101
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
102
|
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O'Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 2022; 27:2114-2125. [PMID: 35136228 PMCID: PMC9126820 DOI: 10.1038/s41380-022-01452-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sven Bolte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Meiyu Duan
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fabio Luis Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Durston
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Damien Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Fitzgerald
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK
| | - Liesbeth Hoekstra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Joseph A King
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Declan G M Murphy
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley Foundation NHS Trust, London, UK
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kirsten O'Hearn
- Department of Physiology and Pharmacology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Bob Oranje
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomdiques August Pi i Sunyer), Barcelona, Spain
| | - Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Alessandra Retico
- National Institute for Nuclear Physics, Pisa Division, Largo B. Pontecorvo 3, Pisa, Italy
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katya Rubia
- Institute of Psychiatry, King's College London, London, UK
| | - Devon Shook
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristiina Tammimies
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region, Stockholm, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Womens and Childrens Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
103
|
Zhu Y, Nakatani H, Yassin W, Maikusa N, Okada N, Kunimatsu A, Abe O, Kuwabara H, Yamasue H, Kasai K, Okanoya K, Koike S. Application of a Machine Learning Algorithm for Structural Brain Images in Chronic Schizophrenia to Earlier Clinical Stages of Psychosis and Autism Spectrum Disorder: A Multiprotocol Imaging Dataset Study. Schizophr Bull 2022; 48:563-574. [PMID: 35352811 PMCID: PMC9077435 DOI: 10.1093/schbul/sbac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs). STUDY DESIGN Total 359 T1-weighted MRI scans, including 154 individuals with schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained using three acquisition protocols. Of these, data regarding ChSZ (n = 75) and HC (n = 101) from two protocols were used to build a classifier (training dataset). The remainder was used to evaluate the classifier (test, independent confirmatory, and independent group datasets). Scanner and protocol effects were diminished using ComBat. STUDY RESULTS The accuracy of the classifier for the test and independent confirmatory datasets were 75% and 76%, respectively. The bilateral pallidum and inferior frontal gyrus pars triangularis strongly contributed to classifying ChSZ. Schizophrenia spectrum individuals were more likely to be classified as ChSZ compared to ASD (classification rate to ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; HC, 21%). CONCLUSION We built a classifier from multiple protocol structural brain images applicable to independent samples from different clinical stages and spectra. The predictive information of the classifier could be useful for applying neuroimaging techniques to clinical differential diagnosis and predicting disease onset earlier.
Collapse
Affiliation(s)
- Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hironori Nakatani
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naohiro Okada
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Kunimatsu
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Kiyoto Kasai
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuo Okanoya
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinsuke Koike
- To whom correspondence should be addressed; Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; tel: +81-3-5454-4327, fax: +81-3-5454-4327, e-mail:
| |
Collapse
|
104
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
105
|
Patel Y, Parker N, Salum GA, Pausova Z, Paus T. General Psychopathology, Cognition, and the Cerebral Cortex in 10-Year-Old Children: Insights From the Adolescent Brain Cognitive Development Study. Front Hum Neurosci 2022; 15:781554. [PMID: 35145385 PMCID: PMC8823367 DOI: 10.3389/fnhum.2021.781554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
General psychopathology and cognition are likely to have a bidirectional influence on each other. Yet, the relationship between brain structure, psychopathology, and cognition remains unclear. This brief report investigates the association between structural properties of the cerebral cortex [surface area, cortical thickness, intracortical myelination indexed by the T1w/T2w ratio, and neurite density assessed by restriction spectrum imaging (RSI)] with general psychopathology and cognition in a sample of children from the Adolescent Brain Cognitive Development (ABCD) study. Higher levels of psychopathology and lower levels of cognitive ability were associated with a smaller cortical surface area. Inter-regionally—across the cerebral cortex—the strength of association between an area and psychopathology is strongly correlated with the strength of association between an area and cognition. Taken together, structural deviations particularly observed in the cortical surface area influence both psychopathology and cognition.
Collapse
Affiliation(s)
- Yash Patel
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Nadine Parker
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Giovanni A. Salum
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tomáš Paus
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hopitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Tomáš Paus,
| |
Collapse
|
106
|
Kirschner M, Hodzic-Santor B, Antoniades M, Nenadic I, Kircher T, Krug A, Meller T, Grotegerd D, Fornito A, Arnatkeviciute A, Bellgrove MA, Tiego J, Dannlowski U, Koch K, Hülsmann C, Kugel H, Enneking V, Klug M, Leehr EJ, Böhnlein J, Gruber M, Mehler D, DeRosse P, Moyett A, Baune BT, Green M, Quidé Y, Pantelis C, Chan R, Wang Y, Ettinger U, Debbané M, Derome M, Gaser C, Besteher B, Diederen K, Spencer TJ, Fletcher P, Rössler W, Smigielski L, Kumari V, Premkumar P, Park HRP, Wiebels K, Lemmers-Jansen I, Gilleen J, Allen P, Kozhuharova P, Marsman JB, Lebedeva I, Tomyshev A, Mukhorina A, Kaiser S, Fett AK, Sommer I, Schuite-Koops S, Paquola C, Larivière S, Bernhardt B, Dagher A, Grant P, van Erp TGM, Turner JA, Thompson PM, Aleman A, Modinos G. Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Mol Psychiatry 2022; 27:1167-1176. [PMID: 34707236 PMCID: PMC9054674 DOI: 10.1038/s41380-021-01359-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
Collapse
Affiliation(s)
- Matthias Kirschner
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada ,grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Benazir Hodzic-Santor
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Mathilde Antoniades
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Alex Fornito
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Aurina Arnatkeviciute
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Jeggan Tiego
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - David Mehler
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Pamela DeRosse
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA ,grid.250903.d0000 0000 9566 0634The Feinstein Institutes for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Ashley Moyett
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Melissa Green
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Yann Quidé
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Christos Pantelis
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC Australia
| | - Raymond Chan
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- grid.10388.320000 0001 2240 3300University of Bonn, Bonn, Germany
| | - Martin Debbané
