1301
|
Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 1995; 15:5363-8. [PMID: 7565686 PMCID: PMC230785 DOI: 10.1128/mcb.15.10.5363] [Citation(s) in RCA: 326] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen and a potent angiogenic factor, is upregulated in response to a hypoxic or hypoglycemic stress. Here we show that the increase in steady-state levels of VEGF mRNA is partly due to transcriptional activation but mostly due to increase in mRNA stability. Both oxygen and glucose deficiencies result in extension of the VEGF mRNA half-life in a protein synthesis-dependent manner. Viewing VEGF as a stress-induced gene, we compared its mode of regulation with that of other stress-induced genes. Results showed that under nonstressed conditions, VEGF shares with the glucose transporter GLUT-1 a relatively short half-life (0.64 and 0.52 h, respectively), which is extended fourfold and more than eightfold, respectively, when cells are deprived of either oxygen or glucose. In contrast, the mRNAs of another hypoxia-inducible and hypoglycemia-inducible gene, grp78, as well as that of HSP70, were not stabilized by these metabolic insults. To show that VEGF and GLUT-1 are coinduced in differentially stressed microenvironments, multicell spheroids representing a clonal population of glioma cells in which each cell layer is differentially stressed were analyzed by in situ hybridization. Cellular microenvironments conducive to induction of VEGF and GLUT-1 were completely coincidental. These findings show that two different consequences of tissue ischemia, namely, hypoxia and glucose deprivation, induce VEGF and GLUT-1 expression by similar mechanisms. These proteins function, in turn, to satisfy the tissue needs through expanding its vasculature and improving its glucose utilization, respectively.
Collapse
Affiliation(s)
- I Stein
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
1302
|
Strugar JG, Criscuolo GR, Rothbart D, Harrington WN. Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 1995; 83:682-9. [PMID: 7674019 DOI: 10.3171/jns.1995.83.4.0682] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peritumoral vasogenic brain edema (PVBE) is a common accompaniment of malignant gliomas. It results from microvascular extravasation of plasma fluid and proteins through the interendothelial spaces. Tumor-associated cysts (TACs) are observed more commonly with benign gliomas that are not associated with PVBE. This study investigates the hypothesis that these morphologically distinct epiphenomena of microvascular extravasation are linked by a common pathophysiological mechanism involving vascular endothelial growth/permeability factor (VEG/PF), which has been implicated in vascular leak phenomena including ascites, malignant effusions, and brain edema. Furthermore, VEG/PF has been isolated from cultured glioma cells, and both VEG/PF protein and messenger RNA transcripts are expressed in brain tumor tissue. To further elucidate the relationship of VEG/PF to PVBE and TACs, the authors examined 34 pathological specimens for VEG/PF expression. Nineteen primary low-grade tumors, 11 primary high-grade tumors, and four gliosis controls were immunostained with a polyclonal anti-VEG/PF immunoglobulin G antibody. Magnetic resonance imaging was used to quantitate PVBE and to determine the presence of TACs and tumor enhancement. The study revealed that eight VEG/PF-negative specimens exhibited no significant edema, whereas 26 VEG/PF-positive tumors exhibited either significant PVBE or TACs. Notably, eight of nine benign TACs that were not associated with PVBE immunostained positive for VEG/PF. These data indicate a high degree of correlation between VEG/PF expression by gliomas and the occurrence of PVBE or TACs, irrespective of tumor grade, thus supporting VEG/PF's pivotal role as the common pathophysiological link between these processes.
Collapse
Affiliation(s)
- J G Strugar
- Section of Neurological Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
1303
|
Green LS, Jellinek D, Bell C, Beebe LA, Feistner BD, Gill SC, Jucker FM, Janjić N. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. CHEMISTRY & BIOLOGY 1995; 2:683-95. [PMID: 9383475 DOI: 10.1016/1074-5521(95)90032-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a potent inducer of new blood vessel growth (angiogenesis) that contributes to the pathology of many angiogenesis-associated disease states such as psoriasis, rheumatoid arthritis and cancer. Few molecular entities capable of binding to VPF/VEGF with high affinity and specificity have been described to date. RESULTS Nuclease-resistant 2'-amino-2'-deoxypyrimidine nucleotide RNA (2'-aminopyrimidine RNA) ligands that bind to VPF/VEGF with high affinity have been identified by iterative rounds of affinity-selection/amplification from two independent random libraries. The sequence information that confers high affinity binding to VPF/VEGF is contained in a contiguous stretch of 24 nucleotides, 5'-CCCUGAUGGUAGACGCCGGGGUG-3' (2'-aminopyrimidine nucleotides are designated with italic letters). Of the 14 ribopurines in this minimal ligand, 10 can be substituted with the corresponding 2'-O-methylpurine nucleotides without a reduction in binding affinity to VPF/VEGF. In fact, the 2'-O-methyl substitution at permissive positions leads to a approximately 17-fold improvement in the binding affinity to VPF/VEGF. The higher affinity results from the reduction in the dissociation rate constant of the 2'-O-methyl-substituted RNA ligand from the protein compared to the unsubstituted ligand. The 2'-O-methyl-substituted minimal ligand, which folds into a bulged hairpin motif, is also more thermally stable than the unsubstituted ligand. Nuclease resistance of the ligand is further improved by the 2'-O-methyl substitutions and the addition of short phosphorothioate caps to the 3'- and 5'-ends. CONCLUSIONS We have used the SELEX (systematic evolution of ligands by exponential enrichment) process in conjunction with post-SELEX modifications to define a highly nuclease-resistant oligonucleotide that binds to VPF/VEGF with high affinity and specificity.
Collapse
Affiliation(s)
- L S Green
- NeXstar Pharmaceuticals, Boulder, Colorado 80301, USA
| | | | | | | | | | | | | | | |
Collapse
|
1304
|
Kramm CM, Sena-Esteves M, Barnett FH, Rainov NG, Schuback DE, Yu JS, Pechan PA, Paulus W, Chiocca EA, Breakefield XO. Gene therapy for brain tumors. Brain Pathol 1995; 5:345-81. [PMID: 8974620 DOI: 10.1111/j.1750-3639.1995.tb00615.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti-neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti-tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.
Collapse
Affiliation(s)
- C M Kramm
- Neuroscience Center, Massachusetts General Hospital, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1305
|
Stainier DY, Weinstein BM, Detrich HW, Zon LI, Fishman MC. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 1995; 121:3141-50. [PMID: 7588049 DOI: 10.1242/dev.121.10.3141] [Citation(s) in RCA: 379] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endothelial and hematopoietic cells appear synchronously on the extra-embryonic membranes of amniotes in structures known as blood islands. This observation has led to the suggestion that these two ventral lineages share a common progenitor. Recently, we have shown in the zebrafish, Danio rerio, that a single cell in the ventral marginal zone of the early blastula can give rise to both endothelial and blood cells as well as to other mesodermal cells (Stainier, D. Y. R., Lee, R. K. and Fishman, M. C. (1993). Development 119, 31–40; Lee, R. K. K., Stainier, D. Y. R., Weinstein, B. M. and Fishman, M. C. (1994). Development 120, 3361–3366). Here we describe a zebrafish mutation, cloche, that affects both the endothelial and hematopoietic lineages at a very early stage. The endocardium, the endothelial lining of the heart, is missing in mutant embryos. This deletion is selective as evidenced by the presence of other endothelial cells, for example those lining the main vessels of the trunk. Early cardiac morphogenesis proceeds normally even in the absence of the endocardium. The myocardial cells form a tube that is demarcated into chambers, beats rhythmically, but exhibits a reduced contractility. This functional deficit is likely due to the absence of the endocardial cells, although it may be a direct effect of the mutation on the myocardial cells. Cell transplantation studies reveal that the endothelial defect, i.e. the endocardial deletion, is a cell-autonomous lesion, consistent with the possibility that cloche is part of a signal transduction pathway. In addition, the number of blood cells is greatly reduced in cloche mutants and the hematopoietic tissues show no expression of GATA-1 or GATA-2, two key hematopoietic transcription factors that are first expressed during early embryogenesis. These results show that cloche is involved in the genesis and early diversification of the endothelial and blood lineages, possibly by affecting a common progenitor cell population.
