101
|
Ohta H, Itoh N. Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism. Front Endocrinol (Lausanne) 2014; 5:18. [PMID: 24605108 PMCID: PMC3932445 DOI: 10.3389/fendo.2014.00018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
White and brown adipose tissues (BATs), which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among 22 FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and BATs. FGF1 is a critical transducer in white adipose tissue (WAT) remodeling. The peroxisome proliferator-activated receptor γ-FGF1 axis is critical for energy homeostasis. FGF10 is essential for embryonic white adipocyte development. FGF21 activates BAT in response to cold exposure. FGF21 also stimulates the accumulation of brown-like cells in WAT during cold exposure and is an upstream effector of adiponectin, which controls systemic energy metabolism. These findings provide new insights into the roles of FGF signaling in white and BATs and potential therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Hiroya Ohta
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
- *Correspondence: Nobuyuki Itoh, Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-shimiadachi, Sakyo, Kyoto 606-8501, Japan e-mail:
| |
Collapse
|
102
|
Fang J, Sukumaran S, DuBois DC, Almon RR, Jusko WJ. Meta-modeling of methylprednisolone effects on glucose regulation in rats. PLoS One 2013; 8:e81679. [PMID: 24312573 PMCID: PMC3847111 DOI: 10.1371/journal.pone.0081679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX) male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle) together with some selected intermediate controlling factors were designated as important regulators involved in the pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors (plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
103
|
Wu Y, Wu T, Wu J, Zhao L, Li Q, Varghese Z, Moorhead JF, Powis SH, Chen Y, Ruan XZ. Chronic inflammation exacerbates glucose metabolism disorders in C57BL/6J mice fed with high-fat diet. J Endocrinol 2013; 219:195-204. [PMID: 24029730 DOI: 10.1530/joe-13-0160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammatory stress is closely related to metabolic disease and insulin resistance. The precise cellular mechanism linking obesity and diabetes is largely unknown, but about 14-20% of obese individuals develop diabetes. In this study, we investigated whether chronic inflammation exacerbated glucose metabolism disorder by impairing β cell function in high-fat diet (HFD)-fed C57BL/6J mice. We used s.c. casein injection to induce chronic inflammation in HFD-fed C57BL/6J mice; 14 weeks on a HFD resulted in weight gain, hyperlipidemia, and low insulin sensitivity in these mice which nevertheless had normal blood glucose and serum inflammatory cytokines levels. Casein injection in the background of HFD elevated serum tumor necrosis factor α (TNFα) and serum amyloid A levels and increased TNFα and MCP1 expression in the adipose tissue, liver, and muscle of HFD-fed mice. Chronic inflammation induced by casein injection further decreased insulin sensitivity and insulin signaling, resulting in insulin deficiency and hyperglycemia in these mice. Islet mass and insulin content were markedly increased in HFD mice. However, in contrast with HFD-fed alone, chronic inflammation in HFD-fed mice decreased both islet mass and insulin content, reduced the genetic expression of insulin synthesis and secretion, and increased β cell apoptosis. We conclude that chronic inflammation exacerbated glucose metabolism disorders by impairing β cell function in HFD-fed C57BL/6J mice, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to hyperglycemia.
Collapse
Affiliation(s)
- Yu Wu
- Key Laboratory of Metabolism of Lipid and Glucose, Centre for Lipid Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China John Moorhead Research Laboratory, Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Oliveira LSC, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem 2013; 25:193-200. [PMID: 24445044 DOI: 10.1016/j.jnutbio.2013.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED It is still unclear if an isoenergetic, sucrose-rich diet leads to health consequences. AIMS To investigate the effects of excessive sucrose within an isoenergetic diet on metabolic parameters in male C57BL/6 mice. METHODS Animals were fed a control diet (10% fat, 8% sucrose - SC group), a high-sucrose diet (10% fat, 32% sucrose - HSu group), a high-fat diet (42% fat, 8% sucrose - HF group) or a high-fat/high-sucrose diet (42% fat, 32% sucrose - HF/HSu group) for 8 weeks. RESULTS Mice fed HF and HF/HSu diets gained more body mass (BM) and more body adiposity than SC- or Hsu-fed mice. Despite the unchanged BM and adiposity indices, HSu mice presented adipocyte hypertrophy, which was also observed in the HF and HF/HSu groups (P<.0001). The HF, HSu and HF/HSu mice were glucose intolerant and had elevated serum insulin levels (P<.05). The levels of leptin, resistin and monocyte chemotactic protein-1 increased, while the serum adiponectin decreased in the HF, HSu and HF/HSu groups (P<.05). In the adipose tissue, the HF, HSu and HF/HSu groups showed higher levels of leptin expression and lower levels of adiponectin expression in comparison with the SC group (P<.05). Liver steatosis was higher in the HF, HSu and HF/HSu groups than in the SC group (P<.0001). Hepatic cholesterol was higher in the HF and HF/HSu groups, while hepatic TG was higher in the HSu and HF/HSu groups (P<.05). In hepatic tissue, the sterol receptor element-binding protein-1c expression was increased in the HF, HSu and HF/HSu groups, unlike the peroxisome proliferator-activated receptor-alpha expression that decreased in the HF, HSu and HF/HSu groups in comparison with the SC group (P<.05). CONCLUSION A sucrose-rich diet does not lead to a state of obesity but has the potential to cause changes in the adipocytes (hypertrophy) as well as glucose intolerance, hyperinsulinemia, hyperlipidemia, hepatic steatosis and increases in the number of inflammatory cytokines. The deleterious effects of a sucrose-rich diet in an animal model, even when the sucrose replaces starch isocalorically in the feed, can have far-reaching consequences for health.
Collapse
Affiliation(s)
- Liliane Soares C Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiane A Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
105
|
Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013; 305:E1195-207. [PMID: 24045869 DOI: 10.1152/ajpendo.00231.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
106
|
Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:576-91. [PMID: 23885715 DOI: 10.1016/j.ajpath.2013.04.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/19/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
The goal of controlling ovarian cancer metastasis formation has elicited considerable interest in identifying the tissue microenvironments involved in cancer cell colonization of the omentum. Omental adipose is a site of prodigious metastasis in both ovarian cancer models and clinical disease. This tissue is unusual for its milky spots, comprised of immune cells, stromal cells, and structural elements surrounding glomerulus-like capillary beds. The present study shows the novel finding that milky spots and adipocytes play distinct and complementary roles in omental metastatic colonization. In vivo assays showed that ID8, CaOV3, HeyA8, and SKOV3ip.1 cancer cells preferentially lodge and grow within omental and splenoportal fat, which contain milky spots, rather than in peritoneal fat depots. Similarly, medium conditioned by milky spot-containing adipose tissue caused 75% more cell migration than did medium conditioned by milky spot-deficient adipose. Studies with immunodeficient mice showed that the mouse genetic background does not alter omental milky spot number and size, nor does it affect ovarian cancer colonization. Finally, consistent with the role of lipids as an energy source for cancer cell growth, in vivo time-course studies revealed an inverse relationship between metastatic burden and omental adipocyte content. Our findings support a two-step model in which both milky spots and adipose have specific roles in colonization of the omentum by ovarian cancer cells.
