1101
|
Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease. DIABETES & METABOLISM 2018; 44:457-464. [PMID: 30266577 DOI: 10.1016/j.diabet.2018.09.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Chronic low-grade inflammation is a recognized key feature associated with type 2 diabetes mellitus (T2DM) and its complications. In prospective randomized trials, sodium-glucose cotransporter type 2 (SGLT2) inhibitors have demonstrated benefits related to several cardiovascular and renal risk factors, including HbA1c, blood pressure, body weight, renal hyperfiltration, and improvement of cardiorenal outcomes. SGLT2 inhibitors may improve adipose tissue function and induce decreases in serum leptin, TNF-α and IL-6 while increasing adiponectin. While data on high-sensitivity C-reactive protein and other inflammatory markers are relatively scarce in humans, in animals, a number of reports have shown reductions in cytokine and chemokine concentrations in parallel with protective effects against progression of atherosclerotic lesions. Experimental findings also suggest that part of the renoprotective effects of SGLT2 inhibition may be related to anti-inflammatory actions at the kidney level. Underlying mechanisms to explain this anti-inflammatory effect are multiple, but may involve weight loss, and reduction in adipose tissue inflammation, slight increase in ketone bodies and diminution of uric acid levels or attenuation of oxidative stress. However, further studies in diabetes patients with specific assessment of inflammatory markers are still necessary to determine the specific contribution of the anti-inflammatory action of SGLT2 inhibitors to the reduction of cardiovascular and renal complications and mortality observed with this class of antidiabetic drugs.
Collapse
Affiliation(s)
- F Bonnet
- CHU de Rennes, Université Rennes 1, 35200 Rennes, France; Inserm U1018, 94800 Villejuif, France
| | - A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU, 4000 Liège, Belgium.
| |
Collapse
|
1102
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|
1103
|
NLRP3 inflammasome in colitis and colitis-associated colorectal cancer. Mamm Genome 2018; 29:817-830. [DOI: 10.1007/s00335-018-9783-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
|
1104
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain .,5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
1105
|
Chen Y, Ouyang X, Hoque R, Garcia-Martinez I, Yousaf MN, Tonack S, Offermanns S, Dubuquoy L, Louvet A, Mathurin P, Massey V, Schnabl B, Bataller RA, Mehal WZ. β-Hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway. J Hepatol 2018; 69:687-696. [PMID: 29705237 PMCID: PMC6098974 DOI: 10.1016/j.jhep.2018.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Sterile inflammation resulting in alcoholic hepatitis (AH) occurs unpredictably after many years of excess alcohol intake. The factors responsible for the development of AH are not known but mitochondrial damage with loss of mitochondrial function are common features. Hcar2 is a G-protein coupled receptor which is activated by β-hydroxybutyrate (BHB). We aimed to determine the relevance of the BHB-Hcar2 pathway in alcoholic liver disease. METHODS We tested if loss of BHB production can result in increased liver inflammation. We further tested if BHB supplementation is protective in AH through interaction with Hcar2, and analyzed the immune and cellular basis for protection. RESULTS Humans with AH have reduced hepatic BHB, and inhibition of BHB production in mice aggravated ethanol-induced AH, with higher plasma alanine aminotransferase levels, increased steatosis and greater neutrophil influx. Conversely supplementation of BHB had the opposite effects with reduced alanine aminotransferase levels, reduced steatosis and neutrophil influx. This therapeutic effect of BHB is dependent on the receptor Hcar2. BHB treatment increased liver Il10 transcripts, and promoted the M2 phenotype of intrahepatic macrophages. BHB also increased the transcriptional level of M2 related genes in vitro bone marrow derived macrophages. This skewing towards M2 related genes is dependent on lower mitochondrial membrane potential (Δψ) induced by BHB. CONCLUSIONS Collectively, our data shows that BHB production during excess alcohol consumption has an anti-inflammatory and hepatoprotective role through an Hcar2 dependent pathway. This introduces the concept of metabolite-based therapy for AH. LAY SUMMARY Alcoholic hepatitis is a life-threatening condition with no approved therapy that occurs unexpectedly in people who consume excess alcohol. The liver makes many metabolites, and we demonstrate that loss of one such metabolite β-hydroxybutyrate occurs in patients with alcoholic hepatitis. This loss can increase alcohol-induced liver injury, and β-hydroxybutyrate can protect from alcohol-induced liver injury via a receptor on liver macrophages. This opens the possibility of metabolite-based therapy for alcoholic hepatitis.
Collapse
Affiliation(s)
- Yonglin Chen
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rafaz Hoque
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Irma Garcia-Martinez
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Muhammad Nadeem Yousaf
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sarah Tonack
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany; Medical Faculty, J.W. Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany; Medical Faculty, J.W. Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | - Alexandre Louvet
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France; Unité INSERM 995, Faculté de Médecine, Lille, France
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France; Unité INSERM 995, Faculté de Médecine, Lille, France
| | - Veronica Massey
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ramon Alberola Bataller
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wajahat Zafar Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; USA West Haven Veterans Medical Center, West Haven, CT 06516, USA.
| |
Collapse
|
1106
|
Bushen-Yizhi Formula Alleviates Neuroinflammation via Inhibiting NLRP3 Inflammasome Activation in a Mouse Model of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3571604. [PMID: 30224927 PMCID: PMC6129340 DOI: 10.1155/2018/3571604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although the molecular mechanisms underlying dopaminergic neuronal degeneration in PD remain unclear, neuroinflammation is considered as the vital mediator in the pathogenesis and progression of PD. Bushen-Yizhi Formula (BSYZ), a traditional Chinese medicine, has been demonstrated to exert antineuroinflammation in our previous studies. However, it remains unclear whether BSYZ is effective for PD. Here, we sought to assess the neuroprotective effects and explore the underlying mechanisms of BSYZ in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine- (MPTP-) induced mouse model of PD. Our results indicate that BSYZ significantly alleviates the motor impairments and dopaminergic neuron degeneration of MPTP-treated mice. Furthermore, BSYZ remarkably attenuates microglia activation, inhibits NLPR3 activation, and decreases the levels of inflammatory cytokines in MPTP-induced mouse brain. Also, BSYZ inhibits NLRP3 activation and interleukin-1β production of the 1-methyl-4-phenyl-pyridinium (MPP+) stimulated BV-2 microglia cells. Taken together, our results indicate that BSYZ alleviates MPTP-induced neuroinflammation probably via inhibiting NLRP3 inflammasome activation in microglia. Collectively, BSYZ may be a potential therapeutic agent for PD and the related neurodegeneration diseases.
Collapse
|
1107
|
Li K, He Z, Wang X, Pineda M, Chen R, Liu H, Ma K, Shen H, Wu C, Huang N, Pan T, Liu Y, Guo J. Apigenin C-glycosides of Microcos paniculata protects lipopolysaccharide induced apoptosis and inflammation in acute lung injury through TLR4 signaling pathway. Free Radic Biol Med 2018; 124:163-175. [PMID: 29890216 DOI: 10.1016/j.freeradbiomed.2018.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and its more severe form acute respiratory distress syndrome (ARDS) are life-threatening conditions with high morbility and mortality, underscoring the urgent need for novel treatments. Leaves of the medicinal herb Microcos paniculata have been traditionally used for treating upper airway infections, by virtue of its content of flavonoids such as apigenin C-glycosides (ACGs). C-glycosides have been shown to exert strong anti-inflammatory properties, although their mechanism of action remains unknown. Herein, hypothesizing that ACGs from M. paniculata inhibit progression of ALI, we used the experimental model of lipopolysaccharide (LPS)-induced ALI in BALB/c mice to evaluate the therapeutic potential of purified ACGs. Our results showed that M. paniculata ACGs inhibited lung inflammation in animals undergoing ALI. The protective effects of ACGs were assessed by determination of cytokine levels and in situ analysis of lung inflammation. ACGs reduced the pulmonary edema and microvascular permeability, demonstrating a dose-dependent down-regulation of LPS-induced TNF-α, IL-6 and IL-1β expression in lung tissue and bronchoalveolar lavage fluid, along with reduced apoptosis. Moreover, metabolic profiling of mice serum and subsequent Ingenuity Pathway Analysis suggested that ACGs activated protective protein networks and pathways involving inflammatory regulators and apoptosis-related factors, such as JNK, ERK1/2 and caspase-3/7, suggesting that ACGs-dependent effects were related to MAPKs and mitochondrial apoptosis pathways. These results were further supported by evaluation of protein expression, showing that ACGs blocked LPS-activated phosphorylation of p38, ERK1/2 and JNK on the MAPKs signaling, and significantly upregulated the expression of Bcl-2 whilst down-regulated Bax and cleaved caspase-3. Remarkably, ACGs inhibited the LPS-dependent TLR4 and TRPC6 upregulation observed during ALI. Our study shows for the first time that ACGs inhibit acute inflammation and apoptosis by suppressing activation of TLR4/TRPC6 signaling pathway in a murine model of ALI. Our findings provide new evidence for better understanding the anti-inflammatory effects of ACGs. In this regard, ACGs could be exploited in the development of novel therapeutics for ALI and ARDS.