Collapse
Affiliation(s)
- D Y Stainier
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
1306
|
Patterson C, Perrella MA, Hsieh CM, Yoshizumi M, Lee ME, Haber E. Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995; 270:23111-8. [PMID: 7559454 DOI: 10.1074/jbc.270.39.23111] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
KDR/flk-1 is one of two receptors for vascular endothelial growth factor, a potent angiogenic peptide. KDR/flk-1 is an early marker for endothelial cell progenitors, and its expression is restricted to endothelial cells in vivo. To investigate the molecular mechanisms regulating expression of KDR/flk-1, we cloned and characterized the promoter of the human KDR/flk-1 gene. The transcription start site was localized by primer extension and ribonuclease protection to a nucleotide 303 base pairs (bp) 5' of the initiation methionine codon. The 5'-flanking sequence is rich in G and C residues and contains five Sp1 elements but no TATA consensus sequence. By reporter gene transfection experiments, we found that approximately 4 kilobases of KDR/flk-1 5'-flanking sequence directed high level luciferase activity in bovine aortic endothelial cells; further deletion analysis revealed positive regulatory elements between bp -225 to -164, -95 to -77, -77 to -60, and +105 to +127. Mutation of an atypical GATA sequence between bp +105 and +127 did not affect promoter activity, suggesting that GATA elements are not essential for the high level promoter activity of this gene. Consistent with endothelial cell-restricted expression of KDR/flk-1 mRNA, we found that the 4-kilobase flanking sequence directed high level promoter activity in endothelial cells but not in other cell types. To our knowledge this is the first report characterizing the KDR/flk-1 promoter. Understanding the KDR/flk-1 promoter will allow us to investigate endothelial cell-specific gene regulation and to uncover methods for targeting gene delivery specifically to endothelial cells.
Collapse
Affiliation(s)
- C Patterson
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
1307
|
Choi ME, Ballermann BJ. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem 1995; 270:21144-50. [PMID: 7673146 DOI: 10.1074/jbc.270.36.21144] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-beta 1) induces angiogenesis in vivo and capillary morphogenesis in vitro. Two receptor serine/threonine kinases (types I and II) have been identified as signal transducing TGF-beta receptors. We explored the possibility of inhibiting TGF-beta-mediated events in glomerular capillary endothelial cells using a TGF-beta type II receptor (T beta R-II) transdominant negative mutant. A mutant TGF-beta type II receptor (T beta R-IIM), lacking the cytoplasmic serine/threonine kinase domain, was produced by polymerase chain reaction using rat T beta R-II cDNA as template. Since T beta R-II and TGF-beta type I receptor (T beta R-I) heterodimerize for signal transduction, the mutant receptor competes for binding to wild-type T beta R-I, hence acting in a dominant negative fashion. Glomerular capillary endothelial cells were stably transfected with T beta R-IIM, and four independent clones were expanded. That the T beta R-IIM mRNA was expressed was shown by reverse transcriptase-polymerase chain reaction, RNase protection assay, and Northern analysis. Presence of cell surface T beta R-IIM protein was shown by affinity cross-linking with 125I-TGF-beta 1. In wild-type endothelial cells, TGF-beta 1 (2 ng/ml) significantly inhibited [3H]thymidine incorporation to 63 +/- 10% of control (n = 4). In transfected endothelial cells carrying T beta R-IIM, TGF-beta 1 stimulated [3H]thymidine incorporation to 131 +/- 9% of control (n = 4, p < 0.005). Also, in wild-type endothelial cells, endogenous and exogenous TGF-beta 1 induced apoptosis and associated capillary formation. Both apoptosis and capillary formation were uniformly and entirely absent in transfected endothelial cells carrying T beta R-IIM. This represents the first demonstration that capillary morphogenesis in vitro is associated with apoptosis, and that interference with T beta R-II signaling inhibits this process in glomerular capillary endothelial cells.
Collapse
Affiliation(s)
- M E Choi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
1308
|
Affiliation(s)
- A Levitzki
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| |
Collapse
|
1309
|
Couly G, Coltey P, Eichmann A, Le Douarin NM. The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 1995; 53:97-112. [PMID: 8555115 DOI: 10.1016/0925-4773(95)00428-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used two molecular markers to label blood vessel endothelial cells and their precursors in the early avian embryo. One marker, called Quek1, is the avian homologue of the mammalian VEGF receptor flk-1 and the other is the MB1/QH1 monoclonal antibody. Quek1 is expressed in a subset of mesodermal cells from the gastrulation stage. Quek1 positive cells later form blood vessel endothelial cells and express the MB1/QH1 antigen which is specific for endothelial and hemopoietic cells of the quail species. These two markers allowed us first to show that the cephalic paraxial mesoderm has angiogenic potentials which are much more extended than its trunk counterpart (the somites). Secondly, the origin of the endothelial cells lining the craniofacial and head blood vessels was mapped on the 3-somite stage cephalic mesoderm via the quail-chick chimera technique, in which well defined mesodermal territories are exchanged between stage-matched embryos of both species in a strictly isotopic manner. We found that the anterior region of the cephalic paraxial mesoderm is largely recruited to provide the forebrain and the upper face with their vasculature. This means that large volumes of tissues are vascularized by a discrete region of the cephalic mesoderm, the fate of which is otherwise to give rise to muscles. The widespread expansion of the angiogenic cells arising from the anterior paraxial mesoderm must be related to the high growth rate of the anterior region of the neural primordium, yielding the telencephalon and of the neural crest-derived facial structures which are themselves devoid of angiogenic potencies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Couly
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, UMR 9924, Nogent-sur-Marne, France
| | | | | | | |
Collapse
|
1310
|
Sato K, Yamazaki K, Shizume K, Kanaji Y, Obara T, Ohsumi K, Demura H, Yamaguchi S, Shibuya M. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo. J Clin Invest 1995; 96:1295-302. [PMID: 7657804 PMCID: PMC185751 DOI: 10.1172/jci118164] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.
Collapse
Affiliation(s)
- K Sato
- Department of Medicine, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1311
|
Gordon JD, Shifren JL, Foulk RA, Taylor RN, Jaffe RB. Angiogenesis in the human female reproductive tract. Obstet Gynecol Surv 1995; 50:688-97. [PMID: 7478421 DOI: 10.1097/00006254-199509000-00024] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J D Gordon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
1312
|
Cañete Soler R, Gui YH, Linask KK, Muschel RJ. MMP-9 (gelatinase B) mRNA is expressed during mouse neurogenesis and may be associated with vascularization. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 88:37-52. [PMID: 7493406 DOI: 10.1016/0165-3806(95)00079-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of MMP-9 mRNA, a type IV collagenase gene product, was followed during embryonic development of the mouse brain using in situ hybridization. Murine embryos from 7.5 to 15 days after fertilization were sectioned and evaluated for MMP-9 expression. During early development, from day 7.5 to day 9, no signal was detected in the cells of the neuroepithelium or in cells of the cephalic mesenchyme of the neural tube. At day 11, gene expression was localized to the Rathke's pouch and the germinal zone of the primitive ventricular system. At day 13, but most notably at day 15, high levels of MMP-9 were expressed by progenitor cells in close association with the development of structures, such as the hypophysis, the choroid plexus, the ganglion cell layer of the retina and the uveal tract. High MMP-9 mRNA levels were also associated with dense cellular aggregates destined to form the highly vascular grey matter of the brain. The presence of MMP-9 mRNA was confirmed using a ribonuclease protection assay. A 105 kDa gelatinase, consistent with the expected molecular mass for the murine MMP-9, was detected in embryonic brain extracts by substrate gel electrophoresis. To our knowledge, this is the first report on the localization of MMP-9 in developing neural tissues. Our results suggest that MMP-9 expression may have a previously unsuspected role in neural development.
