1101
|
Abstract
The incidence of many diseases rises sharply with age. Although clearly separable, ageing and certain age-related diseases might share common mechanisms. Cellular metabolism and subsequent generation of reactive oxygen species might contribute both to the rate at which we age and to our susceptibility to numerous chronic diseases, therefore therapies that directly target the ageing process might provide new ways to treat human diseases.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiovascular Branch ofthe National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
1102
|
Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli ARK, Li J, Li F, Gerdes AM, Wawrousek EF, Wang X. Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 2005; 97:1018-26. [PMID: 16210548 DOI: 10.1161/01.res.0000189262.92896.0b] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of increased ubiquitinated proteins and amyloid oligomers in failing human hearts strikingly resembles the characteristic pathology in the brain of many neurodegenerative diseases. The ubiquitin-proteasome system (UPS) is responsible for degradation of most cellular proteins and plays essential roles in virtually all cellular processes. UPS impairment by aberrant protein aggregation was previously shown in cell culture but remains to be demonstrated in intact animals. Mechanisms underlying the impairment are poorly understood. We report here that UPS proteolytic function is severely impaired in the heart of a mouse model of intrasarcoplasmic amyloidosis caused by cardiac-restricted expression of a human desmin-related myopathy-linked missense mutation of alphaB-crystallin (CryAB(R120G)). The UPS impairment was detected before cardiac hypertrophy, and failure became discernible, suggesting that defective protein turnover likely contributes to cardiac remodeling and failure in this model. Further analyses reveal that the impairment is likely attributable to insufficient delivery of substrate proteins into the 20S proteasomes, and depletion of key components of the 19S subcomplex may be responsible. The derangement is likely caused by aberrant protein aggregation rather than loss of function of the CryAB gene because UPS malfunction was not evident in CryAB-null hearts and inhibition of aberrant protein aggregation by Congo red or a heat shock protein significantly attenuated CryAB(R120G)-induced UPS malfunction in cultured cardiomyocytes. Because of the central role of the UPS in cell regulation and the high intrasarcoplasmic amyloidosis prevalence in failing human hearts, our data suggest a novel pathogenic process in cardiac disorders with abnormal protein aggregation.
Collapse
Affiliation(s)
- Quanhai Chen
- Cardiovascular Research Institute, South Dakota Health Research Foundation, University of South Dakota School of Medicine, Sioux Valley Hospitals and Health System, Sioux Falls, SD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1103
|
Park J, Kim SY, Cha GH, Lee SB, Kim S, Chung J. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 2005; 361:133-9. [PMID: 16203113 DOI: 10.1016/j.gene.2005.06.040] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 06/07/2005] [Accepted: 06/27/2005] [Indexed: 11/24/2022]
Abstract
DJ-1 is linked to an early-onset autosomal recessive Parkinson's disease (PD) characterized primarily by selective loss of dopaminergic (DA) neurons, which results in motor disturbances. However, our understanding on how mutations in DJ-1 are related to PD is unclear. Here, we isolated the DJ-1 orthologue, DJ-1beta, in Drosophila and characterized its expression and loss-of-function mutants. We observed its strongest expression in the adult stage of development and ubiquitous expression in the larval brain. Our homozygous mutants showed severe defects in locomotor ability without loss of DA neurons, consistent with the previous mice DJ-1 mutant studies ([Goldberg, M.S., Pisani, A., Haburcak, M., Vortherms, T.A., Kitada, T., Costa, C., Tong, Y., Martella, G., Tscherter, A., Martins, A., et al., 2005. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45, 489-496.]; [Kim, R.H., Smith, P.D., Aleyasin, H., Hayley, S., Mount, M.P., Pownall, S., Wakeham, A., You-Ten, A.J., Kalia, S.K., Horne, P., Westaway, D., Lozano, A.M., Anisman, H., Park, D.S., Mak, T.W., 2005. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and oxidative stress. Proc. Natl. Acad. Sci. USA 102, 5215-5220.]; [Chen, L., Cagniard, B., Mathews, T., Jones, S., Koh, H.C., Ding, Y., Carvey, P.M., Ling, Z., Kang, U.J., Zhuang, X., 2005. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J. Biol. Chem. 280, 21418-21426.]). The locomotor activity of DJ-1beta mutants was further decreased by paraquat-induced oxidative stress. Moreover, we found that Drosophila DJ-1 is prominently localized in mitochondria, suggesting that DJ-1 functions as a protector against oxidative stress in mitochondria.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Behavior, Animal/physiology
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- COS Cells
- Chlorocebus aethiops
- Disease Models, Animal
- Dopamine/metabolism
- Drosophila/genetics
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Gait Disorders, Neurologic/genetics
- Gait Disorders, Neurologic/physiopathology
- Gene Expression Profiling
- Humans
- Microscopy, Confocal
- Mitochondria/metabolism
- Mitochondria/pathology
- Molecular Sequence Data
- Mutation/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Neurons/pathology
- Oxidative Stress/physiology
- Parkinson Disease/physiopathology
- Protein Deglycase DJ-1
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Jeehye Park
- National Creative Research Initiatives Center for Cell Growth Regulation, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
1104
|
Butts BD, Hudson HR, Linseman DA, Le SS, Ryan KR, Bouchard RJ, Heidenreich KA. Proteasome inhibition elicits a biphasic effect on neuronal apoptosis via differential regulation of pro-survival and pro-apoptotic transcription factors. Mol Cell Neurosci 2005; 30:279-89. [PMID: 16112871 DOI: 10.1016/j.mcn.2005.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 07/12/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022] Open
Abstract
The role of the proteasome in neuronal apoptosis is poorly understood since both anti- and pro-apoptotic effects result from proteasome inhibition. We studied the effects of proteasome inhibition in cultured rat cerebellar granule neurons. Acute exposure to proteasome inhibitors MG-132 and lactacystin blocked caspase activation induced by removal of depolarizing medium. However, chronic treatment with MG-132 activated caspases in neurons maintained in depolarizing potassium. The biphasic effect of MG-132 was hypothesized to be due to differential degradation of anti- and pro-apoptotic proteins. Accordingly, acute exposure to MG-132 inhibited the hyperphosphorylation, loss of DNA binding, ubiquitination, and degradation of the pro-survival transcription factor MEF2D induced by removal of depolarizing medium. In contrast, chronic exposure to MG-132 increased the expression and phosphorylation of c-Jun, elevated levels of the pro-apoptotic protein Bim, and triggered neuronal apoptosis, even in the presence of depolarizing medium. Thus, proteasome inhibition exerts an acute pro-survival action by stabilizing MEF2 transcription factors. However, chronic proteasome inhibition causes a build-up of phosphorylated c-Jun and Bim, which eventually overwhelms the effects of MEF2 and triggers apoptosis.
Collapse
Affiliation(s)
- B D Butts
- Pharmacology, University of Colorado Health Science Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
1105
|
Jain S, Wood NW, Healy DG. Molecular genetic pathways in Parkinson's disease: a review. Clin Sci (Lond) 2005; 109:355-64. [PMID: 16171459 DOI: 10.1042/cs20050106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major progress has been made in the last decade in understanding the genetic basis of PD (Parkinson's disease) with five genes unequivocally associated with disease. As a result, multiple pathways have been implicated in the pathogenesis of PD, including proteasome impairment and mitochondrial dysfunction. Although Mendelian genetics has been successful in establishing a genetic predisposition for familial PD, this has not been reiterated in the sporadic form. In fact no genetic factors have been unequivocally associated with increased risk for sporadic PD. The difficulty in identifying susceptibility factors in PD has not only been because of numerous underpowered studies, but we have been unable to dissect out the genetic component in a multifactorial disease. This review aims to summarize the genetic findings within PD.
Collapse
Affiliation(s)
- Shushant Jain
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, U.K
| | | | | |
Collapse
|
1106
|
Abstract
Protein aggregation--and, more specifically, amyloid fibril formation--has been implicated as a primary cause of neurodegeneration in Alzheimer's disease, Parkinson's disease, and related disorders, but the mechanism by which this process triggers neuronal death is unknown. Mounting evidence from in vitro studies, cell culture, and animal models of these diseases supports the hypothesis that a structural intermediate on the pathway to fibril formation, rather than amyloid fibrils themselves, may be the pathogenic species. Characterization of these intermediates in solution or upon interactions with membranes indicate that these intermediates form pores and suggests that neurons could be killed by unregulated membrane permeabilization caused by such "amyloid pores."
