101
|
Pancrazio JJ, Deku F, Ghazavi A, Stiller AM, Rihani R, Frewin CL, Varner VD, Gardner TJ, Cogan SF. Thinking Small: Progress on Microscale Neurostimulation Technology. Neuromodulation 2017; 20:745-752. [PMID: 29076214 PMCID: PMC5943060 DOI: 10.1111/ner.12716] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. MATERIALS AND METHODS This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. RESULTS The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. CONCLUSION We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation.
Collapse
Affiliation(s)
- Joseph J. Pancrazio
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Felix Deku
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Atefeh Ghazavi
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Allison M. Stiller
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Rashed Rihani
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christopher L. Frewin
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Victor D. Varner
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Stuart F. Cogan
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
102
|
Yeon P, Mirbozorgi SA, Lim J, Ghovanloo M. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1366-1376. [PMID: 29293426 DOI: 10.1109/tbcas.2017.2775638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.
Collapse
|
103
|
Woeppel K, Yang Q, Cui XT. Recent Advances in Neural Electrode-Tissue Interfaces. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:21-31. [PMID: 29423457 PMCID: PMC5798641 DOI: 10.1016/j.cobme.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.
Collapse
Affiliation(s)
- Kevin Woeppel
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | - Qianru Yang
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh
- Center for the Neural Basis of Cognition, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| |
Collapse
|
104
|
Central nervous system microstimulation: Towards selective micro-neuromodulation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
105
|
Kil D, Brancato L, Puers R. Dextran as a fast resorbable and mechanically stiff coating for flexible neural probes. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/922/1/012016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
106
|
Mols K, Musa S, Nuttin B, Lagae L, Bonin V. In vivo characterization of the electrophysiological and astrocytic responses to a silicon neuroprobe implanted in the mouse neocortex. Sci Rep 2017; 7:15642. [PMID: 29142267 PMCID: PMC5688150 DOI: 10.1038/s41598-017-15121-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/23/2017] [Indexed: 12/04/2022] Open
Abstract
Silicon neuroprobes hold great potential for studies of large-scale neural activity and brain computer interfaces, but data on brain response in chronic implants is limited. Here we explored with in vivo cellular imaging the response to multisite silicon probes for neural recordings. We tested a chronic implant for mice consisting of a CMOS-compatible silicon probe rigidly implanted in the cortex under a cranial imaging window. Multiunit recordings of cortical neurons with the implant showed no degradation of electrophysiological signals weeks after implantation (mean spike and noise amplitudes of 186 ± 42 µVpp and 16 ± 3.2 µVrms, respectively, n = 5 mice). Two-photon imaging through the cranial window allowed longitudinal monitoring of fluorescently-labeled astrocytes from the second week post implantation for 8 weeks (n = 3 mice). The imaging showed a local increase in astrocyte-related fluorescence that remained stable from the second to the tenth week post implantation. These results demonstrate that, in a standard electrophysiology protocol in mice, rigidly implanted silicon probes can provide good short to medium term chronic recording performance with a limited astrocyte inflammatory response. The precise factors influencing the response to silicon probe implants remain to be elucidated.
Collapse
Affiliation(s)
- Katrien Mols
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001, Leuven, Belgium.,imec, Department of Life Science Technologies, Kapeldreef 75, 3001, Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000, Leuven, Belgium
| | - Silke Musa
- imec, Department of Life Science Technologies, Kapeldreef 75, 3001, Leuven, Belgium
| | - Bart Nuttin
- KU Leuven, Department of Neurosciences, 3000, Leuven, Belgium
| | - Liesbet Lagae
- imec, Department of Life Science Technologies, Kapeldreef 75, 3001, Leuven, Belgium.,KU Leuven, Department of Physics and Astronomy, 3001, Leuven, Belgium
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001, Leuven, Belgium. .,Vlaams Instituut voor Biotechnologie (VIB), 3001, Leuven, Belgium. .,KU Leuven, Department of Biology, 3000, Leuven, Belgium.
| |
Collapse
|
107
|
Barriga-Rivera A, Bareket L, Goding J, Aregueta-Robles UA, Suaning GJ. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Front Neurosci 2017; 11:620. [PMID: 29184478 PMCID: PMC5694472 DOI: 10.3389/fnins.2017.00620] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss.