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Melodie Derome
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Christian Gaser
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Bianca Besteher
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Kelly Diederen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Tom J. Spencer
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Paul Fletcher
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Wulf Rössler
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany ,grid.11899.380000 0004 1937 0722Institute of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lukasz Smigielski
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veena Kumari
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Preethi Premkumar
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Haeme R. P. Park
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | - Kristina Wiebels
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - James Gilleen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Paul Allen
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Petya Kozhuharova
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Jan-Bernard Marsman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irina Lebedeva
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Alexander Tomyshev
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Anna Mukhorina
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Stefan Kaiser
- grid.150338.c0000 0001 0721 9812Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Anne-Kathrin Fett
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.28577.3f0000 0004 1936 8497City, University London, London, UK
| | - Iris Sommer
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sanne Schuite-Koops
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Sara Larivière
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Boris Bernhardt
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Alain Dagher
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Phillip Grant
- grid.440934.e0000 0004 0593 1824Fresenius University of Applied Sciences, Frankfurt am Main, Germany
| | - Theo G. M. van Erp
- grid.266093.80000 0001 0668 7243Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Imaging Genetics and Neuroinformatics Lab, Georgia State University, Atlanta, GA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - André Aleman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gemma Modinos
- Department of Psychosis Studies, King's College London, London, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
107
|
Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M. Imaging transcriptomics: Convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep 2021; 37:110173. [PMID: 34965413 DOI: 10.1016/j.celrep.2021.110173] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The integration of transcriptomic and neuroimaging data, "imaging transcriptomics," has recently emerged to generate hypotheses about potential biological pathways underlying regional variability in neuroimaging features. However, the validity of this approach is yet to be examined in depth. Here, we sought to bridge this gap by performing transcriptomic decoding of the regional distribution of well-known molecular markers spanning different elements of the biology of the healthy human brain. Imaging transcriptomics identifies biological and cell pathways that are consistent with the known biology of a wide range of molecular neuroimaging markers. The extent to which it can capture patterns of gene expression that align well with elements of the biology of the neuroinflammatory axis, at least in healthy controls without a proinflammatory challenge, is inconclusive. Imaging transcriptomics might constitute an interesting approach to improve our understanding of the biological pathways underlying regional variability in a wide range of neuroimaging phenotypes.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Department of Information Engineering, University of Padua, Via Gradenigo, 6/b, 35131 Padova, Italy.
| | | |
Collapse
|
108
|
Li J, Wu GR, Li B, Fan F, Zhao X, Meng Y, Zhong P, Yang S, Biswal BB, Chen H, Liao W. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter. Commun Biol 2021; 4:1417. [PMID: 34931033 PMCID: PMC8688465 DOI: 10.1038/s42003-021-02952-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Intersubject variability is a fundamental characteristic of brain organizations, and not just "noise". Although intrinsic functional connectivity (FC) is unique to each individual and varies across brain gray-matter, the underlying mechanisms of intersubject functional variability in white-matter (WM) remain unknown. This study identified WMFC variabilities and determined the genetic basis and macroscale imaging in 45 healthy subjects. The functional localization pattern of intersubject variability across WM is heterogeneous, with most variability observed in the heteromodal cortex. The variabilities of heteromodal regions in expression profiles of genes are related to neuronal cells, involved in synapse-related and glutamic pathways, and associated with psychiatric disorders. In contrast, genes overexpressed in unimodal regions are mostly expressed in glial cells and were related to neurological diseases. Macroscopic variability recapitulates the functional and structural specializations and behavioral phenotypes. Together, our results provide clues to intersubject variabilities of the WMFC with convergent transcriptomic and cellular signatures, which relate to macroscale brain specialization.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, 400715, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07103, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
109
|
Balsor JL, Arbabi K, Singh D, Kwan R, Zaslavsky J, Jeyanesan E, Murphy KM. A Practical Guide to Sparse k-Means Clustering for Studying Molecular Development of the Human Brain. Front Neurosci 2021; 15:668293. [PMID: 34867140 PMCID: PMC8636820 DOI: 10.3389/fnins.2021.668293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Studying the molecular development of the human brain presents unique challenges for selecting a data analysis approach. The rare and valuable nature of human postmortem brain tissue, especially for developmental studies, means the sample sizes are small (n), but the use of high throughput genomic and proteomic methods measure the expression levels for hundreds or thousands of variables [e.g., genes or proteins (p)] for each sample. This leads to a data structure that is high dimensional (p ≫ n) and introduces the curse of dimensionality, which poses a challenge for traditional statistical approaches. In contrast, high dimensional analyses, especially cluster analyses developed for sparse data, have worked well for analyzing genomic datasets where p ≫ n. Here we explore applying a lasso-based clustering method developed for high dimensional genomic data with small sample sizes. Using protein and gene data from the developing human visual cortex, we compared clustering methods. We identified an application of sparse k-means clustering [robust sparse k-means clustering (RSKC)] that partitioned samples into age-related clusters that reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the genes or proteins contributing to partitioning samples into age-related clusters that progress across the lifespan. This approach addresses a problem in current studies that could not identify multiple postnatal clusters. Moreover, clusters encompassed a range of ages like a series of overlapping waves illustrating that chronological- and brain-age have a complex relationship. In addition, a recently developed workflow to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and revealed neurobiologically relevant features that identified how the human visual cortex changes across the lifespan. These methods can help address the growing demand for multimodal integration, from molecular machinery to brain imaging signals, to understand the human brain’s development.