Collapse
Affiliation(s)
- Hilal A Lashuel
- Integrative Biosciences Institute, Laboratory of Molecular Neurobiology and Neuroproteomics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
1107
|
Ulmer TS, Bax A. Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem 2005; 280:43179-87. [PMID: 16166095 DOI: 10.1074/jbc.m507624200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three point mutations (A30P, E46K, and A53T) as well as gene triplication genetically link the 140-residue protein alpha-synuclein (aS) to the development of Parkinson disease. Here, the structure and dynamics of micelle-bound aS(A30P) and aS(A53T) are described and compared with wild-type aS, in addition to describing the aS-micelle interaction. A53T is sensed only by directly adjacent residues and leaves the backbone structure and dynamics indistinguishable from the wild type. A30P interrupts one helix turn (Val26-Ala29) and destabilizes the preceding one. A shift in helix register following A30P disturbs the canonical succession of polar and hydrophobic residues for at least two turns. The shortened helix-N adopts a slightly higher helical content and is less bent, indicating that strain was present in the micelle-bound helix. In the vicinity of the A30P-induced perturbations, the underlying micelle environment has rearranged, but nevertheless all aS variants maintain similar interrelationships with the micelle. Moreover, aS-micelle immersion correlates well with fast and slow aS backbone dynamics, allowing a rare insight into protein-micelle interplay.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
1108
|
Abstract
Neurodegenerative diseases typically involve deposits of inclusion bodies that contain abnormal aggregated proteins. Therefore, it has been suggested that protein aggregation is pathogenic. However, several lines of evidence indicate that inclusion bodies are not the main cause of toxicity, and probably represent a cellular protective response. Aggregation is a complex multi-step process of protein conformational change and accretion. The early species in this process might be most toxic, perhaps through the exposure of buried moieties such as main chain NH and CO groups that could serve as hydrogen bond donors or acceptors in abnormal interactions with other cellular proteins. This model implies that the pathogenesis of diverse neurodegenerative diseases arises by common mechanisms, and might yield common therapeutic targets.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry at Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
1109
|
Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, Beal MF, Nishimura I, Wakamatsu K, Ito S, Takahashi R, Lu B. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A 2005; 102:13670-5. [PMID: 16155123 PMCID: PMC1224636 DOI: 10.1073/pnas.0504610102] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder characterized by dopaminergic dysfunction and degeneration. The cause of most PD cases is unknown, although postmortem studies have implicated the involvement of oxidative stress. The identification of familial PD-associated genes offers the opportunity to study mechanisms of PD pathogenesis in model organisms. Here, we show that DJ-1A, a Drosophila homologue of the familial PD-associated gene DJ-1, plays an essential role in oxidative stress response and neuronal maintenance. Inhibition of DJ-1A function through RNA interference (RNAi) results in cellular accumulation of reactive oxygen species, organismal hypersensitivity to oxidative stress, and dysfunction and degeneration of dopaminergic and photoreceptor neurons. To identify other genes that may interact with DJ-1A in regulating cell survival, we performed genetic interaction studies and identified components of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway as specific modulators of DJ-1A RNAi-induced neurodegeneration. PI3K signaling suppresses DJ-1A RNAi phenotypes at least in part by reducing cellular reactive oxygen species levels. Consistent with the genetic interaction results, we also found reduced phosphorylation of Akt in DJ-1A RNAi animals, indicating an impairment of PI3K/Akt signaling by DJ-1A down-regulation. Together with recent findings in mammalian systems, these results implicate impairments of PI3K/Akt signaling and oxidative stress response in DJ-1-associated disease pathogenesis. We also observed impairment of PI3K/Akt signaling in the fly parkin model of PD, hinting at a common molecular event in the pathogenesis of PD. Manipulation of PI3K/Akt signaling may therefore offer therapeutic benefits for the treatment of PD.
Collapse
Affiliation(s)
- Yufeng Yang
- Department of Pathology, Stanford University School of Medicine, and Geriatric Research, Education and Clinical Center/Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1110
|
Chu CT, Zhu JH, Cao G, Signore A, Wang S, Chen J. Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells. J Neurochem 2005; 94:1685-95. [PMID: 16156740 PMCID: PMC1868549 DOI: 10.1111/j.1471-4159.2005.03329.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative disease characterized by loss of midbrain dopaminergic neurons. These neurons are particularly sensitive to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes parkinsonian syndromes in humans, monkeys and rodents. Although apoptotic cell death has been implicated in MPTP/MPP+ toxicity, several recent studies have challenged the role of caspase-dependent apoptosis in dopaminergic neurons. Using the midbrain-derived MN9D dopaminergic cell line, we found that MPP+ treatment resulted in an active form of cell death that could not be prevented by caspase inhibitors or over-expression of a dominant negative inhibitor of apoptotic protease activating factor 1/caspase-9. Apoptosis inducing factor (AIF) is a mitochondrial protein that may mediate caspase-independent forms of regulated cell death following its translocation to the nucleus. We found that MPP+ treatment elicited nuclear translocation of AIF accompanied by large-scale DNA fragmentation. To establish the role of AIF in MPP+ toxicity, we constructed a DNA vector encoding a short hairpin sequence targeted against AIF. Reduction of AIF expression by RNA interference inhibited large-scale DNA fragmentation and conferred significant protection against MPP+ toxicity. Studies of primary mouse midbrain cultures further supported a role for AIF in caspase-independent cell death in MPP+-treated dopaminergic neurons.
Collapse
Affiliation(s)
- Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
1111
|
Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN. Heat Shock Prevents Alpha-synuclein-induced Apoptosis in a Yeast Model of Parkinson's Disease. J Mol Biol 2005; 351:1081-100. [PMID: 16051265 DOI: 10.1016/j.jmb.2005.06.060] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/14/2005] [Accepted: 06/27/2005] [Indexed: 01/15/2023]
Abstract
We show that human wild-type alpha synuclein (WT alpha-syn), and the inherited mutants A53T or A30P, when expressed in the yeast Saccharomyces cerevisiae triggers events that are diagnostic of apoptosis: loss of membrane asymmetry due to the externalization of phosphatidylserine, accumulation of reactive oxygen species (ROS), and the release of cytochrome c from mitochondria. A brief heat shock was strikingly protective in that alpha-syn-expressing cells receiving a heat shock exhibited none of these apoptotic markers. Because the heat shock did not decrease the expression level of alpha-syn, a protective protein or proteins, induced by the heat shock, must be responsible for inhibition of alpha-syn-induced apoptosis. Using ROS accumulation as a marker of apoptosis, the role of various genes and various drugs in controlling alpha-syn-induced apoptosis was investigated. Treatment with geldanamycin or glutathione, overexpression of Ssa3 (Hsp70), or deletion of the yeast metacaspase gene YCA1 abolishes the ability of alpha-syn to induce ROS accumulation. Deletion of YCA1 also promotes vigorous growth of alpha-syn-expressing cells compared to cells that contain a functional copy of YCA1. These findings indicate that alpha-syn-induced ROS generation is mediated by the caspase, according to alpha-syn-->caspase-->ROS-->apoptosis. It is shown by co-immunoprecipitation that Ssa3 binds to alpha-syn in a nucleotide-dependent manner. Thus, we propose that Hsp70 chaperones inhibit this sequence of events by binding and sequestering alpha-syn.