Collapse
Affiliation(s)
- Alejandro Barriga-Rivera
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
- Division of Neuroscience, University Pablo de Olavide, Sevilla, Spain
| | - Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Josef Goding
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Gregg J. Suaning
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
108
|
Karimi-Bidhendi A, Malekzadeh-Arasteh O, Lee MC, McCrimmon CM, Wang PT, Mahajan A, Liu CY, Nenadic Z, Do AH, Heydari P. CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1111-1122. [PMID: 28783638 PMCID: PMC6508959 DOI: 10.1109/tbcas.2017.2723607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two brain signal acquisition (BSA) front-ends incorporating two CMOS ultralow power, low-noise amplifier arrays and serializers operating in mosfet weak inversion region are presented. To boost the amplifier's gain for a given current budget, cross-coupled-pair active load topology is used in the first stages of these two amplifiers. These two BSA front-ends are fabricated in 130 and 180 nm CMOS processes, occupying 5.45 mm 2 and 0.352 mm 2 of die areas, respectively (excluding pad rings). The CMOS 130-nm amplifier array is comprised of 64 elements, where each amplifier element consumes 0.216 μW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 μV[Formula: see text] corresponding to a power efficiency factor (PEF) of 11.7, and occupies 0.044 mm 2 of die area. The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69 μW from 0.6 V supply with IRNoise of 2.3 μV[Formula: see text] (corresponding to a PEF of 31.3) and 0.051 mm 2 of die area. Noninvasive electroencephalographic and invasive electrocorticographic signals were recorded real time directly on able-bodied human subjects, showing feasibility of using these analog front-ends for future fully implantable BSA and brain- computer interface systems.
Collapse
|
109
|
Tang LJ, Wang MH, Tian HC, Kang XY, Hong W, Liu JQ. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface. MICROMACHINES 2017; 8:E281. [PMID: 30400473 PMCID: PMC6190450 DOI: 10.3390/mi8090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
With the rapid development of Micro-electro-mechanical Systems (MEMS) fabrication technologies, many microelectrodes with various structures and functions have been designed and fabricated for applications in biomedical research, diagnosis and treatment through electrical stimulation and electrophysiological signal recording. The flexible MEMS microelectrodes exhibit excellent characteristics in many aspects beyond stiff microelectrodes based on silicon or metal, including: lighter weight, smaller volume, better conforming to neural tissue and lower fabrication cost. In this paper, we reviewed the key technologies in flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, flexible MEMS microelectrodes with fluidic channels and electrode⁻tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes for neural interface were described, including transparent and stretchable microelectrodes integrated with multi-functional aspects and next-generation electrode⁻tissue interface modifications, which facilitated electrode efficacy and safety during implantation. Finally, we predict that the relationships between micro fabrication techniques, and biomedical engineering and nanotechnology represented by flexible MEMS microelectrodes for neural interface, will open a new gate to better understanding the neural system and brain diseases.
