101
|
Dissociable auditory mismatch response and connectivity patterns in adolescents with schizophrenia and adolescents with bipolar disorder with psychosis: A magnetoencephalography study. Schizophr Res 2018; 193:313-318. [PMID: 28760539 DOI: 10.1016/j.schres.2017.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is overlap between schizophrenia and bipolar disorder regarding genetic risk as well as neuropsychological and structural brain deficits. Finding common and distinct event-response potential (ERP) responses and connectivity patterns may offer potential biomarkers to distinguish the disorders. OBJECTIVE To examine the neuronal auditory response elicited by a roving mismatch negativity (MMN) paradigm using magnetoencephalography (MEG). PARTICIPANTS 15 Adolescents with schizophrenia (ASZ), 16 adolescents with bipolar disorder with psychosis (ABP), and 14 typically developing individuals (TD) METHODS: The data were analysed using time-series techniques and dynamic causal modelling (DCM). OUTCOME MEASURES MEG difference wave (deviant - standard) at primary auditory (~90ms), MMN (~180ms) and long latency (~300ms). RESULTS The amplitude of difference wave showed specific patterns at all latencies. Most notably, it was significantly reduced ABP compared to both controls and ASZ at early latencies. In contrast, the amplitude was significantly reduced in ASZ compared to both controls and ABP. The DCM analysis showed differential connectivity patterns in all three groups. Most notably, inter-hemispheric connections were strongly dominated by the right side in ASZ only. CONCLUSIONS Dissociable patterns of the primary auditory response and MMN response indicate possible developmentally sensitive, but separate biomarkers for schizophrenia and bipolar disorder.
Collapse
|
102
|
Parker EM, Sweet RA. Stereological Assessments of Neuronal Pathology in Auditory Cortex in Schizophrenia. Front Neuroanat 2018; 11:131. [PMID: 29375326 PMCID: PMC5767177 DOI: 10.3389/fnana.2017.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
It has long been known that auditory processing is disrupted in schizophrenia. More recently, postmortem studies have provided direct evidence that morphological alterations to neurons in auditory cortex are implicated in the pathophysiology of this illness, confirming previous predictions. Potential neural substrates for auditory impairment and gray matter loss in auditory cortex in schizophrenia have been identified, described, and are the focus of this review article. Pyramidal cell somal volume is reduced in auditory cortex, as are dendritic spine density and number in schizophrenia. Pyramidal cells are not lost in this region in schizophrenia, indicating that dendritic spine reductions reflect fewer spines per pyramidal cell, consistent with the reduced neuropil hypothesis of schizophrenia. Stereological methods have aided in the proper collection, reporting and interpretation of this data. Mechanistic studies exploring relationships between genetic risk for schizophrenia and altered dendrite morphology represent an important avenue for future research in order to further elucidate cellular pathology in auditory cortex in schizophrenia.
Collapse
Affiliation(s)
- Emily M Parker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
103
|
Hermens DF, Chitty KM, Kaur M. Mismatch negativity in bipolar disorder: A neurophysiological biomarker of intermediate effect? Schizophr Res 2018; 191:132-139. [PMID: 28450056 DOI: 10.1016/j.schres.2017.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/04/2023]
Abstract
The event-related potential, mismatch negativity (MMN), has been touted as a robust and specific neurophysiological biomarker of schizophrenia. Earlier studies often included bipolar disorder (BD) as a clinical comparator and reported that MMN was significantly impaired only in schizophrenia. However, with the increasing number of MMN studies of BD (with larger sample sizes), the literature is now providing somewhat consistent evidence of this biomarker also being perturbed in BD, albeit to a lesser degree than that observed in schizophrenia. Indeed, two meta-analyses have now shown that the effect sizes in BD samples suggest a moderate impairment in MMN, compared to the large effect sizes shown in schizophrenia. Pharmacologically, MMN is an extremely useful non-invasive probe of glutamatergic (more specifically, N-methyl-d-aspartate [NMDA] receptor) disturbances and this system has been implicated in the pathophysiology of both schizophrenia and BD. Therefore, it may be best to conceptualize/utilize MMN as an index of a psychopathology that is shared across psychotic and related disorders, rather than being a diagnosis-specific biomarker. More research is needed, particularly longitudinal designs including studies that assess MMN over an individual's life course and then examine NMDA receptor expression/binding post-mortem. At this point and despite a disproportionate amount of research, the current evidence suggests that with respect to BD, MMN is a neurophysiological biomarker of intermediate effect. With replication and validation of this effect, MMN may prove to be an important indicator of a common psychopathology shared by a significant proportion of individuals with schizophrenia and bipolar spectrum illnesses.
Collapse
Affiliation(s)
- Daniel F Hermens
- Youth Mental Health Team, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Kate M Chitty
- Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Manreena Kaur
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, VIC, Australia
| |
Collapse
|
104
|
Corcoran CM, Stoops A, Lee M, Martinez A, Sehatpour P, Dias EC, Javitt DC. Developmental trajectory of mismatch negativity and visual event-related potentials in healthy controls: Implications for neurodevelopmental vs. neurodegenerative models of schizophrenia. Schizophr Res 2018; 191:101-108. [PMID: 29033283 PMCID: PMC5866919 DOI: 10.1016/j.schres.2017.09.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
Abstract
Sensory processing deficits are core features of schizophrenia, reflected in impaired generation of event-related potential (ERP) measures such as auditory mismatch negativity (MMN) and visual P1. To understand the potential time course of development of deficits in schizophrenia, we obtained MMN to unattended duration, intensity and frequency deviants, and visual P1 to attended LSF stimuli, in 43 healthy individuals ages 6 to 25years (mean 17), and compared results to data from 30 adult schizophrenia patients (mean age 38). We analyzed "time-domain" measures of amplitude and latency, and event-related spectral perturbation (ERSP, "time-frequency") to evaluate underlying neurophysiological mechanisms. Duration and intensity MMN amplitudes increased from childhood to late adolescence, while frequency MMN reached maximum amplitude during early development. As reported previously, in ERSP analyses, MMN activity corresponded primarily to theta-band (4-7Hz) activity, while responses to standards occurred primarily in alpha (8-12Hz) across age groups. Both deviant-induced theta and standard-induced alpha activity declined significantly with age for all deviant types. Likewise, visual P1 also showed an amplitude decline over development, reflecting a reduction in both evoked power and ITC. While MMN "difference" waveform ERP data suggest failure of maturation in schizophrenia, MMN ERSP analyses instead support a neurodegenerative process, as these isolate responses to deviants and standards, showing large low-frequency evoked power for both in children. Neurodegenerative processes are also supported by large visual P1 amplitudes and large low-frequency evoked power in children, in contrast with adult schizophrenia. Sensory processing deficits in schizophrenia may be related to accelerated synaptic pruning.
Collapse
Affiliation(s)
- Cheryl M Corcoran
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute at Columbia University, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasia Stoops
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Migyung Lee
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute at Columbia University, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Antigona Martinez
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute at Columbia University, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pejman Sehatpour
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute at Columbia University, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute at Columbia University, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
105
|
Joshi YB, Light GA. Using EEG-Guided Basket and Umbrella Trials in Psychiatry: A Precision Medicine Approach for Cognitive Impairment in Schizophrenia. Front Psychiatry 2018; 9:554. [PMID: 30510520 PMCID: PMC6252381 DOI: 10.3389/fpsyt.2018.00554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Due to advances over the last several decades, many fields of medicine are moving toward a precision medicine approach where treatments are tailored to nuanced patient factors. While in some disciplines these innovations are commonplace leading to unique biomarker-guided experimental medicine trials, there are no such analogs in psychiatry. In this brief review, we will overview two unique biomarker-guided trial designs for future use in psychiatry: basket and umbrella trials. We will illustrate how such trials could be useful in psychiatry using schizophrenia as a candidate illness, the EEG measure mismatch negativity as the candidate biomarker, and cognitive impairment as the target disease dimension.