Collapse
Affiliation(s)
- Kunping Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhuoru He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xinqiuyue Wang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miguel Pineda
- Institute of Infection, Immunity & Inflammation, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Runbao Chen
- The Second Clinical School, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiqi Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Kaiting Ma
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huanjia Shen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhui Wu
- The Second Clinical School, Guangzhou Medical University, Guangzhou 511436, China
| | - Ningtin Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianling Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jiao Guo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
1108
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
1109
|
McDonald TJW, Cervenka MC. The Expanding Role of Ketogenic Diets in Adult Neurological Disorders. Brain Sci 2018; 8:E148. [PMID: 30096755 PMCID: PMC6119973 DOI: 10.3390/brainsci8080148] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The current review highlights the evidence supporting the use of ketogenic diet therapies in the management of adult epilepsy, adult malignant glioma and Alzheimer's disease. An overview of the scientific literature, both preclinical and clinical, in each area is presented and management strategies for addressing adverse effects and compliance are discussed.
Collapse
Affiliation(s)
- Tanya J W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
| |
Collapse
|
1110
|
Henderson J, Bhattacharyya S, Varga J, O'Reilly S. Targeting TLRs and the inflammasome in systemic sclerosis. Pharmacol Ther 2018; 192:163-169. [PMID: 30081049 DOI: 10.1016/j.pharmthera.2018.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease characterised by inflammation, vascular problems, cytokine dysregulation and ultimately fibrosis, which accounts for poor prognosis and eventual mortality. At present no curative treatments exist, hence there is an urgent need to better understand the aetiology and develop improved therapies accordingly. Although still widely debated, significant evidence points to upregulation of the innate immune response via the activity of Toll-like receptors (TLRs) and the NLRP3 inflammasome as the start points in a cascade of signaling events which drives excessive extracellular matrix protein production, causing fibrosis. Herein the recent breakthroughs which have implicated TLR signaling and the NLRP3 inflammasome in SSc and the novel therapeutic possibilities this introduces to the field will be discussed.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE2 8ST, United Kingdom
| | | | - John Varga
- Department of Medicine, Northwestern University, Chicago, USA
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE2 8ST, United Kingdom.
| |
Collapse
|
1111
|
Serum metabolomic profiling predicts synovial gene expression in rheumatoid arthritis. Arthritis Res Ther 2018; 20:164. [PMID: 30075744 PMCID: PMC6091066 DOI: 10.1186/s13075-018-1655-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background Metabolomics is an emerging field of biomedical research that may offer a better understanding of the mechanisms of underlying conditions including inflammatory arthritis. Perturbations caused by inflamed synovial tissue can lead to correlated changes in concentrations of certain metabolites in the synovium and thereby function as potential biomarkers in blood. Here, we explore the hypothesis of whether characterization of patients’ metabolomic profiles in blood, utilizing 1H-nuclear magnetic resonance (NMR), predicts synovial marker profiling in rheumatoid arthritis (RA). Methods Nineteen active, seropositive patients with RA, on concomitant methotrexate, were studied. One of the involved joints was a knee or a wrist appropriate for arthroscopy. A Bruker Avance 700 MHz spectrometer was used to acquire NMR spectra of serum samples. Gene expression in synovial tissue obtained by arthroscopy was analyzed by real-time PCR. Data processing and statistical analysis were performed in Python and SPSS. Results Analysis of the relationships between each synovial marker-metabolite pair using linear regression and controlling for age and gender revealed significant clustering within the data. We observed an association of serine/glycine/phenylalanine metabolism and aminoacyl-tRNA biosynthesis with lymphoid cell gene signature. Alanine/aspartate/glutamate metabolism and choline-derived metabolites correlated with TNF-α synovial expression. Circulating ketone bodies were associated with gene expression of synovial metalloproteinases. Discriminant analysis identified serum metabolites that classified patients according to their synovial marker levels. Conclusion The relationship between serum metabolite profiles and synovial biomarker profiling suggests that NMR may be a promising tool for predicting specific pathogenic pathways in the inflamed synovium of patients with RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1655-3) contains supplementary material, which is available to authorized users.
Collapse
|
1112
|
Bland JS. Age as a Modifiable Risk Factor for Chronic Disease. Integr Med (Encinitas) 2018; 17:16-19. [PMID: 31043904 PMCID: PMC6469457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pieces of the puzzle that is the age-disease interrelationship are starting to come together to form a more complete picture of the processes that power this complex dynamic. It will be very exciting to watch the field move forward and to see the power of this concept-that age is a modifiable risk factor-take root and thrive.
Collapse
|
1113
|
Omori K, Katakami N, Yamamoto Y, Ninomiya H, Takahara M, Matsuoka TA, Bamba T, Fukusaki E, Shimomura I. Identification of Metabolites Associated with Onset of CAD in Diabetic Patients Using CE-MS Analysis: A Pilot Study. J Atheroscler Thromb 2018; 26:233-245. [PMID: 30068816 PMCID: PMC6402886 DOI: 10.5551/jat.42945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Coronary artery disease (CAD) is the result of a complex metabolic disorder caused by various environmental and genetic factors. Metabolomics is a potential tool for identifying biomarkers for better risk classification and for understanding the pathophysiological mechanisms of CAD. With this background, we performed a pilot study to identify metabolites associated with the future onset of CAD in patients with type 2 diabetes. Methods: Sixteen subjects who suffered from CAD event during the observation period and 39 non-CAD subjects who were matched to the CAD subjects for Framingham Coronary Heart Disease Risk Score, diabetes duration, and HbA1c were selected. Capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) was used to perform non-targeted metabolome analysis of serum samples collected in 2005. Results: A total of 104 metabolites were identified. Unsupervised principal component analysis (PCA) did not to reveal two distinct clusters of individuals. However, a significant association with CAD was found for 7 metabolites (pelargonic acid, glucosamine:galactosamine, thymine, 3-hydroxybutyric acid, creatine, 2-aminoisobutyric acid, hypoxanthine) and the levels of all these metabolites were significantly lower in the CAD group compared with the non-CAD group. Conclusions: We identified 7 metabolites related to long-term future onset of CAD in Japanese patients with diabetes. Further studies with large sample size would be necessary to confirm our findings, and future studies using in vivo or in vitro models would be necessary to elucidate whether direct relationships exist between the detected metabolites and CAD pathophysiology.
Collapse
Affiliation(s)
- Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine.,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine
| | - Yuichi Yamamoto
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine
| | - Hiroyo Ninomiya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine.,Department of Diabetes Care Medicine, Graduate, School of Medicine, Osaka University
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University
| | - Eiichiro Fukusaki
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine
| |
Collapse
|
1114
|
Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med 2018; 10:e8712. [PMID: 29976786 PMCID: PMC6079534 DOI: 10.15252/emmm.201708712] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/27/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a highly lethal and urgent unmet medical need. It is the result of a complex interplay of several pathways, including inflammation, immune activation, hypoxia, and metabolic reprogramming. Specifically, the regulation and the impact of the latter have become better understood in which the highly catabolic status during sepsis and its similarity with starvation responses appear to be essential in the poor prognosis in sepsis. It seems logical that new interventions based on the recognition of new therapeutic targets in the key metabolic pathways should be developed and may have a good chance to penetrate to the bedside. In this review, we concentrate on the pathological changes in metabolism, observed during sepsis, and the presumed underlying mechanisms, with a focus on the level of the organism and the interplay between different organ systems.
Collapse
Affiliation(s)
- Lise Van Wyngene
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
1115
|
Parker BA, Walton CM, Carr ST, Andrus JL, Cheung ECK, Duplisea MJ, Wilson EK, Draney C, Lathen DR, Kenner KB, Thomson DM, Tessem JS, Bikman BT. β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. Int J Mol Sci 2018; 19:E2247. [PMID: 30071599 PMCID: PMC6121962 DOI: 10.3390/ijms19082247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
The clinical benefit of ketosis has historically and almost exclusively centered on neurological conditions, lending insight into how ketones alter mitochondrial function in neurons. However, there is a gap in our understanding of how ketones influence mitochondria within skeletal muscle cells. The purpose of this study was to elucidate the specific effects of β-hydroxybutyrate (β-HB) on muscle cell mitochondrial physiology. In addition to increased cell viability, murine myotubes displayed beneficial mitochondrial changes evident in reduced H₂O₂ emission and less mitochondrial fission, which may be a result of a β-HB-induced reduction in ceramides. Furthermore, muscle from rats in sustained ketosis similarly produced less H₂O₂ despite an increase in mitochondrial respiration and no apparent change in mitochondrial quantity. In sum, these results indicate a general improvement in muscle cell mitochondrial function when β-HB is provided as a fuel.
Collapse
Affiliation(s)
- Brian A Parker
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Chase M Walton
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Sheryl T Carr
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Jacob L Andrus
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Eric C K Cheung
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Michael J Duplisea
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Esther K Wilson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Carrie Draney
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Daniel R Lathen
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Kyle B Kenner
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|
1116
|
Hazem SH, Hamed MF, Saad MAA, Gameil NM. Comparison of lactate and β-hydroxybutyrate in the treatment of concanavalin-A induced hepatitis. Int Immunopharmacol 2018; 61:376-384. [DOI: 10.1016/j.intimp.2018.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/21/2023]
|
1117
|
Abstract
Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.