Collapse
Affiliation(s)
- Long-Jun Tang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming-Hao Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hong-Chang Tian
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yang Kang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing-Quan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
110
|
Sridar S, Churchward MA, Mushahwar VK, Todd KG, Elias AL. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring. Acta Biomater 2017; 60:154-166. [PMID: 28735029 DOI: 10.1016/j.actbio.2017.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023]
Abstract
The goal of this study is to improve the integration of implanted microdevices with tissue in the central nervous system (CNS). The long-term utility of neuroprosthetic devices implanted in the CNS is affected by the formation of a scar by resident glial cells (astrocytes and microglia), limiting the viability and functional stability of the devices. Reduction in the proliferation of glial cells is expected to enhance the biocompatibility of devices. We demonstrate the modification of polyimide-insulated microelectrodes with a bioactive peptide KHIFSDDSSE. Microelectrode wires were functionalized with (3-aminopropyl) triethoxy silane (APTES); the peptide was then covalently bonded to the APTES. The soluble peptide was tested in 2D mixed cultures of astrocytes and microglia, and reduced the proliferation of both cell types. The interactions of glial cells with the peptide-modified wires was then examined in 3D cell-laden hydrogels by immunofluorescence microscopy. As expected for uncoated wires, the microglia were first attracted to the wire (7days) followed by astrocyte recruitment and hypertrophy (14days). For the peptide-treated wires, astrocytes coated the wires directly (24h), and formed a thin, stable coating without evidence of hypertrophy, and the attraction of microglia to the wire was significantly reduced. The results suggest a mechanism to improve tissue integration by promoting uniform coating of astrocytes on a foreign body while lessening the reactive response of microglia. We conclude that the bioactive peptide KHIFSDDSSE may be effective in improving the biocompatibility of neural interfaces by both reducing acute glial reactivity and generating stable integration with tissue. STATEMENT OF SIGNIFICANCE The peptide KHIFSDDSSE has previously been shown in vitro to both reduce the proliferation of astrocytes, and to increase the adhesion of astrocyte to glass substrates. Here, we demonstrate a method to apply uniform coatings of peptides to microwires, which could readily be generalized to other peptides and surfaces. We then show that when peptide-modified wires are inserted into 3D cell-laden hydrogels, the normal cellular reaction (microglial activation followed by astrocyte recruitment and hypertrophy) does not occur, rather astrocytes are attracted directly to the surface of the wire, forming a relatively thin and uniform coating. This suggests a method to improve tissue integration of implanted devices to reduce glial scarring and ultimately reduce failure of neural interfaces.
Collapse
Affiliation(s)
- Sangita Sridar
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2E1, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Anastasia L Elias
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada.
| |
Collapse
|
111
|
Hayn L, Deppermann L, Koch M. Reduction of the foreign body response and neuroprotection by apyrase and minocycline in chronic cannula implantation in the rat brain. Clin Exp Pharmacol Physiol 2017; 44:313-323. [PMID: 27864839 DOI: 10.1111/1440-1681.12703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 01/17/2023]
Abstract
Implantation of electrodes or cannulae into the brain is accompanied by a tissue response referred to as foreign body response. Adenosine triphosphate (ATP) is one of the signalling molecules released by injured cells which mediate the chemoattraction of microglial cells. The constitutive release of pro-inflammatory and cytotoxic substances by microglial cells in chronic implants exacerbates neuronal cell death and the immune response. This study aimed to interfere with the initial events of the foreign body response in order to mitigate neurotoxicity and inflammation. For this purpose, the ATP-hydrolysing enzyme apyrase and the antibiotic minocycline with a broad range of anti-inflammatory, anti-apoptotic and glutamate-antagonist properties were locally infused during cannula implantation in the caudal forelimb area of the motor cortex in Lister Hooded rats. The rats' motor performance was assessed in a skilled reaching task and the distribution of neurons and glial cells in the vicinity of the implant was examined 2 and 6 weeks post-implantation. Apyrase as well as minocycline increased the number of surviving neurons and reduced microglial activation. Moreover, minocycline improved the motor performance and, additionally, caused a temporary reduction in astrogliosis, suggesting it as a possible therapeutic candidate to improve the biocompatibility of chronic brain implants.
Collapse
Affiliation(s)
- Linda Hayn
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Linda Deppermann
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, Centre for Cognitive Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
112
|
Affiliation(s)
- Eduardo Fernández
- Bioengineering Institute; Miguel Hernández University of Elche and CIBER BBN; Elche 03202 Spain
| | - Pablo Botella
- Instituto de Tecnología Química; Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas; Valencia 46022 Spain
| |
Collapse
|
113
|
Abstract
Polyimide based shaft electrodes were coated with a bioresorbable layer to stiffen them for intracortical insertion and to reduce the mechanical mismatch between the target tissue and the implanted device after degradation of the coating. Molten saccharose was used as coating material. In a proof-of-concept study, the electrodes were implanted into the cortex of Wistar rats and the insertion forces during implantation were recorded. Electrochemical impedance spectroscopy was performed immediately after implantation and up to 13 weeks after implantation to monitor the tissue response to the implanted electrodes. The recorded spectra were modeled with an equivalent circuit to differentiate the influence of the single components. In one rat, a peak in the encapsulation resistance was observable after two weeks of implantation, indicating the peak of the acute inflammatory response. In another rat, the lowest resistances were observed after four weeks, indicating the termination of the acute inflammatory response. Multiunit activity was recorded with an adequate signal to noise ratio to allow spike sorting. Histology was performed after 7, 45 and 201 days of implantation. The results showed the highest tissue reaction after 45 days and confirmed impedance data that acute inflammatory reactions terminate over time.