Collapse
|
107
|
Abstract
White adipose tissue (WAT) is not only a lipogenic and fat storage tissue but also an important endocrine organ that regulates energy homeostasis, lipid metabolism, appetite, fertility, and immune and stress responses. Liver kinase B1 (LKB1), a tumor suppressor, is a key regulator in energy metabolism. However, the role of LKB1 in adipogenesis is unknown. The current study aimed to determine the contributions of LKB1 to adipogenesis in vivo. Using the Fabp4-Cre/loxP system, we generated adipose tissue-specific LKB1 knockout (LKB1(ad-/-)) mice. LKB1(ad-/-) mice exhibited a reduced amount of WAT, postnatal growth retardation, and early death before weaning. Further, LKB1 deletion markedly reduced the levels of insulin receptor substrate 1 (IRS1), peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and phosphorylated AMP-activated protein kinase (AMPK). Consistent with these results, overexpression of constitutively active AMPK partially ablated IRS1 degradation in LKB1-deficient cells. LKB1 deletion increased the levels of F-box/WD repeat-containing protein (Fbw) 8, the IRS1 ubiquitination E3 ligase. Silencing of Fbw8 increased IRS1 levels. Finally, promoter analysis and DNA chromatin immunoprecipitation analysis identified three sterol regulatory element (SRE) sites in the Fbw8 promoter, where SRE-binding protein 1c binds and induces the expression of Fbw8. Taken together, these data indicate that LKB1 controls IRS1-dependent adipogenesis via AMPK in WAT.
Collapse
Affiliation(s)
- Wencheng Zhang
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qilong Wang
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ping Song
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ming-Hui Zou
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Ming-Hui Zou,
| |
Collapse
|
108
|
de Godoy MRC, Swanson KS. COMPANION ANIMALS SYMPOSIUM: Nutrigenomics: Using gene expression and molecular biology data to understand pet obesity1. J Anim Sci 2013; 91:2949-64. [DOI: 10.2527/jas.2012-5860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. R. C. de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - K. S. Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL 61801
| |
Collapse
|
109
|
Koenig C, Fischer-Posovszky P, Rojewski MT, Tews D, Schrezenmeier H, Wabitsch M, Gierschik P, Moepps B. Absence of CC chemokine receptors 2a and 2b from human adipose lineage cells. Mol Cell Endocrinol 2013; 369:72-85. [PMID: 23376609 DOI: 10.1016/j.mce.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 11/27/2022]
Abstract
Previous results have suggested the existence of receptors for monocyte chemoattractant protein-1 (MCP-1), CC chemokine receptors 2 (CCR2), in human adipocytes and their involvement in mediating effects of MCP-1 on adipocyte functions. However, the presence of CCR2 present on non-adipose-lineage cells of adipose tissue has not been excluded. We have used human Simpson-Golabi-Behmel-Syndrome (SGBS) preadipocytes and in-vitro-differentiated mature adipocytes to investigate the expression of CCR2 in human (pre)adipocytes. We found that the cells are devoid of CCR2 receptor protein and mRNA expression and fail to respond to treatment with all known CCR2 chemokine agonists. CCR2 is also absent from (pre)adipocytes prepared in vitro from human multipotent adipose-derived stem cells, bone-marrow-derived mesenchymal stem cells, or from primary (pre)adipocytes. Conditions mimicking proinflammatory changes in adipose tissue did not induce CCR2 receptor expression. We conclude that CCR2 is absent from human adipose lineage cells. Functional effects previously described for MCP-1 in human adipose tissue may be mediated indirectly through paracrine effects on non-adipose-lineage cells or by a (pre)adipocyte receptor for MCP-1 distinct from CCR2.
Collapse
Affiliation(s)
- Carolin Koenig
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Renes J, Mariman E. Application of proteomics technology in adipocyte biology. MOLECULAR BIOSYSTEMS 2013; 9:1076-91. [PMID: 23629546 DOI: 10.1039/c3mb25596d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity and its associated complications have reached epidemic proportions in Western-type societies. Concomitantly, the obesity incidence in developing countries is increasing. One hallmark of obesity is the differentiation of pre-adipocytes into mature triglyceride-loaded adipocytes present in subcutaneous and visceral adipose tissue depots. This may ultimately lead to dysfunctional adipose tissue together with detrimental changes in the profiles of (pre-)adipocyte-secreted proteins, known as adipokines. Obesity-induced alterations in adipokine profiles contribute to the development of obesity-associated disorders. Consequently, the interest in the molecular events responsible for adipose tissue modifications during weight gain and weight loss as well as in the aetiology of obesity-associated disorders is growing. Molecular mechanisms involved in pre-adipocyte differentiation and alterations in adipokine profiles have been examined at the gene and protein level by high-throughput technologies. Independent proteomics studies have contributed significantly to further insight into adipocyte biology, particularly with respect to adipokine profiling. In this review novel findings obtained with adipo-proteomics studies are highlighted and the relevance of proteomics technologies to further understand molecular aspects of adipocyte biology is discussed.
Collapse
Affiliation(s)
- Johan Renes
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
111
|
Glucose homeostasis, obesity and diabetes. Best Pract Res Clin Obstet Gynaecol 2013; 27:715-26. [PMID: 23510756 DOI: 10.1016/j.bpobgyn.2013.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/09/2013] [Accepted: 02/03/2013] [Indexed: 12/16/2022]
Abstract
Plasma glucose levels are maintained within a narrow range in normal individuals. Both insulin-dependent and insulin-independent processes contribute to fasting and postprandial plasma glucose regulation. The brain and nervous system are insulin independent. Muscle and adipose tissue are responsive to insulin and can use either glucose or ketones and free fatty acids as their primary metabolic fuel. The essential components of metabolic syndrome are obesity, glucose intolerance, insulin resistance, lipid disturbances, and hypertension. The risk of type 2 diabetes increases exponentially as body mass index increases above about 25 kg/m2. The links between obesity and type 2 diabetes include proinflammatory cytokines, insulin resistance, deranged fatty acid metabolism, and cellular processes. Modest weight reduction can improve glycaemic control and reduce diabetes risk. Obesity also leads to hyperinsulinaemia and insulin resistance, with a progressive decrease in insulin secretory function. Ageing is another important risk factor for metabolic disorders, including obesity, impaired glucose tolerance, and type 2 diabetes.