Collapse
|
1118
|
Han K, Nguyen A, Traba J, Yao X, Kaler M, Huffstutler RD, Levine SJ, Sack MN. A Pilot Study To Investigate the Immune-Modulatory Effects of Fasting in Steroid-Naive Mild Asthmatics. THE JOURNAL OF IMMUNOLOGY 2018; 201:1382-1388. [PMID: 30021766 DOI: 10.4049/jimmunol.1800585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
Abstract
A fasting mimetic diet blunts inflammation, and intermittent fasting has shown ameliorative effects in obese asthmatics. To examine whether canonical inflammatory pathways linked with asthma are modulated by fasting, we designed a pilot study in mild asthmatic subjects to assess the effect of fasting on the NLRP3 inflammasome, Th2 cell activation, and airway epithelial cell cytokine production. Subjects with documented reversible airway obstruction and stable mild asthma were recruited into this study in which pulmonary function testing (PFT) and PBMCextraction was performed 24 h after fasting, with repeated PFT testing and blood draw 2.5 h after refeeding. PFTs were not changed by a prolonged fast. However, steroid-naive mild asthmatics showed fasting-dependent blunting of the NLRP3 inflammasome. Furthermore, PBMCs from these fasted asthmatics cocultured with human epithelial cells resulted in blunting of house dust mite-induced epithelial cell cytokine production and reduced CD4+ T cell Th2 activation compared with refed samples. This pilot study shows that prolonged fasting blunts the NLRP3 inflammasome and Th2 cell activation in steroid-naive asthmatics as well as diminishes airway epithelial cell cytokine production. This identifies a potential role for nutrient level-dependent regulation of inflammation in asthma. Our findings support the evaluation of this concept in a larger study as well as the potential development of caloric restriction interventions for the treatment of asthma.
Collapse
Affiliation(s)
- Kim Han
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - An Nguyen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Javier Traba
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Xianglan Yao
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Maryann Kaler
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Stewart J Levine
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael N Sack
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
1119
|
Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 2018; 48:15-34. [PMID: 29722430 DOI: 10.1111/apt.14689] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Butyrate, propionate and acetate are short chain fatty acids (SCFA), important for maintaining a healthy colon and are considered as protective in colorectal carcinogenesis. However, they may also regulate immune responses and the composition of the intestinal microbiota. Consequently, their importance in a variety of chronic inflammatory diseases is emerging. AIMS To review the physiology and metabolism of SCFA in humans, cellular and molecular mechanisms by which SCFA may act in health and disease, and approaches for therapeutic delivery of SCFA. METHODS A PubMed literature search was conducted for clinical and pre-clinical studies using search terms: 'dietary fibre', short-chain fatty acids', 'acetate', 'propionate', 'butyrate', 'inflammation', 'immune', 'gastrointestinal', 'metabolism'. RESULTS A wide range of pre-clinical evidence supports roles for SCFA as modulators of not only colonic function, but also multiple inflammatory and metabolic processes. SCFA are implicated in many autoimmune, allergic and metabolic diseases. However, translating effects of SCFA from animal studies to human disease is limited by physiological and dietary differences and by the challenge of delivering sufficient amounts of SCFA to the target sites that include the colon and the systemic circulation. Development of novel targeted approaches for colonic delivery, combined with postbiotic supplementation, may represent desirable strategies to achieve adequate targeted SCFA delivery. CONCLUSIONS There is a large array of potential disease-modulating effects of SCFA. Adequate targeted delivery to the sites of action is the main limitation of such application. The ongoing development and evaluation of novel delivery techniques offer potential for translating promise to therapeutic benefit.
Collapse
Affiliation(s)
- P A Gill
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - M C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - J G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| | - P R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| |
Collapse
|
1120
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
1121
|
Cordero MD, Alcocer-Gómez E, Ryffel B. Gain of function mutation and inflammasome driven diseases in human and mouse models. J Autoimmun 2018; 91:13-22. [DOI: 10.1016/j.jaut.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/26/2022]
|
1122
|
Hu E, Du H, Zhu X, Wang L, Shang S, Wu X, Lu H, Lu X. Beta-hydroxybutyrate Promotes the Expression of BDNF in Hippocampal Neurons under Adequate Glucose Supply. Neuroscience 2018; 386:315-325. [PMID: 29966721 DOI: 10.1016/j.neuroscience.2018.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
Abstract
Neurobiological evidence suggests that the ketone metabolite β-hydroxybutyrate (BHBA) exerts many neuroprotective functions for the brain. The previous study revealed that BHBA could promote the expression of brain-derived neurotrophic factor (BDNF) at glucose inadequate condition. Here we demonstrated that BHBA administration induced the expression of BDNF in the hippocampus of mice fed with normal diet. In vitro experiment results also showed that 0.02-2 mM BHBA significantly increased BDNF expression in both the primary hippocampal neurons and the hippocampus neuron cell line HT22 under adequate glucose supply. Bdnf transcription induced by BHBA stimulus was mediated through the cAMP/PKA-triggered phosphorylation of CREB (S133) and the subsequent up-regulation of histone H3 Lysine 27 acetylation (H3K27ac) binding at Bdnf promoters I, II, IV, and VI. Moreover, BHBA stimulus induced a decrease in tri-methylation of H3K27 (H3K27me3) binding at the Bdnf promoters II and VI and the elevation of H3K27me3-specific demethylase JMJD3, which also contributed to the activation of Bdnf transcription. These results demonstrated that BHBA within the physiological range could promote BDNF expression in neurons via a novel signaling function. Moreover, BHBA might possess more broad epigenetic regulatory activities, which affected both the acetylation and demethylation of H3K27. Our findings reinforce the beneficial effect of BHBA on the central nervous system (CNS) and suggest that BHBA administration with no need for energy restriction might also be a promising intervention to improve the neuronal activity and ameliorate the degeneration of CNS.
Collapse
Affiliation(s)
- Erling Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Huan Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xinliang Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Leilei Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xingjuan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Haixia Lu
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, Shaanxi, PR China.
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
1123
|
Yanling Q, Xiaoning C, Fei B, Liyun F, Huizhong H, Daqing S. Inhibition of NLRP9b attenuates acute lung injury through suppressing inflammation, apoptosis and oxidative stress in murine and cell models. Biochem Biophys Res Commun 2018; 503:436-443. [PMID: 29655793 DOI: 10.1016/j.bbrc.2018.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI), known a severe disease along with high morbidity and mortality, is lacking of specific therapies. Inflammation, apoptosis and oxidative stress are critical pathologies that contribute to ALI. Recently, there is study indicated that NLRP9b, a NOD-like receptor (NLR) member, is critical in modulation of inflammatory response. However, the effects of NLRP9b on sepsis-associated ALI, and the underlying molecular mechanism have not been understood. In the present study, the wild type (WT) and NLRP9b-knockout (NLRP9b-/-) mice with C57B/L6 background were subjected to a cecal ligation and puncture (CLP) for ALI murine model establishment. The findings indicated that NLRP9b-/- improved the survival rate of CLP-induced ALI mice, and inhibited pulmonary histopathological alterations, inflammation, and apoptosis. NLRP9b-/- reduced the activation of inhibitor of κBα/nuclear factor kappa B (IκBα/NF-κB), apoptosis-associated speck-like protein containing a Caspase-recruitment domain (ASC)/Casapse-1 and Caspase-3/poly (ADP-ribose) polymerase (PARP) signaling pathways in CLP-challenged mice with ALI. In vitro, mouse epithelial cells (MLE-12) were incubated with lipopolysaccharide (LPS) or recombinant NLRP9b caused a significant increased of pro-inflammatory cytokines or chemokine, and reactive oxygen species (ROS) generation; however, these changes were markedly alleviated by NLRP9-knockdown using its specific siRNA sequence. Pre-treatment of MLE-12 cells with ROS scavenger of N-acetylcysteine (NAC) remarkably decreased lipopolysaccharide (LPS)- and rMuNLRP9-induced production of ROS, and the secretion of inflammatory cytokines or chemokine, as well as the activity of IκBα/NF-κB, ASC/Casapse-1 and Caspase-3/PARP signaling pathways. Together, the findings here suggested that NLRP9b played an essential role in lung inflammation, apoptosis and oxidative stress of sepsis-induced ALI animal model or in LPS-induced MLE-12 cells, providing that NLRP9b inhibition might be a potential therapeutic option for ALI.