Collapse
|
114
|
Leigh BL, Cheng E, Linjing X, Andresen C, Hansen MR, Guymon CA. Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth. Biomacromolecules 2017; 18:2389-2401. [PMID: 28671816 PMCID: PMC6372952 DOI: 10.1021/acs.biomac.7b00579] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption. Micropatterned surfaces were fabricated with alternating zwitterionic and uncoated bands. Fibroblasts, cells prevalent in fibrotic tissue, almost exclusively migrate and grow on uncoated bands with little to no cells present on zwitterionic bands, especially for CBMA-coated surfaces. Astrocytes and Schwann cells showed similarly low levels of cell adhesion and morphology changes when cultured on zwitterionic surfaces. Additionally, Schwann cells and inner ear spiral ganglion neuron neurites aligned well to zwitterionic patterns.
Collapse
Affiliation(s)
- Braden L. Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elise Cheng
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Xu Linjing
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Corinne Andresen
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R. Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
115
|
Abstract
A major challenge in the growing field of bioelectronic medicine is the development of tissue interface technologies promoting device integration with biological tissues. Materials based on organic bioelectronics show great promise due to a unique combination of electronic and ionic conductivity properties. In this review, we outline exciting developments in the field of organic bioelectronics and demonstrate the medical importance of these active, electronically controllable materials. Importantly, organic bioelectronics offer a means to control cell-surface attachment as required for many device-tissue applications. Experiments have shown that cells readily attach and proliferate on reduced but not oxidized organic bioelectronic materials. In another application, the active properties of organic bioelectronics were used to develop electronically triggered systems for drug release. After incorporating drugs by advanced loading strategies, small compound drugs were released upon electrochemical trigger, independent of charge. Another type of delivery device was used to achieve well-controlled, spatiotemporal delivery of cationic drugs. Via electrophoretic transport within a polymer, cations were delivered with single-cell precision. Finally, organic bioelectronic materials are commonly used as electrode coatings improving the electrical properties of recording and stimulation electrodes. Because such coatings drastically reduce the electrode impedance, smaller electrodes with improved signal-to-noise ratio can be fabricated. Thus, rapid technological advancement combined with the creation of tiny electronic devices reacting to changes in the tissue environment helps to promote the transition from standard pharmaceutical therapy to treatment based on 'electroceuticals'. Moreover, the widening repertoire of organic bioelectronics will expand the options for true biological interfaces, providing the basis for personalized bioelectronic medicine.
Collapse
Affiliation(s)
- S Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K P R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - A Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
116
|
Lee HC, Gaire J, Roysam B, Otto KJ. Placing Sites on the Edge of Planar Silicon Microelectrodes Enhances Chronic Recording Functionality. IEEE Trans Biomed Eng 2017. [PMID: 28641240 DOI: 10.1109/tbme.2017.2715811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study aims to identify the impact of using edge sites over center sites on a planar silicon microelectrode array. METHODS We used custom-designed, silicon-substrate multisite microelectrode arrays with sites on the center, edge, and tip. We compared their single unit recording capability, noise level, impedance, and histology to identify the differences between each site location. Wide and narrow devices were used to evaluate if the differences are consistent and meet theoretical expectations. RESULTS On the wide device, significantly more number of edge sites were functional than center sites over the course of 8 weeks with generally higher signal-to-noise amplitude ratio. On the narrow device, edge sites also performed generally better than center sites, but the differences were not significant and smaller than wide devices. The data from the tip sites were inconclusive. CONCLUSION Edge sites outperformed center sites in terms of single unit recording capability. This benefit decreased as the device gets narrower and the distance to center sites decreases. SIGNIFICANCE We showed that a simple alteration to the site placement can greatly enhance the functionality of silicon microelectrodes. This study promotes the idea that not only the substrate but also the site architecture needs attention to lengthen the lifetime of neural implants.