Collapse
Affiliation(s)
- R Cañete Soler
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
1313
|
Ikeda E, Achen MG, Breier G, Risau W. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995; 270:19761-6. [PMID: 7544346 DOI: 10.1074/jbc.270.34.19761] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is an endothelial specific angiogenic mitogen secreted from various cell types including tumor cells. Increasing evidence suggests that VEGF is a major regulator of physiological and pathological angiogenesis, and the VEGF/VEGF receptor system has been shown to be necessary for glioma angiogenesis. Hypoxia seems to play a critical role in the induction of VEGF expression during glioma progression. C6 glioma cells provide an in vivo glioma model for the study of tumor angiogenesis, and the expression of VEGF in C6 cells has been shown to be up-regulated by hypoxia in vitro. However, little is known about the molecular mechanism of hypoxic induction of VEGF. Here, we demonstrate that hypoxic induction of VEGF in C6 cells is due to both transcriptional activation and increased stability of mRNA. Nuclear run-on assays revealed a fast and lasting transcriptional activation, whereas the determination of mRNA half-life showed a slower increase of mRNA stability during hypoxia. Reporter gene studies revealed that hypoxia responsive transcription-activating elements were present in the 5'-flanking region of the VEGF gene. These results suggested that several distinct molecular mechanisms were involved in hypoxia-induced gene expression and were activated in a biphasic manner.
Collapse
Affiliation(s)
- E Ikeda
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Abteilung Molekulare Zellbiologie, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
1314
|
Drake CJ, Little CD. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci U S A 1995; 92:7657-61. [PMID: 7543999 PMCID: PMC41204 DOI: 10.1073/pnas.92.17.7657] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation).
Collapse
MESH Headings
- Animals
- Arteries/abnormalities
- Arteries/drug effects
- Arteries/embryology
- Blood Vessels/abnormalities
- Blood Vessels/drug effects
- Blood Vessels/embryology
- Coturnix
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/pathology
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/embryology
- Endothelium, Vascular/physiology
- Humans
- Lymphokines/pharmacology
- Microscopy, Confocal
- Neovascularization, Pathologic
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/physiology
- Receptors, Mitogen/physiology
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/pharmacology
- Reference Values
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- C J Drake
- Department of Cell Biology, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
1315
|
Bussolino F, Arese M, Montrucchio G, Barra L, Primo L, Benelli R, Sanavio F, Aglietta M, Ghigo D, Rola-Pleszczynski MR. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis. J Clin Invest 1995; 96:940-52. [PMID: 7543496 PMCID: PMC185282 DOI: 10.1172/jci118142] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Imbalance in the network of soluble mediators may play a pivotal role in the pathogenesis of Kaposi's sarcoma (KS). In this study, we demonstrated that KS cells grown in vitro produced and in part released platelet activating factor (PAF), a powerful lipid mediator of inflammation and cell-to-cell communication. IL-1, TNF, and thrombin enhanced the synthesis of PAF. PAF receptor mRNA and specific, high affinity binding site for PAF were present in KS cells. Nanomolar concentration of PAF stimulated the chemotaxis and chemokinesis of KS cells, endothelial cells, and vascular smooth muscle cells. The migration response to PAF was inhibited by WEB 2170, a hetrazepinoic PAF receptor antagonist. Because neoangiogenesis is essential for the growth and progression of KS and since PAF can activate vascular endothelial cells, we examined the potential role of PAF as an instrumental mediator of angiogenesis associated with KS. Conditioned medium (CM) from KS cells (KS-CM) or KS cells themselves induced angiogenesis and macrophage recruitment in a murine model in which Matrigel was injected subcutaneously. These effects were inhibited by treating mice with WEB 2170. Synthetic PAF or natural PAF extracted from plasma of patients with classical KS also induced angiogenesis, which in turn was inhibited by WEB 2170. The action of PAF was amplified by expression of other angiogenic factors and chemokines: these included basic and acidic fibroblast growth factor, placental growth factor, vascular endothelial growth factor and its specific receptor flk-1, hepatocyte growth factor, KC, and macrophage inflammatory protein-2. Treatment with WEB 2170 abolished the expression of the transcripts of these molecules within Matrigel containing KS-CM. These results indicate that PAF may cooperate with other angiogenic molecules and chemokines in inducing vascular development in KS.
Collapse
MESH Headings
- Aged
- Animals
- Azepines/pharmacology
- Base Sequence
- Cell Line
- Chemotaxis/drug effects
- Choriocarcinoma/pathology
- Collagen
- Culture Media, Conditioned/pharmacology
- Cytokines/biosynthesis
- Cytokines/genetics
- Dogs
- Drug Combinations
- Endothelium, Vascular/drug effects
- Female
- Growth Substances/biosynthesis
- Growth Substances/genetics
- Growth Substances/pharmacology
- Humans
- Interleukin-1/pharmacology
- Laminin
- Lymphoma, Large B-Cell, Diffuse/pathology
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred DBA
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/pharmacology
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/physiopathology
- Platelet Activating Factor/analogs & derivatives
- Platelet Activating Factor/biosynthesis
- Platelet Activating Factor/pharmacology
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/physiology
- Proteoglycans
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Skin Neoplasms/pathology
- Thrombin/pharmacology
- Triazoles/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
- Umbilical Veins
- Uterine Neoplasms/pathology
Collapse
Affiliation(s)
- F Bussolino
- Dipartimento di Genetica, Biologia e Chimica Medica, University of Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1316
|
Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F, Plouët J. Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 1995; 164:385-94. [PMID: 7622584 DOI: 10.1002/jcp.1041640219] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vasculotropin (VAS), also called vascular endothelial growth factor (VEGF) or vascular permeability factor, is a secreted growth factor whose target cell specificity has been reported as restricted to vascular endothelium. Its effects are mediated by at least two distinct membrane-spanning tyrosine kinase receptors, KDR and flt-1; the expression of which also seems restricted to vascular endothelium. We describe here that cultured human retinal pigment epithelial (HRPE) cells express both KDR and flt-1 receptors, bind VAS/VEGF on two high affinity sites (apparent Kd of 9 and 210 pM corresponding to 940 and 18,800 sites per cell) and proliferate or migrate upon recombinant VAS/VEGF addition. HRPE cells also express the mRNA corresponding to the 121 and 165 amino acid forms of VAS/VEGF. HRPE cells release in their own culture medium and store in their extracellular matrix self-mitogenic and chemoattractant factors indistinguishable from 121 and 165 VAS/VEGF isoforms. The autocrine role of VAS/VEGF was confirmed by the inhibition of these bioactivities by neutralizing specific anti-VAS/VEGF antibodies.
Collapse
Affiliation(s)
- M Guerrin
- Laboratoire de Biologie Moléculaire Eucaryote, UPR 9006 CNRS, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
1317
|
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70-4. [PMID: 7596437 DOI: 10.1038/376070a0] [Citation(s) in RCA: 1248] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels.
Collapse
Affiliation(s)
- T N Sato
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1318
|
Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376:62-6. [PMID: 7596435 DOI: 10.1038/376062a0] [Citation(s) in RCA: 2784] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The receptor tyrosine kinase Flk-1 (ref. 1) is believed to play a pivotal role in endothelial development. Expression of the Flk-1 receptor is restricted to endothelial cells and their embryonic precursors, and is complementary to that of its ligand, vascular endothelial growth factor (VEGF), which is an endothelial-specific mitogen. Highest levels of flk-1 expression are observed during embryonic vasculogenesis and angiogenesis, and during pathological processes associated with neovascularization, such as tumour angiogenesis. Because flk-1 expression can be detected in presumptive mesodermal yolk-sac blood-island progenitors as early as 7.0 days postcoitum, Flk-1 may mark the putative common embryonic endothelial and haematopoietic precursor, the haemangioblast, and thus may also be involved in early haematopoiesis. Here we report the generation of mice deficient in Flk-1 by disruption of the gene using homologous recombination in embryonic stem (ES) cells. Embryos homozygous for this mutation die in utero between 8.5 and 9.5 days post-coitum, as a result of an early defect in the development of haematopoietic and endothelial cells. Yolk-sac blood islands were absent at 7.5 days, organized blood vessels could not be observed in the embryo or yolk sac at any stage, and haematopoietic progenitors were severely reduced. These results indicate that Flk-1 is essential for yolk-sac blood-island formation and vasculogenesis in the mouse embryo.