Collapse
Affiliation(s)
- Justin L Balsor
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Keon Arbabi
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Desmond Singh
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Rachel Kwan
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Jonathan Zaslavsky
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Ewalina Jeyanesan
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
110
|
Tremblay C, Rahayel S, Vo A, Morys F, Shafiei G, Abbasi N, Markello RD, Gan-Or Z, Misic B, Dagher A. Brain atrophy progression in Parkinson's disease is shaped by connectivity and local vulnerability. Brain Commun 2021; 3:fcab269. [PMID: 34859216 PMCID: PMC8633425 DOI: 10.1093/braincomms/fcab269] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Brain atrophy has been reported in the early stages of Parkinson's disease, but there have been few longitudinal studies. How intrinsic properties of the brain, such as anatomical connectivity, local cell-type distribution and gene expression combine to determine the pattern of disease progression also remains unknown. One hypothesis proposes that the disease stems from prion-like propagation of misfolded alpha-synuclein via the connectome that might cause varying degrees of tissue damage based on local properties. Here, we used MRI data from the Parkinson Progression Markers Initiative to map the progression of brain atrophy over 1, 2 and 4 years compared with baseline. We derived atrophy maps for four time points using deformation-based morphometry applied to T1-weighted MRI from 120 de novo Parkinson's disease patients, 74 of whom had imaging at all four time points (50 Men: 24 Women) and 157 healthy control participants (115 Men: 42 Women). In order to determine factors that may influence neurodegeneration, we related atrophy progression to brain structural and functional connectivity, cell-type expression and gene ontology enrichment analyses. After regressing out the expected age and sex effects associated with normal ageing, we found that atrophy significantly progressed over 2 and 4 years in the caudate, nucleus accumbens, hippocampus and posterior cortical regions. This progression was shaped by both structural and functional brain connectivity. Also, the progression of atrophy was more pronounced in regions with a higher expression of genes related to synapses and was inversely related to the prevalence of oligodendrocytes and endothelial cells. In sum, we demonstrate that the progression of atrophy in Parkinson's disease is in line with the prion-like propagation hypothesis of alpha-synuclein and provide evidence that synapses may be especially vulnerable to synucleinopathy. In addition to identifying vulnerable brain regions, this study reveals different factors that may be implicated in the neurotoxic mechanisms leading to progression in Parkinson's disease. All brain maps generated here are available on request.
Collapse
Affiliation(s)
- Christina Tremblay
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shady Rahayel
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC H4J 1C5, Canada
| | - Andrew Vo
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Golia Shafiei
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ross D Markello
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
111
|
Leussis MP, Thanos JM, Powers A, Peterson E, Head JP, McGovern NJ, Malarkey FJ, Drake A. Sex differences in long-term behavioral alterations, especially anxiety, following prenatal fluoxetine exposure in C57BL/6 mice. Pharmacol Biochem Behav 2021; 211:173293. [PMID: 34744001 DOI: 10.1016/j.pbb.2021.173293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Evidence demonstrates that psychiatric disorders during pregnancy are detrimental to the offspring. Many disorders are treated with SSRIs and increasing numbers of pregnant women now receive these drugs during gestation. The long-term neurobehavioral consequences of prenatal SSRI exposure require further evaluation. This study examined the effects of prenatal fluoxetine exposure in mice in an extensive battery of behaviors related to neurodevelopment, mood, social, and repetitive behaviors. C57BL/6J dams were administered fluoxetine at a low (0.6 mg/kg/day) or high (6 mg/kg/day) dose or saline from embryonic days 8 to 18. Juvenile mice were tested for changes in ultrasonic vocalizations and neuromotor development. In adulthood, offspring were tested for changes in behaviors related to anxiety, depression, social, and repetitive behaviors. Prenatal exposure to fluoxetine impaired surface righting reflex at P5, and sex-dependently reduced the frequency of ultrasonic vocalizations in juvenile males but not females. In adulthood, both males and females prenatally exposed to high, but not low, doses of fluoxetine exhibited an increase in repetitive behaviors in the marble burying task and a decrease in sucrose preference. Males, but not females, exposed to fluoxetine exhibited increased anxiety-related behaviors in the elevated plus maze. Prenatal fluoxetine exposure did not affect other adult behaviors including social preference, self-grooming, passive avoidance and open field activity. These findings suggest males are more sensitive than females to disruptions in serotonin balance during prenatal development and highlight the need for additional systematic and mechanistic studies to evaluate the impact of fluoxetine exposure during other periods of gestation.
Collapse
Affiliation(s)
- Melanie P Leussis
- Department of Psychology & Neuroscience, Emmanuel College, Boston, MA 02115, United States of America.