Collapse
|
117
|
Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118:1329-1343. [PMID: 28615329 DOI: 10.1152/jn.00070.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.
Collapse
Affiliation(s)
- Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois; and.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, Illinois
| |
Collapse
|
118
|
Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Sci Rep 2017; 7:1952. [PMID: 28512291 PMCID: PMC5434064 DOI: 10.1038/s41598-017-02107-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glial scar is a significant barrier to neural implant function. Micromotion between the implant and tissue is suspected to be a key driver of glial scar formation around neural implants. This study explores the ability of soft hydrogel coatings to modulate glial scar formation by reducing local strain. PEG hydrogels with controllable thickness and elastic moduli were formed on the surface of neural probes. These coatings significantly reduced the local strain resulting from micromotion around the implants. Coated implants were found to significantly reduce scarring in vivo, compared to hard implants of identical diameter. Increasing implant diameter was found to significantly increase scarring for glass implants, as well as increase local BBB permeability, increase macrophage activation, and decrease the local neural density. These results highlight the tradeoff in mechanical benefit with the size effects from increasing the overall diameter following the addition of a hydrogel coating. This study emphasizes the importance of both mechanical and geometric factors of neural implants on chronic timescales.
Collapse
|
119
|
Du ZJ, Kolarcik CL, Kozai TDY, Luebben SD, Sapp SA, Zheng XS, Nabity JA, Cui XT. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater 2017; 53:46-58. [PMID: 28185910 DOI: 10.1016/j.actbio.2017.02.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/11/2022]
Abstract
Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. STATEMENT OF SIGNIFICANCE One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Young's modulus lower than 1MPa, closely mimicking the brain tissue modulus. Here, we present a rigorous histological comparison of this novel ultrasoft electrode and conventional stiff electrode with the same size, shape and surface chemistry, implanted in rat brains for 1-week and 8-weeks. Significant improvement was observed for ultrasoft electrodes, including inflammatory tissue reaction, electrode-tissue integration as well as mechanical disturbance to nearby neurons. A full spectrum of new techniques were developed in this study, from insertion shuttle to in situ sectioning of the microelectrode to automated cell shape analysis, all of which should contribute new methods to the field. Finally, we showed the electrical functionality of the ultrasoft electrode, demonstrating the potential of flexible neural implant devices for future research and clinical use.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Department of Bioengineering, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; Systems Neuroscience Institute, University of Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA; NeuroTech Center of Brain Institute, University of Pittsburgh, PA, USA
| | | | | | - Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - James A Nabity
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO,USA
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
120
|
Salatino JW, Winter BM, Drazin MH, Purcell EK. Functional remodeling of subtype-specific markers surrounding implanted neuroprostheses. J Neurophysiol 2017; 118:194-202. [PMID: 28356474 DOI: 10.1152/jn.00162.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
Microelectrode arrays implanted in the brain are increasingly used for the research and treatment of intractable neurological disease. However, local neuronal loss and glial encapsulation are known to interfere with effective integration and communication between implanted devices and brain tissue, where these observations are typically based on assessments of broad neuronal and astroglial markers. However, both neurons and astrocytes comprise heterogeneous cellular populations that can be further divided into subclasses based on unique functional and morphological characteristics. In this study, we investigated whether or not device insertion causes alterations in specific subtypes of these cells. We assessed the expression of both excitatory and inhibitory markers of neurotransmission (vesicular glutamate and GABA transporters, VGLUT1 and VGAT, respectively) surrounding single-shank Michigan-style microelectrode arrays implanted in the motor cortex of adult rats by use of quantitative immunohistochemistry. We found a pronounced shift from significantly elevated VGLUT1 within the initial days following implantation to relatively heightened VGAT by the end of the 4-wk observation period. Unexpectedly, we observed VGAT positivity in a subset of reactive astrocytes during the first week of implantation, indicating heterogeneity in early-responding encapsulating glial cells. We coupled our VGLUT1 data with the evaluation of a second marker of excitatory neurons (CamKiiα); the results closely paralleled each other and underscored a progression from initially heightened to subsequently weakened excitatory tone in the neural tissue proximal to the implanted electrode interface (within 40 μm). Our results provide new evidence for subtype-specific remodeling surrounding brain implants that inform observations of suboptimal integration and performance.NEW & NOTEWORTHY We report novel changes in the local expression of excitatory and inhibitory synaptic markers surrounding microelectrode arrays implanted in the motor cortex of rats, where a progressive shift toward increased inhibitory tone was observed over the 4-wk observation period. The result was driven by declining glutamate transporter expression (VGLUT1) in parallel with increasing GABA transporter expression (VGAT) over time, where a reactive VGAT+ astroglial subtype made an unexpected contribution to our findings.