Collapse
Affiliation(s)
- F Shalaby
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
1319
|
Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376:66-70. [PMID: 7596436 DOI: 10.1038/376066a0] [Citation(s) in RCA: 1799] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vascular endothelial growth factor (VEGF) and its high-affinity binding receptors, the tyrosine kinases Flt-1 and Flk-1, are thought to be important for the development of embryonic vasculature. Here we report that Flt-1 is essential for the organization of embryonic vasculature, but is not essential for endothelial cell differentiation. Mouse embryos homozygous for a targeted mutation in the flt-1 locus, flt-1lcz, formed endothelial cells in both embryonic and extra-embryonic regions, but assembled these cells into abnormal vascular channels and died in utero at mid-somite stages. At earlier stages, the blood islands of flt-1lcz homozygotes were abnormal, with angioblasts in the interior as well as on the periphery. We suggest that the Flt-1 signalling pathway may regulate normal endothelial cell-cell or cell-matrix interactions during vascular development.
Collapse
Affiliation(s)
- G H Fong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
1320
|
D'Angelo G, Struman I, Martial J, Weiner RI. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci U S A 1995; 92:6374-8. [PMID: 7541539 PMCID: PMC41520 DOI: 10.1073/pnas.92.14.6374] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.
Collapse
Affiliation(s)
- G D'Angelo
- Reproductive Endocrinology Center, University of California School of Medicine, San Francisco 94143, USA
| | | | | | | |
Collapse
|
1321
|
Achen MG, Clauss M, Schnürch H, Risau W. The non-receptor tyrosine kinase Lyn is localised in the developing murine blood-brain barrier. Differentiation 1995; 59:15-24. [PMID: 7589891 DOI: 10.1046/j.1432-0436.1995.5910015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The blood-brain barrier, formed by brain endothelium, is critical for brain function. The development of the blood-brain barrier involves brain angiogenesis and endothelial cell differentiation, processes which require active signal transduction pathways. The differentiation of brain endothelial cells to the "blood-brain-barrier phenotype" involves cytoskeletal changes which modulate the tightness of the barrier. In order to identify signal transduction proteins involved in blood-brain barrier development, cDNA from bovine and murine brain endothelial cells was used in a polymerase chain reaction for cloning of DNA encoding Src homology 3 domains. Src homology 3 domains are structural domains found in many signal transduction proteins. These domains often mediate interaction of signaling proteins with the cytoskeleton and therefore may play a role in the regulation of the cytoskeletal changes which occur during blood-brain-barrier development. Unexpectedly, all bovine and murine clones analyzed from polymerase chain reactions encoded the Src homology 3 domain of one protein, namely the non-receptor tyrosine kinase, Lyn, which is involved in signal transduction in cells of the hemopoietic system. In situ hybridization analyses confirmed the presence of lyn mRNA in developing blood vessels in embryonic and early post-natal mouse brain, but not in endothelium outside the brain. In bovine brain endothelial cells in primary culture, p53lyn is highly abundant and present in two forms which have different patterns of tyrosine phosphorylation. These data suggest that Lyn may be involved in transduction of growth and differentiation signals required for blood-brain-barrier development.
Collapse
Affiliation(s)
- M G Achen
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Abteilung molekulare Zellbiologie, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
1322
|
Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med (Berl) 1995; 73:333-46. [PMID: 8520966 DOI: 10.1007/bf00192885] [Citation(s) in RCA: 348] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review of angiogenesis aims to describe (a) stimuli that either elicit or antagonize angiogenesis, (b) the response of the vasculature to angiogenic or anti-angiogenic stimuli, i.e., processes required for the formation of new vessels, (c) aspects of angiogenesis relating to tissue remodeling and disease, and (d) the potential of angiogenic or antiangiogenic therapeutic measures. Angiogenesis, the formation of new vessels from existing microvessels, is important in embryogenesis, wound healing, diabetic retinopathy, tumor growth, and other diseases. Hypoxia and other as yet ill-defined stimuli drive tumor, inflammatory, and connective tissue cells to generate angiogenic molecules such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), transforming growth factor-beta (TGF-beta), platelet-derived growth factor (PDGF), and others. Natural and synthetic angiogenesis inhibitors such as angiostatin and thalidomide can repress angiogenesis. Angiogenic and antiangiogenic molecules control the formation of new vessels via different mechanisms. VEGF and FGF elicit their effects mainly via direct action on relevant endothelial cells. TGF-beta and PDGF can attract inflammatory or connective tissue cells which in turn control angiogenesis. Additionally, PDGF may act differently on specific phenotypes of endothelial cells that are engaged in angiogenesis or that are of microvascular origin. Thus phenotypic traits of endothelial cells committed to angiogenesis may determine their cellular responses to given stimuli. Processes necessary for new vessel formation and regulated by angiogenic/antiangiogenic molecules include the migration and proliferation of endothelial cells from the microvasculature, the controlled expression of proteolytic enzymes, the breakdown and reassembly of extracellular matrix, and the morphogenic process of endothelial tube formation. In animal models some angiogenesis-dependent diseases can be controlled via induction or inhibition of new vessel formation. Life-threatening infantile hemangiomas are a first established indication for antiangiogenic therapy in humans. Treatment of other diseases by modulation of angiogenesis are currently tested in clinical trials. Thus the manipulation of new vessel formation in angiogenesis-dependent conditions such as wound healing, inflammatory diseases, ischemic heart and peripheral vascular disease, myocardial infarction, diabetic retinopathy, and cancer is likely to create new therapeutic options.
Collapse
Affiliation(s)
- E J Battegay
- Department of Research and Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
1323
|
Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121:1845-54. [PMID: 7600998 DOI: 10.1242/dev.121.6.1845] [Citation(s) in RCA: 675] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor beta 1 (TGF beta 1) is shown here to be required for yolk sac haematopoiesis and endothelial differentiation. Mice with a targeted mutation in the TGF beta 1 gene were examined to determine the cause of prenatal lethality, which occurs in 50% of homozygous TGF beta 1 null (TGF beta 1−/−) conceptions. 50% of TGF beta 1−/− and 25% of TGF beta 1-+-) conceptions. 50% of TGF beta 1−/− and 25% of TGF beta 1+/− conceptuses were found to die at around 10.5 dpc. The primary defects were restricted to extraembryonic tissues, namely the yolk sac vasculature and haematopoietic system. The embryos per se showed developmental retardation, oedema and necrosis, which were probably secondary to the extraembryonic lesions. The defect in vasculogenesis appeared to affect endothelial differentiation, rather than the initial appearance and outgrowth of endothelial cells. Initial differentiation of yolk sac mesoderm to endothelial cells occurred, but defective differentiation resulted in inadequate capillary tube formation, and weak vessels with reduced cellular adhesiveness. Defective haematopoiesis resulted in a reduced erythroid cell number within the yolk sac. Defective yolk sac vasculogenesis and haematopoiesis were present either together, or in isolation of each other. The phenotypes are consistent with the observation of abundant TGF beta 1 gene expression in both endothelial and haematopoietic precursors. The data indicate that the primary effect of loss of TGF beta 1 function in vivo is not increased haematopoietic or endothelial cell proliferation, which might have been expected by deletion of a negative growth regulator, but defective haematopoiesis and endothelial differentiation.