Collapse
|
112
|
de Castro NM, Yaqoob P, de la Fuente M, Baeza I, Claus SP. Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction in fa/fa Obese Zucker Rats. J Proteome Res 2013; 12:1935-45. [DOI: 10.1021/pr400025y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nuria M. de Castro
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Parveen Yaqoob
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| | - Mónica de la Fuente
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Baeza
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandrine P. Claus
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| |
Collapse
|
113
|
Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit Care Med 2013; 41:317-25. [PMID: 23135416 DOI: 10.1097/ccm.0b013e318265f21c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Observational studies report lower mortality in obese than in lean critically ill patients, an association referred to as the "obesity paradox." This may suggest a possible protective role for adipose tissue during severe illness. DATA SOURCES Relevant publications were identified based on searches in PubMed and on secondary searches of their bibliographies. DATA SYNTHESIS The endocrine functions of adipose tissue might play a role in the adaptation to critical illness. In the acute phase of illness, the anti-inflammatory adiponectin is reduced, whereas proinflammatory cytokine expression in adipose tissue is up-regulated. In the prolonged phase of critical illness, both adiponectin and anti-inflammatory cytokine production are increasing. Studies on the proinflammatory adipokine leptin during critical illness are inconsistent, possibly due to confounders such as gender, body mass index, and feeding. Morphologically, adipose tissue of critically ill patients reveals an increased number of newly differentiated, smaller adipocytes. Accentuated macrophage accumulation showing a phenotypic switch to M2-type suggests an adaptive response to the microenvironment of severe illness. Functionally, adipose tissue of critically ill patients develops an increased ability to store glucose and triglycerides. CONCLUSIONS Endocrine, metabolic, and morphologic properties of adipose tissue change during critical illness. These alterations may suggest a possible adaptive, protective role in optimizing chances of survival. More research is needed to understand the exact role of adipose tissue in lean vs. obese critically ill patients, in order to understand how illness-associated alterations contribute to the obesity paradox.
Collapse
|
114
|
Breton C. The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol 2013; 216:R19-31. [PMID: 23108716 DOI: 10.1530/joe-12-0157] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth weight may predispose for energy balance disorders throughout life. High birth weight due to maternal obesity or diabetes, inappropriate early post-natal nutrition and rapid catch-up growth may also sensitise to increased risk of obesity. As stated by the Developmental Origin of Health and Disease concept, the perinatal perturbation of foetus/neonate nutrient supply might be a crucial determinant of individual programming of body weight set point. The hypothalamus-adipose axis plays a pivotal role in the maintenance of energy homoeostasis controlling the nutritional status and energy storage level. The perinatal period largely corresponds to the period of brain maturation, neuronal differentiation and active adipogenesis in rodents. Numerous dams and/or foetus/neonate dietary manipulation models were developed to investigate the mechanisms underlying perinatal programming in rodents. These models showed several common offspring hypothalamic consequences such as impaired neurogenesis, neuronal functionality, nuclei structural organisation and feeding circuitry hardwiring. These alterations led to a persistent reprogrammed appetite system that favoured the orexigenic pathways, leptin/insulin resistance and hyperphagia. Impaired hypothalamic sympathetic outflow to adipose tissue and/or reduced innervation may also account for modified fat cell metabolism. Thus, enhanced adipogenesis and/or lipogenesis capacities may predispose the offspring to fat accumulation. Abnormal hypothalamus-adipose axis circadian rhythms were also evidenced. This review mainly focuses on studies in rodents. It highlights hormonal and epigenetic mechanisms responsible for long-lasting programming of energy balance in the offspring. Dietary supplementation may provide a therapeutic option using a specific regimen for reversing adverse programming outcomes in humans.
Collapse
Affiliation(s)
- Christophe Breton
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France.
| |
Collapse
|
115
|
Jankovic A, Korac A, Buzadzic B, Otasevic V, Stancic A, Vucetic M, Markelic M, Velickovic K, Golic I, Korac B. Endocrine and metabolic signaling in retroperitoneal white adipose tissue remodeling during cold acclimation. J Obes 2013; 2013:937572. [PMID: 23710349 PMCID: PMC3655592 DOI: 10.1155/2013/937572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/18/2022] Open
Abstract
The expression profiles of adiponectin, resistin, 5'-AMP-activated protein kinase α (AMPK α ), hypoxia-inducible factor-1 α (HIF-1 α ), and key enzymes of glucose and fatty acid metabolism and oxidative phosphorylation in rat retroperitoneal white adipose tissue (RpWAT) during 45-day cold acclimation were examined. After transient suppression on day 1, adiponectin protein level increased following sustained cold exposure. In parallel, on day 1, the protein level of HIF-1 α was strongly induced and AMPK α suppressed, while afterwards the reverse was seen. What is more, after an initial decrease on day 1, a sequential increase in pyruvate dehydrogenase, acyl-CoA dehydrogenase, cytochrome c oxidase, and ATP synthase and a decrease in acetyl-CoA carboxylase (from day 3) were observed. Similar to adiponectin, protein level of resistin showed a biphasic profile: it increased after days 1, 3, and 7 and decreased below the control after 21 days of cold-acclimation. In summary, the data suggest that adiponectin and resistin are important integrators of RpWAT metabolic response and roles it plays during cold acclimation. It seems that AMPK α mediate adiponectin effects on metabolic remodeling RpWAT during cold acclimation.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Milica Vucetic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Milica Markelic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ksenija Velickovic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11000 Belgrade, Serbia
| | - Igor Golic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11000 Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
- *Bato Korac:
| |
Collapse
|
116
|
Patel PS, Buras ED, Balasubramanyam A. The role of the immune system in obesity and insulin resistance. J Obes 2013; 2013:616193. [PMID: 23577240 PMCID: PMC3618935 DOI: 10.1155/2013/616193] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/20/2013] [Indexed: 12/14/2022] Open
Abstract
The innate immune system provides organisms with rapid and well-coordinated protection from foreign pathogens. However, under certain conditions of metabolic dysfunction, components of the innate immune system may be activated in the absence of external pathogens, leading to pathologic consequences. Indeed, there appears to be an intimate relationship between metabolic diseases and immune dysfunction; for example, macrophages are prime players in the initiation of a chronic inflammatory state in obesity which leads to insulin resistance. In response to increases in free fatty acid release from obese adipose depots, M1-polarized macrophages infiltrate adipose tissues. These M1 macrophages trigger inflammatory signaling and stress responses within cells that signal through JNK or IKK β pathways, leading to insulin resistance. If overnutrition persists, mechanisms that counteract inflammation (such as M2 macrophages and PPAR signaling) are suppressed, and the inflammation becomes chronic. Although macrophages are a principal constituent of obese adipose tissue inflammation, other components of the immune system such as lymphocytes and mast cells also contribute to the inflammatory cascade. Thus it is not merely an increased mass of adipose tissue that directly leads to attenuation of insulin action, but rather adipose tissue inflammation activated by the immune system in obese individuals that leads to insulin resistance.