Collapse
Affiliation(s)
- Todd R Flower
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
1112
|
Lu B. Understanding and treating neurodegeneration: insights from the flies. AGE (DORDRECHT, NETHERLANDS) 2005; 27:225-239. [PMID: 23598655 PMCID: PMC3458495 DOI: 10.1007/s11357-005-2917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/21/2005] [Accepted: 03/27/2005] [Indexed: 06/02/2023]
Abstract
Drosophila has recently emerged as a model system for studying mechanisms of neurodegeneration. Genetic models for most of the major neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), polyglutamine diseases, and tauopathies, have been successfully established. Pharmacological models of some of these diseases have also been created. Genetic modifier screens using these models have uncovered previously implicated mechanisms and molecules as well as novel ones. Fly models have turned out to be excellent system for the in vivo testing of therapeutic potentials of candidate compounds. It is anticipated that further exploration of the fly models will not only provide novel insights into mechanisms of neurodegeneration but also lead to the development of rational treatment of those debilitating degenerative diseases.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, GRECC, VA Palo Alto Health Care System, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| |
Collapse
|
1113
|
Ross CA, Margolis RL. Neurogenetics: insights into degenerative diseases and approaches to schizophrenia. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.cnr.2005.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1114
|
Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, Pallanck LJ, Bonini NM. Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinson’s Disease. Curr Biol 2005; 15:1572-7. [PMID: 16139213 DOI: 10.1016/j.cub.2005.07.064] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that displays both sporadic and inherited forms. Exposure to several common environmental toxins acting through oxidative stress has been shown to be associated with PD. One recently identified inherited PD gene, DJ-1, may have a role in protection from oxidative stress, thus potentially linking a genetic cause with critical environmental risk factors. To develop an animal model that would allow integrative study of genetic and environmental influences, we have generated Drosophila lacking DJ-1 function. Fly DJ-1 homologs exhibit differential expression: DJ-1beta is ubiquitous, while DJ-1alpha is predominantly expressed in the male germline. DJ-1alpha and DJ-1beta double knockout flies are viable, fertile, and have a normal lifespan; however, they display a striking selective sensitivity to those environmental agents, including paraquat and rotenone, linked to PD in humans. This sensitivity results primarily from loss of DJ-1beta protein, which also becomes modified upon oxidative stress. These studies demonstrate that fly DJ-1 activity is selectively involved in protection from environmental oxidative insult in vivo and that the DJ-1beta protein is biochemically responsive to oxidative stress. Study of these flies will provide insight into the critical interplay of genetics and environment in PD.
Collapse
Affiliation(s)
- Marc Meulener
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
1115
|
Sousa SC, Castilho RF. Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death. Antioxid Redox Signal 2005; 7:1110-6. [PMID: 16115015 DOI: 10.1089/ars.2005.7.1110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic systemic inhibition of mitochondrial respiratory chain complex I by rotenone causes nigrostriatal dopaminergic degeneration in rats, producing an in vivo experimental model of Parkinson's disease. We recently showed that micromolar Ca2+ concentrations strongly stimulate the release of reactive oxygen species in rotenone-treated isolated rat brain mitochondria. In the present work, we show that the natural antioxidant melatonin inhibits Ca2+ plus rotenone-induced oxidative stress in isolated rat brain mitochondria. In addition, the Ca2+ ionophore A23187 strongly potentiates rotenone-induced death of intact cultured pheochromocytoma (PC12) cells, in a mechanism sensitive to melatonin. Moreover, melatonin inhibits the detection of reactive oxygen species release in PC12 cells treated with rotenone plus A23187. Melatonin does not alter free Ca2+ concentrations or the inhibitory effect of rotenone on mitochondrial complex I. We conclude that micromolar Ca2+ concentrations stimulate neuronal cell death induced by mitochondrial complex I inhibition in a mechanism involving oxidative stress, preventable by the antioxidant melatonin.
Collapse
Affiliation(s)
- Solange C Sousa
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | | |
Collapse
|
1116
|
Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D. Early environmental origins of neurodegenerative disease in later life. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1230-3. [PMID: 16140633 PMCID: PMC1280407 DOI: 10.1289/ehp.7571] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 05/10/2005] [Indexed: 05/04/2023]
Abstract
Parkinson disease (PD) and Alzheimer disease (AD), the two most common neurodegenerative disorders in American adults, are of purely genetic origin in a minority of cases and appear in most instances to arise through interactions among genetic and environmental factors. In this article we hypothesize that environmental exposures in early life may be of particular etiologic importance and review evidence for the early environmental origins of neurodegeneration. For PD the first recognized environmental cause, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), was identified in epidemiologic studies of drug abusers. Chemicals experimentally linked to PD include the insecticide rotenone and the herbicides paraquat and maneb; interaction has been observed between paraquat and maneb. In epidemiologic studies, manganese has been linked to parkinsonism. In dementia, lead is associated with increased risk in chronically exposed workers. Exposures of children in early life to lead, polychlorinated biphenyls, and methylmercury have been followed by persistent decrements in intelligence that may presage dementia. To discover new environmental causes of AD and PD, and to characterize relevant gene-environment interactions, we recommend that a large, prospective genetic and epidemiologic study be undertaken that will follow thousands of children from conception (or before) to old age. Additional approaches to etiologic discovery include establishing incidence registries for AD and PD, conducting targeted investigations in high-risk populations, and improving testing of the potential neurologic toxicity of chemicals.
Collapse
Affiliation(s)
- Philip J Landrigan
- Center for Children's Health and the Environment, Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
1117
|
Logroscino G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1234-8. [PMID: 16140634 PMCID: PMC1280408 DOI: 10.1289/ehp.7573] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Parkinson disease (PD) is of unknown but presumably multifactorial etiology. Neuropathologic studies and animal models show that exposure to environmental neurotoxicants can determine progressive damage in the substantia nigra many years before the onset of clinical parkinsonism. Therefore, PD, like other neurologic diseases related to aging, may be determined by exposures present in the environment early during the life span or even during pregnancy. Recent epidemiologic studies have focused on the possible role of environmental risk factors present during adult life or aging. Smoking and coffee drinking have consistently been identified to have protective associations, whereas roles of other risk factors such as pesticide and infections have been reported in some studies but not replicated in others. Both genetic inheritance and sharing of common environment in the same family explain the increased risk of PD of relatives of PD cases compared with relatives of controls in familial aggregation studies. Much evidence indicates that risk factors that have a long latency or a slow effect could be important for late-onset PD. Further epidemiologic studies are warranted in this area.
Collapse
Affiliation(s)
- Giancarlo Logroscino
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
1118
|
Koh DW, Dawson TM, Dawson VL. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 2005; 52:5-14. [PMID: 15911329 DOI: 10.1016/j.phrs.2005.02.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 02/01/2005] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribosyl)ation plays an important role in modulating the cellular response to stress. The extent of poly(ADP-ribosyl)ation, chiefly via the activation of the poly(ADP-ribose) polymerase-1 (PARP-1), correlates with the severity of genotoxic stress and this determines the cellular response. Under mild and moderate stress, it plays important roles in DNA processing and it participates in the proinflammatory/cellular defense via transcriptional regulation. However, severe stress following acute neuronal injury causes the overactivation of PARP-1, which results in unregulated poly(ADP-ribose) (PAR) synthesis and widespread neuronal cell death. Previously, this PARP-1-dependent cell death mechanism was manifest solely through necrosis, but apoptotic mechanisms are also evident. Poly(ADP-ribosyl)ation directly induces the nuclear translocation of apoptosis-inducing factor, which results in caspase-independent cell death significant in many neurodegenerative conditions. Further, the hydrolysis of PAR by poly(ADP-ribose) glycohydrolase (PARG) has a protective role, since the accumulation of PAR leads to cell death by apoptosis. Thus, PAR signaling, regulated by PARP-1 and PARG, mediates cell death. Accordingly, modulation of PAR synthesis or degradation through the targeting of PARP-1 or PARG holds particular promise in the treatment of conditions such as cancer, stroke, and Parkinson's disease.