Collapse
Affiliation(s)
- M C Dickson
- Department of Medical Genetics, University of Glasgow, Duncan Guthrie Institute, Yorkhill, UK
| | | | | | | | | | | |
Collapse
|
1324
|
Asahara T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995; 91:2793-801. [PMID: 7758186 DOI: 10.1161/01.cir.91.11.2793] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Most strategies designed to reduce restenosis by the use of pharmacological or biological reagents involve direct inhibition of vascular smooth muscle cell (SMC) proliferation. Alternatively, SMC proliferation might be indirectly inhibited if reendothelialization could be specifically facilitated at sites of balloon-induced arterial injury. Accordingly, we investigated the hypothesis that application of an endothelial cell (EC)-specific mitogen to a freshly denuded intimal surface could accelerate reendothelialization and thereby attenuate intimal hyperplasia. METHODS AND RESULTS The left carotid artery of 31 Sprague-Dawley rats was subjected to balloon injury, after which 16 rats were treated with a 30-minute incubation with 100 micrograms of vascular endothelial growth factor (VEGF), an EC-specific mitogen. Control animals (n = 15) received a 30-minute incubation with 0.9% saline. At 2 weeks after balloon injury, carotid artery reendothelialization was markedly superior in the VEGF-treated group compared with the control group (14.59 +/- 1.12 versus 7.96 +/- 0.51 mm2, P < 0.005). The extent of reendothelialization measured at 4 weeks after balloon injury remained superior for arteries treated with VEGF (18.04 +/- 0.90 mm2) versus saline (13.42 +/- 0.84 mm2, P < .005). Neointimal thickening was correspondingly attenuated to a statistically significant degree in arteries treated with VEGF versus the control group at both the 2-week and 4-week time points. Immunostaining for proliferating cell nuclear antigen (PCNA) disclosed a threefold increase in PCNA-positive cells in the neointima of control arteries versus VEGF-treated arteries at 2 weeks after injury. CONCLUSIONS Application of VEGF, an EC-specific growth regulatory molecule, may be effectively used in vivo to promote reendothelialization and thereby indirectly attenuate neointimal thickening due to SMC proliferation.
Collapse
Affiliation(s)
- T Asahara
- Department of Medicine (Cardiology), St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1325
|
Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108 ( Pt 6):2369-79. [PMID: 7673356 DOI: 10.1242/jcs.108.6.2369] [Citation(s) in RCA: 649] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) was originally described as vascular permeability factor due to its ability to increase microvascular permeability to plasma proteins. However, the vessel types (arteriolar, venular, and capillary) affected by VEGF and the modification of endothelial morphology in response to increased permeability induced by VEGF in vivo have not been precisely documented. By topical application or intradermal injection of recombinant human VEGF-165 we find that VEGF increases the permeability of postcapillary venules as well as muscular venules and capillaries. Surprisingly, we also find that endothelia of small venules and capillaries become fenestrated within 10 minutes of VEGF application. Fenestrations appeared in vascular beds which do not normally have fenestrated endothelium, namely the cremaster muscle and skin. Histamine, saline, and heat-inactivated VEGF do not cause fenestrations. Increased permeability is completely inhibited when VEGF is cleared by immunoprecipitation with anti-VEGF monoclonal antibodies. The VEGF effect on permeability is unlike that of any other mediator described to date since both muscular venules and capillaries are affected.
Collapse
Affiliation(s)
- W G Roberts
- University of California-San Diego, La Jolla 92093-0651, USA
| | | |
Collapse
|
1326
|
Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rossow S, Rosenfield K, Weir L, Brogi E. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995; 91:2687-92. [PMID: 7538919 DOI: 10.1161/01.cir.91.11.2687] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
1327
|
Cohen T, Gitay-Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ, Neufeld G. VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 1995; 270:11322-6. [PMID: 7744769 DOI: 10.1074/jbc.270.19.11322] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four vascular endothelial growth factor (VEGF) splice variants containing 121, 165, 189, and 206 amino acids are produced from a single human gene as a result of alternative splicing. VEGF121 is not a heparin-binding protein, while the other VEGF species possess heparin binding ability. YU-ZAZ6 human melanoma cells expressed the mRNA encoding the VEGF receptor flt-1, but not the mRNA encoding the VEGF receptor KDR/flk-1. Both VEGF121 and VEGF165 bound to the VEGF receptors of these cells. Unexpectedly, heparin inhibited the binding of VEGF121 as well as the binding of VEGF165 to the VEGF receptors of the melanoma cells. Digestion of the cells with heparinase also inhibited the binding of both VEGF variants. The VEGF165 binding ability of heparinase-digested cells could be partially restored by the addition of exogenous heparin to the binding reaction. In contrast, the addition of heparin to heparinase-digested cells did not restore VEGF121 binding. These results suggest that cell-surface heparan sulfates may regulate the binding ability of the VEGF receptors of the melanoma cells. They also indicate that heparin is not able to fully substitute for cell surface-associated heparan sulfates since VEGF121 binding to the VEGF receptors of heparinase-treated cells is not restored by heparin. These data suggest that changes in the composition of cell-surface heparin-like molecules may differentially affect the interaction of various VEGF isoforms with VEGF receptors.
Collapse
Affiliation(s)
- T Cohen
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | | | | | |
Collapse
|
1328
|
Affiliation(s)
- T Mustonen
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland
| | | |
Collapse
|
1329
|
Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203:80-92. [PMID: 7647376 DOI: 10.1002/aja.1002030109] [Citation(s) in RCA: 378] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the detailed developmental expression profiles of three endothelial specific receptor tyrosine kinases (RTKs) flk-1, tek, tie, as well as vascular endothelial growth factor (VEGF), the flk-1 ligand. We also examined the expression of the other VEGF receptor, flt-1, during placental development. flk-1, tek, and tie transcripts were detected sequentially at one-half day intervals starting at E7.0, suggesting that each of these RTKs play a unique role during vascularization of the mouse embryo. All three RTKs were expressed in the extraembryonic and embryonic mesoderm in regions that eventually give rise to the vasculature. Except for the expression of tek and flk-1 in the mesoderm of the amnion, the expression of these RTKs from E8.5 onwards was virtually indistinguishable. An abundant amount of flt-1 transcripts was found in the spongiotrophoblast cells of the developing placenta from E8.0 onwards. This cellular compartment is located between the maternal and labyrinthine layers of the placenta, which both express VEGF. VEGF transcripts were detected as early as E7.0 in the endoderm juxtaposed to the flk-1 positive mesoderm, and later in development VEGF expression displayed an expression profile both contiguous with that of flk-1, and also in tissues found some distance from the flk-1-expressing endothelium. These results suggest a possible dual role for VEGF which includes a chemotactic and/or a cellular maintenance role for VEGF during vascularization of the mouse embryo.
Collapse
Affiliation(s)
- D J Dumont
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1330
|
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 1995; 92:3566-70. [PMID: 7724599 PMCID: PMC42208 DOI: 10.1073/pnas.92.8.3566] [Citation(s) in RCA: 1041] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently cloned the human fms-like tyrosine kinase 4 gene FLT4, whose protein product is related to two vascular endothelial growth factor receptors FLT1 and KDR/FLK1. Here the expression of FLT4 has been analyzed by in situ hybridization during mouse embryogenesis and in adult human tissues. The FLT4 mRNA signals first became detectable in the angioblasts of head mesenchyme, the cardinal vein, and extraembryonally in the allantois of 8.5-day postcoitus (p.c.) embryos. In 12.5-day p.c. embryos, the FLT4 signal decorated developing venous and presumptive lymphatic endothelia, but arterial endothelia were negative. During later stages of development, FLT4 mRNA became restricted to vascular plexuses devoid of red cells, representing developing lymphatic vessels. Only the lymphatic endothelia and some high endothelial venules expressed FLT4 mRNA in adult human tissues. Increased expression occurred in lymphatic sinuses in metastatic lymph nodes and in lymphangioma. Our results suggest that FLT4 is a marker for lymphatic vessels and some high endothelial venules in human adult tissues. They also support the theory on the venous origin of lymphatic vessels.