| | - Jessica M Thanos
- Department of Biology, Emmanuel College, Boston, MA 02115, United States of America
| | - Alex Powers
- Department of Biology, Emmanuel College, Boston, MA 02115, United States of America
| | - Emalee Peterson
- Department of Biology, Emmanuel College, Boston, MA 02115, United States of America
| | - Joshua P Head
- Department of Psychology & Neuroscience, Emmanuel College, Boston, MA 02115, United States of America
| | - Nathan J McGovern
- Department of Psychology & Neuroscience, Emmanuel College, Boston, MA 02115, United States of America
| | - Francis J Malarkey
- Department of Psychology & Neuroscience, Emmanuel College, Boston, MA 02115, United States of America
| | - Anna Drake
- Department of Biology, Emmanuel College, Boston, MA 02115, United States of America
| |
Collapse
|
112
|
Yu XM, Qiu LL, Huang HX, Zuo X, Zhou ZH, Wang S, Liu HS, Tian L. Comparison of resting-state spontaneous brain activity between treatment-naive schizophrenia and obsessive-compulsive disorder. BMC Psychiatry 2021; 21:544. [PMID: 34732149 PMCID: PMC8565005 DOI: 10.1186/s12888-021-03554-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) and obsessive-compulsive disorder (OCD) share many demographic characteristics and severity of clinical symptoms, genetic risk factors, pathophysiological underpinnings, and brain structure and function. However, the differences in the spontaneous brain activity patterns between the two diseases remain unclear. Here this study aimed to compare the features of intrinsic brain activity in treatment-naive participants with SZ and OCD and to explore the relationship between spontaneous brain activity and the severity of symptoms. METHODS In this study, 22 treatment-naive participants with SZ, 27 treatment-naive participants with OCD, and sixty healthy controls (HC) underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and degree of centrality (DC) were performed to examine the intrinsic brain activity of participants. Additionally, the relationships among spontaneous brain activity, the severity of symptoms, and the duration of illness were explored in SZ and OCD groups. RESULTS Compared with SZ group and HC group, participants with OCD had significantly higher ALFF in the right angular gyrus and the left middle frontal gyrus/precentral gyrus and significantly lower ALFF in the left superior temporal gyrus/insula/rolandic operculum and the left postcentral gyrus, while there was no significant difference in ALFF between SZ group and HC group. Compared with HC group, lower ALFF in the right supramarginal gyrus/inferior parietal lobule and lower DC in the right lingual gyrus/calcarine fissure and surrounding cortex of the two patient groups, higher ReHo in OCD group and lower ReHo in SZ group in the right angular gyrus/middle occipital gyrus brain region were documented in the present study. DC in SZ group was significantly higher than that in HC group in the right inferior parietal lobule/angular gyrus, while there were no significant DC differences between OCD group and HC group. In addition, ALFF in the left postcentral gyrus were positively correlated with positive subscale score (r = 0.588, P = 0.013) and general psychopathology subscale score (r = 0.488, P = 0.047) respectively on the Positive and Negative Syndrome Scale (PANSS) in SZ group. ALFF in the left superior temporal gyrus/insula/rolandic operculum of participants with OCD were positively correlated with compulsion subscale score (r = 0.463, P = 0.030) on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The longer the illness duration in SZ group, the smaller the ALFF of the left superior temporal gyrus/insula/rolandic operculum (Rho = 0.-492, P = 0.020). The longer the illness duration in OCD group, the higher the ALFF of the right supramarginal gyrus/inferior parietal lobule (Rho = 0.392, P = 0.043) and the left postcentral gyrus (Rho = 0.385, P = 0.048), and the lower the DC of the right inferior parietal lobule/angular gyrus (Rho = - 0.518, P = 0.006). CONCLUSION SZ and OCD show some similarities in spontaneous brain activity in parietal and occipital lobes, but exhibit different patterns of spontaneous brain activity in frontal, temporal, parietal, occipital, and insula brain regions, which might imply different underlying neurobiological mechanisms in the two diseases. Compared with OCD, SZ implicates more significant abnormalities in the functional connections among brain regions.
Collapse
Affiliation(s)
- Xiao-Man Yu
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Lin-Lin Qiu
- grid.186775.a0000 0000 9490 772XSchool of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui 230032 People’s Republic of China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders & Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui 230032 People’s Republic of China
| | - Hai-Xia Huang
- Department of Medical Imaging, Huadong Sanatorium, Wuxi, Jiangsu 214065 People’s Republic of China
| | - Xiang Zuo
- Department of Medical Imaging, Huadong Sanatorium, Wuxi, Jiangsu 214065 People’s Republic of China
| | - Zhen-He Zhou
- Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu, 214151, People's Republic of China.
| | - Shuai Wang
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Hai-Sheng Liu
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Lin Tian
- Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu, 214151, People's Republic of China.
| |
Collapse
|
113
|
Chen X, Kong J, Pan J, Huang K, Zhou W, Diao X, Cai J, Zheng J, Yang X, Xie W, Yu H, Li J, Pei L, Dong W, Qin H, Huang J, Lin T. Kidney damage causally affects the brain cortical structure: A Mendelian randomization study. EBioMedicine 2021; 72:103592. [PMID: 34619639 PMCID: PMC8498227 DOI: 10.1016/j.ebiom.2021.103592] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Alterations in the brain cortical structures of patients with chronic kidney disease (CKD) have been reported; however, the cause has not been determined yet. Herein, we used Mendelian randomization (MR) to reveal the causal effect of kidney damage on brain cortical structure. METHODS Genome-wide association studies summary data of estimated glomerular filtration rate (eGFR) in 480,698 participants from the CKDGen Consortium were used to identify genetically predicted eGFR. Data from 567,460 individuals from the CKDGen Consortium were used to assess genetically determined CKD; 302,687 participants from the UK Biobank were used to evaluate genetically predicted albuminuria. Further, data from 51,665 patients from the ENIGMA Consortium were used to assess the relationship between genetic predisposition and reduced eGFR, CKD, and progressive albuminuria with alterations in cortical thickness (TH) or surficial area (SA) of the brain. Magnetic resonance imaging was used to measure the SA and TH globally and in 34 functional regions. Inverse-variance weighted was used as the primary estimate whereas MR Pleiotropy RESidual Sum and Outlier, MR-Egger and weighted median were used to detect heterogeneity and pleiotropy. FINDINGS At the global level, albuminuria decreased TH (β = -0.07 mm, 95% CI: -0.12 mm to -0.02 mm, P = 0.004); at the functional level, albuminuria reduced TH of pars opercularis gyrus without global weighted (β = -0.11 mm, 95% CI: -0.16 mm to -0.07 mm, P = 3.74×10-6). No pleiotropy was detected. INTERPRETATION Kidney damage causally influences the cortex structure which suggests the existence of a kidney-brain axis. FUNDING This study was supported by the Science and Technology Planning Project of Guangdong Province (Grant No. 2020A1515111119 and 2017B020227007), the National Key Research and Development Program of China (Grant No. 2018YFA0902803), the National Natural Science Foundation of China (Grant No. 81825016, 81961128027, 81772719, 81772728), the Key Areas Research and Development Program of Guangdong (Grant No. 2018B010109006), Guangdong Special Support Program (2017TX04R246), Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, and Grants from the Guangdong Science and Technology Department (2020B1212060018).