Collapse
Affiliation(s)
- Yash B Joshi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Health Care System, San Diego, CA, United States
| |
Collapse
|
106
|
Lavoie S, Jack BN, Griffiths O, Ando A, Amminger P, Couroupis A, Jago A, Markulev C, McGorry PD, Nelson B, Polari A, Yuen HP, Whitford TJ. Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophr Res 2018; 191:95-100. [PMID: 29132815 DOI: 10.1016/j.schres.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is evidence to suggest that people with established psychotic disorders show impairments in the mismatch negativity induced by a frequency-deviant sound (fMMN), and that these impairments worsen with the deterioration of psychotic symptoms. This study aimed to test whether individuals at ultra-high risk (UHR) for psychosis show pre-morbid impairments in fMMN, and if so, whether fMMN continues to deteriorate with transition to psychosis. METHOD fMMN was recorded in a cohort of UHR individuals (n=42) and compared to healthy controls (n=29). Of the 27 UHR participants who returned for a second EEG session, six participants had transitioned to psychosis by 12-month follow-up (UHR-T) and were compared to the 21 participants who did not transition (UHR-NT). RESULTS fMMN amplitude was significantly reduced, relative to healthy controls, in the UHR cohort. Furthermore, UHR-T individuals showed a significant decrease in fMMN amplitude over the period from baseline to post-transition; this reduction was not observed in UHR-NT. CONCLUSIONS These results suggest that fMMN is abnormal in UHR individuals, as has repeatedly been found previously in people with established psychotic disorders. The finding that fMMN impairment worsens with transition to psychosis is consistent with the staging model of psychosis; however, caution must be taken in interpreting these findings, given the extremely small sample size of the UHR-T group.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia.
| | - Bradley N Jack
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Oren Griffiths
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ayaka Ando
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Paul Amminger
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Anthony Couroupis
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Aidan Jago
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Connie Markulev
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Patrick D McGorry
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Barnaby Nelson
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Andrea Polari
- Orygen Youth Health, Melbourne Health, 35 Poplar Road, Parkville, VIC 3052, Australia
| | - Hok Pan Yuen
- Orygen, the National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville, VIC 3052, Australia; Centre for Youth Mental Health, The University of Melbourne, 35 Poplar road, Parkville, VIC 3052, Australia
| | - Thomas J Whitford
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
107
|
Salisbury DF, McCathern AG, Coffman BA, Murphy TK, Haigh SM. Complex mismatch negativity to tone pair deviants in long-term schizophrenia and in the first-episode schizophrenia spectrum. Schizophr Res 2018; 191:18-24. [PMID: 28506707 PMCID: PMC5768305 DOI: 10.1016/j.schres.2017.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Mismatch negativity (MMN) is an event-related potential to stimulus change. MMN to infrequent deviant tones that differs in a simple physical parameter from repetitive standard tones is reduced in patients with long-term schizophrenia (Sz; d=~1). However, this simple MMN is not uniformly reduced at the first-episode of schizophrenia-spectrum psychosis (FESz; d<0.1 for pitch; <0.4 for duration). Deviant stimuli that violate pattern rules also evoke MMN. This complex MMN is evoked by deviations in the relation of sounds to each other. The simplest pattern involves tone pairs. Although the pitch of first tone in the pair varies, the second tone's pitch always follows a rule (e.g., always 3 semitones higher). We measured complex MMN to deviant tone pairs that descended in pitch among standard tone pairs that ascended in pitch, never before examined in Sz or in FESz. Experiment 1 showed significant reductions in complex MMN in 20 Sz compared to 22 matched controls. Experiment 2 replicated smaller complex MMN in a shorter protocol in 24 Sz compared to 21 matched controls, but showed no significant complex MMN reduction in 21 FESz compared to 21 matched controls. Although reduced in Sz, indicating deficits in generation of a simple acoustic pattern rule, the tone pair complex MMN was within normal limits in FESz. This suggests that more complex perceptual pattern analysis processes are, at least partially, still intact at the first break. Future work will determine at what point of pattern complexity subtle auditory perception pathophysiology will be revealed in FESz.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
108
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
109
|
Koshiyama D, Kirihara K, Tada M, Nagai T, Koike S, Suga M, Araki T, Kasai K. Duration and frequency mismatch negativity shows no progressive reduction in early stages of psychosis. Schizophr Res 2017; 190:32-38. [PMID: 28314681 DOI: 10.1016/j.schres.2017.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
Abstract
The auditory mismatch negativity (MMN) is a component of event-related potentials, which is being increasingly recognized as a candidate biomarker for early stages of psychosis. Although previous cross-sectional studies have demonstrated small MMN amplitude in early stages of psychosis, it remains unknown whether small MMN amplitude is due to progressive reduction during the early course. In this study, we investigated longitudinal changes of MMN in early stages of psychosis. Participant included 14 patients with first-episode psychosis (FEP), 16 individuals with ultra-high risk (UHR), and 16 healthy control subjects (HC). We measured MMN in response to duration deviants (dMMN) and that in response to frequency deviants (fMMN), respectively. The amplitudes of dMMN in FEP and UHR were significantly smaller in comparison to those in HC, which did not show a progressive decrease over time. The amplitude of fMMN did not differ among groups, which again did not show progression. There was no significant correlation between the length of the follow-up period and the longitudinal change of either deviant-type MMN in the FEP or UHR. These results suggest that dMMN is a trait marker in the early stages of psychosis, and that small dMMN amplitude in early stages of psychosis may reflect altered developmental process rather than progressive brain pathology. The amplitude of fMMN may not alter in early stages of psychosis. These findings may contribute to the future establishment of MMN as a biomarker in early stages of psychosis.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Psychiatry, Kawamuro Memorial Hospital, Niigata, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan; Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Motomu Suga
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Youth Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
110
|
Seol JJ, Kim M, Lee KH, Hur JW, Cho KIK, Lee TY, Chung CK, Kwon JS. Is There an Association Between Mismatch Negativity and Cortical Thickness in Schizophrenia Patients? Clin EEG Neurosci 2017; 48:383-392. [PMID: 28612661 DOI: 10.1177/1550059417714705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is thought to reflect preattentive, automatic auditory processing. Reduced MMN amplitude is among the most robust findings in schizophrenia research. MMN generators have been shown to be located in the temporal and frontal cortices, which are key areas in the pathophysiology of schizophrenia. This study investigated whether frontotemporal cortical thickness was associated with reduced MMN current source density (CSD) strength in patients with schizophrenia. METHODS Sixteen schizophrenia patients and 18 healthy controls (HCs) were examined using magnetoencephalography while they performed a passive auditory oddball paradigm. All participants underwent a T1 structural magnetic resonance imaging scan in a separate session. We evaluated MMN CSD and cortical thickness, and their associations, in the superior and transverse temporal gyri, as well as in the inferior and middle frontal gyri. RESULTS Patients exhibited significantly reduced CSD strength in all temporal and frontal areas of interest relative to HCs. There was a positive correlation between CSD strength and cortical thickness in both temporal and frontal areas in HCs. However, schizophrenia patients showed negative correlations between CSD strength and cortical thickness in the bilateral inferior frontal gyri. Additionally, we found positive correlations between frontal cortical thickness and negative and total scores on the Positive and Negative Syndrome Scale (PANSS). CONCLUSIONS Our findings provide evidence for deficient temporal and frontal MMN generators and a disruption of normal structure-function relationship in patients with schizophrenia.
Collapse
Affiliation(s)
- Jiyoon J Seol
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Hyuk Lee
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji-Won Hur
- 3 Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Kang Ik K Cho
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Tae Young Lee
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Kee Chung
- 4 Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,5 Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
111
|
The Study of the Antisaccade Performance and Contingent Negative Variation Characteristics in First-Episode and Chronic Schizophrenia Patients. SPANISH JOURNAL OF PSYCHOLOGY 2017; 20:E55. [PMID: 29072157 DOI: 10.1017/sjp.2017.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study tested whether the antisaccade (AS) performance and Contingent Negative Variation (CNV) measures differed between the first-episode and chronic patients to provide the evidence of PFC progressive functional deterioration. Subjects included 15 first-episode and 20 chronic schizophrenic patients (with the duration of illness more than 5 years), and 21 control subjects. The first-episode and chronic patients had significantly elevated error percent (p < .05, effect size 1.10 and p < .001, effect size 1.25), increased AS latencies (p < .01, effect size 1.18 and p < .001, effect size 1.69), and increased latencies variability (p < .01, effect size 1.52 and p < .001, effect size 1.37) compared to controls. Chronic patients had marginally significant increase of the response latency (p = .086, effect size .78) and latency variability (p < .099, effect size .63) compared to first-episode ones. Results of CNV analysis revealed that chronic patients only exhibited robustly declined frontal CNV amplitude at Fz (p < .05, effect size .70), F3 (p < .05, effect size .88), and F4 (p < .05, effect size .71) sites compared to controls. The obtained results might be related to specific changes in prefrontal cortex function over the course of schizophrenia.