Collapse
Affiliation(s)
- Qiu Yanling
- Department of Pediatric, Baoji Maternal and Child Health Hospital, Baoji City 721000, Shaanxi, China
| | - Cheng Xiaoning
- Department of Pediatric, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Shanxi 712000, China
| | - Bai Fei
- Department of Child Healthcare, Northwest Women and Children Hospital, Xi'an, Shaanxi 710061, China
| | - Fang Liyun
- Department of Pediatric, Xi'an NO.3 Hospital, Xi'an, Shaanxi 710018, China
| | - Hu Huizhong
- Department of Pediatric, Xi'an NO.3 Hospital, Xi'an, Shaanxi 710018, China
| | - Sun Daqing
- Department of Pediatric, Xi'an NO.3 Hospital, Xi'an, Shaanxi 710018, China.
| |
Collapse
|
1124
|
He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W, Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 2018; 9:2550. [PMID: 29959312 PMCID: PMC6026158 DOI: 10.1038/s41467-018-04947-6] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Oridonin (Ori) is the major active ingredient of the traditional Chinese medicinal herb Rabdosia rubescens and has anti-inflammatory activity, but the target of Ori remains unknown. NLRP3 is a central component of NLRP3 inflammasome and has been involved in a wide variety of chronic inflammation-driven human diseases. Here, we show that Ori is a specific and covalent inhibitor for NLRP3 inflammasome. Ori forms a covalent bond with the cysteine 279 of NLRP3 in NACHT domain to block the interaction between NLRP3 and NEK7, thereby inhibiting NLRP3 inflammasome assembly and activation. Importantly, Ori has both preventive or therapeutic effects on mouse models of peritonitis, gouty arthritis and type 2 diabetes, via inhibition of NLRP3 activation. Our results thus identify NLRP3 as the direct target of Ori for mediating Ori's anti-inflammatory activity. Ori could serve as a lead for developing new therapeutics against NLRP3-driven diseases.
Collapse
Affiliation(s)
- Hongbin He
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China
| | - Hua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Gaolin Liang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
1125
|
Lee J, Lee Y, LaVoy EC, Umetani M, Hong J, Park Y. Physical activity protects NLRP3 inflammasome-associated coronary vascular dysfunction in obese mice. Physiol Rep 2018; 6:e13738. [PMID: 29932503 PMCID: PMC6014451 DOI: 10.14814/phy2.13738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome mediates the release of pro-inflammatory cytokine interleukin (IL)-1β and thereby plays a pivotal role in the inflammatory response in vascular pathology. An active lifestyle has beneficial effects on inflammation-associated vascular dysfunction in obesity. However, it remains unclear how physical activity regulates NLRP3 inflammasome-mediated vascular dysfunction in obesity. Therefore, we explored the protective effect of physical activity on NLRP3 inflammasome-associated vascular dysfunction in mouse hearts, and the potential underlying mechanisms. C57BL/6J male mice were randomly divided into four groups: (1) control low-fat diet (LF-SED), (2) LF diet with free access to a voluntary running wheel (LF-RUN), (3) high-fat diet (HF-SED; 45% of calories from fat), and (4) HF-RUN. We examined NLRP3 inflammasome-related signaling pathways, nitric oxide (NO) signaling, and oxidative stress in coronary arterioles to test effects of HFD and physical activity. Voluntary running reduced NLRP3 inflammasome and its downstream effects, caspase-1 and IL-1β in coronary arteriole endothelium of obese mice in immunofluorescence staining. HF-RUN attenuated HFD-dependent endothelial NO synthase (eNOS) reduction and thus increased NO production compared to HF-SED. HFD elevated intracellular superoxide production in coronary arterioles while voluntary running ameliorated oxidative stress. Our findings provide the first evidence that voluntary running attenuates endothelial NLRP3 inflammasome activation in coronary arterioles of HFD feeding mice. Results further suggest that voluntary running improves obesity-induced vascular dysfunction by preserved NO bioavailability via restored expression of eNOS and reduced oxidative stress.
Collapse
Affiliation(s)
- Jonghae Lee
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Yang Lee
- Texas A&M Health Science College of MedicineCollege StationTexas
| | - Emily C. LaVoy
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Michihisa Umetani
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas
| | - Junyoung Hong
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Yoonjung Park
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| |
Collapse
|
1126
|
Abstract
PURPOSE OF REVIEW We review the underlying mechanisms and potential benefits of intermittent fasting (IF) from animal models and recent clinical trials. RECENT FINDINGS Numerous variations of IF exist, and study protocols vary greatly in their interpretations of this weight loss trend. Most human IF studies result in minimal weight loss and marginal improvements in metabolic biomarkers, though outcomes vary. Some animal models have found that IF reduces oxidative stress, improves cognition, and delays aging. Additionally, IF has anti-inflammatory effects, promotes autophagy, and benefits the gut microbiome. The benefit-to-harm ratio varies by model, IF protocol, age at initiation, and duration. We provide an integrated perspective on potential benefits of IF as well as key areas for future investigation. In clinical trials, caloric restriction and IF result in similar degrees of weight loss and improvement in insulin sensitivity. Although these data suggest that IF may be a promising weight loss method, IF trials have been of moderate sample size and limited duration. More rigorous research is needed.
Collapse
Affiliation(s)
- Mary-Catherine Stockman
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA.
| | - Dylan Thomas
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA
| | - Jacquelyn Burke
- College of Health and Rehabilitation Sciences, Boston University Sargent College, 635 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA
| |
Collapse
|
1127
|
Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Curr Opin Immunol 2018; 52:8-17. [DOI: 10.1016/j.coi.2018.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/05/2018] [Indexed: 12/24/2022]
|
1128
|
García-Laínez G, Sancho M, García-Bayarri V, Orzáez M. Identification and validation of uterine stimulant methylergometrine as a potential inhibitor of caspase-1 activation. Apoptosis 2018; 22:1310-1318. [PMID: 28755170 PMCID: PMC5630661 DOI: 10.1007/s10495-017-1405-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammasomes are intracellular multiprotein complexes of the innate immune system. Upon an inflammatory insult, such as infection or intracellular damage, a nucleotide-binding oligomerization domain-like receptor (NLR) sensor protein and the adaptor protein ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain) are assembled to activate protease procaspase-1. This protease processes pro-IL-1β and pro-IL-18 cytokines, which are released to induce the inflammatory response. De-regulation of inflammasome contributes to the progression of several diseases, such as Alzheimer’s disease, diabetes, cancer, inflammatory and autoimmune disorders. We herein describe the identification of methylergometrine (MEM), a drug currently used as a smooth muscle constrictor during postpartum hemorrhage, as an inhibitor of the inflammasome complex in ASC-mediated procaspase-1 activation screening. MEM inhibits the activation of the nucleotide-binding oligomerization domain-like receptor protein 1 (NLRP1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasomes in cellular models upon different pro-inflammatory stimuli. Our results suggest that MEM has the potential to reposition in the treatment of inflammatory diseases with the advantages of established safety and clinical data.
Collapse
Affiliation(s)
- Guillermo García-Laínez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Mónica Sancho
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vanessa García-Bayarri
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Mar Orzáez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
1129
|
Abstract
PURPOSE OF REVIEW High-fat, low-carbohydrate ketogenic diets have been used for almost a century for the treatment of epilepsy. Used traditionally for the treatment of refractory pediatric epilepsies, in recent years the use of ketogenic diets has experienced a revival to include the treatment of adulthood epilepsies as well as conditions ranging from autism to chronic pain and cancer. Despite the ability of ketogenic diet therapy to suppress seizures refractory to antiepileptic drugs and reports of lasting seizure freedom, the underlying mechanisms are poorly understood. This review explores new insights into mechanisms mobilized by ketogenic diet therapies. RECENT FINDINGS Ketogenic diets act through a combination of mechanisms, which are linked to the effects of ketones and glucose restriction, and to interactions with receptors, channels, and metabolic enzymes. Decanoic acid, a component of medium-chain triclycerides, contributes to seizure control through direct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition, whereas drugs targeting lactate dehydrogenase reduce seizures through inhibition of a metabolic pathway. Ketogenic diet therapy also affects DNA methylation, a novel epigenetic mechanism of the diet. SUMMARY Ketogenic diet therapy combines several beneficial mechanisms that provide broad benefits for the treatment of epilepsy with the potential to not only suppress seizures but also to modify the course of the epilepsy.
Collapse
|
1130
|
Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH, Cross JH, Dahlin MG, Donner EJ, Guzel O, Jehle RS, Klepper J, Kang HC, Lambrechts DA, Liu YMC, Nathan JK, Nordli DR, Pfeifer HH, Rho JM, Scheffer IE, Sharma S, Stafstrom CE, Thiele EA, Turner Z, Vaccarezza MM, van der Louw EJTM, Veggiotti P, Wheless JW, Wirrell EC. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018; 3:175-192. [PMID: 29881797 PMCID: PMC5983110 DOI: 10.1002/epi4.12225] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Ketogenic dietary therapies (KDTs) are established, effective nonpharmacologic treatments for intractable childhood epilepsy. For many years KDTs were implemented differently throughout the world due to lack of consistent protocols. In 2009, an expert consensus guideline for the management of children on KDT was published, focusing on topics of patient selection, pre‐KDT counseling and evaluation, diet choice and attributes, implementation, supplementation, follow‐up, side events, and KDT discontinuation. It has been helpful in outlining a state‐of‐the‐art protocol, standardizing KDT for multicenter clinical trials, and identifying areas of controversy and uncertainty for future research. Now one decade later, the organizers and authors of this guideline present a revised version with additional authors, in order to include recent research, especially regarding other dietary treatments, clarifying indications for use, side effects during initiation and ongoing use, value of supplements, and methods of KDT discontinuation. In addition, authors completed a survey of their institution's practices, which was compared to responses from the original consensus survey, to show trends in management over the last 10 years.