Collapse
Affiliation(s)
- Joseph W Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Bailey M Winter
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Matthew H Drazin
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan; and
| | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan; .,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
121
|
Mirbozorgi A, Ash B, Eckhardt H, Ghovanloo M. Toward a distributed free-floating wireless implantable neural recording system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4495-4498. [PMID: 28269276 DOI: 10.1109/embc.2016.7591726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 μW and 0.6%/604 μW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.
Collapse
|
122
|
McDermott MD, Otto KJ. The effect of multiple thin-film coatings of protein loaded sol-gel on total multi-electrode array thickness. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:129-132. [PMID: 28268296 DOI: 10.1109/embc.2016.7590657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tetramethyl orthosilicate shows promise as a thin-film delivery vehicle for multi-electrode arrays for drug release and electrical performance; however, its effect upon device footprint has yet to be assessed. Using a previously established silicon wafer chip model, the thickness of one, two, and four protein doped coatings of sol-gel were analyzed via profilometry. Coating thickness was found to be 0.4μm, 1.1μm and 2.2μm on each side of the device. This addition to a native MEA is minimal when compared to other drug delivery paradigms currently associated with neural implants.
Collapse
|
123
|
Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal Fluid Shunting Complications in Children. Pediatr Neurosurg 2017; 52:381-400. [PMID: 28249297 PMCID: PMC5915307 DOI: 10.1159/000452840] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Although cerebrospinal fluid (CSF) shunt placement is the most common procedure performed by pediatric neurosurgeons, shunts remain among the most failure-prone life-sustaining medical devices implanted in modern medical practice. This article provides an overview of the mechanisms of CSF shunt failure for the 3 most commonly employed definitive CSF shunts in the practice of pediatric neurosurgery: ventriculoperitoneal, ventriculopleural, and ventriculoatrial. The text has been partitioned into the broad modes of shunt failure: obstruction, infection, mechanical shunt failure, overdrainage, and distal catheter site-specific failures. Clinical management strategies for the various modes of shunt failure are discussed as are research efforts directed towards reducing shunt complication rates. As it is unlikely that CSF shunting will become an obsolete procedure in the foreseeable future, it is incumbent on the pediatric neurosurgery community to maintain focused efforts to improve our understanding of and management strategies for shunt failure and shunt-related morbidity.