Collapse
|
112
|
Mismatch Negativity in Han Chinese Patients with Schizophrenia: A Meta-Analysis. SHANGHAI ARCHIVES OF PSYCHIATRY 2017; 29:259-267. [PMID: 29276349 PMCID: PMC5738514 DOI: 10.11919/j.issn.1002-0829.217103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous meta-analysis revealed that mismatch negativity(MMN) amplitude decreased in patients with schizophrenia compared with healthy controls (Cohen's d, d about 1), leading to the possibility of mismatch negativity being used as a biomarker for schizophrenia. However, it is unknown whether MMN is reliably changed in Chinese patients. It is necessary to carry out a meta-analysis on MMN of Han Chinese patients with schizophrenia. AIM To investigate whether MMN could be used as a biomarker for Han Chinese patients with schizophrenia. METHODS A literature search was conducted to identify clinical trials on MMN in Han Chinese schizophrenia patients published before May 8, 2017, by searching the Chinese language databases CNKI, WanFang Data, VIP Data and PubMed. The effects of MMN deficits were evaluated for MMN amplitude by calculating standard mean difference (SMDs) between schizophrenia patient groups and healthy control groups. RESULTS A total of 11 studies were included in the analysis. The total quality of all the studies were more than 6 as evaluated by Newcastle-Ottawa Scale (NOS). Meta-analysis of data from these studies had a pooled sample of 432 patients with schizophrenia and 392 healthy controls. There exists significant MMN deficit in schizophrenia patients compared to healthy controls (Cohen's d=1.004). When studies were excluded due to heterogeneity, the pooled effect size of the MMN differences between the patient group and healthy controls dropped to 0.79 (Cohen's d=0.79). Subgroup analysis showed that MMN amplitude deficits of schizophrenia over three years had the pooled effect size of 0.95, and less than three years had the pooled effect size of 0.77. Publication bias conducted via Egger regression test (t = 1.83; p = 0.101), suggested that there was no publication bias. CONCLUSION The effect size of MMN amplitude between Chinese patients with schizophrenia and healthy controls is consistent with other meta-analyses published on this topic, suggesting that Han Chinese patients with schizophrenia also exhibited MMN deficits.
Collapse
|
113
|
|
114
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
115
|
Delvecchio G, Lorandi A, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Brain anatomy of symptom stratification in schizophrenia: a voxel-based morphometry study. Nord J Psychiatry 2017; 71:348-354. [PMID: 28290743 DOI: 10.1080/08039488.2017.1300323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although some Magnetic Resonance Imaging (MRI) studies have investigated the relationship between clinical severity and neuroanatomical alterations in patients with schizophrenia (SCZ), the biological signature associated with illness severity in schizophrenia is still uncertain. Therefore, this study aims to investigate structural brain abnormalities in SCZ, with particular regards to the identification of potential deficits associated with the severity of illness. METHODS In total, 1.5T MRI data were acquired for 61 subjects with SCZ and 59 matched healthy controls (HC). The patient group was divided in two sub-groups based on clinical severity, one composed of 34 mild-to-moderately ill patients, and the other of 27 severely ill patients, and compared with matched HC. RESULTS The whole group of patients with SCZ had significantly reduced grey matter (GM) volumes in the left inferior and middle temporal gyrus compared to HC (p < 0.05, pFWE corrected). Furthermore, compared to HC, patients with mild-to-moderate illness showed decreased GM volumes in the inferior and middle temporal gyrus, whereas those with severe illness had reduced GM volumes in the middle temporal gyrus and cerebellum bilaterally (all p < 0.001 uncorrected). No differences were observed between the two sub-groups of patients. CONCLUSION The results showed significant GM volume reductions in temporal regions in patients with SCZ compared to matched HC, confirming the role of these regions in the pathophysiology of SCZ. Furthermore, specific cerebellar grey matter volume reductions were identified in patients with severe illness, which may contribute to stratifying patients with SCZ according to their clinical phenotype expression, ultimately helping in guiding targeted therapeutic/rehabilitation interventions.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- a Scientific Institute, IRCCS Eugenio Medea , San Vito al Tagliamento , Pordenone , Italy
| | - Alessandra Lorandi
- b Section of Psychiatry , Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | - Cinzia Perlini
- c Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology , University of Verona , Verona , Italy.,d Department of Public Health and Community Medicine, InterUniversity Centre for Behavioural Neurosciences, University of Verona , Verona , Italy
| | - Marco Barillari
- e Section of Radiology , Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | - Mirella Ruggeri
- f Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry , University of Verona , Verona , Italy
| | - A Carlo Altamura
- g Department of Neurosciences and Mental Health , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan , Milan , Italy
| | - Marcella Bellani
- b Section of Psychiatry , Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy.,d Department of Public Health and Community Medicine, InterUniversity Centre for Behavioural Neurosciences, University of Verona , Verona , Italy
| | - Paolo Brambilla
- g Department of Neurosciences and Mental Health , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan , Milan , Italy.,h Department of Psychiatry and Behavioural Neurosciences , University of Texas , Houston , TX , USA
| |
Collapse
|
116
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
117
|
Nagai T, Kirihara K, Tada M, Koshiyama D, Koike S, Suga M, Araki T, Hashimoto K, Kasai K. Reduced Mismatch Negativity is Associated with Increased Plasma Level of Glutamate in First-episode Psychosis. Sci Rep 2017; 7:2258. [PMID: 28536477 PMCID: PMC5442101 DOI: 10.1038/s41598-017-02267-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 01/17/2023] Open
Abstract
Reduced amplitude of mismatch negativity (MMN) is one of the more promising biological markers of schizophrenia. This finding holds true in both early and chronic phases of the disorder, and is compatible with the glutamatergic dysfunction hypothesis. To further establish MMN as a biomarker of aberrant glutamatergic neurotransmission, an exploration for an association with blood levels of glutamatergic amino acids is an important next step. Despite a large body of work investigating MMN in schizophrenia, no previous studies have undertaken this endeavor. Nineteen patients with first-episode psychosis (FEP), 21 ultra-high risk individuals (UHR), and 16 healthy controls (HC) participated in the study. The MMNs in response to duration change (dMMN) and frequency change (fMMN) were measured. The fasting plasma levels of glutamate, glutamine, glycine, D-serine, and L-serine were measured. dMMN amplitudes were significantly reduced in FEP and UHR, compared to HC. The plasma levels of glutamate of FEP were significantly higher than those of HC. Higher plasma levels of glutamate were associated with smaller dMMN amplitudes in the FEP and HC groups. These findings are compatible with the hypothesis that MMN is a useful biological marker of aberrant glutamatergic neurotransmission in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Tatsuya Nagai
- Department of Psychiatry, Kawamuro Memorial Hospital 71-Ko, Ohaza, Kitashinpo, Joetsu-shi, Niigata-ken, 943-0109, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Office for Counseling and Support, Division for Mental Health Support, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motomu Suga
- Department of Rehabilitation, Graduate School of Medicine, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsuyoshi Araki
- Department of Youth Mental Health, Graduate School of Medicine, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health 1-8-1, Inohana, Chuuoku-ku, Chiba-shi, Chiba-ken, 260-8670, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
118
|
Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 2017; 51:455-476. [PMID: 27733710 DOI: 10.1177/0004867416670522] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. METHODS A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. RESULTS In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). CONCLUSION We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Vanessa L Cropley
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Cassandra Wannan
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Maria Di Biase
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- 4 Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
| |
Collapse
|
119
|
Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ SCHIZOPHRENIA 2017; 3:15. [PMID: 28560261 PMCID: PMC5441538 DOI: 10.1038/s41537-017-0013-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Since Emil Kraepelin's conceptualization of endogenous psychoses as dementia praecox and manic depression, the separation between primary psychotic disorders and primary affective disorders has been much debated. We conducted a systematic review of case-control studies contrasting magnetic resonance imaging studies in schizophrenia and bipolar disorder. A literature search in PubMed of studies published between January 2005 and December 2016 was conducted, and 50 structural, 29 functional, 7 magnetic resonance spectroscopy, and 8 combined imaging and genetic studies were deemed eligible for systematic review. Structural neuroimaging studies suggest white matter integrity deficits that are consistent across the illnesses, while gray matter reductions appear more widespread in schizophrenia compared to bipolar disorder. Spectroscopy studies in cortical gray matter report evidence of decreased neuronal integrity in both disorders. Functional neuroimaging studies typically report similar functional architecture of brain networks in healthy controls and patients across the psychosis spectrum, but find differential extent of alterations in task related activation and resting state connectivity between illnesses. The very limited imaging-genetic literature suggests a relationship between psychosis risk genes and brain structure, and possible gene by diagnosis interaction effects on functional imaging markers. While the existing literature suggests some shared and some distinct neural markers in schizophrenia and bipolar disorder, it will be imperative to conduct large, well designed, multi-modal neuroimaging studies in medication-naïve first episode patients that will be followed longitudinally over the course of their illness in an effort to advance our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