Collapse
Affiliation(s)
- Eric H Kossoff
- Departments of Neurology and Pediatrics Johns Hopkins Outpatient Center Baltimore Maryland U.S.A
| | | | - Stéphane Auvin
- Department of Pediatric Neurology CHU Hôpital Robert Debré Paris France
| | - Karen R Ballaban-Gil
- Department of Neurology and Pediatrics Montefiore Medical Center/Albert Einstein College of Medicine Bronx New York U.S.A
| | - A G Christina Bergqvist
- Department of Neurology The Childrens Hospital of Philadelphia Philadelphia Pennsylvania U.S.A
| | - Robyn Blackford
- Department of Nutrition Lurie Children's Hospital Chicago Illinois U.S.A
| | | | - Roberto H Caraballo
- Department of Neurology Hospital J P Garrahan, Capital Federal Buenos Aires Argentina
| | - J Helen Cross
- Department of Clinical & Experimental Epilepsy Great Ormond Street Hospital University College London London United Kingdom
| | - Maria G Dahlin
- Department of Clinical Neuroscience, Women's and Children's Health Karolinska Institute Stockholm Sweden
| | - Elizabeth J Donner
- Division of Neurology The Hospital for Sick Children Toronto Ontario Canada
| | - Orkide Guzel
- Department of Pediatric Neurology Izmir Dr. Behcet Uz Children's Hospital Izmir Turkey
| | - Rana S Jehle
- Department of Neurology Montefiore Medical Center Bronx New York U.S.A
| | - Joerg Klepper
- Department of Pediatrics and Neuropediatrics Children's Hospital Aschaffenburg Aschaffenburg Germany
| | - Hoon-Chul Kang
- Department of Pediatrics Pediatric Epilepsy Clinic Severance Children's Hospital Seoul Korea
| | | | - Y M Christiana Liu
- Department of Neurology The Hospital for Sick Children Toronto Ontario Canada
| | - Janak K Nathan
- Department of Child Neurology Shushrusha Hospital Mumbai India
| | - Douglas R Nordli
- Department of Neurology Children's Hospital of Los Angeles Los Angeles California U.S.A
| | - Heidi H Pfeifer
- Department of Neurology Massachusetts General Hospital Boston Massachusetts U.S.A
| | - Jong M Rho
- Department of Paediatrics Alberta Children's Hospital Calgary Alberta Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre The University of Melbourne Austin Health Heidelberg Victoria Australia
| | - Suvasini Sharma
- Department of Pediatrics Lady Hardinge Medical College New Delhi India
| | - Carl E Stafstrom
- Departments of Pediatrics and Neurology Johns Hopkins Hospital Baltimore Maryland U.S.A
| | - Elizabeth A Thiele
- Department of Neurology Massachusetts General Hospital Boston Massachusetts U.S.A
| | - Zahava Turner
- Department of Pediatrics The Johns Hopkins University Baltimore Maryland U.S.A
| | - Maria M Vaccarezza
- Department of Neurology Hospital Italiano de Buenos Aires Buenos Aires Argentina
| | - Elles J T M van der Louw
- Department of Dietetics Sophia Children's Hospital Erasmus Medical Centre Rotterdam The Netherlands
| | - Pierangelo Veggiotti
- Infantile Neuropsychiatry Neurological Institute Foundation Casimiro Mondino Pavia Italy
| | - James W Wheless
- Department of Pediatric Neurology University of Tennessee Memphis Tennessee U.S.A
| | - Elaine C Wirrell
- Department of Neurology, Child and Adolescent Neurology Mayo Clinic Rochester Minnesota U.S.A
| | | | | | | |
Collapse
|
1131
|
Celiberto LS, Graef FA, Healey GR, Bosman ES, Jacobson K, Sly LM, Vallance BA. Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology 2018; 155:36-52. [PMID: 29693729 DOI: 10.1111/imm.12939] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, thought to at least in part reflect an aberrant immune response to gut bacteria. IBD is increasing in incidence, particularly in populations that have recently immigrated to western countries. This suggests that environmental factors are involved in its pathogenesis. We hypothesize that the increase in IBD rates might reflect the consumption of an unhealthy Western diet, containing excess calories and lacking in key nutritional factors, such as fibre and vitamin D. Several recent studies have determined that dietary factors can dramatically influence the activation of immune cells and the mediators they release through a process called immunonutrition. Moreover, dietary changes can profoundly affect the balance of beneficial versus pathogenic bacteria in the gut. This microbial imbalance can alter levels of microbiota-derived metabolites that in turn can influence innate and adaptive intestinal immune responses. If the diet-gut microbiome disease axis does indeed underpin much of the 'western' influence on the onset and progression of IBD, then tremendous opportunity exists for therapeutic changes in lifestyle, to modulate the gut microbiome and to correct immune imbalances in individuals with IBD. This review highlights four such therapeutic strategies - probiotics, prebiotics, vitamin D and caloric restriction - that have the potential to improve and add to current IBD treatment regimens.
Collapse
Affiliation(s)
- Larissa S Celiberto
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Franziska A Graef
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Genelle R Healey
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Else S Bosman
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kevan Jacobson
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce A Vallance
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
1132
|
NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2018; 17:694-702. [PMID: 29729449 DOI: 10.1016/j.autrev.2018.01.020] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
Abstract
NLRP3, a member of nucleotide-binding domain-(NOD) like receptor family, can be found in large varieties of immune and non-immune cells. Upon activation, the NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1 would assemble into a multimeric protein, called the NLRP3 inflammasome. Then the inflammasome promotes inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. Previous studies have indicated the importance of NLRP3 in regulating innate immunity. Recently, numerous studies have revealed their significance in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and inflammatory bowel disease (IBD). In this review, we will briefly discuss the biological features of NLRP3 and summarize the recent progression of the involvement of NLRP3 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
|
1133
|
Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM. IL-1 Family Cytokine Pathways Underlying NAFLD: Towards New Treatment Strategies. Trends Mol Med 2018; 24:458-471. [PMID: 29665983 PMCID: PMC5939989 DOI: 10.1016/j.molmed.2018.03.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Pathways responsible for the activation of IL-1 family cytokines are key in the development of NAFLD but underlying mechanisms are not fully understood. Many studies have focused on the inflammasome-caspase-1 pathway and have shown that this pathway is an important inducer of inflammation in NAFLD. However, this pathway is not solely responsible for the activation of proinflammatory cytokines. Also, neutrophil serine proteases (NSPs) are capable of activating cytokines and recent studies reported that these proteases also contribute to NAFLD. These studies provided, for the first time, evidence that this inflammasome-independent pathway is involved in NAFLD. In our opinion, these new insights open up new approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Andreea-Manuela Mirea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik J M Toonen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; R&D Department, Hycult Biotech, Uden, The Netherlands.
| |
Collapse
|
1134
|
Lee RWY, Corley MJ, Pang A, Arakaki G, Abbott L, Nishimoto M, Miyamoto R, Lee E, Yamamoto S, Maunakea AK, Lum-Jones A, Wong M. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav 2018; 188:205-211. [PMID: 29421589 PMCID: PMC5863039 DOI: 10.1016/j.physbeh.2018.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 02/08/2023]
Abstract
Purpose The ketogenic diet is a low-carbohydrate, moderate protein, high-fat diet that has emerged as a potential treatment for autism spectrum disorder. Autism spectrum disorder is a neurodevelopmental disorder of social communication, and restricted, repetitive behaviors and interests in need of novel therapies. An open-label clinical trial was done in Honolulu, Hawaii to test a modified ketogenic diet for improvement of core clinical impairments in children with ASD. Intervention A modified ketogenic gluten-free diet regimen with supplemental MCT was completed in 15 children ages 2 to 17 years for 3 months. Clinical (ADOS-2, CARS-2) and biochemical measures were performed at baseline and 3-months on the ketogenic diet. Main outcome Children administered a modified ketogenic gluten-free diet with supplemental MCT significantly improved core autism features assessed from the ADOS-2 after 3 months on diet (P = 0.006). No significant difference was observed in restricted and repetitive behavior score (P = 0.125) after 3 months on the diet protocol. Substantial improvement (> 30% decrease ADOS-2 total score) was observed in six participants, moderate improvement (> 3 units) in two participants, and minor/no improvement in seven participants. Ten participants assessed at a six-month time point sustained improvement in total ADOS-2 and social affect subdomain scores comparing baseline and 6 months (P = 0.019; P = 0.023), but no significant improvement in restricted and repetitive behavior scores were noted (P = 0.197). Significant improvements in CARS-2 items after 3 months of the modified ketogenic protocol were observed in imitation, body use, and fear or nervousness (P = 0.031, P = 0.008, P = 0.039). The percent change on ADOS-2 score from baseline to 3 months was associated with baseline high-density lipoprotein levels (ρ = −0.67, P = 0.007) and albumin levels (ρ = −0.60, P = 0.019). Moreover, the percent change from baseline to 3 months in ADOS-2 scores was significantly associated with percent change in high-density lipoprotein levels (ρ = 0.54, P = 0.049) and albumin levels (ρ = 0.67, P = 0.010). Conclusions A modified gluten-free ketogenic diet with supplemental MCT is a potentially beneficial treatment option to improve the core features of autism spectrum disorder and warrants further investigation. Trial registration Trial Registry: Clinicaltrials.gov Registration Number: NCT02477904 URL: https://www.clinicaltrials.gov/ct2/show/NCT02477904?term=ketogenic+diet&cond=Autism&rank=1
Collapse
Affiliation(s)
- Ryan W Y Lee
- Shriners Hospitals for Children, Medical Staff Department, Honolulu, Hawaii, United States; University of Hawaii, John A. Burns School of Medicine, Department of Pediatrics, Honolulu, Hawaii, United States; Shriners Hospitals for Children, Research Department, Honolulu, Hawaii, United States.