Collapse
Affiliation(s)
- David W Koh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway St., Suite 711, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
1119
|
Jordà EG, Verdaguer E, Jimenez A, Arriba SGD, Allgaier C, Pallàs M, Camins A. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis. Biochem Pharmacol 2005; 70:470-80. [PMID: 15950951 DOI: 10.1016/j.bcp.2005.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/15/2005] [Accepted: 04/29/2005] [Indexed: 01/22/2023]
Abstract
The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Elvira G Jordà
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
1120
|
Marubuchi S, Wada YI, Okuda T, Hara Y, Qi ML, Hoshino M, Nakagawa M, Kanazawa I, Okazawa H. Polyglutamine tract-binding protein-1 dysfunction induces cell death of neurons through mitochondrial stress. J Neurochem 2005; 95:858-70. [PMID: 16104847 DOI: 10.1111/j.1471-4159.2005.03405.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts and colocalizes with mutant polyglutamine proteins. We previously reported that PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype and cell death of motor neurons analogous to human neurodegeneration. To investigate the molecular mechanisms underlying the motor neuron death, we performed microarray analyses using the anterior horn tissues of the spinal cord and compared gene expression profiles between pre-symptomatic transgenic and age-matched control mice. Surprisingly, half of the spots changed more than 1.5-fold turned out to be genes transcribed from the mitochondrial genome. Northern and western analyses confirmed up-regulation of representative mitochondrial genes, cytochrome c oxidase (COX) subunit 1 and 2. Immunohistochemistry revealed that COX1 and COX2 proteins are increased in spinal motor neurons. Electron microscopic analyses revealed morphological abnormalities of mitochondria in the motor neurons. PQBP-1 overexpression in primary neurons by adenovirus vector induced abnormalities of mitochondrial membrane potential from day 5, while cytochrome c release and caspase 3 activation were observed on day 9. An increase of cell death by PQBP-1 was also confirmed on day 9. Collectively, these results indicate that dysfunction of PQBP-1 induces mitochondrial stress, a key molecular pathomechanism that is shared among human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shigeki Marubuchi
- Department of Neuropathology, Medical Research Institute and Center of Excellence Program (COE) for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1121
|
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2005; 70:200-14. [PMID: 15807660 DOI: 10.1007/s10541-005-0102-7] [Citation(s) in RCA: 847] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative stress is considered a major contributor to etiology of both "normal" senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.
Collapse
Affiliation(s)
- A Yu Andreyev
- Alumni of Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
1122
|
Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K. 14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J 2005; 25:211-21. [PMID: 16096643 PMCID: PMC1356342 DOI: 10.1038/sj.emboj.7600774] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 07/15/2005] [Indexed: 12/24/2022] Open
Abstract
Mutation of the parkin gene, which encodes an E3 ubiquitin-protein ligase, is the major cause of autosomal recessive juvenile parkinsonism (ARJP). Although various substrates for parkin have been identified, the mechanisms that regulate the ubiquitin ligase activity of parkin are poorly understood. Here we report that 14-3-3eta, a chaperone-like protein present abundantly in neurons, could bind to parkin and negatively regulate its ubiquitin ligase activity. Furthermore, 14-3-3eta could bind to the linker region of parkin but not parkin with ARJP-causing R42P, K161N, and T240R mutations. Intriguingly, alpha-synuclein (alpha-SN), another familial Parkinson's disease (PD) gene product, abrogated the 14-3-3eta-induced suppression of parkin activity. alpha-SN could bind tightly to 14-3-3eta and consequently sequester it from the parkin-14-3-3eta complex. PD-causing A30P and A53T mutants of alpha-SN could not bind 14-3-3eta, and failed to activate parkin. Our findings indicate that 14-3-3eta is a regulator that functionally links parkin and alpha-SN. The alpha-SN-positive and 14-3-3eta-negative control of parkin activity sheds new light on the pathophysiological roles of parkin.
Collapse
Affiliation(s)
- Shigeto Sato
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Chiba
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan
| | - Eri Sakata
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Koichi Kato
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Yoshikuni Mizuno
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan
- Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan. Tel./Fax: +81 3 3823 2237; E-mail:
| |
Collapse
|
1123
|
Onyango IG, Tuttle JB, Bennett JP. Activation of p38 and N-acetylcysteine-sensitive c-Jun NH2-terminal kinase signaling cascades is required for induction of apoptosis in Parkinson's disease cybrids. Mol Cell Neurosci 2005; 28:452-61. [PMID: 15737736 DOI: 10.1016/j.mcn.2004.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 10/08/2004] [Accepted: 10/12/2004] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic hybrid cells (cybrids) are created by selective amplification of mitochondrial genes against constant nuclear genetic and environmental backgrounds. Cybrids from patients with sporadic Parkinson's disease (PD) recapitulate disease features such as decreased complex I activity, increased oxidative stress, elevated activation of NF-kappaB, and production of Lewy body inclusions. We examined the activation of signaling pathways and NF-kappaB in PD cybrids after exposure to MAPK inhibitors and/or the antioxidant N-acetylcysteine (NAC). Under basal replicating conditions, PD cybrids have decreased viability that is associated with increased DNA condensation and poly-ADP ribose polymerase (PARP) cleavage as well as elevated p38 and JNK activity. Pharmacological inhibition of oxidative stress diminished the elevated p38, JNK activity and PARP cleavage, and enhanced PD cybrid viability. PD mitochondrial genes expressed in cybrids stimulate pro-apoptotic cell signaling and biochemistry through oxidative stress. These results support development of antioxidative therapeutics for PD.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for the Study of Neurodegenerative Diseases, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
1124
|
Surmeier DJ, Mercer JN, Chan CS. Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol 2005; 15:312-8. [PMID: 15916893 DOI: 10.1016/j.conb.2005.05.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/03/2005] [Indexed: 11/30/2022]
Abstract
Autonomous pacemakers are crucial elements in many neural circuits. This is particularly true for the basal ganglia. This richly interconnected group of nuclei is rife with both fast- and slow-spiking pacemakers. Our understanding of the ionic mechanisms underlying pacemaking in these neurons is rapidly evolving, yielding new insights into the normal functioning of this network and how it goes awry in pathological states such as Parkinson's disease.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
1125
|
Meulener MC, Graves CL, Sampathu DM, Armstrong-Gold CE, Bonini NM, Giasson BI. DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synuclein. J Neurochem 2005; 93:1524-32. [PMID: 15935068 DOI: 10.1111/j.1471-4159.2005.03145.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.
Collapse
Affiliation(s)
- Marc C Meulener
- Department of Biology and Laboratory of Medicine of University of Pennsylvania, Philadelphia 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
1126
|
Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005; 280:34025-32. [PMID: 16079129 DOI: 10.1074/jbc.m505143200] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations in the PTEN-induced kinase 1 (PINK1) gene have recently been implicated in autosomal recessive early onset Parkinson Disease (1, 2). To investigate the role of PINK1 in neurodegeneration, we designed human and murine neuronal cell lines expressing either wild-type PINK1 or PINK1 bearing a mutation associated with Parkinson Disease. We show that under basal and staurosporine-induced conditions, the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells was lower in wild-type PINK1 expressing SH-SY5Y cells than in mock-transfected cells. This phenotype was due to a PINK1-mediated reduction in cytochrome c release from mitochondria, which prevents subsequent caspase-3 activation. We show that overexpression of wild-type PINK1 strongly reduced both basal and staurosporine-induced caspase 3 activity. Overexpression of wild-type PINK1 also reduced the levels of cleaved caspase-9, caspase-3, caspase-7, and activated poly(ADP-ribose) polymerase under both basal and staurosporine-induced conditions. In contrast, Parkinson disease-related mutations and a kinase-inactive mutation in PINK1 abrogated the protective effect of PINK1. Together, these results suggest that PINK1 reduces the basal neuronal pro-apoptotic activity and protects neurons from staurosporine-induced apoptosis. Loss of this protective function may therefore underlie the degeneration of nigral dopaminergic neurons in patients with PINK1 mutations.
Collapse
Affiliation(s)
- Agnes Petit
- Centre for Research in Neurodegenerative Diseases, Department of Medicine (Neurology), University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1127
|
Savitt JM, Jang SS, Mu W, Dawson VL, Dawson TM. Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci 2005; 25:6721-8. [PMID: 16033881 PMCID: PMC6725345 DOI: 10.1523/jneurosci.0760-05.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/31/2005] [Accepted: 05/31/2005] [Indexed: 01/12/2023] Open
Abstract
Recent findings have uncovered a role for the Bcl-x gene in the survival of dopaminergic neurons. The exact nature of this role has been difficult to examine because of the embryonic lethality of Bcl-x gene disruption in mouse models. Here we report the generation catecholaminergic cell-specific conditional Bcl-x gene knock-out mice using Cre-lox recombination technology. First we produced transgenic mice that express Cre recombinase from an exogenous rat tyrosine hydroxylase promoter (TH-Cre mice). These mice were crossed to Z/AP and Z/EG reporter mouse strains to verify catecholaminergic (TH-positive) cell-specific Cre expression. The TH-Cre mice then were mated to mice possessing the Bcl-x gene flanked by loxP sites, thereby producing offspring with Bcl-x deletion limited to catecholaminergic cells. The resulting mice are viable but have one-third fewer catecholaminergic neurons than do control animals. They demonstrate a deficiency in striatal dopamine and also tend to be smaller and have decreased brain mass when compared with controls. Surprisingly, surviving neurons were found that lacked Bcl-x immunoreactivity, thereby demonstrating that this gene is dispensable for the ongoing survival of a subpopulation of catecholaminergic cells.