120
|
Kim YK, Choi J, Park SC. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. Int J Mol Sci 2017; 18:ijms18040734. [PMID: 28358303 PMCID: PMC5412320 DOI: 10.3390/ijms18040734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the substantial burden of illness in schizophrenia, there has been a discrepancy between the beneficial effects of an increased use of antipsychotic medications and achieving limited recovery or remission. Because the focus of the most common antipsychotic medications is on dopamine, which is associated with positive symptoms, there is an unmet need for patients with negative symptoms. Since cognitive and negative symptoms rather than positive symptoms are more closely associated with psychosocial impairments in patients with schizophrenia, the non-dopaminergic systems including glutamate and γ-aminobutyric acid (GABA) of the prefrontal cortex should be of concern as well. The balance of excitation and inhibition has been associated with epigenetic modifications and thus can be analyzed in terms of a neurodevelopmental and neural circuitry perspective. Hence, a novel bio-psychosocial-behavioral model for the treatment of schizophrenia is needed to account for the non-dopaminergic systems involved in schizophrenia, rather than dopaminergic mechanisms. This model can be understood from the viewpoint of neurodevelopment and neural circuitry and should include the staging care, personalized care, preventive care, reducing the cognitive deficits, and reducing stigma. Thomas R. Insel proposed this as a goal for schizophrenia treatment to be achieved by 2030.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea.
| | - Joonho Choi
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea.
| | - Seon-Cheol Park
- Department of Psychiatry, Inje University College of Medicine and Haeundae Paik Hospital, Busan 48108, Korea.
| |
Collapse
|
121
|
Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia. Sci Rep 2017; 7:435. [PMID: 28348393 PMCID: PMC5428274 DOI: 10.1038/s41598-017-00352-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.
Collapse
|
122
|
Salisbury DF, Polizzotto NR, Nestor PG, Haigh SM, Koehler J, McCarley RW. Pitch and Duration Mismatch Negativity and Premorbid Intellect in the First Hospitalized Schizophrenia Spectrum. Schizophr Bull 2017; 43:407-416. [PMID: 27231308 PMCID: PMC5605266 DOI: 10.1093/schbul/sbw074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mismatch negativity (MMN) is a robustly abnormal brainwave in chronically ill schizophrenia that has generated interest as a disease presence biomarker. Reports of MMN reduction in first-episode schizophrenia have been equivocal, raising uncertainty about its reduction at first psychotic break. Here we tested 29 schizophrenia-spectrum participants under 1 year from their first hospitalization for psychosis and 40 age-, gender-, parental socioeconomic status-, and Wechsler Adult Intelligence Scales III Information-matched healthy controls on both pitch and duration MMN. Participants performed a visual checkerboard tracking task while standard (1kHz, 50ms, 80%), pitch-deviant (1.2kHz, 50ms, 10%) and duration-deviant (1kHz, 100ms, 10%) tones were presented over headphones (75 dB) and EEG was recorded. Independent component analysis was used to remove eye movements and visual stimulus processing activity. Groups did not differ in pitch MMN or duration MMN amplitudes. Smaller pitch and duration MMN amplitudes were associated with lower estimates of premorbid intellect in all participants and independently with greater positive symptoms in first hospitalized schizophrenia. Overall MMN reduction was not present in these relatively high functioning individuals at the first episode of schizophrenia, and therefore is not a good disease presence biomarker for this sample. Future research is warranted to determine the degree of MMN reduction at the first episode of psychosis across a greater range of cognitive impairment, the utility of MMN as an indicator of risk or diagnosis, and its role for understanding pathophysiological mechanisms in emerging psychosis.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicola R Polizzotto
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justine Koehler
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School, VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
123
|
Atkinson RJ, Fulham WR, Michie PT, Ward PB, Todd J, Stain H, Langdon R, Thienel R, Paulik G, Cooper G, Schall U. Electrophysiological, cognitive and clinical profiles of at-risk mental state: The longitudinal Minds in Transition (MinT) study. PLoS One 2017; 12:e0171657. [PMID: 28187217 PMCID: PMC5302824 DOI: 10.1371/journal.pone.0171657] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
The onset of schizophrenia is typically preceded by a prodromal period lasting several years during which sub-threshold symptoms may be identified retrospectively. Clinical interviews are currently used to identify individuals who have an ultra-high risk (UHR) of developing a psychotic illness with a view to provision of interventions that prevent, delay or reduce severity of future mental health issues. The utility of bio-markers as an adjunct in the identification of UHR individuals is not yet established. Several event-related potential measures, especially mismatch-negativity (MMN), have been identified as potential biomarkers for schizophrenia. In this 12-month longitudinal study, demographic, clinical and neuropsychological data were acquired from 102 anti-psychotic naive UHR and 61 healthy controls, of whom 80 UHR and 58 controls provided valid EEG data during a passive auditory task at baseline. Despite widespread differences between UHR and controls on demographic, clinical and neuropsychological measures, MMN and P3a did not differ between these groups. Of 67 UHR at the 12-month follow-up, 7 (10%) had transitioned to a psychotic illness. The statistical power to detect differences between those who did or did not transition was limited by the lower than expected transition rate. ERPs did not predict transition, with trends in the opposite direction to that predicted. In exploratory analysis, the strongest predictors of transition were measures of verbal memory and subjective emotional disturbance.
Collapse
Affiliation(s)
- Rebbekah J. Atkinson
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - W. Ross Fulham
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- * E-mail:
| | - Patricia T. Michie
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Medicine and Population Health, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Juanita Todd
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Helen Stain
- Centre for Rural and Remote Mental Health, Bloomfield Hospital, Orange, New South Wales, Australia
- School of Social and Health Sciences, Leeds Trinity University, Horsforth Leeds, United Kingdom
| | - Robyn Langdon
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- ARC Centre of Excellence in Cognition and Its Disorders, Macquarie University, Sydney, New South Wales, Australia
- Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia
| | - Renate Thienel
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Institute for Mental Health, Newcastle, New South Wales, Australia
| | - Georgie Paulik
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, University of Western Australia, Nedlands, Western Australia, Australia
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Gavin Cooper
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter New England Health, Newcastle, Australia
| |
Collapse
|
124
|
Rydkjær J, Møllegaard Jepsen JR, Pagsberg AK, Fagerlund B, Glenthøj BY, Oranje B. Mismatch negativity and P3a amplitude in young adolescents with first-episode psychosis: a comparison with ADHD. Psychol Med 2017; 47:377-388. [PMID: 27776572 DOI: 10.1017/s0033291716002518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Deficient mismatch negativity (MMN) has been proposed as a candidate biomarker in schizophrenia and may therefore be potentially useful in early identification and intervention in early onset psychosis. In this study we explored whether deficits in the automatic orienting and reorienting responses, measured as MMN and P3a amplitude, are present in young adolescents with first-episode psychosis (FEP) and whether findings are specific to psychosis compared to young adolescents with attention deficit hyperactivity disorder (ADHD). METHOD MMN and P3a amplitude were assessed in young adolescents (age 12-17 years) with either FEP (N = 27) or ADHD (N = 28) and age- and gender-matched healthy controls (N = 43). The MMN paradigm consisted of a four-tone auditory oddball task with deviant stimuli based on frequency, duration and their combination. RESULTS Significantly less MMN was found in patients with psychosis compared to healthy controls in response to frequency and duration deviants. MMN amplitudes in the group of patients with ADHD were not significantly different from patients with psychosis or healthy controls. No significant group differences were found on P3a amplitude. CONCLUSION Young adolescents with FEP showed impaired MMN compared to healthy controls while intermediate and overlapping levels of MMN were observed in adolescents with ADHD. The findings suggest that young FEP patients already exhibit pre-attentive deficits that are characteristic of schizophrenia albeit expressed on a continuum shared with other neuropsychiatric disorders.