| | - Michael J Corley
- University of Hawaii, John A. Burns School of Medicine, Department of Native Hawaiian Health, Honolulu, Hawaii, United States.
| | - Alina Pang
- University of Hawaii, John A. Burns School of Medicine, Department of Native Hawaiian Health, Honolulu, Hawaii, United States.
| | - Gaye Arakaki
- Shriners Hospitals for Children, Rehabilitation Department, Honolulu, Hawaii, United States.
| | - Lisa Abbott
- Shriners Hospitals for Children, Research Department, Honolulu, Hawaii, United States
| | - Michael Nishimoto
- Shriners Hospitals for Children, Medical Staff Department, Honolulu, Hawaii, United States.
| | - Rob Miyamoto
- Shriners Hospitals for Children, Research Department, Honolulu, Hawaii, United States.
| | - Erica Lee
- University of Hawaii, John A. Burns School of Medicine, Department of Native Hawaiian Health, Honolulu, Hawaii, United States.
| | - Susan Yamamoto
- Shriners Hospitals for Children, Research Department, Honolulu, Hawaii, United States.
| | - Alika K Maunakea
- University of Hawaii, John A. Burns School of Medicine, Department of Native Hawaiian Health, Honolulu, Hawaii, United States.
| | - Annette Lum-Jones
- University of Hawaii, John A. Burns School of Medicine, Department of Native Hawaiian Health, Honolulu, Hawaii, United States.
| | - Miki Wong
- Shriners Hospitals for Children, Research Department, Honolulu, Hawaii, United States; Shriners Hospitals for Children, Nutrition Services Department, Honolulu, Hawaii, United States.
| |
Collapse
|
1135
|
Bhanpuri NH, Hallberg SJ, Williams PT, McKenzie AL, Ballard KD, Campbell WW, McCarter JP, Phinney SD, Volek JS. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study. Cardiovasc Diabetol 2018; 17:56. [PMID: 29712560 PMCID: PMC5928595 DOI: 10.1186/s12933-018-0698-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/02/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death among adults with type 2 diabetes mellitus (T2D). We recently reported that glycemic control in patients with T2D can be significantly improved through a continuous care intervention (CCI) including nutritional ketosis. The purpose of this study was to examine CVD risk factors in this cohort. METHODS We investigated CVD risk factors in patients with T2D who participated in a 1 year open label, non-randomized, controlled study. The CCI group (n = 262) received treatment from a health coach and medical provider. A usual care (UC) group (n = 87) was independently recruited to track customary T2D progression. Circulating biomarkers of cholesterol metabolism and inflammation, blood pressure (BP), carotid intima media thickness (cIMT), multi-factorial risk scores and medication use were examined. A significance level of P < 0.0019 ensured two-tailed significance at the 5% level when Bonferroni adjusted for multiple comparisons. RESULTS The CCI group consisted of 262 participants (baseline mean (SD): age 54 (8) year, BMI 40.4 (8.8) kg m-2). Intention-to-treat analysis (% change) revealed the following at 1-year: total LDL-particles (LDL-P) (- 4.9%, P = 0.02), small LDL-P (- 20.8%, P = 1.2 × 10-12), LDL-P size (+ 1.1%, P = 6.0 × 10-10), ApoB (- 1.6%, P = 0.37), ApoA1 (+ 9.8%, P < 10-16), ApoB/ApoA1 ratio (- 9.5%, P = 1.9 × 10-7), triglyceride/HDL-C ratio (- 29.1%, P < 10-16), large VLDL-P (- 38.9%, P = 4.2 × 10-15), and LDL-C (+ 9.9%, P = 4.9 × 10-5). Additional effects were reductions in blood pressure, high sensitivity C-reactive protein, and white blood cell count (all P < 1 × 10-7) while cIMT was unchanged. The 10-year atherosclerotic cardiovascular disease (ASCVD) risk score decreased - 11.9% (P = 4.9 × 10-5). Antihypertensive medication use was discontinued in 11.4% of CCI participants (P = 5.3 × 10-5). The UC group of 87 participants [baseline mean (SD): age 52 (10) year, BMI 36.7 (7.2) kg m-2] showed no significant changes. After adjusting for baseline differences when comparing CCI and UC groups, significant improvements for the CCI group included small LDL-P, ApoA1, triglyceride/HDL-C ratio, HDL-C, hsCRP, and LP-IR score in addition to other biomarkers that were previously reported. The CCI group showed a greater rise in LDL-C. CONCLUSIONS A continuous care treatment including nutritional ketosis in patients with T2D improved most biomarkers of CVD risk after 1 year. The increase in LDL-cholesterol appeared limited to the large LDL subfraction. LDL particle size increased, total LDL-P and ApoB were unchanged, and inflammation and blood pressure decreased. Trial registration Clinicaltrials.gov: NCT02519309. Registered 10 August 2015.
Collapse
Affiliation(s)
| | - Sarah J. Hallberg
- Virta Health, San Francisco, CA USA
- Medically Supervised Weight Loss, Indiana University Health Arnett, Lafayette, IN USA
| | | | | | - Kevin D. Ballard
- Department of Kinesiology and Health, Miami University, Oxford, OH USA
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN USA
| | - James P. McCarter
- Virta Health, San Francisco, CA USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO USA
| | | | - Jeff S. Volek
- Virta Health, San Francisco, CA USA
- Department of Human Sciences, The Ohio State University, Columbus, OH USA
| |
Collapse
|
1136
|
Slaughter AL, Nunns GR, D'Alessandro A, Banerjee A, Hansen KC, Moore EE, Silliman CC, Nemkov T, Moore HB, Fragoso M, Leasia K, Peltz ED. The Metabolopathy of Tissue Injury, Hemorrhagic Shock, and Resuscitation in a Rat Model. Shock 2018; 49:580-590. [PMID: 28727610 PMCID: PMC5775055 DOI: 10.1097/shk.0000000000000948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The metabolic consequences of trauma induce significant clinical pathology. In this study, we evaluate the independent, metabolic contributions of tissue injury (TI) and combined tissue injury and hemorrhagic shock (TI/HS) using mass spectrometry (MS) metabolomics in a controlled animal model of critical injury. METHODS Sprague-Dawley rats (n = 14) underwent TI alone or TI/HS, followed by resuscitation with normal saline and shed blood. Plasma was collected (baseline, post-laparotomy, post-HS, post-resuscitation) for ultra-high pressure liquid chromatography MS-metabolomics. Repeated-measures ANOVA with Tukey multiple column comparison test compared the fold change of metabolite concentration among the animal groups at corresponding time points. RESULTS Four hundred forty metabolites were identified. TI alone did not change the metabolite levels versus baseline. TI/HS induced changes in metabolites from glycolysis, the tricarboxylic acid cycle, the pentose phosphate, fatty acid and glutathione homeostasis pathways, sulfur metabolism, and urea cycle versus TI alone. Following resuscitation many metabolites normalized to TI alone levels, including lactate, most tri-carboxylic acid metabolites, most urea cycle metabolites, glutathione disulfide, and some metabolites from both the pentose phosphate pathway and sulfur metabolism. CONCLUSIONS Significant changes occur immediately following TI/HS versus TI alone. These metabolic changes are not explained by dilution as a number of metabolites remained unchanged or even increased following resuscitation. The differential metabolic changes resulting from TI alone and TI/HS provide foundation for future investigations severe injury in humans, where TI and HS are often concurrent. This investigation provides a foundation to evaluate metabolic-related outcomes and design-targeted resuscitation strategies.