Collapse
Affiliation(s)
- Joseph M Savitt
- Institute for Cell Engineering, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
1128
|
Bharath S, Andersen JK. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease. Antioxid Redox Signal 2005; 7:900-10. [PMID: 15998245 DOI: 10.1089/ars.2005.7.900] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative stress and mitochondrial dysfunction signify two important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models and in affected tissues from the disease itself have demonstrated a selective inhibition of mitochondrial complex I activity that appears to affect normal mitochondrial physiology leading to neuronal cell death. Earlier experiments from our laboratory have demonstrated that induced depletion of glutathione (GSH + GSSG) in cultured dopaminergic cells resulted in increased oxidative stress and a decrease in mitochondrial function. Furthermore, this dysfunction was linked to a selective decrease in mitochondrial complex I activity that appears to be due to oxidation of this complex. Glutathione depletion is the earliest detectable biochemical event during PD progression and occurs prior to complex I inhibition. Recent observations have also indicated that oxidative damage to complex I via naturally occurring free radicals such as peroxynitrite leads to modification of tyrosine and/or cysteine residues resulting in complex I inhibition. Using the sucrose gradient method, we detected in complex I-enriched fractions from a glutathione-depleted dopaminergic cell line two bands corresponding to approximately 25-kDa and approximately 30-kDa polypeptides that demonstrate anti-nitrotyrosine immunoreactivity, suggesting the possible involvement of protein nitration by peroxynitrite in glutathione depletion-mediated complex I inhibition.
Collapse
|
1129
|
Sato C, Morgan A, Lang AE, Salehi-Rad S, Kawarai T, Meng Y, Ray PN, Farrer LA, St George-Hyslop P, Rogaeva E. Analysis of the glucocerebrosidase gene in Parkinson's disease. Mov Disord 2005; 20:367-70. [PMID: 15517592 DOI: 10.1002/mds.20319] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder characterized clinically by a combination of motor symptoms. Identifying novel PD genetic risk factors is important for understanding its pathogenesis. A recent study suggested that up to 21% of subjects with PD may have mutations in the glucocerebrosidase (GBA) gene. We investigated the GBA gene for mutations in 88 PD cases and 122 normal controls and detected the presence of heterozygous GBA mutations in 5 PD cases and in 1 control. Sequencing of the entire open reading frame of the GBA gene in a subset of 25 cases with early-onset PD (<50 years of age) uncovered no additional mutations. Our results demonstrate a marginally significant association of GBA mutations with PD and suggest that variations in the GBA gene may constitute a rare susceptibility factor for PD (P = 0.048).
Collapse
Affiliation(s)
- Christine Sato
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1130
|
Sun F, Anantharam V, Latchoumycandane C, Kanthasamy A, Kanthasamy AG. Dieldrin Induces Ubiquitin-Proteasome Dysfunction in α-Synuclein Overexpressing Dopaminergic Neuronal Cells and Enhances Susceptibility to Apoptotic Cell Death. J Pharmacol Exp Ther 2005; 315:69-79. [PMID: 15987830 DOI: 10.1124/jpet.105.084632] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to pesticides is implicated in the etiopathogenesis of Parkinson's disease (PD). The organochlorine pesticide dieldrin is one of the environmental chemicals potentially linked to PD. Because recent evidence indicates that abnormal accumulation and aggregation of alpha-synuclein and ubiquitin-proteasome system dysfunction can contribute to the degenerative processes of PD, in the present study we examined whether the environmental pesticide dieldrin impairs proteasomal function and subsequently promotes apoptotic cell death in rat mesencephalic dopaminergic neuronal cells overexpressing human alpha-synuclein. Overexpression of wild-type alpha-synuclein significantly reduced the proteasomal activity. Dieldrin exposure dose-dependently (0-70 microM) decreased proteasomal activity, and 30 microM dieldrin inhibited activity by more than 60% in alpha-synuclein cells. Confocal microscopic analysis of dieldrin-treated alpha-synuclein cells revealed that alpha-synuclein-positive protein aggregates colocalized with ubiquitin protein. Further characterization of the aggregates with the autophagosomal marker mondansyl cadaverine and the lysosomal marker and dot-blot analysis revealed that these protein oligomeric aggregates were distinct from autophagosomes and lysosomes. The dieldrin-induced proteasomal dysfunction in alpha-synuclein cells was also confirmed by significant accumulation of ubiquitin protein conjugates in the detergent-insoluble fraction. We found that proteasomal inhibition preceded cell death after dieldrin treatment and that alpha-synuclein cells were more sensitive than vector cells to the toxicity. Furthermore, measurement of caspase-3 and DNA fragmentation confirmed the enhanced sensitivity of alpha-synuclein cells to dieldrin-induced apoptosis. Together, our results suggest that increased expression of alpha-synuclein predisposes dopaminergic cells to proteasomal dysfunction, which can be further exacerbated by environmental exposure to certain neurotoxic compounds, such as dieldrin.
Collapse
Affiliation(s)
- Faneng Sun
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | | | |
Collapse
|
1131
|
Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson's disease. Hum Gene Ther 2005; 16:262-70. [PMID: 15761265 DOI: 10.1089/hum.2005.16.262] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parkin is known to mitigate alpha-synuclein-induced neuronal cell death in vitro, which suggests that the parkin gene therapy is a candidate for therapeutic strategies for Parkinson's disease (PD). In the present study, the parkin gene therapy was investigated for its ameliorative effects on alpha-synucleinopathy in substantia nigra (SN) of rats. A recombinant adeno-associated viral (rAAV) vector system has frequently been used for the gene transfer to rat SN, and we have previously demonstrated that this technique induced the alpha-synucleinopathy, which closely resembles pathogenetic changes in PD. Therefore, in the present study, the effect of parkin was examined by co-infection of rAAV-parkin with rAAV-alpha-synuclein into dopaminergic neurons in SN. At 13 weeks post-rAAV infection, alpha-synuclein overexpression induced dopaminergic neuron loss, while co-expression of parkin mitigated the alpha-synuclein toxicity. Moreover, alpha-synuclein-induced dopaminergic neuron loss consequently resulted in motor dysfunction, which was also mitigated by parkin. Taken together, our results indicate that the parkin gene therapy is effective against alpha-synucleinopathy, suggesting its potential suitability for patients with PD.
Collapse
Affiliation(s)
- Masanori Yamada
- Research Institute for Diseases of Old Age, Juntendo University, Tokyo 113-8421, Japan
| | | | | |
Collapse
|
1132
|
Xie YX, Bezard E, Zhao BL. Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem 2005; 280:32405-12. [PMID: 15985439 DOI: 10.1074/jbc.m504664200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although nicotine has been associated with a decreased risk of developing Parkinson disease, the underlying mechanisms are still unclear. By using isolated brain mitochondria, we found that nicotine inhibited N-methyl-4-phenylpyridine (MPP(+)) and calcium-induced mitochondria high amplitude swelling and cytochrome c release from intact mitochondria. Intra-mitochondria redox state was also maintained by nicotine, which could be attributed to an attenuation of mitochondria permeability transition. Further investigation revealed that nicotine did not prevent MPP(+)- or calcium-induced mitochondria membrane potential loss, but instead decreased the electron leak at the site of respiratory chain complex I. In the presence of mecamylamine hydrochloride, a nonselective nicotinic acetylcholine receptor inhibitor, nicotine significantly postponed mitochondria swelling and cytochrome c release induced by a mixture of neurotoxins (MPP(+) and 6-hydroxydopamine) in SH-SY5Y cells, suggesting that there is a receptor-independent nicotine-mediated neuroprotective effect of nicotine. These results show that interaction of nicotine with mitochondria respiratory chain together with its antioxidant effects should be considered in the neuroprotective effects of nicotine.