Collapse
Affiliation(s)
- Payal S Patel
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
117
|
Abstract
The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands' sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, G2-133, Academic Medical Center of the University of Amsterdam, The Netherlands.
| | | |
Collapse
|
118
|
Hoevenaars FPM, Keijer J, Swarts HJ, Snaas-Alders S, Bekkenkamp-Grovenstein M, van Schothorst EM. Effects of dietary history on energy metabolism and physiological parameters in C57BL/6J mice. Exp Physiol 2012; 98:1053-62. [PMID: 23243145 DOI: 10.1113/expphysiol.2012.069518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding body weight regulation is essential to fight obesity. Mouse studies, using different types of diets, showed conflicting results in terms of body weight persistence after changing from an ad libitum high-fat diet to an ad libitum low-fat diet. In this study, we questioned specifically whether the energy content of the diet has a lasting effect on energy balance and body weight, using multiple switches and two purified diets with a different fat-to-sugar ratio, but otherwise identical ingredients. Young-adult obesity-prone male C57BL/6J mice were fed single or double switches of semi-purified diets with either 10 energy % (en%) fat (LF) or 40en% fat (HF), with starch replaced by fat, while protein content remained equal. After none, one or two dietary changes, energy metabolism was assessed at 5, 14 and 19 weeks. We observed no systematic continuous compensation in diet and energy intake when returning to LF after HF consumption. Body weight, white adipose tissue mass and histology, serum metabolic parameters, energy expenditure and substrate usage all significantly reflected the current diet intake, independent of dietary changes. This contrasts with studies that used diets with different ingredients and showed persistent effects of dietary history on body weight, suggesting diet-dependent metabolic set points. We conclude that body weight and metabolic parameters 'settle', based on current energetic input and output. This study also highlights the importance of considering the choice of diet in physiological and metabolic intervention studies.
Collapse
Affiliation(s)
- Femke P M Hoevenaars
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, PO Box 338, 6700AH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
119
|
Sarkanen JR, Ruusuvuori P, Kuokkanen H, Paavonen T, Ylikomi T. Bioactive Acellular Implant Induces Angiogenesis and Adipogenesis and Sustained Soft Tissue Restoration In Vivo. Tissue Eng Part A 2012; 18:2568-80. [DOI: 10.1089/ten.tea.2011.0724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Jertta-Riina Sarkanen
- Department of Cell Biology, School of Medicine, University of Tampere, Tampere, Finland
- FICAM, Finnish Center for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Pekka Ruusuvuori
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Hannu Kuokkanen
- Department of Plastic Surgery, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Department of Pathology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Timo Ylikomi
- Department of Cell Biology, School of Medicine, University of Tampere, Tampere, Finland
- FICAM, Finnish Center for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
120
|
Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, Bohdjalian A, Mascher D, Vangala S, Schranz M, Krebs M, Bischof MG, Stulnig TM. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr 2012; 96:1137-49. [PMID: 23034965 DOI: 10.3945/ajcn.112.037432] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chronic adipose tissue inflammation is a hallmark of obesity, triggering the development of associated pathologies, particularly type 2 diabetes. Long-chain n-3 PUFAs reduce cardiovascular events and exert well-established antiinflammatory effects, but their effects on human adipose tissue inflammation are unknown. OBJECTIVE We investigated whether n-3 PUFAs reduce adipose tissue inflammation in severely obese nondiabetic patients. DESIGN We treated 55 severely obese nondiabetic patients, scheduled to undergo elective bariatric surgery, with 3.36 g long-chain n-3 PUFAs/d (EPA, DHA) or an equivalent amount of butterfat as control, for 8 wk, in a randomized open-label controlled clinical trial. The primary efficacy measure was inflammatory gene expression in visceral and subcutaneous adipose tissue samples (subcutaneous adipose tissue and visceral adipose tissue), collected during surgery after the intervention. Secondary efficacy variables were adipose tissue production of antiinflammatory n-3 PUFA-derived eicosanoids, plasma concentrations of inflammatory markers, metabolic control, and the effect of the Pro12Ala PPARG polymorphism on the treatment response. RESULTS Treatment with n-3 PUFAs, which was well tolerated, decreased the gene expression of most analyzed inflammatory genes in subcutaneous adipose tissue (P < 0.05) and increased production of antiinflammatory eicosanoids in visceral adipose tissue and subcutaneous adipose tissue (P < 0.05). In comparison with control subjects who received butterfat, circulating interleukin-6 and triglyceride concentrations decreased significantly in the n-3 PUFA group (P = 0.04 and P = 0.03, respectively). The Pro12Ala polymorphism affected the serum cholesterol response to n-3 PUFA treatment. CONCLUSIONS Treatment with long-chain n-3 PUFAs favorably modulated adipose tissue and systemic inflammation in severely obese nondiabetic patients and improved lipid metabolism. These effects may be beneficial in the long-term treatment of obesity. This trial was registered at clinicaltrials.gov as NCT00760760.
Collapse
Affiliation(s)
- Bianca K Itariu
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 2012; 23:435-43. [PMID: 22784416 PMCID: PMC3430798 DOI: 10.1016/j.tem.2012.06.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
Abstract
Although mitochondria in brown adipose tissue and their role in non-shivering thermogenesis have been widely studied, we have only a limited understanding of the relevance of mitochondria in white adipose tissue (WAT) for cellular homeostasis of the adipocyte and their impact upon systemic energy homeostasis. A better understanding of the regulatory role that white adipocyte mitochondria play in the regulation of whole-body physiology becomes increasingly important. WAT mitochondrial biogenesis can effectively be induced pharmacologically using a number of agents, including PPARγ agonists. Through their ability to influence key biochemical processes central to the adipocyte, such as fatty acid (FA) esterification and lipogenesis, as well as their impact upon the production and release of key adipokines, mitochondria play a crucial role in determining systemic insulin sensitivity.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, Texas 75390-8549
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8549
- corresponding author: , Telephone: (214) 648-8715, Fax: (214) 648-8720
| |
Collapse
|
122
|
Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations. Ann N Y Acad Sci 2012; 1264:87-102. [PMID: 22804097 PMCID: PMC3464353 DOI: 10.1111/j.1749-6632.2012.06597.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several clinical and experimental lines of evidence have highlighted the detrimental effects of visceral adipose tissue excess on cardiometabolic parameters. Besides, recent findings have shown the effects of gluco-and mineralocorticoid hormones on adipose tissue and have also underscored the interplay existing between such adrenal steroids and their respective receptors in the modulation of adipose tissue biology. While the fundamental role played by glucocorticoids on adipocyte differentiation and storage was already well known, the relevance of the mineralocorticoids in the physiology of the adipose organ is of recent acquisition. The local and systemic renin–angiotensin–aldosterone system (RAAS) acting on adipose tissue seems to contribute to the development of the cardiometabolic phenotype so that its modulation can have deep impact on human health. A better understanding of the pathophysiology of the adipose organ is of crucial importance in order to identify possible therapeutic approaches that can avoid the development of such cardiovascular and metabolic sequelae.
Collapse
Affiliation(s)
- Marco Boscaro
- Division of Endocrinology, Ospedali Riuniti "Umberto I-G.M. Lancisi-G. Salesi," Università Politecnica delle Marche, Ancona, Italy
| | | | | |
Collapse
|
123
|
Strasser B, Arvandi M, Siebert U. Resistance training, visceral obesity and inflammatory response: a review of the evidence. Obes Rev 2012; 13:578-91. [PMID: 22385646 DOI: 10.1111/j.1467-789x.2012.00988.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intra-abdominal obesity is an important risk factor for low-grade inflammation, which is associated with increased risk for diabetes mellitus and cardiovascular disease. For the most part, recommendations to treat or prevent overweight and obesity via physical activity have focused on aerobic endurance training as it is clear that aerobic training is associated with much greater energy expenditure during the exercise session than resistance training. However, due to the metabolic consequences of reduced muscle mass, it is understood that normal ageing and/or decreased physical activity may lead to a higher prevalence of metabolic disorders. Whether resistance training alters visceral fat and the levels of several pro-inflammatory cytokines produced in adipose tissue has not been addressed in earlier reviews. Because evidence suggests that resistance training may promote a negative energy balance and may change body fat distribution, it is possible that an increase in muscle mass after resistance training may be a key mediator leading to a better metabolic control. Considering the benefits of resistance training on visceral fat and inflammatory response, an important question is: how much resistance training is needed to confer such benefits? Therefore, the purpose of this review was to address the importance of resistance training on abdominal obesity, visceral fat and inflammatory response.