Collapse
Affiliation(s)
- J Rydkjær
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - J R Møllegaard Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - A K Pagsberg
- Child and Adolescent Mental Health Center,Mental Health Services,Capital Region of Denmark,Copenhagen,Denmark
| | - B Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| |
Collapse
|
125
|
Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity in First-Episode Schizophrenia: A Meta-Analysis. Clin EEG Neurosci 2017; 48:3-10. [PMID: 27170669 PMCID: PMC5768309 DOI: 10.1177/1550059416645980] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/15/2023]
Abstract
Mismatch negativity (MMN) to deviant stimuli is robustly smaller in individuals with chronic schizophrenia compared with healthy controls (Cohen's d > 1.0 or more), leading to the possibility of MMN being used as a biomarker for schizophrenia. However, there is some debate in the literature as to whether MMN is reliably reduced in first-episode schizophrenia patients. For the biomarker to be used as a predictive marker for schizophrenia, it should be reduced in the majority of cases known to have the disease, particularly at disease onset. We conducted a meta-analysis on the fourteen studies that measured MMN to pitch or duration deviants in healthy controls and patients within 12 months of their first episode of schizophrenia. The overall effect size showed no MMN reduction in first-episode patients to pitch-deviants (Cohen's d < 0.04), and a small-to-medium reduction to duration-deviants (Cohen's d = 0.47). Together, this indicates that pitch-deviant MMN is not a candidate biomarker for schizophrenia prediction, while duration-deviant MMN may hold some promise, albeit nearly a third as large an effect as in chronic schizophrenia. Potential causes for discrepancies between studies are discussed.
Collapse
Affiliation(s)
- Sarah M Haigh
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
126
|
Nishimura Y, Kawakubo Y, Suga M, Hashimoto K, Takei Y, Takei K, Inoue H, Yumoto M, Takizawa R, Kasai K. Familial Influences on Mismatch Negativity and Its Association with Plasma Glutamate Level: A Magnetoencephalographic Study in Twins. MOLECULAR NEUROPSYCHIATRY 2016; 2:161-172. [PMID: 27867941 DOI: 10.1159/000449426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) or its magnetic counterpart (magnetic mismatch negativity; MMNm) is regarded as a promising biomarker for schizophrenia. Previous electroencephalographic studies of MMN have demonstrated a moderate-to-high heritability for MMN amplitudes. N-methyl-D-aspartate receptor-dependent glutamatergic neurotransmission is implicated in MMN generation. We hypothesized that the differences between identical twins in MMNm variables might be associated with differences in plasma levels of amino acids involved in glutamatergic neurotransmission. Thirty-three pairs of monozygotic (MZ) and 10 pairs of dizygotic (DZ) twins underwent MMNm recording. The MMNm in response to tone duration changes, tone frequency changes, and phonemic changes was recorded using 204-channel magnetoencephalography. Of these, 26 MZ and 7 DZ twin pairs underwent blood sampling for determination of plasma amino acid levels. MMNm peak strength showed relatively high correlations in both MZ and DZ twin pairs. The differences in MMNm latencies tended to correlate with the differences in plasma amino acid levels within MZ pairs, while no significant correlation was observed after the Bonferroni correction. We observed a familial trait in MMNm strength. The differences in MMN latency in MZ twins might be influenced by changes in glutamate levels and glutamate-glutamine cycling; however, the results need to be replicated.
Collapse
Affiliation(s)
- Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motomu Suga
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Hashimoto
- Department of Division of Clinical Neuroscience, Chiba University Centre for Forensic Mental Health, Chiba, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunio Takei
- Department of Office for Mental Health Support, Division for Counselling and Support, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
127
|
Salisbury DF, McCathern AG. Abnormal Complex Auditory Pattern Analysis in Schizophrenia Reflected in an Absent Missing Stimulus Mismatch Negativity. Brain Topogr 2016; 29:867-874. [PMID: 27519536 PMCID: PMC5768310 DOI: 10.1007/s10548-016-0514-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
The simple mismatch negativity (MMN) to tones deviating physically (in pitch, loudness, duration, etc.) from repeated standard tones is robustly reduced in schizophrenia. Although generally interpreted to reflect memory or cognitive processes, simple MMN likely contains some activity from non-adapted sensory cells, clouding what process is affected in schizophrenia. Research in healthy participants has demonstrated that MMN can be elicited by deviations from abstract auditory patterns and complex rules that do not cause sensory adaptation. Whether persons with schizophrenia show abnormalities in the complex MMN is unknown. Fourteen schizophrenia participants and 16 matched healthy underwent EEG recording while listening to 400 groups of 6 tones 330 ms apart, separated by 800 ms. Occasional deviant groups were missing the 4th or 6th tone (50 groups each). Healthy participants generated a robust response to a missing but expected tone. The schizophrenia group was significantly impaired in activating the missing stimulus MMN, generating no significant activity at all. Schizophrenia affects the ability of "primitive sensory intelligence" and pre-attentive perceptual mechanisms to form implicit groups in the auditory environment. Importantly, this deficit must relate to abnormalities in abstract complex pattern analysis rather than sensory problems in the disorder. The results indicate a deficit in parsing of the complex auditory scene which likely impacts negatively on successful social navigation in schizophrenia. Knowledge of the location and circuit architecture underlying the true novelty-related MMN and its pathophysiology in schizophrenia will help target future interventions.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, 15213, PA, USA.
| | - Alexis G McCathern
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Suite 420, Pittsburgh, 15213, PA, USA
| |
Collapse
|
128
|
Broyd SJ, Michie PT, Bruggemann J, van Hell HH, Greenwood LM, Croft RJ, Todd J, Lenroot R, Solowij N. Schizotypy and auditory mismatch negativity in a non-clinical sample of young adults. Psychiatry Res Neuroimaging 2016; 254:83-91. [PMID: 27388803 DOI: 10.1016/j.pscychresns.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
Schizophrenia may be conceptualised using a dimensional approach to examine trait-like expression such as schizotypy within non-clinical populations to better understand pathophysiology. A candidate psychosis-risk marker, the auditory mismatch negativity (MMN) is thought to index the functionality of glutamatergic NMDA receptor mediated neurotransmission. Although the MMN is robustly reduced in patients with schizophrenia, the association between MMN and schizotypy in the general population is under-investigated. Thirty-five healthy participants completed the Schizotypal Personality Questionnaire (SPQ) and a multi-feature MMN paradigm (standards 82%, 50ms, 1000Hz, 80dB) with duration (100ms), frequency (1200Hz) and intensity (90dB) deviants (6% each). Spearman's correlations were used to explore the association between schizotypal personality traits and MMN amplitude. Few associations were identified between schizotypal traits and MMN. Higher Suspiciousness subscale scores tended to be correlated with larger frequency MMN amplitude. A median-split comparison of the sample on Suspiciousness scores showed larger MMN (irrespective of deviant condition) in the High compared to the Low Suspiciousness group. The trend-level association between MMN and Suspiciousness is in contrast to the robustly attenuated MMN amplitude observed in schizophrenia. Reductions in MMN may reflect a schizophrenia-disease state, whereas non-clinical schizotypy may not be subserved by similar neuropathology.