Collapse
Affiliation(s)
- A Kaipainen
- Molecular/Cancer Biology Laboratory, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
1331
|
Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev Dyn 1995; 202:325-32. [PMID: 7626790 DOI: 10.1002/aja.1002020402] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Few markers specific for mouse endothelium exist. We describe here one such marker, MECA-32, a monoclonal antibody which shows high specificity for mouse endothelium in both embryonic and mature tissues. The MECA-32 antigen has a M(r) of 50-55 x 10(3) under reducing conditions and M(r) of 100-120 x 10(3) under nonreducing conditions. It is expressed on most endothelial cells in the embryonic and in the adult mouse, with the exception of the brain, skeletal, and cardiac muscle, where it has a more restricted distribution. In skeletal and cardiac muscle only small arterioles and venules express the MECA-32 antigen, while in the brain its expression is negatively correlated with the differentiation of the vasculature to form the blood brain barrier. Interestingly, during embryonic development the antigen occurs on the brain vasculature up to day 16 of gestation (E16), whereupon it disappears. The embryonic brain is an avascular organ anlage which is vascularized by ingrowth of external blood vessels. Differentiation of the vasculature to form the blood brain barrier occurs at approximately E16 in the mouse. This differentiation correlates with the downregulation of MECA-32 antigen expression. Between E12 and E16 MECA-32 detects most endothelial cell surfaces of the blood vessels in the brain. No MECA-32 antigen is found in the brain at E17 or any later stage of development with the exception of the vasculature of the circumventricular organs. The results suggest that MECA-32 antigen expression is temporally and spatially correlated with the development of the blood brain barrier.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Biomarkers/analysis
- Blood-Brain Barrier
- Brain/blood supply
- Brain/embryology
- Cell Differentiation
- Coronary Vessels/embryology
- Coronary Vessels/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Fetal Heart/growth & development
- Gene Expression Regulation, Developmental
- Gestational Age
- Mice
- Mice, Inbred BALB C
- Muscles/blood supply
- Muscles/embryology
- Organ Specificity
Collapse
Affiliation(s)
- R Hallmann
- Max-Planck-Arbeitsgruppen für Rheumatologie, Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
1332
|
Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95:1789-97. [PMID: 7535799 PMCID: PMC295707 DOI: 10.1172/jci117857] [Citation(s) in RCA: 477] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To investigate the relationship between angiogenesis and hepatic tumorigenesis, we examined the expression of vascular endothelial growth factor (VEGF) in 8 human colon carcinoma cell lines and in 30 human colorectal cancer liver metastases. Abundant message for VEGF was found in all tumors, localized to the malignant cells within each neoplasm. Two receptors for VEGF, KDR and flt1, were also demonstrated in most of the tumors examined. KDR and flt1 mRNA were limited to tumor endothelial cells and were more strongly expressed in the hepatic metastases than in the sinusoidal endothelium of the surrounding liver parenchyma. VEGF monoclonal antibody administration in tumor-bearing athymic mice led to a dose- and time-dependent inhibition of growth of subcutaneous xenografts and to a marked reduction in the number and size of experimental liver metastases. In hepatic metastases of VEGF antibody-treated mice, neither blood vessels nor expression of the mouse KDR homologue flk-1 could be demonstrated. These data indicate that VEGF is a commonly expressed angiogenic factor in human colorectal cancer metastases, that VEGF receptors are up-regulated as a concomitant of hepatic tumorigenesis, and that modulation of VEGF gene expression or activity may represent a potentially effective antineoplastic therapy in colorectal cancer.
Collapse
Affiliation(s)
- R S Warren
- Department of Surgery, University of California School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
1333
|
Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 1995; 121:1089-98. [PMID: 7743922 DOI: 10.1242/dev.121.4.1089] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial cells play essential roles in the function and development of the cardiovascular system. However, due to the lack of lineage-specific markers suitable for molecular and biochemical analyses, very little is known about the molecular mechanisms that regulate endothelial cell differentiation. We report the first vascular endothelial cell lineage-specific (including angioblastic precursor cells) 1.2 kb promoter in transgenic mice. Moreover, deletion analysis of this promoter region in transgenic embryos revealed multiple elements that are required for the maximum endothelial cell lineage-specific expression. This is a powerful molecular tool that will enable us to identify factors and cellular signals essential for the establishment of vascular endothelial cell lineage. It will also allow us to deliver genes specifically into this cell type in vivo to test specifically molecules that have been implicated in cardiovascular development. Furthermore, we have established embryonic stem (ES) cells from the blastocysts of the transgenic mouse that carry the 1.2 kb promoter-LacZ reporter transgene. These ES cells were able to differentiate in vitro to form cystic embryoid bodies (CEB) that contain endothelial cells determined by PECAM immunohistochemistry. However, these in vitro differentiated endothelial cells did not express the LacZ reporter gene. This indicates the lack of factors and/or cellular interactions which are required to induce the expression of the reporter gene mediated by this 1.2 kb promoter in this in vitro differentiation system. Thus this system will allow us to screen for the putative inducers that exist in vivo but not in vitro. These putative inducers are presumably important for in vivo differentiation of vascular endothelial cells.
Collapse
Affiliation(s)
- T M Schlaeger
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | | | | | | | |
Collapse
|
1334
|
Mori T, Wanaka A, Taguchi A, Matsumoto K, Tohyama M. Differential expressions of the eph family of receptor tyrosine kinase genes (sek, elk, eck) in the developing nervous system of the mouse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:325-35. [PMID: 7609620 DOI: 10.1016/0169-328x(94)00263-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To examine the roles of the eph subfamily of receptor tyrosine kinase (RTK), we isolated mouse cDNAs for sek, elk, and eck and localized their mRNAs in the developing mouse, with particular reference to the CNS development, by in situ hybridization. sek mRNA is most abundantly expressed throughout development; sek was detected in the germinal layer of the embryonic CNS during mid- to late-gestation and was widely expressed in the early postnatal brain. elk was expressed in the mantle layer of the embryonic CNS and showed a distribution complementary to that of sek. Differential expression of sek and elk was also observed in the early postnatal cerebellum; sek was expressed in the Purkinje cells, while elk was detected in the granule cells. eck was moderately expressed in the germinal layer of the embryonic CNS at mid-gestation, but its expression decreased as development proceeded. These spatio-temporally different patterns of gene expression suggest that these RTKs have distinct roles in mouse development despite their structural homology.
Collapse
Affiliation(s)
- T Mori
- Department of Anatomy and Neuroscience, Osaka University Medical School, Japan
| | | | | | | | | |
Collapse
|
1335
|
DiSalvo J, Bayne ML, Conn G, Kwok PW, Trivedi PG, Soderman DD, Palisi TM, Sullivan KA, Thomas KA. Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer. J Biol Chem 1995; 270:7717-23. [PMID: 7706320 DOI: 10.1074/jbc.270.13.7717] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent and selective mitogen for endothelial cells that is angiogenic in vivo and induced by hypoxia. A homologous protein, placenta growth factor (PlGF), is also reported to be mitogenic for endothelial cells in culture. The rat GS-9L glioma cell line produces not only VEGF homodimers but also PlGF homodimers and a novel heterodimer composed of VEGF and PlGF subunits. All three dimeric forms were purified to apparent homogeneity, and their structures and mitogenic activities were compared. VEGF.PlGF heterodimers are vascular endothelial cell mitogens nearly as potent as VEGF homodimers. Therefore, some of the biological activities attributed to VEGF homodimers might be mediated by VEGF.PlGF heterodimers. In contrast, pure PlGF homodimers are mitogenic for endothelial cells only at high, possibly non-physiologic concentrations; thus the biological relevance of their mitogenic activity for these cells is not obvious. However, the existence of not only homodimers but also heterodimers clearly extends the similarity between the VEGF/PlGF and the homologous platelet-derived growth factor systems.
Collapse
Affiliation(s)
- J DiSalvo
- Department of Biochemistry, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1336
|
Ferrara N, Heinsohn H, Walder CE, Bunting S, Thomas GR. The regulation of blood vessel growth by vascular endothelial growth factor. Ann N Y Acad Sci 1995; 752:246-56. [PMID: 7538737 DOI: 10.1111/j.1749-6632.1995.tb17435.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Ferrara
- Department of Cardiovascular Research, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
1337
|
Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995; 270:6729-33. [PMID: 7896817 DOI: 10.1074/jbc.270.12.6729] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vascular endothelial cell growth factor (VEGF), an endothelial cell-specific mitogen that plays an important role in angiogenesis, promotes the tyrosine phosphorylation of at least 11 proteins in bovine aortic endothelial cells (BAEC). Proteins immunoprecipitated from lysates of control- and VEGF-stimulated BAEC with antisera to phospholipase C-gamma (PLC-gamma) were fractionated by SDS-polyacrylamide gel electrophoresis and transferred to Immobilon-P. Evaluation of the Western blots with antisera to phosphotyrosine demonstrated that PLC-gamma and two proteins (100 and 85 kDa) that associate with PLC-gamma were phosphorylated in response to VEGF. By using antisera specific to other mediators of signal transduction that contain SH2 domains for immunoprecipitation, it was demonstrated that VEGF promotes phosphorylation of phosphatidylinositol 3-kinase, Ras GTPase activating protein (GAP), and the oncogenic adaptor protein NcK. Proteins of M(r) consistent with the VEGF receptors Flt-1 and Flk-1/KDR were also tyrosine phosphorylated in stimulated cells. Tyrosine-phosphorylated Nck, PLC-gamma, and two GAP-associated proteins, p190 and p62, were in GAP immunoprecipitates of VEGF-stimulated BAEC, and tyrosine-phosphorylated NcK was in phosphatidylinositol 3-kinase immunoprecipitates. These observations suggest that VEGF promotes formation of multimeric aggregates of VEGF receptors with proteins that contain SH2 domains and activate various signaling pathways. VEGF-promoted proliferation of endothelial cells and tyrosine phosphorylation of SH2 domain containing signaling molecules were inhibited by the tyrosine kinase inhibitor genistein.