Collapse
Affiliation(s)
- B Strasser
- Institute for Nutritional Sciences and Physiology, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.
| | | | | |
Collapse
|
124
|
Abstract
Nicotinamide phosphoribosyltransferase is the rate-limiting enzyme that catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide from nicotinamide. This protein was originally cloned as a putative pre-B cell colony-enhancing factor and also found to be a visceral fat-derived adipokine (visfatin). As a multifunctional protein, visfatin plays an important role in immunity, metabolism, aging, inflammation, and responses to stress. Visfatin also participates in several pathophysiological processes contributing to cardio-cerebro-vascular diseases, including hypertension, atherosclerosis, ischemic heart disease, and ischemic stroke. However, whether visfatin is a friend or a foe in these diseases remains uncertain. This brief review focuses on the current understanding of the complex role of visfatin in the cardio-cerebro-vascular system under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | |
Collapse
|
125
|
Martins AP, Lopes PA, Madeira MS, Martins SV, Santos NC, Moura TF, Prates JA, Soveral G. Differences in lipid deposition and adipose membrane biophysical properties from lean and obese pigs under dietary protein restriction. Biochem Biophys Res Commun 2012; 423:170-5. [DOI: 10.1016/j.bbrc.2012.05.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
126
|
Belda BJ, Thompson JT, Sinha R, Prabhu KS, Vanden Heuvel JP. The dietary fatty acid 10E12Z-CLA induces epiregulin expression through COX-2 dependent PGF(2α) synthesis in adipocytes. Prostaglandins Other Lipid Mediat 2012; 99:30-7. [PMID: 22583689 DOI: 10.1016/j.prostaglandins.2012.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 02/06/2023]
Abstract
Conjugated linoleic acids (CLAs) are a group of dietary fatty acids that are widely marketed as weight loss supplements. The isomer responsible for this effect is the trans-10, cis-12 CLA (10E12Z-CLA) isomer. 10E12Z-CLA treatment during differentiation of 3T3-L1 adipocytes induces expression of prostaglandin-endoperoxide synthase-2 (Cyclooxygenase-2; COX-2). This work demonstrates that COX-2 is also induced in fully differentiated 3T3-L1 adipocytes after a single treatment of 10E12Z-CLA at both the mRNA (20-40 fold) and protein level (7 fold). Furthermore, prostaglandin (PG)F(2α), but not PGE(2), is significantly increased 10 fold. In female BALB/c mice fed 0.5% 10E12Z-CLA for 10 days, COX-2 was induced in uterine adipose (2 fold). In vitro, pharmacological COX-2 inhibition did not block the effect of 10E12Z-CLA on adipocyte-specific gene expression although PGF(2α) was dose-dependently decreased. These studies demonstrate that PGF(2α) was not by itself responsible for the reduction in adipocyte character due to 10E12Z-CLA treatment. However, PGF(2α), either exogenously or endogenously in response to 10E12Z-CLA, increased the expression of the potent mitogen and epidermal growth factor (EGF) receptor (EGFR) ligand epiregulin in 3T3-L1 adipocytes. Blocking PGF(2α) signaling with the PGF(2α) receptor (FP) antagonist AL-8810 returned epiregulin mRNA levels back to baseline. Although this pathway is not directly responsible for adipocyte dependent gene expression, these results suggest that this signaling pathway may still have broad effect on the adipocyte and surrounding cells.
Collapse
Affiliation(s)
- Benjamin J Belda
- The Center for Molecular Toxicology and Carcinogenesis and The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | |
Collapse
|
127
|
10E12Z CLA alters adipocyte differentiation and adipocyte cytokine expression and induces macrophage proliferation. J Nutr Biochem 2012; 23:510-8. [DOI: 10.1016/j.jnutbio.2011.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/26/2022]
|
128
|
Boudreau A, van't Veer LJ, Bissell MJ. An "elite hacker": breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr 2012; 6:236-48. [PMID: 22863741 DOI: 10.4161/cam.20880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.
Collapse
Affiliation(s)
- Aaron Boudreau
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
129
|
Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Corrêa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012; 59:1069-78. [PMID: 22493070 DOI: 10.1161/hypertensionaha.111.190223] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reported aldosterone as a novel adipocyte-derived factor that regulates vascular function. We aimed to investigate molecular mechanisms, signaling pathways, and functional significance of adipocyte-derived aldosterone and to test whether adipocyte-derived aldosterone is increased in diabetes mellitus-associated obesity, which contributes to vascular dysfunction. Studies were performed in the 3T3-L1 adipocyte cell line and mature adipocytes isolated from human and mouse (C57BL/6J) adipose tissue. Mesenteric arteries with and without perivascular fat and mature adipocytes were obtained from obese diabetic db/db and control db/+ mice. Aldosterone synthase (CYP11B2; mRNA and protein) was detected in 3T3-L1 and mature adipocytes, which secrete aldosterone basally and in response to angiotensin II (Ang II). In 3T3-L1 adipocytes, Ang II stimulation increased aldosterone secretion and CYP11B2 expression. Ang II effects were blunted by an Ang II type 1 receptor antagonist (candesartan) and inhibitors of calcineurin (cyclosporine A and FK506) and nuclear factor of activated T-cells (VIVIT). FAD286 (aldosterone synthase inhibitor) blunted adipocyte differentiation. In candesartan-treated db/db mice (1 mg/kg per day, 4 weeks) increased plasma aldosterone, CYP11B2 expression, and aldosterone secretion were reduced. Acetylcholine-induced relaxation in db/db mesenteric arteries containing perivascular fat was improved by eplerenone (mineralocorticoid receptor antagonist) without effect in db/+ mice. Adipocytes possess aldosterone synthase and produce aldosterone in an Ang II/Ang II type 1 receptor/calcineurin/nuclear factor of activated T-cells-dependent manner. Functionally adipocyte-derived aldosterone regulates adipocyte differentiation and vascular function in an autocrine and paracrine manner, respectively. These novel findings identify adipocytes as a putative link between aldosterone and vascular dysfunction in diabetes mellitus-associated obesity.