Collapse
Affiliation(s)
- Samantha J Broyd
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | - Patricia T Michie
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health University of Newcastle, Newcastle, NSW, Australia
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - Hendrika H van Hell
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Lisa-Marie Greenwood
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Rodney J Croft
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Juanita Todd
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health University of Newcastle, Newcastle, NSW, Australia
| | - Rhoshel Lenroot
- School of Psychiatry, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - Nadia Solowij
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
129
|
Chen C, Liu CC, Weng PY, Cheng Y. Mismatch Negativity to Threatening Voices Associated with Positive Symptoms in Schizophrenia. Front Hum Neurosci 2016; 10:362. [PMID: 27471459 PMCID: PMC4945630 DOI: 10.3389/fnhum.2016.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/05/2016] [Indexed: 11/15/2022] Open
Abstract
Although the general consensus holds that emotional perception is impaired in patients with schizophrenia, the extent to which neural processing of emotional voices is altered in schizophrenia remains to be determined. This study enrolled 30 patients with chronic schizophrenia and 30 controls and measured their mismatch negativity (MMN), a component of auditory event-related potentials (ERP). In a passive oddball paradigm, happily or angrily spoken deviant syllables dada were randomly presented within a train of emotionally neutral standard syllables. Results showed that MMN in response to angry syllables and angry-derived non-vocal sounds was significantly decreased in individuals with schizophrenia. P3a to angry syllables showed stronger amplitudes but longer latencies. Weaker MMN amplitudes were associated with more positive symptoms of schizophrenia. Receiver operator characteristic analysis revealed that angry MMN, angry-derived MMN, and angry P3a could help predict whether someone had received a clinical diagnosis of schizophrenia. The findings suggested general impairments of voice perception and acoustic discrimination in patients with chronic schizophrenia. The emotional salience processing of voices showed an atypical fashion at the preattentive level, being associated with positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Chenyi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei Taiwan
| | - Chia-Chien Liu
- Institute of Neuroscience, National Yang-Ming University, TaipeiTaiwan; Department of Psychiatry, National Yang-Ming University Hospital, YilanTaiwan
| | - Pei-Yuan Weng
- Department of Psychiatry, National Yang-Ming University Hospital, Yilan Taiwan
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming University, TaipeiTaiwan; Department of Rehabilitation, National Yang-Ming University Hospital, YilanTaiwan
| |
Collapse
|
130
|
Suga M, Nishimura Y, Kawakubo Y, Yumoto M, Kasai K. Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiatry Clin Neurosci 2016; 70:295-302. [PMID: 27162140 DOI: 10.1111/pcn.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
AIM Auditory mismatch negativity (MMN) and its magnetoencephalographic (MEG) counterpart (MMNm) are an established biological index in schizophrenia research. MMN in response to duration and frequency deviants may have differential relevance to the pathophysiology and clinical stages of schizophrenia. MEG has advantage in that it almost purely detects MMNm arising from the auditory cortex. However, few previous MEG studies on schizophrenia have simultaneously assessed MMNm in response to duration and frequency deviants or examined the effect of chronicity on the group difference. METHODS Forty-two patients with chronic schizophrenia and 74 matched control subjects participated in the study. Using a whole-head MEG, MMNm in response to duration and frequency deviants of tones was recorded while participants passively listened to an auditory sequence. RESULTS Compared to healthy subjects, patients with schizophrenia exhibited significantly reduced powers of MMNm in response to duration deviant in both hemispheres, whereas MMNm in response to frequency deviant did not differ between the two groups. These results did not change according to the chronicity of the illness. CONCLUSION These results, obtained by using a sequence-enabling simultaneous assessment of both types of MMNm, suggest that MEG recording of MMN in response to duration deviant may be a more sensitive biological marker of schizophrenia than MMN in response to frequency deviant. Our findings represent an important first step towards establishment of MMN as a biomarker for schizophrenia in real-world clinical psychiatry settings.
Collapse
Affiliation(s)
- Motomu Suga
- Department of Rehabilitation, The University of Tokyo, Tokyo, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
131
|
Liberg B, Rahm C, Panayiotou A, Pantelis C. Brain change trajectories that differentiate the major psychoses. Eur J Clin Invest 2016; 46:658-74. [PMID: 27208657 DOI: 10.1111/eci.12641] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder and schizophrenia are highly heritable, often chronic and debilitating psychotic disorders that can be difficult to differentiate clinically. Their brain phenotypes appear to overlap in both cross-sectional and longitudinal structural neuroimaging studies, with some evidence to suggest areas of differentiation with differing trajectories. The aim of this review was to investigate the notion that longitudinal trajectories of alterations in brain structure could differentiate the two disorders. DESIGN Narrative review. We searched MEDLINE and Web of Science databases in May 2016 for studies that used structural magnetic resonance imaging to investigate longitudinal between-group differences in bipolar disorder and schizophrenia. Ten studies met inclusion criteria, namely longitudinal structural magnetic resonance studies comparing bipolar disorder (or affective psychosis) and schizophrenia within the same study. RESULTS Our review of these studies implicates illness-specific trajectories of morphological change in total grey matter volume, and in regions of the frontal, temporal and cingulate cortices. The findings in schizophrenia suggest a trajectory involving progressive grey matter loss confined to fronto-temporal cortical regions. Preliminary findings identify a similar but less severely impacted trajectory in a number of regions in bipolar disorder, however, bipolar disorder is also characterized by differential involvement across cingulate subregions. CONCLUSION The small number of available studies must be interpreted with caution but provide initial evidence supporting the notion that bipolar disorder and schizophrenia have differential longitudinal trajectories that are influenced by brain maturation.
Collapse
Affiliation(s)
- Benny Liberg
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christoffer Rahm
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anita Panayiotou
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Western Centre for Health Research & Education, Sunshine Hospital, University of Melbourne, St Albans, Vic., Australia.,Sunshine Hospital, Western Health, St Albans, Vic., Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.,Western Centre for Health Research & Education, Sunshine Hospital, University of Melbourne, St Albans, Vic., Australia.,Florey Institute for Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
132
|
Erickson MA, Ruffle A, Gold JM. A Meta-Analysis of Mismatch Negativity in Schizophrenia: From Clinical Risk to Disease Specificity and Progression. Biol Psychiatry 2016; 79:980-7. [PMID: 26444073 PMCID: PMC4775447 DOI: 10.1016/j.biopsych.2015.08.025] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The observation that mismatch negativity (MMN) is consistently impaired in schizophrenia has generated considerable interest in the use of this biomarker as an index of disease risk and progression. Despite such enthusiasm, a number of issues remain unresolved regarding the nature of MMN impairment. The present study expands upon an earlier meta-analysis of MMN impairment in schizophrenia by examining impairment across a range of clinical presentations, as well as across experimental parameters. METHODS One hundred one samples of schizophrenia patients were included in the present study, including first-episode (n = 13), chronic (n = 13), and mixed-stage (n = 75) samples. Additionally, MMN was examined in three related conditions: bipolar disorder (n = 9), unaffected first-degree relatives (n = 8), and clinical high risk (n = 16). RESULTS We found that MMN impairment 1) likely reflects a vulnerability to disease progression in clinical high-risk populations rather than a genetic risk for the condition; 2) is largely unrelated to duration of illness after the first few years of illness, indicating that impairment is not progressive throughout the life span; 3) is present in bipolar disorder, albeit to a lesser degree than in schizophrenia; and 4) is not modulated by experimental parameters such as magnitude of change between standard and deviant tones or frequency of deviant tones but may be modulated by attentional demands. CONCLUSIONS Such findings lay the foundation for a better understanding of the nature of MMN impairment in schizophrenia, as well as its potential as a clinically useful biomarker.