Collapse
Affiliation(s)
- Anne L Slaughter
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Geoffrey R Nunns
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Ernest E Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Denver Health Medical Center, Denver, Colorado
| | - Christopher C Silliman
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Bonfils Blood Center, Denver, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Hunter B Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Miguel Fragoso
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Denver Health Medical Center, Denver, Colorado
| | - Kiara Leasia
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Erik D Peltz
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
1137
|
Simeone TA, Simeone KA, Stafstrom CE, Rho JM. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology 2018; 133:233-241. [PMID: 29325899 PMCID: PMC5858992 DOI: 10.1016/j.neuropharm.2018.01.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/27/2017] [Accepted: 01/07/2018] [Indexed: 01/01/2023]
Abstract
Although the mechanisms underlying the anti-seizure effects of the high-fat ketogenic diet (KD) remain unclear, a long-standing question has been whether ketone bodies (i.e., β-hydroxybutyrate, acetoacetate and acetone), either alone or in combination, contribute mechanistically. The traditional belief has been that while ketone bodies reflect enhanced fatty acid oxidation and a general shift toward intermediary metabolism, they are not likely to be the key mediators of the KD's clinical effects, as blood levels of β-hydroxybutyrate do not correlate consistently with improved seizure control. Against this unresolved backdrop, new data support ketone bodies as having anti-seizure actions. Specifically, β-hydroxybutyrate has been shown to interact with multiple novel molecular targets such as histone deacetylases, hydroxycarboxylic acid receptors on immune cells, and the NLRP3 inflammasome. Clearly, as a diet-based therapy is expected to render a broad array of biochemical, molecular, and cellular changes, no single mechanism can explain how the KD works. Specific metabolic substrates or enzymes are only a few of many important factors influenced by the KD that can collectively influence brain hyperexcitability and hypersynchrony. This review summarizes recent novel experimental findings supporting the anti-seizure and neuroprotective properties of ketone bodies.
Collapse
Affiliation(s)
- Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Carl E Stafstrom
- Department of Neurology, and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jong M Rho
- Department of Pediatrics, Department of Clinical Neurosciences, and Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
1138
|
Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Antioxidants (Basel) 2018; 7:E63. [PMID: 29710809 PMCID: PMC5981249 DOI: 10.3390/antiox7050063] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The ketogenic diet, originally developed for the treatment of epilepsy in non-responder children, is spreading to be used in the treatment of many diseases, including Alzheimer’s disease. The main activity of the ketogenic diet has been related to improved mitochondrial function and decreased oxidative stress. B-Hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species (ROS), improving mitochondrial respiration: it stimulates the cellular endogenous antioxidant system with the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), it modulates the ratio between the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD⁺/NADH) and it increases the efficiency of electron transport chain through the expression of uncoupling proteins. Furthermore, the ketogenic diet performs anti-inflammatory activity by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome as well as inhibiting histone deacetylases (HDACs), improving memory encoding. The underlying mechanisms and the perspectives for the treatment of Alzheimer’s disease are discussed.
Collapse
Affiliation(s)
- Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Mariangela Corsi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
1139
|
Wallisch JS, Simon DW, Bayır H, Bell MJ, Kochanek PM, Clark RSB. Cerebrospinal Fluid NLRP3 is Increased After Severe Traumatic Brain Injury in Infants and Children. Neurocrit Care 2018; 27:44-50. [PMID: 28181102 DOI: 10.1007/s12028-017-0378-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inflammasome-mediated neuroinflammation may cause secondary injury following traumatic brain injury (TBI) in children. The pattern recognition receptors NACHT domain-, Leucine-rich repeat-, and PYD-containing Protein 1 (NLRP1) and NLRP3 are essential components of their respective inflammasome complexes. We sought to investigate whether NLRP1 and/or NLRP3 abundance is altered in children with severe TBI. METHODS Cerebrospinal fluid (CSF) from children (n = 34) with severe TBI (Glasgow coma scale score [GCS] ≤8) who had externalized ventricular drains (EVD) placed for routine care was evaluated for NLRP1 and NLRP3 at 0-24, 25-48, 49-72, and >72 h post-TBI and was compared to infection-free controls that underwent lumbar puncture to rule out CNS infection (n = 8). Patient age, sex, initial GCS, mechanism of injury, treatment with therapeutic hypothermia, and 6-month Glasgow outcome score were collected. RESULTS CSF NLRP1 was undetectable in controls and detected in 2 TBI patients at only <24 h post-TBI. CSF NLRP3 levels were increased in TBI patients compared with controls at all time points, p < 0.001. TBI patients ≤4 years of age had higher peak NLRP3 levels versus patients >4 (15.50 [3.65-25.71] vs. 3.04 [1.52-8.87] ng/mL, respectively; p = 0.048). Controlling for initial GCS in multivariate analysis, peak NLRP3 >6.63 ng/mL was independently associated with poor outcome at 6 months. CONCLUSIONS In the first report of NLRP1 and NLRP3 in childhood neurotrauma, we found that CSF NLRP3 is elevated in children with severe TBI and independently associated with younger age and poor outcome. Future studies correlating NLRP3 with other markers of inflammation and response to therapy are warranted.
Collapse
Affiliation(s)
- Jessica S Wallisch
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Hülya Bayır
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Bell
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
1140
|
Arya R, Peariso K, Gaínza-Lein M, Harvey J, Bergin A, Brenton JN, Burrows BT, Glauser T, Goodkin HP, Lai YC, Mikati MA, Fernández IS, Tchapyjnikov D, Wilfong AA, Williams K, Loddenkemper T. Efficacy and safety of ketogenic diet for treatment of pediatric convulsive refractory status epilepticus. Epilepsy Res 2018; 144:1-6. [PMID: 29727818 DOI: 10.1016/j.eplepsyres.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To describe the efficacy and safety of ketogenic diet (KD) for convulsive refractory status epilepticus (RSE). METHODS RSE patients treated with KD at the 6/11 participating institutions of the pediatric Status Epilepticus Research Group from January-2011 to December-2016 were included. Patients receiving KD prior to the index RSE episode were excluded. RSE was defined as failure of ≥2 anti-seizure medications, including at least one non-benzodiazepine drug. Ketosis was defined as serum beta-hydroxybutyrate levels >20 mg/dl (1.9 mmol/l). Outcomes included proportion of patients with electrographic (EEG) seizure resolution within 7 days of starting KD, defined as absence of seizures and ≥50% suppression below 10 μV on longitudinal bipolar montage (suppression-burst ratio ≥50%); time to start KD after onset of RSE; time to achieve ketosis after starting KD; and the proportion of patients weaned off continuous infusions 2 weeks after KD initiation. Treatment-emergent adverse effects (TEAEs) were also recorded. RESULTS Fourteen patients received KD for treatment of RSE (median age 4.7 years, interquartile range [IQR] 5.6). KD was started via enteral route in 11/14 (78.6%) patients. KD was initiated a median of 13 days (IQR 12.5) after the onset of RSE, at 4:1 ratio in 8/14 (57.1%) patients. Ketosis was achieved within a median of 2 days (IQR 2.0) after starting KD. EEG seizure resolution was achieved within 7 days of starting KD in 10/14 (71.4%) patients. Also, 11/14 (78.6%) patients were weaned off their continuous infusions within 2 weeks of starting KD. TEAEs, potentially attributable to KD, occurred in 3/14 (21.4%) patients, including gastro-intestinal paresis and hypertriglyceridemia. Three month outcomes were available for 12/14 (85.7%) patients, with 4 patients being seizure-free, and 3 others with decreased seizure frequency compared to pre-RSE baseline. CONCLUSIONS This series suggests efficacy and safety of KD for treatment of pediatric RSE.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Katrina Peariso
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina Gaínza-Lein
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Jessica Harvey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ann Bergin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Brian T Burrows
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tracy Glauser
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yi-Chen Lai
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Angus A Wilfong
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Korwyn Williams
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
1141
|
Barry D, Ellul S, Watters L, Lee D, Haluska R, White R. The ketogenic diet in disease and development. Int J Dev Neurosci 2018; 68:53-58. [DOI: 10.1016/j.ijdevneu.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Affiliation(s)
- Denis Barry
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Sarah Ellul
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Lindsey Watters
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - David Lee
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Robert Haluska
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| | - Robin White
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| |
Collapse
|
1142
|
Pujol JB, Christinat N, Ratinaud Y, Savoia C, Mitchell SE, Dioum EHM. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients 2018; 10:nu10040473. [PMID: 29649104 PMCID: PMC5946258 DOI: 10.3390/nu10040473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes prevalence increases with age, and β-cell dysfunction contributes to the incidence of the disease. Dietary lipids have been recognized as contributory factors in the development and progression of the disease. Unlike long chain triglycerides, medium chain triglycerides (MCT) increase fat burning in animal and human subjects as well as serum C-peptide in type 2 diabetes patients. We evaluated the beneficial effects of MCT on β-cells in vivo and in vitro. MCT improved glycemia in aged rats via β-cell function assessed by measuring insulin secretion and content. In β-cells, medium chain fatty acid (MCFA)-C10 activated fatty acid receptor 1 FFAR1/GPR40, while MCFA-C8 induced mitochondrial ketogenesis and the C8:C10 mixture improved β cell function. We showed that GPR40 signaling positively impacts ketone body production in β-cells, and chronic treatment with β-hydroxybutyrate (BHB) improves β-cell function. We also showed that BHB and MCFA help β-cells recover from lipotoxic stress by improving mitochondrial function and increasing the expression of genes involved in β-cell function and insulin biogenesis, such as Glut2, MafA, and NeuroD1 in primary human islets. MCFA offers a therapeutic advantage in the preservation of β-cell function as part of a preventative strategy against diabetes in at risk populations.