Collapse
Affiliation(s)
- Ana M Briones
- Kidney Research Centre, Ottawa Hospital Research Institute, and Division of Nephrology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Zeanandin G, Balage M, Schneider SM, Dupont J, Hébuterne X, Mothe-Satney I, Dardevet D. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. AGE (DORDRECHT, NETHERLANDS) 2012; 34:371-87. [PMID: 21472380 PMCID: PMC3312629 DOI: 10.1007/s11357-011-9246-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/24/2011] [Indexed: 05/15/2023]
Abstract
Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary leucine supplementation on insulin signaling and sensitivity was investigated in old rats (18 months old) fed a 15% protein diet supplemented (LEU group) or not (C group) with 4.5% leucine for 6 months. The resulting effects on muscle and fat were examined. mTOR/S6K1 signaling pathway was not significantly altered in muscle from old rats subjected to long-term dietary leucine excess, whereas it was increased in adipose tissue. Overall glucose tolerance was not changed but insulin-stimulated glucose transport was improved in muscles from leucine-supplemented rats related to improvement in Akt expression and phosphorylation in response to food intake. No change in skeletal muscle mass was observed, whereas perirenal adipose tissue mass accumulated (+45%) in leucine-supplemented rats. A prolonged leucine supplementation in old rats differently modulates mTOR/S6K pathways in muscle and adipose tissue. It does not increase muscle mass but seems to promote hypertrophy and hyperplasia of adipose tissue that did not result in insulin resistance.
Collapse
Affiliation(s)
- Gilbert Zeanandin
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Michèle Balage
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| | - Stéphane M. Schneider
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Xavier Hébuterne
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
| | - Isabelle Mothe-Satney
- Centre Hospitalier Universitaire de Nice, Pôle Digestif, Nice, F-06202 France
- Faculté de Médecine, Université de Nice Sophia–Antipolis, Nice, F-06107 France
- INSERM, U907, IFR50, Nice, F-06107 France
| | - Dominique Dardevet
- INRA, Centre Clermont-Ferrand—Theix, UMR 1019, Unité Nutrition Humaine, 63122 Saint Genès Champanelle, France
- Univ Clermont 1, UFR Médecine, UMR 1019 Unité Nutrition Humaine, 63001 Clermont-Ferrand, France
| |
Collapse
|
131
|
Abstract
Since the beginning of the century, the mammalian sirtuin protein family (comprising SIRT1-SIRT7) has received much attention for its regulatory role, mainly in metabolism and ageing. Sirtuins act in different cellular compartments: they deacetylate histones and several transcriptional regulators in the nucleus, but also specific proteins in other cellular compartments, such as in the cytoplasm and in mitochondria. As a consequence, sirtuins regulate fat and glucose metabolism in response to physiological changes in energy levels, thereby acting as crucial regulators of the network that controls energy homeostasis and as such determines healthspan.
Collapse
|
132
|
Abstract
Obesity is a serious global health problem, perhaps the biggest public health issue of our times. Excess body weight may be a factor in carcinogenesis in general, as well as contributing to the pathogenesis of metabolic, cardiovascular and musculoskeletal disorders. Obesity also has many cutaneous features, which form the basis for this review article. Many of these clinical entities are common to the majority of obese patients, e.g. striae distensae, plantar hyperkeratosis and an increased risk of skin infections. However, it may also be associated with poor wound healing, malignant melanoma and an increased risk of inflammatory dermatoses, such as psoriasis, as well as some rarer disorders. Therapeutic interventions for obesity, whether over-the-counter, prescription medicines or surgical interventions, are increasingly commonplace. All of these treatment modalities potentially have dermatological side-effects too.
Collapse
Affiliation(s)
- A R Shipman
- Department of Dermatology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| | | |
Collapse
|
133
|
Differential DNA Methylation Status Between Human Preadipocytes and Mature Adipocytes. Cell Biochem Biophys 2012; 63:1-15. [DOI: 10.1007/s12013-012-9336-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
134
|
Gurriarán-Rodríguez U, Al-Massadi O, Roca-Rivada A, Crujeiras AB, Gallego R, Pardo M, Seoane LM, Pazos Y, Casanueva FF, Camiña JP. Obestatin as a regulator of adipocyte metabolism and adipogenesis. J Cell Mol Med 2012; 15:1927-40. [PMID: 21029370 PMCID: PMC3918048 DOI: 10.1111/j.1582-4934.2010.01192.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3α/β, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPα, C/EBPβ, C/EBPδ and PPARγ promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Lukaszewski MA, Delahaye F, Vieau D, Breton C. Is the adipose tissue a key target of developmental programming of adult adiposity by maternal undernutrition? Adipocyte 2012; 1:64-67. [PMID: 23700512 DOI: 10.4161/adip.18952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies have shown that maternal undernutrition during pregnancy (MU) leads to intrauterine growth retardation and low birth weight, and may predispose individuals to the development of metabolic syndrome symptoms later in life such as overweight. Some clues from a model of prenatal maternal 70% food-restricted diet throughout gestation in pregnant female rats (FR30) suggest that the white adipose tissue (WAT) is a key target of MU fetal programming. Under standard diet, although showing a lean phenotype, adult FR30 male rats were predisposed to adiposity exhibiting higher serum leptin and corticosterone concentration, two hormones actively involved in WAT regulation. Although FR30 procedure does not worsen the metabolic syndrome features induced by HF diet, FR30HF rats gained more weight and showed hyperleptinemia suggesting increased adiposity. WAT FR30 adult rats revealed marked changes in transcript levels of several genes. In particular, leptin and Ob-Rb, many peptide precursors and receptors, factors involved in lipogenesis and glucocorticoid sensitivity mRNA expression levels as well as mechanisms involved in leptin sensitivity, were modified in FR30 offspring in depot-specific and diet-specific manners. These modifications might predispose for altered fat accumulation in adult male rat offspring.
Collapse
|
136
|
Costa ASH, Lopes PA, Estevão M, Martins SV, Alves SP, Pinto RMA, Pissarra H, Correia JJ, Pinho M, Fontes CMGA, Prates JAM. Contrasting cellularity and fatty acid composition in fat depots from Alentejana and Barrosã bovine breeds fed high and low forage diets. Int J Biol Sci 2012; 8:214-27. [PMID: 22253565 PMCID: PMC3258561 DOI: 10.7150/ijbs.8.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/31/2011] [Indexed: 01/28/2023] Open
Abstract
During the finishing phase of bovines, large amounts of subcutaneous and visceral fats are deposited leading to production inefficiencies with major impact on meat quality. A better understanding of the cellularity features of the main fat depots could provide strategies for adipose tissue manipulation. This study assessed the effect of feeding diets with distinct forage to concentrate ratios on the cellularity of two fat depots of beef cattle and their implications on the fatty acid profile. Thus, two phylogenetically distant Portuguese bovine breeds, Alentejana and Barrosã, were selected. The results did not show differences in subcutaneous fat deposition nor in visceral fat depots partitioning. Plasma adipokines concentration failed to show a consistent relationship with fatness, as leptin remained constant in all experimental groups, whereas interleukin-6 was influenced by breed. Fat depot seems to determine the area and number of adipocytes, with larger adipocytes and a lower number of cells in subcutaneous fat than in mesenteric fat. Neither breed nor diet influenced adipocytes area and number. The contents of total fatty acids, partial sums of fatty acids and conjugated linoleic acid isomeric profile were affected by breed and fat depot. The incorporation of saturated fatty acids (SFA), trans fatty acids, polyunsaturated fatty acids (PUFA) and branched chain fatty acids (BCFA) was higher in mesenteric fat depot, whereas subcutaneous fat depot had greater percentages of monounsaturated fatty acids (MUFA). In addition, SFA and MUFA proportions seem to be breed-related. In spite of the less relevant role of diet, the percentages of PUFA and BCFA were influenced by this factor. Under these experimental conditions, the effect of fat depot on cellularity and fatty acid composition prevails over breed or diet, as reinforced by the principal component analysis.