Collapse
Affiliation(s)
- Yu-Xiang Xie
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Academia Sinica, Beijing, China
| | | | | |
Collapse
|
1133
|
Li J, Spletter ML, Johnson DA, Wright LS, Svendsen CN, Johnson JA. Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J Neurochem 2005; 92:462-76. [PMID: 15659217 DOI: 10.1111/j.1471-4159.2004.02872.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.
Collapse
Affiliation(s)
- Jiang Li
- School of Pharmacy, University of Wisconsin at Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | | | | | | | | |
Collapse
|
1134
|
Kaul S, Anantharam V, Yang Y, Choi CJ, Kanthasamy A, Kanthasamy AG. Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cdelta in dopaminergic neuronal cells. J Biol Chem 2005; 280:28721-30. [PMID: 15961393 DOI: 10.1074/jbc.m501092200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a key apoptotic stimulus in neuronal cell death and has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson disease (PD). Recently, we demonstrated that protein kinase C-delta (PKCdelta) is an oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce apoptotic cell death in cell culture models of Parkinson disease (Kaul, S., Kanthasamy, A., Kitazawa, M., Anantharam, V., and Kanthasamy, A. G. (2003) Eur. J. Neurosci. 18, 1387-1401 and Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., and Anantharam, V. (2003) Antioxid. Redox. Signal. 5, 609-620). Here we showed that the phosphorylation of a tyrosine residue in PKCdelta can regulate the proteolytic activation of the kinase during oxidative stress, which consequently influences the apoptotic cell death in dopaminergic neuronal cells. Exposure of a mesencephalic dopaminergic neuronal cell line (N27 cells) to H(2)O(2)(0-300 microm) induced a dose-dependent increase in cytotoxicity, caspase-3 activation and PKCdelta cleavage. H(2)O(2)-induced proteolytic activation of PKC was delta mediated by the activation of caspase-3. Most interestingly, both the general Src tyrosine kinase inhibitor genistein (25 microm) and the p60(Src) tyrosine-specific kinase inhibitor (TSKI; 5 microm) dramatically inhibited H(2)O(2) and the Parkinsonian toxin 1-methyl-4-phenylpyridinium-induced PKCdelta cleavage, kinase activation, and apoptotic cell death. H(2)O(2) treatment also increased phosphorylation of PKCdelta at tyrosine site 311, which was effectively blocked by co-treatment with TSKI. Furthermore, N27 cells overexpressing a PKCdelta(Y311F) mutant protein exhibited resistance to H(2)O(2)-induced PKCdelta cleavage, caspase activation, and apoptosis. To our knowledge, these data demonstrate for the first time that phosphorylation of Tyr-311 on PKCdelta can regulate the proteolytic activation and proapoptotic function of the kinase in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Siddharth Kaul
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
1135
|
Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA, Ottersen OP, Dawson TM, Dawson VL. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14:2063-73. [PMID: 15944198 DOI: 10.1093/hmg/ddi211] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Both homozygous (L166P, M26I, deletion) and heterozygous mutations (D149A, A104T) in the DJ-1 gene have been identified in Parkinson's disease (PD) patients. The biochemical function and subcellular localization of DJ-1 protein have not been clarified. To date the localization of DJ-1 protein has largely been described in studies over-expressing tagged DJ-1 protein in vitro. It is not known whether the subcellular localization of over-expressed DJ-1 protein is identical to that of endogenously expressed DJ-1 protein both in vitro and in vivo. To clarify the subcellular localization and function of DJ-1, we generated three highly specific antibodies to DJ-1 protein and investigated the subcellular localization of endogenous DJ-1 protein in both mouse brain tissues and human neuroblastoma cells. We have found that DJ-1 is widely distributed and is highly expressed in the brain. By cell fractionation and immunogold electron microscopy, we have identified an endogenous pool of DJ-1 in mitochondrial matrix and inter-membrane space. To further investigate whether pathogenic mutations might prevent the distribution of DJ-1 to mitochondria, we generated human neuroblastoma cells stably transfected with wild-type (WT) or mutant (M26I, L166P, A104T, D149A) DJ-1 and performed mitochondrial fractionation and confocal co-localization imaging studies. When compared with WT and other mutants, L166P mutant exhibits largely reduced protein level. However, the pathogenic mutations do not alter the distribution of DJ-1 to mitochondria. Thus, DJ-1 is an integral mitochondrial protein that may have important functions in regulating mitochondrial physiology. Our findings of DJ-1's mitochondrial localization may have important implications for understanding the pathogenesis of PD.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1136
|
Machida Y, Chiba T, Takayanagi A, Tanaka Y, Asanuma M, Ogawa N, Koyama A, Iwatsubo T, Ito S, Jansen PH, Shimizu N, Tanaka K, Mizuno Y, Hattori N. Common anti-apoptotic roles of parkin and α-synuclein in human dopaminergic cells. Biochem Biophys Res Commun 2005; 332:233-40. [PMID: 15896322 DOI: 10.1016/j.bbrc.2005.04.124] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Accepted: 04/20/2005] [Indexed: 11/21/2022]
Abstract
Parkin, a product of the gene responsible for autosomal recessive juvenile parkinsonism (AR-JP), is an important player in the pathogenic process of Parkinson's disease (PD). Despite numerous studies including search for the substrate of parkin as an E3 ubiquitin-protein ligase, the mechanism by which loss-of-function of parkin induces selective dopaminergic neuronal death remains unclear. Related to this issue, here we show that antisense knockdown of parkin causes apoptotic cell death of human dopaminergic SH-SY5Y cells associated with caspase activation and accompanied by accumulation of oxidative dopamine (DA) metabolites due to auto-oxidation of DOPA and DA. Forced expression of alpha-synuclein (alpha-SN), another familial PD gene product, prevented accumulation of oxidative DOPA/DA metabolites and cell death caused by parkin loss. Our findings indicate that both parkin and alpha-SN share a common pathway in DA metabolism whose abnormality leads to accumulation of oxidative DA metabolites and subsequent cell death.
Collapse
Affiliation(s)
- Yutaka Machida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1137
|
Lombardino AJ, Li XC, Hertel M, Nottebohm F. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels. Proc Natl Acad Sci U S A 2005; 102:8036-41. [PMID: 15911766 PMCID: PMC1142397 DOI: 10.1073/pnas.0503239102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Might there be systematic differences in gene expression between neurons that undergo spontaneous replacement in the adult brain and those that do not? We first explored this possibility in the high vocal center (HVC) of male zebra finches by using a combination of neuronal tracers, laser capture microdissection, and RNA profiling. HVC has two kinds of projection neurons, one of which continues to be produced and replaced in adulthood. HVC neurons of the replaceable kind showed a consistent and robust underexpression of the deubiquitination gene ubiquitin carboxyl-terminal hydrolase (UCHL1) that is involved with protein degradation. Singing behavior, known to increase the survival of adult-born HVC neurons in birds, significantly up-regulated the levels of UCHL1 in the replaceable neurons but not in their equally active nonreplaceable counterparts. We then looked in the mouse brain and found relatively low UCHL1 expression in granule neurons of the hippocampus and olfactory bulb, two well characterized types of replaceable neurons in mammals. UCHL1 dysfunction has been associated with neurodegeneration in Parkinson's, Alzheimer's, and Huntington's disease patients. In all these instances, reduced UCHL1 function may jeopardize the survival of CNS neurons.
Collapse
Affiliation(s)
- Anthony J Lombardino
- Laboratory of Animal Behavior, The Rockefeller University, Box 137, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
1138
|
Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci U S A 2005; 102:8024-9. [PMID: 15911761 PMCID: PMC1142368 DOI: 10.1073/pnas.0501078102] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss-of-function mutations of the parkin gene are a major cause of early-onset parkinsonism. To explore the mechanism by which loss of parkin function results in neurodegeneration, we are using a genetic approach in Drosophila. Here, we show that Drosophila parkin mutants display degeneration of a subset of dopaminergic (DA) neurons in the brain. The neurodegenerative phenotype of parkin mutants is enhanced by loss-of-function mutations of the glutathione S-transferase S1 (GstS1) gene, which were identified in an unbiased genetic screen for genes that modify parkin phenotypes. Furthermore, overexpression of GstS1 in DA neurons suppresses neurodegeneration in parkin mutants. Given the previous evidence for altered glutathione metabolism and oxidative stress in sporadic Parkinson's disease (PD), these data suggest that the mechanism of DA neuron loss in Drosophila parkin mutants is similar to the mechanisms underlying sporadic PD. Moreover, these findings identify a potential therapeutic approach in treating PD.
