J, Jacobs JP, Clemente JC, Grinspan A, Sands BE, Colombel JF, Dubinsky MC, Faith JJ. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt + Regulatory T Cells and Exacerbate Colitis in Mice. Immunity 2019; 50:212-224.e4. [PMID: 30650377 PMCID: PMC6512335 DOI: 10.1016/j.immuni.2018.12.015] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/03/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
Abstract
Microbiota are thought to influence the development and progression of inflammatory bowel disease (IBD), but determining generalizable effects of microbiota on IBD etiology requires larger-scale functional analyses. We colonized germ-free mice with intestinal microbiotas from 30 healthy and IBD donors and determined the homeostatic intestinal T cell response to each microbiota. Compared to microbiotas from healthy donors, transfer of IBD microbiotas into germ-free mice increased numbers of intestinal Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells. Colonization with IBD microbiotas exacerbated disease in a model where colitis is induced upon transfer of naive T cells into Rag1-/- mice. The proportions of Th17 and RORγt+ Treg cells induced by each microbiota were predictive of human disease status and accounted for disease severity in the Rag1-/- colitis model. Thus, an impact on intestinal Th17 and RORγt+ Treg cell compartments emerges as a unifying feature of IBD microbiotas, suggesting a general mechanism for microbial contribution to IBD pathogenesis.
Collapse
Affiliation(s)
- Graham J Britton
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo J Contijoch
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia H Vennaro
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean R Llewellyn
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruby Ng
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Mortha
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anuk Das
- Janssen Human Microbiome Institute, Janssen Research and Development, LLC, Spring House, PA, USA
| | - Dirk Gevers
- Janssen Human Microbiome Institute, Janssen Research and Development, LLC, Spring House, PA, USA
| | - Dermot P B McGovern
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Namita Singh
- Pediatric Gastroenterology and Inflammatory Bowel Disease, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan Braun
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Division of Digestive Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jose C Clemente
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ari Grinspan
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce E Sands
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marla C Dubinsky
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Pediatric Gastroenterology and Hepatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
1045
|
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci 2019; 20:E283. [PMID: 30642013 PMCID: PMC6359510 DOI: 10.3390/ijms20020283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autoimmune disorders derive from genetic, stochastic, and environmental factors that all together interact in genetically predisposed individuals. The impact of an imbalanced gut microbiome in the pathogenesis of autoimmunity has been suggested by an increasing amount of experimental evidence, both in animal models and humans. Several physiological mechanisms, including the establishment of immune homeostasis, are influenced by commensal microbiota in the gut. An altered microbiota composition produces effects in the gut immune system, including defective tolerance to food antigens, intestinal inflammation, and enhanced gut permeability. In particular, early findings reported differences in the intestinal microbiome of subjects affected by several autoimmune conditions, including prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence its composition, and putative involvement in the development of autoimmune disorders. In the light of the existing literature, future studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced gut permeability and molecular mechanisms responsible for autoimmunity onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
- VisMederi s.r.l., Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
1046
|
Buret AG, Motta JP, Allain T, Ferraz J, Wallace JL. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 2019; 26:1. [PMID: 30602371 PMCID: PMC6317250 DOI: 10.1186/s12929-018-0495-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota interacting with an intact mucosal surface are key to the maintenance of homeostasis and health. This review discusses the current state of knowledge of the biofilm mode of growth of these microbiota communities, and how in turn their disruptions may cause disease. Beyond alterations of relative microbial abundance and diversity, the aim of the review is to focus on the disruptions of the microbiota biofilm structure and function, the dispersion of commensal bacteria, and the mechanisms whereby these dispersed commensals may become pathobionts. Recent findings have linked iron acquisition to the expression of virulence factors in gut commensals that have become pathobionts. Causal studies are emerging, and mechanisms common to enteropathogen-induced disruptions, as well as those reported for Inflammatory Bowel Disease and colo-rectal cancer are used as examples to illustrate the great translational potential of such research. These new observations shed new light on our attempts to develop new therapies that are able to protect and restore gut microbiota homeostasis in the many disease conditions that have been linked to microbiota dysbiosis.
Collapse
Affiliation(s)
- Andre Gerald Buret
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
| | - Jean-Paul Motta
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.,Institute of Digestive Health Research, INSERM UMR1220, Université Toulouse Paul Sabatier, Toulouse, France
| | - Thibault Allain
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Jose Ferraz
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, T2N 1N4, Canada
| | - John Lawrence Wallace
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| |
Collapse
|
1047
|
Guandalini S, Sansotta N. Probiotics in the Treatment of Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:101-107. [PMID: 30632114 DOI: 10.1007/5584_2018_319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While considerable progress has been made in the treatment of inflammatory bowel diseases (IBD), alternative options are constantly sought by adult patients as well as frustrated parents of young patients. These include dietary modifications, food supplements, and, more recently, probiotics.Their potential use is based on the demonstrated role of the altered mucosal immune response to bacterial agents that eventually leads to the chronic intestinal inflammation that characterized IBD. In fact, probiotics might conceivably be beneficial due to multiple mechanisms: stimulation of anti-inflammatory cytokines, inhibition of inflammatory cytokines, strengthening of intestinal barrier, and antagonistic action on pathogens. Such mechanisms have been largely extensively investigated in animal models both in vitro and in vivo.Despite such premise, a relatively scarce number of clinical trials are available, and of them only a handful in pediatric age. Overall, available evidence is very disappointing in the treatment of Crohn's disease (CD), where no recommendation for probiotic use can be made. In ulcerative colitis (UC), on the other hand, there is clinical evidence of efficacy for some specific strains and especially for multi-strain preparations.In summary, more data are needed very likely to yield a better understanding on what strains and in what doses should be used in different specific clinical settings.
Collapse
Affiliation(s)
- Stefano Guandalini
- Section of Gastroenterology, Hepatology and Nutrition Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| | - Naire Sansotta
- Section of Gastroenterology, Hepatology and Nutrition Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
1048
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
1049
|
Li Y, Xie Z, Gao T, Li L, Chen Y, Xiao D, Liu W, Zou B, Lu B, Tian X, Han B, Guo Y, Zhang S, Lin L, Wang M, Li P, Liao Q. A holistic view of gallic acid-induced attenuation in colitis based on microbiome-metabolomics analysis. Food Funct 2019; 10:4046-4061. [DOI: 10.1039/c9fo00213h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GA enema can treat UC by influencing microbiota-mediated metabolism.
Collapse
|
1050
|
The Role of Succinate in the Regulation of Intestinal Inflammation. Nutrients 2018; 11:nu11010025. [PMID: 30583500 PMCID: PMC6356305 DOI: 10.3390/nu11010025] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Succinate is a metabolic intermediate of the tricarboxylic acid (TCA) cycle within host cells. Succinate is also produced in large amounts during bacterial fermentation of dietary fiber. Elevated succinate levels within the gut lumen have been reported in association with microbiome disturbances (dysbiosis), as well as in patients with inflammatory bowel disease (IBD) and animal models of intestinal inflammation. Recent studies indicate that succinate can activate immune cells via its specific surface receptor, succinate receptor 1(SUCNR1), and enhance inflammation. However, the role of succinate in inflammatory processes within the gut mucosal immune system is unclear. This review includes current literature on the association of succinate with intestinal inflammation and the potential role of succinate–SUCNR1 signaling in gut immune functions.
Collapse
|