Collapse
|
137
|
van der Spek R, Kreier F, Fliers E, Kalsbeek A. Circadian rhythms in white adipose tissue. PROGRESS IN BRAIN RESEARCH 2012; 199:183-201. [DOI: 10.1016/b978-0-444-59427-3.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
138
|
Abstract
Maintenance of energy metabolism and glucose homeostasis is achieved by the regulatory effects of many hormones and their interactions. Glucocorticoids produced from adrenal cortex and adiponectin produced by adipose tissue play important roles in the production, distribution, storage, and utilization of energy substrates. Glucocorticoids are involved in the activation of a number of catabolic processes by affecting the expression of a plethora of genes, while adiponectin acts primarily as an insulin sensitizer. Both are regulated by a number of physiological and pharmacological factors. Although the effects of glucocorticoids on adiponectin expression have been extensively studied in different in vitro, animal and clinical study settings, no consensus has been reached. This report reviews the primary literature concerning the effects of glucocorticoids on adiponectin expression and identifies potential reasons for the contradictory results between different studies. In addition, methods to gain better insights pertaining to the regulation of adiponectin expression are discussed.
Collapse
|
139
|
Abstract
Insulin acts throughout the body to reduce circulating energy and to increase energy storage. Within the brain, insulin produces a net catabolic effect by reducing food intake and increasing energy expenditure; this is evidenced by the hypophagia and increased brown adipose tissue sympathetic nerve activity induced by central insulin infusion. Reducing the activity of the brain insulin system via administration of insulin antibodies, receptor antisense treatment, or receptor knockdown results in hyperphagia and increased adiposity. However, despite decades of research into the role of central insulin in food intake, many questions remain to be answered, including the underlying mechanism of action.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
140
|
El Akoum S, Lamontagne V, Cloutier I, Tanguay JF. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice. Diabetol Metab Syndr 2011; 3:34. [PMID: 22166251 PMCID: PMC3277487 DOI: 10.1186/1758-5996-3-34] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/14/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Adverse effects of high-fat diets (HFD) on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. METHODS C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD) or animal (AD) fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. RESULTS HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2) and estrogen receptor alpha (ERα) mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. CONCLUSIONS The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of adipokines secretion and modulation of key genes mRNA expression. Compared with males, female mice demonstrate higher capacity in controlling glucose homeostasis in response to 20 weeks HFD feeding. Our data suggest gender specific interactions between the diet's fatty acid source, the adipocyte-secreted proteins and metabolic disorders.
Collapse
Affiliation(s)
- Souhad El Akoum
- Montreal Heart Institute, 5000 Belanger, Montréal (QC) H1T 1C8, Canada
- Département de Sciences Biomédicales, Faculté de Médecine, Université de Montréal, 2900 boulevard Edouard-Montpetit, Montréal (QC) H3T 1J4, Canada
| | - Vikie Lamontagne
- Montreal Heart Institute, 5000 Belanger, Montréal (QC) H1T 1C8, Canada
- Département de Sciences Biomédicales, Faculté de Médecine, Université de Montréal, 2900 boulevard Edouard-Montpetit, Montréal (QC) H3T 1J4, Canada
| | - Isabelle Cloutier
- Montreal Heart Institute, 5000 Belanger, Montréal (QC) H1T 1C8, Canada
| | - Jean-François Tanguay
- Montreal Heart Institute, 5000 Belanger, Montréal (QC) H1T 1C8, Canada
- Département de Sciences Biomédicales, Faculté de Médecine, Université de Montréal, 2900 boulevard Edouard-Montpetit, Montréal (QC) H3T 1J4, Canada
| |
Collapse
|
141
|
|
142
|
Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2011; 33:26-34. [PMID: 22040698 DOI: 10.1016/j.mam.2011.10.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/14/2011] [Indexed: 12/18/2022]
Abstract
Obesity is a major public health problem in the United States and worldwide. Further, obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and type-2 diabetes (T2D). A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesity-induced insulin resistance. This adipose tissue inflammation is characterized by changes in immune cell populations giving rise to altered adipo/cytokine profiles, which in turn induces skeletal muscle and hepatic insulin resistance. Detailed molecular mechanisms of insulin resistance, adipose tissue inflammation and the implications of these findings on therapeutic strategies are discussed in this review.
Collapse
|
143
|
Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects. Nutr J 2011; 10:115. [PMID: 22011432 PMCID: PMC3218047 DOI: 10.1186/1475-2891-10-115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/19/2011] [Indexed: 11/26/2022] Open
Abstract
Background Obesity is a state of chronic low-grade inflammation. Chronic low-grade inflammation is associated with the pathophysiology of both type-2 diabetes and atherosclerosis. Prevention or reduction of chronic low-grade inflammation may be advantageous in relation to obesity related co-morbidity. In this study we investigated the acute effect of dietary protein sources on postprandial low-grade inflammatory markers after a high-fat meal in obese non-diabetic subjects. Methods We conducted a randomized, acute clinical intervention study in a crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins - cod protein, whey isolate, gluten or casein. 11 obese non-diabetic subjects (age: 40-68, BMI: 30.3-42.0 kg/m2) participated and blood samples were drawn in the 4 h postprandial period. Adiponectin was estimated by ELISA methods and cytokines were analyzed by multiplex assay. Results MCP-1 and CCL5/RANTES displayed significant postprandial dynamics. CCL5/RANTES initially increased after all meals, but overall CCL5/RANTES incremental area under the curve (iAUC) was significantly lower after the whey meal compared with the cod and casein meals (P = 0.0053). MCP-1 was initially suppressed after all protein meals. However, the iAUC was significantly higher after whey meal compared to the cod and gluten meals (P = 0.04). Conclusion We have demonstrated acute differential effects on postprandial low grade inflammation of four dietary proteins in obese non-diabetic subjects. CCL5/RANTES initially increased after all meals but the smallest overall postprandial increase was observed after the whey meal. MCP-1 was initially suppressed after all 4 protein meals and the whey meal caused the smallest overall postprandial suppression. Trial Registration ClinicalTrials.gov ID: NCT00863564
Collapse
|
144
|
Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro. Exp Cell Res 2011; 318:8-15. [PMID: 22020322 DOI: 10.1016/j.yexcr.2011.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 01/06/2023]
Abstract
Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.