Collapse
Affiliation(s)
- Julien Benjamin Pujol
- Islet Function, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| | - Nicolas Christinat
- Lipidomics, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| | - Yann Ratinaud
- Natural Bioactives Screening, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| | - Claudia Savoia
- Islet Function, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| | - Siobhan E Mitchell
- Brain Health, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| | - El Hadji M Dioum
- Islet Function, Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne, Switzerland.
| |
Collapse
|
1143
|
β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells. Int J Mol Sci 2018; 19:ijms19041126. [PMID: 29642561 PMCID: PMC5979475 DOI: 10.3390/ijms19041126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.
Collapse
|
1144
|
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9:586. [PMID: 29686666 PMCID: PMC5900450 DOI: 10.3389/fimmu.2018.00586] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
- Care of Elderly Medicine, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Susan E. McNerlan
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - H. Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
1145
|
Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, Deng X, Liang G, Zhang H, Jiang W, Zhou R. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med 2018. [PMID: 29531021 DOI: 10.1525/emmm.201708689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The dysregulation of NLRP3 inflammasome can cause uncontrolled inflammation and drive the development of a wide variety of human diseases, but the medications targeting NLRP3 inflammasome are not available in clinic. Here, we show that tranilast (TR), an old anti-allergic clinical drug, is a direct NLRP3 inhibitor. TR inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanismly, TR directly binds to the NACHT domain of NLRP3 and suppresses the assembly of NLRP3 inflammasome by blocking NLRP3 oligomerization. In vivo experiments show that TR has remarkable preventive or therapeutic effects on the mouse models of NLRP3 inflammasome-related human diseases, including gouty arthritis, cryopyrin-associated autoinflammatory syndromes, and type 2 diabetes. Furthermore, TR is active ex vivo for synovial fluid mononuclear cells from patients with gout. Thus, our study identifies the old drug TR as a direct NLRP3 inhibitor and provides a potentially practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yi Huang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| | - Hua Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaqiong Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yanqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jinhui Tao
- Department of Rheumatology & Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| | - Wei Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| |
Collapse
|
1146
|
Liu Y, Ni Y, Zhang W, Sun Y, Jiang M, Gu W, Ma Z, Gu X. Anti-nociceptive effects of caloric restriction on neuropathic pain in rats involves silent information regulator 1. Br J Anaesth 2018; 120:807-817. [DOI: 10.1016/j.bja.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
|
1147
|
Potential Synergies of β-Hydroxybutyrate and Butyrate on the Modulation of Metabolism, Inflammation, Cognition, and General Health. J Nutr Metab 2018; 2018:7195760. [PMID: 29805804 PMCID: PMC5902005 DOI: 10.1155/2018/7195760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
The low-carbohydrate high-fat diet (LCHFD), also known as the ketogenic diet, has cycled in and out of popularity for decades as a therapeutic program to treat metabolic syndrome, weight mismanagement, and drug-resistant disorders as complex as epilepsy, cancer, dementia, and depression. Despite the benefits of this diet, health care professionals still question its safety due to the elevated serum ketones it induces and the limited dietary fiber. To compound the controversy, patient compliance with the program is poor due to the restrictive nature of the diet and symptoms related to energy deficit and gastrointestinal adversity during the introductory and energy substrate transition phase of the diet. The studies presented here demonstrate safety and efficacy of the diet including the scientific support and rationale for the administration of exogenous ketone bodies and ketone sources as a complement to the restrictive dietary protocol or as an alternative to the diet. This review also highlights the synergy provided by exogenous ketone, β-hydroxybutyrate (BHB), accompanied by the short chain fatty acid, butyrate (BA) in the context of cellular and physiological outcomes. More work is needed to unveil the molecular mechanisms by which this program provides health benefits.
Collapse
|
1148
|
Hallberg SJ, McKenzie AL, Williams PT, Bhanpuri NH, Peters AL, Campbell WW, Hazbun TL, Volk BM, McCarter JP, Phinney SD, Volek JS. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther 2018; 9:583-612. [PMID: 29417495 PMCID: PMC6104272 DOI: 10.1007/s13300-018-0373-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Carbohydrate restriction markedly improves glycemic control in patients with type 2 diabetes (T2D) but necessitates prompt medication changes. Therefore, we assessed the effectiveness and safety of a novel care model providing continuous remote care with medication management based on biometric feedback combined with the metabolic approach of nutritional ketosis for T2D management. METHODS We conducted an open-label, non-randomized, controlled, before-and-after 1-year study of this continuous care intervention (CCI) and usual care (UC). Primary outcomes were glycosylated hemoglobin (HbA1c), weight, and medication use. Secondary outcomes included fasting serum glucose and insulin, HOMA-IR, blood lipids and lipoproteins, liver and kidney function markers, and high-sensitivity C-reactive protein (hsCRP). RESULTS 349 adults with T2D enrolled: CCI: n = 262 [mean (SD); 54 (8) years, 116.5 (25.9) kg, 40.4 (8.8) kg m2, 92% obese, 88% prescribed T2D medication]; UC: n = 87 (52 (10) years, 105.6 (22.15) kg, 36.72 (7.26) kg m2, 82% obese, 87% prescribed T2D medication]. 218 participants (83%) remained enrolled in the CCI at 1 year. Intention-to-treat analysis of the CCI (mean ± SE) revealed HbA1c declined from 59.6 ± 1.0 to 45.2 ± 0.8 mmol mol-1 (7.6 ± 0.09% to 6.3 ± 0.07%, P < 1.0 × 10-16), weight declined 13.8 ± 0.71 kg (P < 1.0 × 10-16), and T2D medication prescription other than metformin declined from 56.9 ± 3.1% to 29.7 ± 3.0% (P < 1.0 × 10-16). Insulin therapy was reduced or eliminated in 94% of users; sulfonylureas were entirely eliminated in the CCI. No adverse events were attributed to the CCI. Additional CCI 1-year effects were HOMA-IR - 55% (P = 3.2 × 10-5), hsCRP - 39% (P < 1.0 × 10-16), triglycerides - 24% (P < 1.0 × 10-16), HDL-cholesterol + 18% (P < 1.0 × 10-16), and LDL-cholesterol + 10% (P = 5.1 × 10-5); serum creatinine and liver enzymes (ALT, AST, and ALP) declined (P ≤ 0.0001), and apolipoprotein B was unchanged (P = 0.37). UC participants had no significant changes in biomarkers or T2D medication prescription at 1 year. CONCLUSIONS These results demonstrate that a novel metabolic and continuous remote care model can support adults with T2D to safely improve HbA1c, weight, and other biomarkers while reducing diabetes medication use. CLINICALTRIALS. GOV IDENTIFIER NCT02519309. FUNDING Virta Health Corp.
Collapse
Affiliation(s)
- Sarah J Hallberg
- Medically Supervised Weight Loss, Indiana University Health Arnett, Lafayette, IN, USA
- Virta Health, San Francisco, CA, USA
| | | | | | | | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Tamara L Hazbun
- Medically Supervised Weight Loss, Indiana University Health Arnett, Lafayette, IN, USA
| | | | - James P McCarter
- Virta Health, San Francisco, CA, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jeff S Volek
- Virta Health, San Francisco, CA, USA
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
1149
|
Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol 2018; 189:14-22. [DOI: 10.1016/j.clim.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
1150
|
Pavillard LE, Marín-Aguilar F, Bullon P, Cordero MD. Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns. Pharmacol Res 2018; 131:44-50. [PMID: 29588192 DOI: 10.1016/j.phrs.2018.03.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, with high prevalence in industrialized countries. Cardiovascular risk factors are mainly influenced by diet, which like other lifestyle factors can be modified to either reduce or increase cardiovascular risk. Other metabolic diseases such as metabolic syndrome, type II diabetes mellitus, and obesity are associated to CVD and highly influenced by the diet. Inflammation has demonstrated to be a key factor in the biological progress of these diseases. Interestingly, IL-1β which is associated to several steps in the development of atherosclerosis, heart disease, and the association of obesity and type II diabetes with CVD, is activated by the inflammasome complex, a multiprotein complex composed of an intracellular sensor, typically a Nod-like receptor (NLR), the precursor procaspase-1, and the adaptor ASC (apoptosis-associated speck-like protein containing a CARD. In the last years, inflammasome complex has been studied in depth and has been associated with the effect of unhealthy diets both from a clinical and experimental view point. We have reviewed the evidences supporting the role of the inflammasome complex in the development of cardiovascular pathology by unhealthy diets and the therapeutic perspectives.
Collapse
Affiliation(s)
- Luis E Pavillard
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla, Spain
| | - Fabiola Marín-Aguilar
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla, Spain
| | - Pedro Bullon
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla, Spain
| | - Mario D Cordero
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, 18100, Granada, Spain.
| |
Collapse
|