Collapse
Affiliation(s)
- Brian W. Hanak
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Robert H. Bonow
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Carolyn A. Harris
- Department of Neurosurgery, Wayne State University and Children’s Hospital of Michigan, Detroit, MI, USA
| | - Samuel R. Browd
- Department of Neurological Surgery, University of Washington and Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
124
|
Hadler C, Wissel K, Brandes G, Dempwolf W, Reuter G, Lenarz T, Menzel H. Photochemical coating of Kapton® with hydrophilic polymers for the improvement of neural implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:286-296. [PMID: 28415465 DOI: 10.1016/j.msec.2017.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/05/2023]
Abstract
The polyimide Kapton® was coated photochemically with hydrophilic polymers to prevent undesirable cell growth on the polyimide surface. The polymer coatings were generated using photochemically reactive polymers synthesized by a simple and modular strategy. Suitable polymers or previously synthesized copolymer precursors were functionalized with photoactive arylazide groups by a polymer analogous amide coupling reaction with 4-azidobenzoic acid. A photoactive chitosan derivative (chitosan-Az) and photochemically reactive copolymers containing DMAA, DEAA or MTA as primary monomers were synthesized using this method. The amount of arylazide groups in the polymers was adjusted to approximately 5%, 10% and 20%. As coating on Kapton® all polymers effect a significantly reduced water contact angle (WCA) and consequently a rise of the surface hydrophilicity compared to the untreated Kapton®. The presence of the polymer coatings was also proven by ATR-IR spectroscopy. Coatings with chitosan-Az and the DEAA copolymer cause a distinct inhibition of the growth of fibroblasts. In the case of the DMAA copolymer even a strong anti-adhesive behavior towards fibroblasts was verified. Biocompatibility of the polymer coatings was proven which enables their utilization in biomedical applications.
Collapse
Affiliation(s)
- Christoph Hadler
- Institute for Technical Chemistry, Braunschweig University of Technology, Germany.
| | - Kirsten Wissel
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Germany
| | - Gudrun Brandes
- Institute of Cell Biology in the Center of Anatomy, Hannover Medical School, Germany
| | - Wibke Dempwolf
- Institute for Technical Chemistry, Braunschweig University of Technology, Germany
| | - Günter Reuter
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Germany.
| |
Collapse
|
125
|
Liu B, Kim E, Meggo A, Gandhi S, Luo H, Kallakuri S, Xu Y, Zhang J. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels. J Neural Eng 2017; 14:026008. [PMID: 28155844 DOI: 10.1088/1741-2552/aa52dc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. APPROACH We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. MAIN RESULTS The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. SIGNIFICANCE The new design will help enhance the long-term stability of the implantable devices.
Collapse
Affiliation(s)
- Bin Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Khudhair D, Nahavandi S, Garmestani H, Bhatti A. Microelectrode Arrays: Architecture, Challenges and Engineering Solutions. SERIES IN BIOENGINEERING 2017. [DOI: 10.1007/978-981-10-3957-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
127
|
Popat KC, Johnson RW, Desai TA. Vapor Deposited Poly(ethylene glycol) Films for Surface Modification of Microfluidic Systems. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1535-5535-04-00196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ketul C. Popat
- Department of Bioengineering, University of Illinois at Chicago
| | | | - Tejal A. Desai
- Department of Bioengineering, University of Illinois at Chicago
- Department of Biomedical Engineering, Boston University
| |
Collapse
|
128
|
Patel PR, Zhang H, Robbins MT, Nofar JB, Marshall SP, Kobylarek MJ, Kozai TDY, Kotov NA, Chestek CA. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng 2016; 13:066002. [PMID: 27705958 PMCID: PMC5118062 DOI: 10.1088/1741-2560/13/6/066002] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. APPROACH Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. MAIN RESULTS Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. SIGNIFICANCE This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Ghane-Motlagh B, Javanbakht T, Shoghi F, Wilkinson KJ, Martel R, Sawan M. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:642-650. [DOI: 10.1016/j.msec.2016.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
|
130
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
131
|
Yeon P, Mirbozorgi SA, Ash B, Eckhardt H, Ghovanloo M. Fabrication and Microassembly of a mm-Sized Floating Probe for a Distributed Wireless Neural Interface. MICROMACHINES 2016; 7:mi7090154. [PMID: 30404327 PMCID: PMC6190206 DOI: 10.3390/mi7090154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
A new class of wireless neural interfaces is under development in the form of tens to hundreds of mm-sized untethered implants, distributed across the target brain region(s). Unlike traditional interfaces that are tethered to a centralized control unit and suffer from micromotions that may damage the surrounding neural tissue, the new free-floating wireless implantable neural recording (FF-WINeR) probes will be stand-alone, directly communicating with an external interrogator. Towards development of the FF-WINeR, in this paper we describe the micromachining, microassembly, and hermetic packaging of 1-mm3 passive probes, each of which consists of a thinned micromachined silicon die with a centered Ø(diameter) 130 μm through-hole, an Ø81 μm sharpened tungsten electrode, a 7-turn gold wire-wound coil wrapped around the die, two 0201 surface mount capacitors on the die, and parylene-C/Polydimethylsiloxane (PDMS) coating. The fabricated passive probe is tested under a 3-coil inductive link to evaluate power transfer efficiency (PTE) and power delivered to a load (PDL) for feasibility assessment. The minimum PTE/PDL at 137 MHz were 0.76%/240 μW and 0.6%/191 μW in the air and lamb head medium, respectively, with coil separation of 2.8 cm and 9 kΩ receiver (Rx) loading. Six hermetically sealed probes went through wireless hermeticity testing, using a 2-coil inductive link under accelerated lifetime testing condition of 85 °C, 1 atm, and 100%RH. The mean-time-to-failure (MTTF) of the probes at 37 °C is extrapolated to be 28.7 years, which is over their lifetime.