Collapse
Affiliation(s)
- D Guo
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | | | |
Collapse
|
1338
|
Fan TP, Jaggar R, Bicknell R. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 1995; 16:57-66. [PMID: 7539171 DOI: 10.1016/s0165-6147(00)88979-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiogenesis is the development of new blood vessels from an existing vascular bed. Normal vascular proliferation occurs only during embryonic development, the female reproductive cycle and wound repair. By contrast, many pathological conditions (for example, cancer, atherosclerosis and diabetic retinopathy), are characterized by persistent, unregulated angiogenesis. Conversely, inadequate angiogenesis can lead to failure of ulcers to heal and myocardial infarction. Control of vascular development could permit new therapeutic approaches to these disorders. For example, several anti-angiogenic drugs are currently undergoing clinical trials for the treatment of cancer, whereas enhancement of angiogenesis by exogenous growth factors can prevent or limit the damage in chronic wounds and duodenal ulcers. Here Tai-Ping Fan, Rhys Jaggar and Roy Bicknell highlight recent achievements and discuss the prospects of receptor antagonists, enzyme inhibitors, tumour suppressor genes and vascular targeted approaches, especially that of gene therapy, in the future development of angiotherapy.
Collapse
Affiliation(s)
- T P Fan
- Department of Pharmacology, University of Cambridge, UK
| | | | | |
Collapse
|
1339
|
Wilting J, Brand-Saberi B, Huang R, Zhi Q, Köntges G, Ordahl CP, Christ B. Angiogenic potential of the avian somite. Dev Dyn 1995; 202:165-71. [PMID: 7537553 DOI: 10.1002/aja.1002020208] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have studied the angiogenic potential of the unsegmented paraxial mesoderm and epithelial somites of the trunk with homotopical grafts between quail and chick embryos. Quail endothelial cells of the grafts were stained with the QH-1 antibody after 1-6 days of reincubation. The unsegmented paraxial mesoderm and all parts of the epithelial somite were found to contain angioblasts which develop into QH-1 positive endothelial cells. These cells are incorporated into the lining of the host's blood vessels such as the perineural vascular plexus and the dorsal branches of the aorta. There is a certain preference as concerns the location of endothelial cells derived from different parts of the somites. Angioblasts from ventral somite halves are mainly found in ventrolateral blood vessels. Those from dorsomedial quadrants form vessels in the dermis of the back, and those from dorsolateral quadrants can be found in the ventrolateral body wall and the wing. With the exception of the dorsal perineural vascular plexus, angioblasts do not cross the median plane of the body. This shows that, although angioblasts migrate extensively, there is bilaterality of the vascular system in the trunk. It remains to be studied whether the notochord plays a role in the establishment of this bilaterality.
Collapse
Affiliation(s)
- J Wilting
- Anatomisches Institut II, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
1340
|
Pötgens AJ, Westphal HR, de Waal RM, Ruiter DJ. The role of vascular permeability factor and basic fibroblast growth factor in tumor angiogenesis. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1995; 376:57-70. [PMID: 7540844 DOI: 10.1515/bchm3.1995.376.2.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last decade a considerable amount of research has been dedicated to studying the process of angiogenesis. In the field of tumor biology angiogenesis is a relevant subject of investigation as well, since newly formed blood vessels are required for the growth of tumors and provide an exit route for metastasizing tumor cells. In this review we discuss some aspects of tumor angiogenesis with emphasis on the role that growth factors bFGF and VPF play in this process. A number of biochemical characteristics and biological properties of the two factors and their receptors are reviewed, and the expression of bFGF and VPF in both normal tissues and in tumors is discussed. Finally, we speculate on the use of bFGF and VPF expression as a diagnostic parameter and on possible clinical applications.
Collapse
Affiliation(s)
- A J Pötgens
- Department of Pathology, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
1341
|
Qin Y, Sato TN. Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 1995; 202:172-80. [PMID: 7734734 DOI: 10.1002/aja.1002020209] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Molecular mechanisms of endothelial cell differentiation during blood-brain barrier (BBB) development is not well understood due to the lack of specific molecular markers. Here we describe that expression of the mouse multidrug resistance 1a/3 (mdr1a/3) gene can be detected specifically in subsets of vascular endothelial cells associated with neural tissues at as early as embryonic day 10.5 (E10.5). This onset of mdr1a/3 gene expression coincides with the previously described first appearance of morphologically distinct endothelial cells in neural tissues during BBB development. To our knowledge, the mdr1a/3 gene is the earliest endothelial cell differentiation marker gene during BBB development described thus far. In addition, we have found that neither the level nor pattern of mdr1a/3 gene expression in BBB endothelial cells is affected by aberrant cortical neuronal layers in mutant mouse reeler.
Collapse
Affiliation(s)
- Y Qin
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | |
Collapse
|
1342
|
Sharma HS, Tang ZH, Gho BC, Verdouw PD. Nucleotide sequence and expression of the porcine vascular endothelial growth factor. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:235-8. [PMID: 7841203 DOI: 10.1016/0167-4781(94)00221-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We cloned and sequenced two cDNAs encoding the angiogenic, vascular endothelial growth factor (VEGF) from the porcine heart. Deduced amino acid sequence of the clone pPVE-18 and pPVE-5 predicted 164 (VEGF164), and 120 (VEGF120) residues of VEGF, respectively, with a putative N-terminal signal sequence of 26 amino acids. The porcine VEGF is shorter by one amino acid as compared to human VEGF, but a potential glycosylation site is present at Asn-74. PCR detection, and verification of the identity of the PCR products by Southern hybridization, confirmed wide expression of VEGF in different porcine tissues. Northern blot analysis with a radiolabeled porcine specific VEGF probe, showed one major (3.9 kb) and one minor (1.7 kb) mRNA species expressed in all four chambers of the heart.
Collapse
Affiliation(s)
- H S Sharma
- Department of Experimental Cardiology, Faculty of Medicine and Health Sciences, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
1343
|
Brunkow ME, Nagle DL, Bernstein A, Bucan M. A 1.8-Mb YAC contig spanning three members of the receptor tyrosine kinase gene family (Pdgfra, Kit, and Flk1) on mouse chromosome 5. Genomics 1995; 25:421-32. [PMID: 7540588 DOI: 10.1016/0888-7543(95)80042-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We constructed a yeast artificial chromosome (YAC) contig spanning the genes encoding Kit (Kit), the platelet-derived growth factor alpha receptor (Pdgfra), and fetal liver kinase 1 (Flk1), three members of a receptor tyrosine kinase gene family located in the central portion of mouse chromosome 5. The orientation of YAC clones and the extent of their overlap was determined by "probe content mapping," that is, hybridization analysis of YAC clones using the available gene probes and YAC end sequences. For four YAC clones, which constitute a minimal set spanning 1.8 Mb, a detailed restriction map was constructed. This map, in conjunction with the previously published long-range restriction map, indicates the order, the physical distances, and the relative transcriptional orientations of the Pdgfra, Kit, and Flk1 genes. The YAC clones and corresponding YAC end probes presented here provide an important resource for the molecular analysis of a cluster of developmental mutations, namely dominant white spotting (W), patch (Ph), recessive spotting (rs), and rump-white (Rw), associated with this chromosomal region.