Collapse
Affiliation(s)
- Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jiexin Pan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Huang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, PR China
| | | | - Xiayao Diao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jiahao Cai
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xuefan Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jiande Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, PR China
| | - Lu Pei
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Haide Qin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
114
|
Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Imaging Transcriptomics of Brain Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:319-331. [PMID: 36324650 PMCID: PMC9616271 DOI: 10.1016/j.bpsgos.2021.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
- Address correspondence to Aurina Arnatkeviciute, Ph.D
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
115
|
Penninck L, Ibrahim EC, Artiges E, Gorgievski V, Desrivières S, Farley S, Filippi I, de Macedo CEA, Belzeaux R, Banaschewski T, Bokde ALW, Quinlan EB, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Fröhner JH, Smolka MN, Walter H, Whelan R, Grenier J, Schumann G, Paillère Martinot ML, Tzavara ET, Martinot JL, for the IMAGEN Consortium. Immune-Related Genetic Overlap Between Regional Gray Matter Reductions and Psychiatric Symptoms in Adolescents, and Gene-Set Validation in a Translational Model. Front Syst Neurosci 2021; 15:725413. [PMID: 34658802 PMCID: PMC8514661 DOI: 10.3389/fnsys.2021.725413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Adolescence is a period of vulnerability for the maturation of gray matter (GM) and also for the onset of psychiatric disorders such as major depressive disorder (MDD), bipolar disorder and schizophrenia. Chronic neuroinflammation is considered to play a role in the etiology of these illnesses. However, the involvement of neuroinflammation in the observed link between regional GM volume reductions and psychiatric symptoms is not established yet. Here, we investigated a possible common immune-related genetic link between these two phenomena in european adolescents recruited from the community. Hippocampal and medial prefrontal cortex (mPFC) were defined a priori as regions of interest (ROIs). Their GM volumes were extracted in 1,563 14-year-olds from the IMAGEN database. We found a set of 26 SNPs that correlated with the hippocampal volumes and 29 with the mPFC volumes at age 14. We formed two ROI-Related Immune-gene scores (RRI) with the inflammation SNPs that correlated to hippocampal GM volume and to mPFC GM volume. The predictive ability of both RRIs with regards to the presence of psychiatric symptoms at age 18 was investigated by correlating the RRIs with psychometric questionnaires obtained at age 18. The RRIs (but not control scores constructed with random SNPs) correlated with the presence of depressive symptoms, positive psychotic symptoms, and externalizing symptoms in later adolescence. In addition, the effect of childhood maltreatment, one of the major environmental risk factors for depression and other mental disorders, interacted with the RRI effect. We next sought to validate this finding by investigating our set of inflammatory genes in a translational animal model of early life adversity. Mice were subjected to a protocol of maternal separation at an early post-natal age. We evaluated depressive behaviors in separated and non-separated mice at adolescence and their correlations with the concomitant expression of our genes in whole blood samples. We show that in mice, early life adversity affected the expression of our set of genes in peripheral blood, and that levels of expression correlated with symptoms of negative affect in adolescence. Overall, our translational findings in adolescent mice and humans provide a novel validated gene-set of immune-related genes for further research in the early stages of mood disorders.
Collapse
Affiliation(s)
- Lukas Penninck
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - El Chérif Ibrahim
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- EPS Barthelemy Durand, Etampes, France
| | | | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
| | | | - Irina Filippi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Raoul Belzeaux
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- AP-HM, Hôpital Sainte Marguerite, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Department of Psychiatry and Psychology, University of Vermont, Burlington, VT, United States
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
- PONS Research Group, Department of Psychiatry and Psychotherapy, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eleni T. Tzavara
- University of Paris, CNRS, INCC, Paris, France
- AP-HM, Hôpital Sainte Marguerite, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
- Fondation Fondamental, Créteil, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | |
Collapse
|
116
|
Heyer DB, Wilbers R, Galakhova AA, Hartsema E, Braak S, Hunt S, Verhoog MB, Muijtjens ML, Mertens EJ, Idema S, Baayen JC, de Witt Hamer P, Klein M, McGraw M, Lein ES, de Kock CPJ, Mansvelder HD, Goriounova NA. Verbal and General IQ Associate with Supragranular Layer Thickness and Cell Properties of the Left Temporal Cortex. Cereb Cortex 2021; 32:2343-2357. [PMID: 34550325 PMCID: PMC9157308 DOI: 10.1093/cercor/bhab330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022] Open
Abstract
The left temporal lobe is an integral part of the language system and its cortical structure and function associate with general intelligence. However, whether cortical laminar architecture and cellular properties of this brain area relate to verbal intelligence is unknown. Here, we addressed this using histological analysis and cellular recordings of neurosurgically resected temporal cortex in combination with presurgical IQ scores. We find that subjects with higher general and verbal IQ scores have thicker left (but not right) temporal cortex (Brodmann area 21, BA21). The increased thickness is due to the selective increase in layers 2 and 3 thickness, accompanied by lower neuron densities, and larger dendrites and cell body size of pyramidal neurons in these layers. Furthermore, these neurons sustain faster action potential kinetics, which improves information processing. Our results indicate that verbal mental ability associates with selective adaptations of supragranular layers and their cellular micro-architecture and function in left, but not right temporal cortex.