Collapse
Affiliation(s)
- Molly A. Erickson
- Maryland Psychiatric Research Center, Univeristy of Maryland School of Medicine,Corresponding author's contact information: 55 Wade Avenue, Catonsville, MD 21228.
| | - Abigail Ruffle
- Maryland Psychiatric Research Center, Univeristy of Maryland School of Medicine
| | - James M. Gold
- Maryland Psychiatric Research Center, Univeristy of Maryland School of Medicine
| |
Collapse
|
133
|
Lee SH, Niznikiewicz M, Asami T, Otsuka T, Salisbury DF, Shenton ME, McCarley RW. Initial and Progressive Gray Matter Abnormalities in Insular Gyrus and Temporal Pole in First-Episode Schizophrenia Contrasted With First-Episode Affective Psychosis. Schizophr Bull 2016; 42:790-801. [PMID: 26675295 PMCID: PMC4838098 DOI: 10.1093/schbul/sbv177] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the insula and temporal pole (TP) of paralimbic regions are important in both affective and cognitive processing, it is not well known whether gray matter volume (GMV) abnormalities in these regions show post-onset progression and differentially affect first-episode schizophrenia (FESZ) and first-episode affective psychosis (FEAFF) patients. To determine whether there are initial and progressive GMV deficits in insula and TP in FESZ and FEAFF (mainly manic) patients, their relative specificity to FESZ or FEAFF, and relationship to symptoms, we conducted a naturalistic study at first hospitalization for psychosis and follow-up ~1.5 years later. Initial 1.5T magnetic resonance imaging (MRI) scans and follow-up scans were on the same scanner. Twenty-two FESZ, 23 FEAFF, and 23 healthy control (HC) subjects were group matched for age, gender, parental socioeconomic status, and handedness. At first hospitalization, FESZ showed significantly smaller bilateral insular GMV compared with FEAFF, and smaller left TP GMV compared with FEAFF and HC. Moreover, on 1.5 years follow-up, FESZ showed progressive GMV decreases in bilateral insula compared with FEAFF and HC, and in TP GMV compared with HC. In contrast, FEAFF showed no progression. Progression of FESZ GMV in both insula and TP was inversely associated with changes in the overall Brief Psychiatric Rating Scale symptom score, indicating less improvement or worsening of symptoms.
Collapse
Affiliation(s)
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Takeshi Asami
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tatsui Otsuka
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Dean F. Salisbury
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Clinical Neurophysiology Research Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Martha E. Shenton
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert W. McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA;,*To whom correspondence should be addressed; Department of Psychiatry, 116A, VA Boston Healthcare System, Brockton Division, Harvard Medical School, 940 Belmont St., Brockton, MA 02301, US; tel: 508-583-4500-X63723 or X62473, fax: 508-586-0894, e-mail:
| |
Collapse
|
134
|
Näätänen R, Todd J, Schall U. Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals. Biol Psychol 2016; 116:36-40. [DOI: 10.1016/j.biopsycho.2015.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
|
135
|
Harms L, Michie PT, Näätänen R. Criteria for determining whether mismatch responses exist in animal models: Focus on rodents. Biol Psychol 2016. [DOI: 10.1016/j.biopsycho.2015.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
136
|
Association between impaired brain activity and volume at the sub-region of Broca's area in ultra-high risk and first-episode schizophrenia: A multi-modal neuroimaging study. Schizophr Res 2016; 172:9-15. [PMID: 26873807 DOI: 10.1016/j.schres.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Recent studies have suggested that functional abnormalities in Broca's area, which is important in language production (speech and thoughts before speech), play an important role in the pathophysiology of schizophrenia. While multi-modal approaches have proved useful in revealing the specific pathophysiology of psychosis, the association of functional abnormalities with gray matter volume (GMV) here in subjects with an ultra-high risk (UHR) of schizophrenia, those with first-episode schizophrenia (FES), and healthy controls has yet to be clarified. Therefore, the relationship between cortical activity measured using functional near-infrared spectroscopy (fNIRS) during a verbal fluency task, and GMV in the Broca's area assessed using a manual tracing in magnetic resonance imaging (MRI), which considers individual structural variation, was examined for 57 subjects (23 UHR/18 FES/16 controls). The UHR and FES group showed significantly reduced brain activity compared to control group in the left pars triangularis (PT) (P=.036, .003, respectively). Furthermore in the FES group, the reduced brain activity significantly positively correlated with the volume in the left PT (B=0.29, P=.027), while significant negative association was evident for all subjects (B=-0.18, P=.010). This correlation remained significant after adjusting for antipsychotics dosage, and voxel-wise analysis could not detect any significant correlation between impaired cortical activity and volume. The significant relationship between neural activity and GMV in the left PT may reflect a specific pathophysiology related to the onset of schizophrenia.
Collapse
|
137
|
Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol 2016; 116:57-67. [DOI: 10.1016/j.biopsycho.2015.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
|
138
|
Kos MZ, Carless MA, Peralta J, Blackburn A, Almeida M, Roalf D, Pogue-Geile MF, Prasad K, Gur RC, Nimgaonkar V, Curran JE, Duggirala R, Glahn DC, Blangero J, Gur RE, Almasy L. Exome Sequence Data From Multigenerational Families Implicate AMPA Receptor Trafficking in Neurocognitive Impairment and Schizophrenia Risk. Schizophr Bull 2016; 42:288-300. [PMID: 26405221 PMCID: PMC4753604 DOI: 10.1093/schbul/sbv135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a mental disorder characterized by impairments in behavior, thought, and neurocognitive performance. We searched for susceptibility loci at a quantitative trait locus (QTL) previously reported for abstraction and mental flexibility (ABF), a cognitive function often compromised in schizophrenia patients and their unaffected relatives. Exome sequences were determined for 134 samples in 8 European American families from the original linkage study, including 25 individuals with schizophrenia or schizoaffective disorder. At chromosome 5q32-35.3, we analyzed 407 protein-altering variants for association with ABF and schizophrenia status. For replication, significant, Bonferroni-corrected findings were tested against cognitive traits in Mexican American families (n = 959), as well as interrogated for schizophrenia risk using GWAS results from the Psychiatric Genomics Consortium (PGC). From the gene SYNPO, rs6579797 (MAF = 0.032) shows significant associations with ABF (P = .015) and schizophrenia (P = .040), as well as jointly (P = .0027). In the Mexican American pedigrees, rs6579797 exhibits significant associations with IQ (P = .011), indicating more global effects on neurocognition. From the PGC results, other SYNPO variants were identified with near significant effects on schizophrenia risk, with a local linkage disequilibrium block displaying signatures of positive selection. A second missense variant within the QTL, rs17551608 (MAF = 0.19) in the gene WWC1, also displays a significant effect on schizophrenia in our exome sequences (P = .038). Remarkably, the protein products of SYNPO and WWC1 are interaction partners involved in AMPA receptor trafficking, a brain process implicated in synaptic plasticity. Our study reveals variants in these genes with significant effects on neurocognition and schizophrenia risk, identifying a potential pathogenic mechanism for schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Mark Z. Kos
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX;,*To whom correspondence should be addressed; South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX 78229, US; tel: 210-585-9772, fax: 210-582-5836, e-mail:
| | - Melanie A. Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - August Blackburn
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Konasale Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - David C. Glahn
- Department of Psychiatry, Olin Neuropsychiatric Research Center, Yale School of Medicine, Hartford, CT
| | - John Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, San Antonio, TX
| |
Collapse
|
139
|
The effects of ketamine on the mismatch negativity (MMN) in humans – A meta-analysis. Clin Neurophysiol 2016; 127:1387-1394. [DOI: 10.1016/j.clinph.2015.10.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
|
140
|
Lewis DA, Glausier JR. Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:31-75. [PMID: 27627824 DOI: 10.1007/978-3-319-30596-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
141
|
|
142
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
143
|
Okano H, Miyawaki A, Kasai K. Brain/MINDS: brain-mapping project in Japan. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0310. [PMID: 25823872 PMCID: PMC4387516 DOI: 10.1098/rstb.2014.0310] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.
Collapse
Affiliation(s)
- Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
144
|
Shelton MA, Newman JT, Gu H, Sampson AR, Fish KN, MacDonald ML, Moyer CE, DiBitetto JV, Dorph-Petersen KA, Penzes P, Lewis DA, Sweet RA. Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia. Biol Psychiatry 2015; 78:374-85. [PMID: 25818630 PMCID: PMC4520801 DOI: 10.1016/j.biopsych.2014.12.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), numerous studies have revealed that the typically robust immunoreactivity (IR) of MAP2 is significantly reduced across several cortical regions. The relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in Sz, has not been explored in previous studies, and MAP2-IR loss has not been investigated in the primary auditory cortex (Brodmann area 41), a site of conserved pathology in Sz. METHODS Using quantitative spinning disk confocal microscopy in two cohorts of subjects with Sz and matched control subjects (Sz subjects, n = 20; control subjects, n = 20), we measured MAP2-IR and dendritic spine density and spine number in deep layer 3 of BA41. RESULTS Subjects with Sz exhibited a significant reduction in MAP2-IR. The reductions in MAP2-IR were not associated with neuron loss, loss of MAP2 protein, clinical confounders, or technical factors. Dendritic spine density and number also were reduced in Sz and correlated with MAP2-IR. In 12 (60%) subjects with Sz, MAP2-IR values were lower than the lowest values in control subjects; only in this group were spine density and number significantly reduced. CONCLUSIONS These findings demonstrate that MAP2-IR loss is closely linked to dendritic spine pathology in Sz. Because MAP2 shares substantial sequence, regulatory, and functional homology with MAP tau, the wealth of knowledge regarding tau biology and the rapidly expanding field of tau therapeutics provide resources for identifying how MAP2 is altered in Sz and possible leads to novel therapeutics.