Collapse
Affiliation(s)
- Alexander J Whitworth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
1139
|
Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice--a model of familial Parkinson's disease. Neurobiol Dis 2005; 18:492-8. [PMID: 15755676 DOI: 10.1016/j.nbd.2004.12.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 12/16/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P alpha-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Eno1), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein.
Collapse
Affiliation(s)
- H Fai Poon
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
1140
|
Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 2005; 18:54-74. [PMID: 15649696 DOI: 10.1016/j.nbd.2004.08.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/22/2004] [Accepted: 08/07/2004] [Indexed: 12/21/2022] Open
Abstract
We employed Serial Analysis of Gene Expression to identify transcriptional changes in a cellular model of Parkinson Disease (PD). The model consisted of neuronally differentiated PC12 cells compared before and after 8 hours' exposure to 6-hydroxydopamine. Approximately 1200 transcripts were significantly induced by 6-OHDA and approximately 500 of these are currently matched to known genes. Here, we categorize the regulated genes according to known functional activities and discuss their potential roles in neuron death and survival and in PD. We find induction of multiple death-associated genes as well as many with the capacity for neuroprotection. This suggests that survival or death of individual neurons in PD may reflect an integrated response to both protective and destructive gene changes. Our findings identify a number of regulated genes as candidates for involvement in PD and therefore as potential targets for therapeutic intervention. Such intervention may include both inhibiting the induction/activity of death-promoting genes and enhancing those with neuroprotective activity.
Collapse
Affiliation(s)
- Elizabeth J Ryu
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
1141
|
Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 2005; 18:37-48. [PMID: 15808507 DOI: 10.1016/j.molcel.2005.02.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/26/2005] [Accepted: 02/24/2005] [Indexed: 11/27/2022]
Abstract
Two central issues in polyglutamine-induced neurodegeneration are the influence of the normal function of the disease protein and modulation by protein quality control pathways. By using Drosophila, we now directly link host protein function and disease pathogenesis to ubiquitin pathways in the polyglutamine disease spinocerebellar ataxia type 3 (SCA3). Normal human ataxin-3--a polyubiquitin binding protein with ubiquitin protease activity--is a striking suppressor of polyglutamine neurodegeneration in vivo. This suppressor activity requires ubiquitin-associated activities of the protein and is dependent upon proteasome function. Our results highlight the critical importance of host protein function in SCA3 disease and a potential therapeutic role of ataxin-3 activity for polyglutamine disorders.
Collapse
Affiliation(s)
- John M Warrick
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
1142
|
Dong Z, Wolfer DP, Lipp HP, Büeler H. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 2005; 11:80-8. [PMID: 15585408 DOI: 10.1016/j.ymthe.2004.09.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/09/2004] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in Parkinson disease (PD). In addition, genetic evidence points to an important role of protein misfolding, aggregation, and failure in the proteasomal degradation of specific neuronal proteins in the pathogenesis of PD. The chaperone heat-shock protein 70 (Hsp70) reduces protein misfolding and aggregation and protects cells against a variety of adverse conditions, including oxidative stress. Moreover, Hsp70 exerts antiapoptotic activity by blocking the function of several key proapoptotic factors. Recently, Hsp70 was shown to inhibit alpha-synuclein toxicity in a Drosophila model of inherited PD. Here we tested the potential of Hsp70 (approved gene symbol HSPA1A) for gene therapy in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of idiopathic PD. We show that Hsp70 gene transfer to dopamine neurons by a recombinant adeno-associated virus significantly protects the mouse dopaminergic system against MPTP-induced dopamine neuron loss and the associated decline in striatal dopamine levels and tyrosine hydroxylase-positive fibers. Hsp70 reduced MPTP-induced apoptosis in the substantia nigra, and unilateral protection of the dopaminergic system by Hsp70 was associated with increased amphetamine-induced turning toward the uninjected side. Collectively, these results suggest that increasing chaperone activity may be beneficial for the treatment of idiopathic PD.
Collapse
Affiliation(s)
- Zhizhong Dong
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
1143
|
Gómez-Santos C, Barrachina M, Giménez-Xavier P, Dalfó E, Ferrer I, Ambrosio S. Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage. Brain Res Bull 2005; 65:87-95. [PMID: 15680548 DOI: 10.1016/j.brainresbull.2004.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/30/2004] [Accepted: 11/15/2004] [Indexed: 12/21/2022]
Abstract
Expression of CCAAT/enhancer-binding protein beta (C/EBP beta) and growth-arrest DNA damage-inducible 153/C/EBP beta homology protein (GADD153/CHOP) increased after incubation of human neuroblastoma SH-SY5Y cells with a range of dopamine concentrations. Dopamine (100 microM) caused an increase in C/EBP beta expression between 2 and 12 h of treatment, with no evident intracellular morphological changes. Dopamine (500 microM) led to the appearance of autophagic-like vacuoles and a marked increase in GADD153/CHOP between 6 and 24 h of treatment. The expression of alpha-synuclein, the main protein of Lewy bodies in Parkinson's disease and other neurological disorders, increased with a profile similar to C/EBP beta. In addition, overexpression of C/EBP beta caused a concomitant increase in the expression of alpha-synuclein but not of GADD153. In contrast, the overexpression of GADD153 did not alter the expression of alpha-synuclein. Inhibition of JNK by SP600125 reduced increases in C/EBP beta and alpha-synuclein expression, whereas inhibition of both JNK and p38MAPK (with SB203580) blocked the increase in GADD153 expression. We conclude that dopamine, through a mechanism driven by stress-activated MAPKs, triggers C/EBP beta and GADD153 expression in a dose-dependent way. Given that the promoter region of the alpha-synuclein gene contains distinct zones that are susceptible to regulation by C/EBP beta, this factor could be involved in the increased expression of alpha-synuclein after dopamine-induced cell stress. GADD153 increase seems to be related with the endoplasmic reticulum stress, autophagy and cell death observed at high dopamine concentrations.
Collapse
|
1144
|
Holtz WA, Turetzky JM, O'Malley KL. Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxid Redox Signal 2005; 7:639-48. [PMID: 15890008 DOI: 10.1089/ars.2005.7.639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The parkinsonian mimetic 6-hydroxydopamine (6-OHDA) has been shown to cause transcriptional changes associated with cellular stress and the unfolded protein response. As these cellular sequelae depend on upstream signaling events, the present study used functional genomics and proteomic approaches to aid in deciphering toxin-mediated regulatory pathways. Microarray analysis of RNA collected from multiple time points following 6-OHDA treatment was combined with data mining and clustering techniques to identify distinct functional subgroups of genes. Notably, stress-induced transcription factors such as ATF3, ATF4, CHOP, and C/EBP beta were robustly up-regulated, yet exhibited unique kinetic patterns. Genes involved in the synthesis and modification of proteins (various tRNA synthetases), protein degradation (e.g., ubiquitin, Herpud1, Sqstm1), and oxidative stress (Hmox1, Por) could be subgrouped into distinct kinetic profiles as well. Realtime PCR and/or two-dimensional electrophoresis combined with western blotting validated data derived from microarray analyses. Taken together, these data support the notion that oxidative stress and protein dysfunction play a role in Parkinson's disease, as well as provide a time course for many of the molecular events associated with 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
- William A Holtz
- Washington University School of Medicine, Anatomy and Neurobiology Department, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
1145
|
Dukes AA, Korwek KM, Hastings TG. The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells. Antioxid Redox Signal 2005; 7:630-8. [PMID: 15890007 DOI: 10.1089/ars.2005.7.630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deficiencies in Complex I have been observed in Parkinson's disease (PD) patients. Systemic exposure to rotenone, a Complex I inhibitor, has been shown to lead to selective dopaminergic cell death in vivo and toxicity in many in vitro models, including dopaminergic cell cultures. However, it remains unclear why rotenone seems to affect dopaminergic cells more adversely. Therefore, the role of dopamine (DA) in rotenone-induced PC12 cell toxicity was examined. Rotenone (1.0 muM) caused significant toxicity in differentiated PC12 cells, which was accompanied by decreases in ATP levels, changes in catechol levels, and increased DA oxidation. To determine whether endogenous DA makes PC12 cells more susceptible to rotenone, cells were treated with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT) to reduce DA levels prior to rotenone exposure, and then cell viability was measured. No changes in rotenone-induced toxicity were observed with or without AMPT treatment. However, a potentiation of toxicity was observed following coexposure of PC12 cells to rotenone and methamphetamine. To determine whether this effect was due to DA, PC12 cells were depleted of DA prior to methamphetamine and rotenone cotreatment, resulting in a large attenuation in toxicity. These findings suggest that DA plays a role in rotenone-induced toxicity and possibly the vulnerability of DA neurons in PD.