Collapse
Affiliation(s)
- D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E Hartsema
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Braak
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M B Verhoog
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town 7925, South Africa
| | - M L Muijtjens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Idema
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - J C Baayen
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - P de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M Klein
- Department of Medical Psychology, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, The Netherlands
| | - M McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - E S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
117
|
Sanfelici R, Ruef A, Antonucci LA, Penzel N, Sotiras A, Dong MS, Urquijo-Castro M, Wenzel J, Kambeitz-Ilankovic L, Hettwer MD, Ruhrmann S, Chisholm K, Riecher-Rössler A, Falkai P, Pantelis C, Salokangas RKR, Lencer R, Bertolino A, Kambeitz J, Meisenzahl E, Borgwardt S, Brambilla P, Wood SJ, Upthegrove R, Schultze-Lutter F, Koutsouleris N, Dwyer DB. Novel Gyrification Networks Reveal Links with Psychiatric Risk Factors in Early Illness. Cereb Cortex 2021; 32:1625-1636. [PMID: 34519351 DOI: 10.1093/cercor/bhab288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.
Collapse
Affiliation(s)
- Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max Planck School of Cognition, Leipzig, 04103, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Linda A Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Aristeidis Sotiras
- Department of Radiology and Institute of Informatics, Washington University in St. Luis, st. Luis, MO63110, USA
| | - Mark Sen Dong
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Maria Urquijo-Castro
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Julian Wenzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Katharine Chisholm
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Psychology, Aston University, Birmingham, B4 7ET, UK
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centrem University of Melbourne & Melbourne Health, Melbourne, 3053, Australia
| | | | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, 48149, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.,Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, 4002, Switzerland
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milano, 20122, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, 20122, Italy
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, 3052, Australia.,Orygen, Melbourne, 3052, Australia.,School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Early Intervention Service, Birmingham Women's and Children's NHS foundation Trust, Birmingham, B4 6NH, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany.,Department of Psychology and Mental Health, Faculty of Psychology, Airlangga University, Surubaya, 60286, Indonesia.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, 3000, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | | |
Collapse
|
118
|
Upmark F, Sjöqvist H, Hayes JF, Dalman C, Karlsson H. Doxycycline exposure during adolescence and future risk of non-affective psychosis and bipolar disorder: a total population cohort study. Transl Psychiatry 2021; 11:468. [PMID: 34497261 PMCID: PMC8426383 DOI: 10.1038/s41398-021-01574-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Doxycycline has been hypothesized to prevent development of severe mental illness (SMI) through the suppression of microglia, especially if administered during the intense synaptic pruning period of adolescence. However, results from register studies on potential benefits differ considerably. The aim of the present study was to determine whether doxycycline exposure during adolescence is associated with reduced SMI risk, and to investigate if a direct and specific causality is plausible. This is a Swedish national population register-based cohort study of all individuals born from 1993 to 1997, followed from the age of 13 until end of study at the end of 2016. The primary exposure was cumulative doxycycline prescription ≥3000 mg and outcomes were first diagnosis of non-affective psychosis (F20-F29) and first diagnosis of bipolar disorder (F30-F31). Causal effects were explored through Cox regressions with relevant covariates and secondary analyses of multilevel exposure and comparison to other antibiotics. We found no association between doxycycline exposure and risk of subsequent non-affective psychosis (adjusted hazard ratio (HR) 1.15, 95% CI 0.73-1.81, p = 0.541) and an increased risk of subsequent bipolar disorder (adjusted HR 1.95, 95% CI 1.49-2.55, p < 0.001). We do not believe the association between doxycycline and bipolar disorder is causal as similar associations were observed for other common antibiotics.
Collapse
Affiliation(s)
- Fredrik Upmark
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Sjöqvist
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Joseph F. Hayes
- grid.83440.3b0000000121901201Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - Christina Dalman
- grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden ,Centre for Epidemiology and Social Medicine, The Region Stockholm, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
119
|
Golovina E, Fadason T, Lints TJ, Walker C, Vickers MH, O’Sullivan JM. Understanding the impact of SNPs associated with autism spectrum disorder on biological pathways in the human fetal and adult cortex. Sci Rep 2021; 11:15867. [PMID: 34354167 PMCID: PMC8342620 DOI: 10.1038/s41598-021-95447-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by significant and complex genetic etiology. GWAS studies have identified genetic variants associated with ASD, but the functional impacts of these variants remain unknown. Here, we integrated four distinct levels of biological information (GWAS, eQTL, spatial genome organization and protein-protein interactions) to identify potential regulatory impacts of ASD-associated SNPs (p < 5 × 10-8) on biological pathways within fetal and adult cortical tissues. We found 80 and 58 SNPs that mark regulatory regions (i.e. expression quantitative trait loci or eQTLs) in the fetal and adult cortex, respectively. These eQTLs were also linked to other psychiatric disorders (e.g. schizophrenia, ADHD, bipolar disorder). Functional annotation of ASD-associated eQTLs revealed that they are involved in diverse regulatory processes. In particular, we found significant enrichment of eQTLs within regions repressed by Polycomb proteins in the fetal cortex compared to the adult cortex. Furthermore, we constructed fetal and adult cortex-specific protein-protein interaction networks and identified that ASD-associated regulatory SNPs impact on immune pathways, fatty acid metabolism, ribosome biogenesis, aminoacyl-tRNA biosynthesis and spliceosome in the fetal cortex. By contrast, in the adult cortex they largely affect immune pathways. Overall, our findings highlight potential regulatory mechanisms and pathways important for the etiology of ASD in early brain development and adulthood. This approach, in combination with clinical studies on ASD, will contribute to individualized mechanistic understanding of ASD development.