Collapse
Affiliation(s)
- M E Brunkow
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
1344
|
Li J, Perrella MA, Tsai JC, Yet SF, Hsieh CM, Yoshizumi M, Patterson C, Endege WO, Zhou F, Lee ME. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270:308-12. [PMID: 7814392 DOI: 10.1074/jbc.270.1.308] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent and specific mitogen for vascular endothelial cells and promotes neovascularization in vivo. To determine whether interleukin-1 beta (IL-1 beta), which is present in atherosclerotic lesions, induces VEGF gene expression in vascular smooth muscle cells, we performed RNA blot analysis on rat aortic smooth muscle cells (RASMC) with a rat VEGF cDNA probe. IL-1 beta increased VEGF mRNA levels in RASMC in a time- and dose-dependent manner. As little as 0.1 ng/ml IL-1 beta increased VEGF mRNA levels by 2-fold and 10 ng/ml IL-1 beta increased VEGF mRNA by 4-fold. We also measured the half-life of VEGF mRNA and performed nuclear run-on experiments before and after addition of IL-1 beta to see if IL-1 beta increased VEGF mRNA levels by stabilizing the mRNA or by increasing its rate of transcription. The normal, 2-h half-life of VEGF mRNA in RASMC was lengthened to 3.2 h (60%) by IL-1 beta, and IL-1 beta increased the rate of VEGF gene transcription by 2.1-fold. In immunoblot experiments with an antibody specific for VEGF, we found that IL-1 beta increased VEGF protein levels in RASMC by 3.3-fold. Together these data indicate that IL-1 beta induces VEGF gene expression in smooth muscle cells. This IL-1 beta-induced expression of VEGF may accelerate the progression of atherosclerotic lesions by promoting the development of new blood vessels.
Collapse
Affiliation(s)
- J Li
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1345
|
Claffey KP, Senger DR, Spiegelman BM. Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:1-9. [PMID: 7811723 DOI: 10.1016/0167-4838(94)00144-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vascular permeability factor (VPF) also known as vascular endothelial growth factor (VEGF), is a dimeric protein that affects endothelial cell (EC) and vascular functions including enhancement of microvascular permeability and stimulation of EC growth. To investigate the structural features of VPF/VEGF necessary for efficient dimerization, secretion, and biological activities, we employed site-directed mutagenesis with a Cos-1 cell expression system. Several cysteine residues essential for VPF dimerization were identified by mutation analysis of the Cys-25, Cys-56, and Cys-67 residues. Mutant VPF isoforms lacking either of these cysteines were secreted as monomers and were completely inactive in both vascular permeability and endothelial cell mitotic assays. VPF Cys-145 mutant protein was efficiently secreted as a glycosylated, dimeric polypeptide, but had a reduction in biological activities. The site of N-linked glycosylation was directly identified as Asn-74, which, when mutated produced an inefficiently secreted dimeric protein without post-translational glycosylation, yet maintained full vascular permeability activity. Finally, we found that one VPF mutant isoform Cys-101 was not secreted and this mutant functioned as a dominant-negative suppressor of wild-type VPF secretion as demonstrated by co-expression assays in Cos-1 cells.
Collapse
Affiliation(s)
- K P Claffey
- Department of Pathology, Beth Israel Hospital, Boston, MA 02215
| | | | | |
Collapse
|
1346
|
Easty DJ, Herlyn M, Bennett DC. Abnormal protein tyrosine kinase gene expression during melanoma progression and metastasis. Int J Cancer 1995; 60:129-36. [PMID: 7814145 DOI: 10.1002/ijc.2910600119] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein tyrosine kinases have been implicated in tumor initiation and progression. Here we used Northern blotting to study expression of their genes in cultured normal melanocytes and 19 melanoma cell lines from different stages of tumor progression. We detected transcripts for 2 cytoplasmic (ABL and FES) and 6 receptor (ECK, ERB-B2, FGF-R4, IGFI-R, KDR and TIE) kinases but not for receptors RET or TRK-A. Genes for ECK, FGF-R4 and TIE were expressed ectopically in melanomas (not in normal melanocytes). Similarly, ECK protein was detected by immunoblotting in metastatic melanomas but not in normal melanocytes. ECK mRNA levels tended to increase again during late melanoma progression. ECK and TIE mRNAs were also detected in highly metastatic variant cells but not in the corresponding poorly metastatic parental lines. Conversely, FES and KDR gene expression was lost in most advanced primary and metastatic melanomas. These findings suggest positive and negative roles for specific tyrosine kinases during progression.
Collapse
Affiliation(s)
- D J Easty
- St. George's Hospital Medical School, London, UK
| | | | | |
Collapse
|
1347
|
Kolch W, Martiny-Baron G, Kieser A, Marmé D. Regulation of the expression of the VEGF/VPS and its receptors: role in tumor angiogenesis. Breast Cancer Res Treat 1995; 36:139-55. [PMID: 8534863 DOI: 10.1007/bf00666036] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPS) plays a crucial role for the vascularization of tumors including breast cancers. Tumors produce ample amounts of VEGF, which stimulates the proliferation and migration of endothelial cells (ECs), thereby inducing tumor vascularization by a paracrine mechanism. VEGF receptors (VEGF-Rs) are highly expressed by the ECs in tumor blood vessels. VEGF expression can be induced in various cell types by a number of stimuli including hypoxia, differentiation, growth factors and tumor promoters of the phorbol ester class, such as TPA. The VEGF inductive pathways comprise kinases, oncogenes, tumor suppressor genes, and steroid hormone transcription factors, many of which seem to converge on the activator protein (AP-1) transcription factor. Much less is known about the regulation of VEGF-R expression, which is restricted to ECs. This expression is greatly enhanced in diseased tissue such as solid tumors. So far, it appears that growth factors, cytokines, and tumor promoters are involved in the control of VEGF-R expression. Here we review current knowledge about the regulation of the expression of VEGF and its receptors.
Collapse
Affiliation(s)
- W Kolch
- Hämatologikum der GSF, Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | |
Collapse
|
1348
|
Chiang MK, Flanagan JG. Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 1995; 12:1-10. [PMID: 8527158 DOI: 10.3109/08977199509003208] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fetal liver kinase-1 (Flk-1) is a transmembrane tyrosine kinase that was identified in endothelial cells and populations of cells enriched in hematopoietic progenitors. To characterize the interaction of Flk-1 with potential ligands the receptor extracellular domain was genetically fused to an alkaline phosphatase (AP) tag. A soluble ligand for Flk-1 was identified in the supernatants of numerous mesenchymal cell lines by co-immunoprecipitation with the Flk1-AP fusion protein. This polypeptide was shown by N-terminal sequencing to be vascular endothelial growth factor (VEGF). Receptor-AP fusion proteins can thus be used to identify soluble ligands as well as transmembrane ligands, and this approach is therefore likely to be widely applicable to many types of orphan receptor. The Flk1-AP soluble receptor was also found to bind to cell surfaces, showing two apparent classes of binding site with different affinities. This interaction could be reconstructed by introducing a VEGF expression plasmid into cells. These results indicate that VEGF presented at the cell surface can bind to the Flk-1 receptor, and could mediate a direct cell-cell interaction. The Flk1-AP fusion protein was also found to bind heparin, implying that ligand binding by the Flk-1 receptor may involve a three way interaction between the Flk-1 receptor, VEGF, and heparin-like cell surface proteoglycans.
Collapse
Affiliation(s)
- M K Chiang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
1349
|
Affiliation(s)
- M Shibuya
- Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
1350
|
Moses MA, Klagsbrun M, Shing Y. The role of growth factors in vascular cell development and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 161:1-48. [PMID: 7558689 DOI: 10.1016/s0074-7696(08)62495-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The control of vascular growth and differentiation is a complex system of activity and interaction between positive and negative modulators of these processes. A number of important stimulators and inhibitors of both smooth muscle cells and endothelial cells have now been purified and biochemically characterized. Imbalances in the activity of these factors can result in serious pathologies. In this chapter, we briefly discuss the biology of blood vessel development and growth, review the current literature which describes these stimulators and inhibitors, and discuss current therapeutic strategies designed around these growth modulators.
Collapse
Affiliation(s)
- M A Moses
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|