Collapse
Affiliation(s)
- Micah A Shelton
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jason T Newman
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Gu
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allan R Sampson
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth N Fish
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew L MacDonald
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Caitlin E Moyer
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James V DiBitetto
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Karl-Anton Dorph-Petersen
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David A Lewis
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
145
|
Javitt DC, Sweet RA. Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015; 16:535-50. [PMID: 26289573 PMCID: PMC4692466 DOI: 10.1038/nrn4002] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder that is associated with persistent psychosocial disability in affected individuals. Although studies of schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and executive function, there is an increasing realization that, in this disorder, deficits can be found throughout the cortex and are manifest even at the level of early sensory processing. These deficits are highly amenable to translational investigation and represent potential novel targets for clinical intervention. Deficits, moreover, have been linked to specific structural abnormalities in post-mortem auditory cortex tissue from individuals with schizophrenia, providing unique insights into underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Unit 21, New York, New York 10032, USA
- Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute, 140 Old Orangeburg Rd, Orangeburg, New York 10962, USA
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA
- VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Research Office Building (151R), University Drive C, Pittsburgh, Pennsylvania 15240, USA
| |
Collapse
|
146
|
Slow Progression of Cognitive Dysfunction of Alzheimer's Disease in Sexagenarian Women with Schizophrenia. Case Rep Psychiatry 2015; 2015:968598. [PMID: 26246928 PMCID: PMC4515271 DOI: 10.1155/2015/968598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Although both schizophrenia (SCZ) and Alzheimer's disease (AD) are among the most common psychiatric diseases, the interaction of these two is not well-understood. We investigated three women with SCZ who developed AD in their 60s. The patients presented with cognitive dysfunction such as loss of recent memory, which was confirmed by both clinical observations and neuropsychological tests. Their magnetic resonance and functional imaging findings were consistent with AD. Their brain atrophy advanced significantly during a 6-year observation period. However, their global cognitive function did not deteriorate significantly during this period. Although the cognitive reserve model might account for this discrepancy, our results suggest some interactions between the neuropathology of SCZ and AD and warrant further research.
Collapse
|
147
|
Rudolph ED, Ells EM, Campbell DJ, Abriel SC, Tibbo PG, Salisbury DF, Fisher DJ. Finding the missing-stimulus mismatch negativity (MMN) in early psychosis: altered MMN to violations of an auditory gestalt. Schizophr Res 2015; 166:158-63. [PMID: 26072323 PMCID: PMC4791035 DOI: 10.1016/j.schres.2015.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
The mismatch negativity (MMN) is an EEG-derived event-related potential (ERP) elicited by any violation of a predicted auditory 'rule', regardless of whether one is attending to the stimuli, and is thought to reflect updating of the stimulus context. Chronic schizophrenia patients exhibit robust MMN deficits, while MMN reduction in first-episode and early phase psychosis is significantly less consistent. Traditional two-tone "oddball" MMN measures of sensory information processing may be considered too simple for use in early phase psychosis in which pathology has not progressed fully, and a paradigm that probes higher order processes may be more appropriate for elucidating auditory change detection deficits. This study investigated whether MMN deficits could be detected in early phase psychosis (EP) patients using an abstract 'missing stimulus' pattern paradigm (Salisbury, 2012). The stimuli were 400 groups of six tones (1000Hz, 50ms duration, 330ms stimulus onset asynchrony), which was presented with an inter-trial interval of 750ms. Occasionally a group contained a deviant, meaning that it was missing either the 4th or 6th tone (50 trials each). EEG recordings of 13 EP patients (≤5year duration of illness) and 15 healthy controls (HC) were collected. Patients and controls did not significantly differ on age or years of education. Analyses of MMN amplitudes elicited by missing stimuli revealed amplitude reductions in EP patients, suggesting that these deficits are present very early in the progression of the illness. While there were no correlations between MMN measures and measures such as duration of illness, medication dosage or age, MMN amplitude reductions were correlated with positive symptomatology (i.e. auditory hallucinations). These findings suggest that MMNs elicited by the 'missing stimulus' paradigm are impaired in psychosis patients early in the progression of illness and that previously reported MMN-indexed deficits related to auditory hallucinations in chronic patients may also be present in EP patients. As such, this paradigm may have promise in identifying early processing deficits in this population.
Collapse
Affiliation(s)
- Erica D. Rudolph
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Emma M.L. Ells
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Debra J. Campbell
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Shelagh C. Abriel
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada, Capital District Health Authority, Halifax, Nova Scotia, Canada
| | - Dean F. Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek J. Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada, Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada, Capital District Health Authority, Halifax, Nova Scotia, Canada, Corresponding author at: Department of Psychology, Mount Saint Vincent University, 166 Bedford Hwy., Halifax, NS B3M 2J6, Canada. Tel.: +1 902 457 5503. (D.J. Fisher)
| |
Collapse
|
148
|
Damaso KAM, Michie PT, Todd J. Paying attention to MMN in schizophrenia. Brain Res 2015; 1626:267-79. [PMID: 26163366 DOI: 10.1016/j.brainres.2015.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The aim of this review is to explore the phenomenon of reduced mismatch negativity (MMN) in persons with schizophrenia and the possible relationship it has with attention impairments. In doing so we discuss (i) the prediction error account of MMN, (ii) reduced MMN as a faulty predictive processing system in persons with schizophrenia, (iii) the role of these systems in relevance filtering and attentional resource protection, (iv) attentional impairments in persons with schizophrenia, and (v) research that has explored MMN and attention in schizophrenia groups. Our review of the literature suggests that no study has appropriately examined the functional impact of smaller MMN in schizophrenia on the performance of a concurrent attention task. We conclude that future research should explore this notion further in the hope that it might embed MMN findings within outcomes of functional significance to individuals with the illness and those providing treatment. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- Karlye A M Damaso
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
149
|
Knott V, Impey D, Choueiry J, Smith D, de la Salle S, Saghir S, Smith M, Beaudry E, Ilivitsky V, Labelle A. An acute dose, randomized trial of the effects of CDP-Choline on Mismatch Negativity (MMN) in healthy volunteers stratified by deviance detection level. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40810-014-0002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
150
|
Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015. [PMID: 25752648 DOI: 10.llll/nyas.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in psychiatric neuroscience have transformed our understanding of impaired and spared brain functions in psychotic illnesses. Despite substantial progress, few (if any) laboratory tests have graduated to clinics to inform diagnoses, guide treatments, and monitor treatment response. Providers must rely on careful behavioral observation and interview techniques to make inferences about patients' inner experiences and then secondary deductions about impacted neural systems. Development of more effective treatments has also been hindered by a lack of translational quantitative biomarkers that can span the brain-behavior treatment knowledge gap. Here, we describe an example of a simple, low-cost, and translatable electroencephalography (EEG) measure that offers promise for improving our understanding and treatment of psychotic illnesses: mismatch negativity (MMN). MMN is sensitive to and/or predicts response to some pharmacologic and nonpharmacologic interventions and accounts for substantial portions of variance in clinical, cognitive, and psychosocial functioning in schizophrenia (SZ). This measure has recently been validated for use in large-scale multisite clinical studies of SZ. Finally, MMN greatly improves our ability to forecast which individuals at high clinical risk actually develop a psychotic illness. These attributes suggest that MMN can contribute to personalized biomarker-guided treatment strategies aimed at ameliorating or even preventing the onset of psychosis.
Collapse
Affiliation(s)
- Gregory A Light
- VISN 22 Mental Illness, Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|