Collapse
Affiliation(s)
- E. Golovina
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand
| | - T. Fadason
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - T. J. Lints
- grid.9654.e0000 0004 0372 3343School of Medical Science, University of Auckland, Auckland, New Zealand
| | - C. Walker
- grid.9654.e0000 0004 0372 3343School of Population Health, University of Auckland, Auckland, New Zealand
| | - M. H. Vickers
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - J. M. O’Sullivan
- grid.9654.e0000 0004 0372 3343Liggins Institute, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Brain Research New Zealand, University of Auckland, Auckland, New Zealand ,grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
120
|
Affiliation(s)
- Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, and Nathan Kline Institute for Psychiatric Research, New York
| |
Collapse
|
121
|
Jalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, et alJalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, Suzuki M, Theodoridou A, Tomyshev AS, Tor J, Værnes TG, Velakoulis D, Venegoni GD, Vinogradov S, Wenneberg C, Westlye LT, Yamasue H, Yuan L, Yung AR, van Amelsvoort TAMJ, Turner JA, van Erp TGM, Thompson PM, Hernaus D. Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis: An ENIGMA Working Group Mega-analysis. JAMA Psychiatry 2021; 78:753-766. [PMID: 33950164 PMCID: PMC8100913 DOI: 10.1001/jamapsychiatry.2021.0638] [Show More Authors] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
Abstract
Importance The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk. Objective To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-). Design, Setting, and Participants In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020. Main Outcomes and Measures Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group). Results Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (ρ = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (ρ = 0.43; 95% CI, 0.20 to 0.61; P = .001). Conclusions and Relevance This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Juan H Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- EPIC Lab, Department of Psychosis Studies, King's College London, London, United Kingdom
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Christine I Hooker
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Esther Via
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
| | - Paul E Rasser
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Newcastle, Australia
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Wenche Ten Velden Hegelstad
- Faculty of Social Sciences, University of Stavanger, Stavanger, Norway
- TIPS Centre for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
| | | | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore
| | - Romina Mizrahi
- Douglas Research Center, Montreal, Quebec, Canada
- McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, New York, New York
| | - Franz Resch
- Clinic for Child and Adolescent Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imke L J Lemmers-Jansen
- Faculty of Behavioural and Movement Sciences, Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, United Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - G Paul Amminger
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kimberley Atkinson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Helen Baldwin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Cali F Bartholomeusz
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Sabrina Catalano
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W L Chee
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Montserrat Dolz
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam University Medical Centre, Amsterdam, the Netherlands
- Arkin, Amsterdam, the Netherlands
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen M Haut
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kiyoto Kasai
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Mallory J Klaunig
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Tina D Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Xiaoqian Ma
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Patrick McGorry
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Lier, Norway
| | - Tomas Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Daniel Muñoz-Samons
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ketil Oppedal
- Stavanger Medical Imaging Laboratory, Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - Lijun Ouyang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jose C Pariente
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jayachandra M Raghava
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Glostrup, Denmark
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Brian J Roach
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Jan I Røssberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre Grow Up Well, The University of Newcastle, Newcastle, Australia
| | - Jason Schiffman
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
- Department of Psychological Science, University of California, Irvine
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Andre Schmidt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Mikkel E Sørensen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Jordina Tor
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tor G Værnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Gloria D Venegoni
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Liu Yuan
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Alison R Yung
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | | | - Theo G M van Erp
- Center for the Neurobiology of Learning and Memory, Irvine, California
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
122
|
Larivière S, Paquola C, Park BY, Royer J, Wang Y, Benkarim O, Vos de Wael R, Valk SL, Thomopoulos SI, Kirschner M, Lewis LB, Evans AC, Sisodiya SM, McDonald CR, Thompson PM, Bernhardt BC. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat Methods 2021; 18:698-700. [PMID: 34194050 PMCID: PMC8983056 DOI: 10.1038/s41592-021-01186-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Institute of Neuroscience and Medicine (INM-1), Research Center, Jülich, Jülich, Germany
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Data Science, Inha University, Incheon, South Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sofie L Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay B Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
123
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
124
|
Li J, Seidlitz J, Suckling J, Fan F, Ji GJ, Meng Y, Yang S, Wang K, Qiu J, Chen H, Liao W. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun 2021; 12:1647. [PMID: 33712584 PMCID: PMC7955076 DOI: 10.1038/s41467-021-21943-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD. The correlation between brain structural changes in major depressive disorder (MDD) and gene expression is unclear. Here, the authors explore the correlation between cell type-specific gene expression changes and cortical structural difference in individuals with major depressive disorder.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jakob Seidlitz
- Children's Hospital of Philadelphia, Department of Child and Adolescent Psychiatry and Behavioral Science, Philadelphia, PA, USA.,University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - John Suckling
- University of Cambridge, Department of Psychiatry, Cambridge, UK