Collapse
|
145
|
Effect of Plant Polyphenols on Adipokine Secretion from Human SGBS Adipocytes. Biochem Res Int 2011; 2011:285618. [PMID: 21949907 PMCID: PMC3178111 DOI: 10.1155/2011/285618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/04/2011] [Accepted: 07/23/2011] [Indexed: 11/21/2022] Open
Abstract
Introduction. Adipose tissue contributes to atherosclerosis with mechanisms related to adipokine secretion. Polyphenols may exhibit antiatherogenic properties. The aim of the study was to investigate the effects of three polyphenols, namely, quercetin, epigallocatechin gallate (EGCG), and resveratrol on adipokine secretion from cultured human adipocytes. Methods. Human SGBS adipocytes were treated with quercetin, EGCG, and resveratrol for 24 and 48 hours. Visfatin, leptin, and adiponectin were measured in the supernatant. Results. Visfatin secretion was inhibited by quercetin 10 μM by 16% and 24% at 24 and 48 hours respectively. The corresponding changes for quercetin 25 μM were 47% and 48%. Resveratrol 25 μM reduced visfatin by 28% and 38% at 24 and 48 hours. EGCG did not have an effect on visfatin. None of tested polyphenols influenced leptin and adiponectin secretion. Conclusion. Quercetin and resveratrol significantly decreased visfatin secretion from SGBS adipocytes. This effect may contribute to their overall antiatherogenic properties.
Collapse
|
146
|
Lukaszewski MA, Mayeur S, Fajardy I, Delahaye F, Dutriez-Casteloot I, Montel V, Dickes-Coopman A, Laborie C, Lesage J, Vieau D, Breton C. Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet. Am J Physiol Endocrinol Metab 2011; 301:E548-59. [PMID: 21712534 DOI: 10.1152/ajpendo.00011.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Villeneuve d'Ascq
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
UNLABELLED Adipose tissue is a specialized endocrine and paracrine organ producing specific factors called adipokines. It is well known that adipokines balance is fundamental to prevent obesity, metabolic syndrome, and cardiovascular diseases. During the last years, new roles of adipokines have been emerging in the field of fertility and reproduction. Although the literature is still quite controversial, this review serves to resume current knowledge on this topic. Alterations in adipokine levels or in their mechanism of action are associated with fertility impairment and pregnancy diseases, as well as with obesity, metabolic syndrome, and cardiovascular diseases. Normal levels of adipokines are fundamental to maintain integrity of hypothalamus-pituitary-gonadal axis, regular ovulatory processes, successful embryo implantation, and physiologic pregnancy. More efforts are needed to understand the mechanisms and to the extent to which adipokine changes are involved in the impairment of fertility and pregnancy outcome, to find possible medical treatments. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians Learning Objectives: After completion of this educational activity, the obstetrician/gynecologist should be better able to demonstrate current knowledge in the research field of adipokines in fertility and reproduction; evaluate the central role of metabolism balance in good pregnancy outcome; and apply new perspectives of studies.
Collapse
|
148
|
van Schothorst EM, Bunschoten A, Verlinde E, Schrauwen P, Keijer J. Glycemic index differences of high-fat diets modulate primarily lipid metabolism in murine adipose tissue. Physiol Genomics 2011; 43:942-9. [DOI: 10.1152/physiolgenomics.00042.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A low vs. high glycemic index of a high-fat (HF) diet (LGI and HGI, respectively) significantly retarded adverse health effects in adult male C57BL/6J mice, as shown recently (Van Schothorst EM, Bunschoten A, Schrauwen P, Mensink RP, Keijer J. FASEB J 23: 1092–1101, 2009). The LGI diet enhanced whole body insulin sensitivity and repressed HF diet-induced body and white adipose tissue (WAT) weight gain, resulting in significantly reduced serum leptin and resistin levels and increased adiponectin levels. We questioned how WAT is modulated and characterized the molecular mechanisms underlying the glycemic index-mediated effects using whole genome microarrays. This showed that the LGI diet mainly exerts its beneficial effects via substrate metabolism, especially fatty acid metabolism. In addition, cell adhesion and cytoskeleton remodeling showed reduced expression, in line with lower WAT mass. An important transcription factor showing enhanced expression is PPAR-γ. Furthermore, serum levels of triglycerides, total cholesterol, and HDL- and LDL-cholesterol were all significantly reduced by LGI diet, and simultaneously muscle insulin sensitivity was significantly increased as analyzed by protein kinase B/Akt phosphorylation. Cumulatively, even though these mice were fed an HF diet, the LGI diet induced significantly favorable changes in metabolism in WAT. These effects suggest a partial overlap with pharmacological approaches by thiazolidinediones to treat insulin resistance and statins for hypercholesterolemia. It is therefore tempting to speculate that such a dietary approach might beneficially support pharmacological treatment of insulin resistance or hypercholesterolemia in humans.
Collapse
Affiliation(s)
- Evert M. van Schothorst
- Top Institute Food and Nutrition
- Human and Animal Physiology, Wageningen University, Wageningen; and
| | - Annelies Bunschoten
- Top Institute Food and Nutrition
- Human and Animal Physiology, Wageningen University, Wageningen; and
| | - Eline Verlinde
- Human and Animal Physiology, Wageningen University, Wageningen; and
| | - Patrick Schrauwen
- Top Institute Food and Nutrition
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Jaap Keijer
- Top Institute Food and Nutrition
- Human and Animal Physiology, Wageningen University, Wageningen; and
| |
Collapse
|
149
|
Horrillo D, Sierra J, Arribas C, García-San Frutos M, Carrascosa JM, Lauzurica N, Fernández-Agulló T, Ros M. Age-associated development of inflammation in Wistar rats: Effects of caloric restriction. Arch Physiol Biochem 2011; 117:140-50. [PMID: 21635187 DOI: 10.3109/13813455.2011.577435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Insulin resistance and type 2 Diabetes have been associated to a low grade of inflammation and their prevalence increase with ageing. OBJECTIVE To analyse the development of inflammation in adipose tissue, liver, muscle and hypothalamus during ageing and the effects of caloric restriction. MATERIALS AND METHODS We have analysed the expression of inflammatory cytokines (TNFα, IL1-β, IL-12B and IL-6), proteins involved in macrophage recruitment (MCP-1, CCR2), TLR4 and macrophage markers (CD11c, CD11b and arginase1). Immunohistochemistry of macrophages has also been performed. RESULTS All studied tissues present signs of inflammation during ageing, but with different pattern and intensity. Caloric restriction decreases the expression of most of inflammatory markers. DISCUSSION AND CONCLUSIONS These data indicate a role of adiposity in the development of inflammation and insulin resistance during ageing. Dietetic intervention could be a useful tool to ameliorate the development of inflammation and insulin resistance associated with ageing.
Collapse
Affiliation(s)
- Daniel Horrillo
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011; 2:304-16. [PMID: 22332072 PMCID: PMC3125680 DOI: 10.3945/an.111.000505] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid-mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet-induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health.
Collapse
Affiliation(s)
- Nishan S. Kalupahana
- The University of Tennessee (UT) Obesity Research Center, Knoxville, TN 37996
- Department of Animal Science, Knoxville, TN 37996
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Kate J. Claycombe
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58201
| | - Naima Moustaid-Moussa
- The University of Tennessee (UT) Obesity Research Center, Knoxville, TN 37996
- Department of Animal Science, Knoxville, TN 37996
- UT Extension Family and Consumer Sciences Department, Family and Consumer Sciences, Knoxville, TN 37996
| |
Collapse
|