Collapse
Affiliation(s)
- April A Dukes
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
1146
|
Migliore L, Fontana I, Colognato R, Coppede F, Siciliano G, Murri L. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol Aging 2005; 26:587-95. [PMID: 15708433 DOI: 10.1016/j.neurobiolaging.2004.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/29/2004] [Indexed: 01/15/2023]
Abstract
The contribution of oxidative stress to neurodegeneration is not peculiar of a specific neurodegenerative disease, oxidative stress has been found implicated in a number of neurodegenerative disorders among which Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS). Even increasing are studies dealing with the search for peripheral biomarkers of oxidative stress in biological fluids or even in peripheral tissues themselves such as fibroblasts or blood cells. The application of the modified version of the comet assay for the detection of oxidised purines and pyrimidines in peripheral blood leukocytes results particularly useful if the study requires repeated blood drawn from the same individual, for instance if a clinical trial is performed with a preventive therapy. Likely damage occurs to every category of biological macromolecules and we consider, in the context of neurodegenerative diseases, particularly critical the proteic level. The identification of subjects at risk to develop AD or with pre-pathogenic conditions, the possibility to use "a battery of assays" for the detection of oxidative damage at peripheral level, together with recent advances in brain imaging, will allow to better address studies aimed not only to therapeutic purposes but also mainly to primary prevention.
Collapse
Affiliation(s)
- L Migliore
- Department of Human and Environmental Sciences, University of Pisa, Via S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
1147
|
Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci Lett 2005; 380:93-8. [PMID: 15854758 DOI: 10.1016/j.neulet.2005.01.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/20/2004] [Accepted: 01/09/2005] [Indexed: 12/22/2022]
Abstract
Recent studies have suggested that defects in the ubiquitin-proteasome system (UPS) contribute to the etiopathogenetic mechanisms underlying dopaminergic neuronal degeneration in Parkinson's disease. The present study aims to study the effects of proteasome inhibition in the nerve terminals of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNpc). Following a unilaterally intrastriatal injection of lactacystin, a selective proteasome inhibitor, dopaminergic neurons in the ipsilateral SNpc progressively degenerated with alpha-synuclein-immunopositive intracytoplasmic inclusions. When lactacystin was administered at a high concentration, the striatum was simultaneously involved, and alpha-synuclein-immunopositive extracytoplasmic granules appeared extensively within the SN pars reticulata (SNpr). In addition, during the retrograde neuron degeneration in SN, the level of heme oxygenase-1 immunopositivity, an oxidative stress marker, was markedly increased in SNpc neurons. These results reveal that intrastriatal proteasome inhibition sufficiently induces retrograde dopaminergic neuronal degeneration with abundant accumulation of alpha-synuclein in the SN.
Collapse
Affiliation(s)
- Hideto Miwa
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-8510, Japan.
| | | | | | | | | |
Collapse
|
1148
|
Abstract
alpha-Synuclein aggregation into fibrils is associated with the pathogenesis of Parkinson's disease (PD). Li et al. provide strong evidence that rifampicin interacts with alpha-synuclein and inhibits its fibrillization. Rifampicin could be a promising candidate for therapeutic application for PD.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the RWTH Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
1149
|
Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ. A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: implications for pathogenesis of Parkinson disease. J Biol Chem 2005; 280:22670-8. [PMID: 15840579 DOI: 10.1074/jbc.m501508200] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson disease and other alpha-synucleinopathies are characterized by the deposition of intraneuronal alpha-synuclein (alphaSyn) inclusions. A significant fraction (about 15%) of alphaSyn in these pathological structures are truncated forms that have a much higher propensity than the full-length alphaSyn to form aggregates in vitro. However, little is known about the role of truncated alphaSyn species in pathogenesis or the means by which they are generated. Here, we have provided an in vitro mechanistic study demonstrating that truncated alphaSyns induce rapid aggregation of full-length protein at substoichiometric ratios. Co-overexpression of truncated alphaSyn with full-length protein increases cell vulnerability to oxidative stress in dopaminergic SH-SY5Y cells. These results suggest a precipitating role for truncated alphaSyn in the pathogenesis of diseases involving alphaSyn aggregation. In this regard, the A53T mutation found in some cases of familial Parkinson disease exacerbates the accumulation of insoluble alphaSyns that correlates with the onset of pathology in transgenic mice expressing human alphaSyn-A53T mutant. The caspase-like activity of the 20 S proteasome produces truncated fragments similar to those found in patients and animal models from degradation of unstructured alphaSyn. We propose a model in which incomplete degradation of alphaSyn, especially under overloaded proteasome capacity, produces highly amyloidogenic fragments that rapidly induce the aggregation of full-length protein. These aggregates in turn reduce proteasome activity, leading to further accumulation of fragmented and full-length alphaSyns, creating a vicious cycle of cytotoxicity. This model has parallels in other neurodegenerative diseases, such as Huntington disease, where coaggregation of poly(Q) fragments with full-length protein has been observed.
Collapse
Affiliation(s)
- Chang-Wei Liu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 75390, USA
| | | | | | | | | | | |
Collapse
|
1150
|
Zoccarato F, Toscano P, Alexandre A. Dopamine-derived Dopaminochrome Promotes H2O2 Release at Mitochondrial Complex I. J Biol Chem 2005; 280:15587-94. [PMID: 15710606 DOI: 10.1074/jbc.m500657200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibitors of Complex I of the mitochondrial respiratory chain, such as rotenone, promote Parkinson disease-like symptoms and signs of oxidative stress. Dopamine (DA) oxidation products may be implicated in such a process. We show here that the o-quinone dopaminochrome (DACHR), a relatively stable DA oxidation product, promotes concentration (0.1-0.2 mum)- and respiration-dependent generation of H(2)O(2) at Complex I in brain mitochondria, with further stimulation by low concentrations of rotenone (5-30 nm). The rotenone effect required that contaminating Ca(2+) (8-10 mum) was not removed. DACHR apparently extracts an electron from the constitutively autoxidizable site in Complex I, producing a semiquinone, which then transfers an electron to O(2), generating O(2)(.) and then H(2)O(2). Mitochondrial removal of H(2)O(2) monoamine, formed by either oxidase activity or DACHR, was performed largely by glutathione peroxidase and glutathione reductase, which were negatively regulated by low intramitochondrial Ca(2+) levels. Thus, the H(2)O(2) formed accumulated in the medium if contaminating Ca(2+) was present; in the absence of Ca(2+), H(2)O(2) was completely removed if it originated from monoamine oxidase, but was less completely removed if it originated from DACHR. We propose that the primary action of rotenone is to promote extracellular O(2)(.) release via activation of NADPH oxidase in the microglia. In turn, O(2)(.) oxidizes DA to DACHR extracellularly. (The reaction is favored by the lack of GSH, which would otherwise preferably produce GSH adducts of dopaminoquinone.) Once formed, DACHR (which is resistant to GSH) enters neurons to activate the rotenone-stimulated redox cycle described.
Collapse
Affiliation(s)
- Franco Zoccarato
- Dipartimento di Chimica Biologica and the Istituto di Neuroscienze, Sezione di Biomembrane (Consiglio Nazionale delle Ricerche), Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | |
Collapse
|