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Kai Wang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China. .,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China. .,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| |
Collapse
|
125
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
126
|
Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021; 12:802581. [PMID: 34975594 PMCID: PMC8716791 DOI: 10.3389/fpsyt.2021.802581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
127
|
Error in Nonbyline Author Name. JAMA Psychiatry 2021; 78:112. [PMID: 32936223 PMCID: PMC7495307 DOI: 10.1001/jamapsychiatry.2020.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
128
|
Feng R, Womer FY, Edmiston EK, Chen Y, Wang Y, Chang M, Yin Z, Wei Y, Duan J, Ren S, Li C, Liu Z, Jiang X, Wei S, Li S, Zhang X, Zuo XN, Tang Y, Wang F. Antipsychotic Effects on Cortical Morphology in Schizophrenia and Bipolar Disorders. Front Neurosci 2020; 14:579139. [PMID: 33362453 PMCID: PMC7758211 DOI: 10.3389/fnins.2020.579139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Previous studies of atypical antipsychotic effects on cortical structures in schizophrenia (SZ) and bipolar disorder (BD) have findings that vary between the short and long term. In particular, there has not been a study exploring the effects of atypical antipsychotics on age-related cortical structural changes in SZ and BD. This study aimed to determine whether mid- to long-term atypical antipsychotic treatment (mean duration = 20 months) is associated with cortical structural changes and whether age-related cortical structural changes are affected by atypical antipsychotics. Methods: Structural magnetic resonance imaging images were obtained from 445 participants consisting of 88 medicated patients (67 with SZ, 21 with BD), 84 unmedicated patients (50 with SZ, 34 with BD), and 273 healthy controls (HC). Surface-based analyses were employed to detect differences in thickness and area among the three groups. We examined the age-related effects of atypical antipsychotics after excluding the potential effects of illness duration. Results: Significant differences in cortical thickness were observed in the frontal, temporal, parietal, and insular areas and the isthmus of the cingulate gyrus. The medicated group showed greater cortical thinning in these regions than the unmediated group and HC; furthermore, there were age-related differences in the effects of atypical antipsychotics, and these effects did not relate to illness duration. Moreover, cortical thinning was significantly correlated with lower symptom scores and Wisconsin Card Sorting Test (WCST) deficits in patients. After false discovery rate correction, cortical thinning in the right middle temporal gyrus in patients was significantly positively correlated with lower HAMD scores. The unmedicated group showed only greater frontotemporal thickness than the HC group. Conclusion: Mid- to long-term atypical antipsychotic use may adversely affect cortical thickness over the course of treatment and ageing and may also result in worsening cognitive function.
Collapse
Affiliation(s)
- Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fay Y. Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - E. Kale Edmiston
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yifan Chen
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinshan Wang
- CAS Key Laboratory of Behavioral Science and Research Center for Lifespan Development of Mind and Brain (CLIMB), Institute of Psychology, Beijing, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyang Yin
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Sihua Ren
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chao Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuang Liu
- School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xi-Nian Zuo
- Key Laboratory of Brain and Education Sciences, School of Education Sciences, Nanning Normal University, Nanning, China
| | - Yanqing Tang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
129
|
Shin J, Pelletier S, Richer L, Pike GB, Gaudet D, Paus T, Pausova Z. Adiposity-related insulin resistance and thickness of the cerebral cortex in middle-aged adults. J Neuroendocrinol 2020; 32:e12921. [PMID: 33340164 PMCID: PMC8132297 DOI: 10.1111/jne.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The thickness of the cerebral cortex decreases with ageing. Recent research suggests that obesity and type 2 diabetes mellitus may accelerate this cortical thinning, and that obesity-related insulin resistance may be a shared mechanistic pathway. Ageing of the cerebral cortex demonstrates sex-specific trajectories, with a gradual shift towards accelerated thinning beginning in midlife. Here, we investigated whether adiposity-related insulin resistance is associated with lower thickness of the human cerebral cortex in a community-based sample of middle-aged adults. We studied 533 adult participants (36-65 years) from the Saguenay Youth Study. Adiposity was assessed with bioimpedance, and insulin resistance was evaluated from a fasting blood sample with the homeostatic model assessment of insulin resistance (HOMA-IR). Associations between adiposity-related insulin resistance (adiposity/IR) and cortical thickness were assessed with linear models, separately in males and females younger or older than 50 years. Potential biological underpinnings were investigated with virtual histology. Adiposity/IR was associated with lower cortical thickness in females older than 50 years but not in males or younger females. The strength of the association varied across the cerebral cortex, with regions of the lateral frontal and parietal cortices and the superior temporal cortex demonstrating most pronounced thinning. Based on virtual histology, adiposity/IR-related cortical thinning may involve neurones, astrocytes, oligodendrocytes and ependymal cells acting so that they lower the cortical potential for synaptogenesis, formation of dendritic spines, production of extracellular matrix and myelination. Adiposity-related insulin resistance is associated with lower cortical thickness in middle-aged women older than 50 years. This aspect of thinning may involve neuronal and glial cells in a way that lowers the capacity of the cerebral cortex for neuronal plasticity and maintenance of myelination.
Collapse
Affiliation(s)
- Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Stephanie Pelletier
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - G. Bruce Pike
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
130
|
Palaniyappan L, Sukumar N. Reconsidering brain tissue changes as a mechanistic focus for early intervention in psychiatry. J Psychiatry Neurosci 2020; 44:373-378. [PMID: 33119489 PMCID: PMC7595740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2024] Open
Affiliation(s)
- Lena Palaniyappan
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| | - Niron Sukumar
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| |
Collapse
|
131
|
Palaniyappan L, Sukumar N. Reconsidering brain tissue changes as a mechanistic focus for early intervention in psychiatry. J Psychiatry Neurosci 2020; 45. [PMID: 33119489 PMCID: PMC7595740 DOI: 10.1503/jpn.200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Lena Palaniyappan
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| | - Niron Sukumar
- From the Robarts Research Institute, Western University (Palaniyappan); the Department of Psychiatry, Western University (Palaniyappan, Sukumar); the Lawson Health Research Institute, Imaging Division (Palaniyappan); and the Department of Medical Biophysics, Western University (Palaniyappan), London, Ont., Canada
| |
Collapse
|