Collapse
Affiliation(s)
- Pyungwoo Yeon
- GT-Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| | - S Abdollah Mirbozorgi
- GT-Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| | - Bruce Ash
- Premitec. Inc., Raleigh, NC 27606, USA.
| | | | - Maysam Ghovanloo
- GT-Bionics lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| |
Collapse
|
132
|
Usmani S, Aurand ER, Medelin M, Fabbro A, Scaini D, Laishram J, Rosselli FB, Ansuini A, Zoccolan D, Scarselli M, De Crescenzi M, Bosi S, Prato M, Ballerini L. 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. SCIENCE ADVANCES 2016; 2:e1600087. [PMID: 27453939 PMCID: PMC4956187 DOI: 10.1126/sciadv.1600087] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/22/2016] [Indexed: 05/15/2023]
Abstract
In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces.
Collapse
Affiliation(s)
- Sadaf Usmani
- International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Emily Rose Aurand
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Manuela Medelin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandra Fabbro
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Denis Scaini
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
- NanoInnovation Laboratory, ELETTRA Synchrotron Light Source, Trieste 34149, Italy
| | - Jummi Laishram
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | | | - Alessio Ansuini
- International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Davide Zoccolan
- International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Manuela Scarselli
- Department of Physics, University of Rome Tor Vergata, Rome 00173, Italy
| | | | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia–San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Corresponding author. (L.B.); (M.P.)
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
- Corresponding author. (L.B.); (M.P.)
| |
Collapse
|
133
|
Degenhart AD, Eles J, Dum R, Mischel JL, Smalianchuk I, Endler B, Ashmore RC, Tyler-Kabara EC, Hatsopoulos NG, Wang W, Batista AP, Cui XT. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng 2016; 13:046019. [PMID: 27351722 DOI: 10.1088/1741-2560/13/4/046019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. APPROACH We implanted and recorded from a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 d. MAIN RESULTS Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. SIGNIFICANCE These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically viable BMI systems.
Collapse
Affiliation(s)
- Alan D Degenhart
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, Pittsburgh, PA, USA. Systems Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Knaack GL, McHail DG, Borda G, Koo B, Peixoto N, Cogan SF, Dumas TC, Pancrazio JJ. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces. Front Neurosci 2016; 10:301. [PMID: 27445672 PMCID: PMC4923247 DOI: 10.3389/fnins.2016.00301] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation.
Collapse
Affiliation(s)
- Gretchen L Knaack
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason UniversityFairfax, VA, USA; Quantitative Scientific SolutionsArlington, VA, USA
| | - Daniel G McHail
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - German Borda
- Department of Bioengineering, George Mason University Fairfax, VA, USA
| | - Beomseo Koo
- Department of Bioengineering, George Mason University Fairfax, VA, USA
| | - Nathalia Peixoto
- Electrical and Computer Engineering Department, George Mason University Fairfax, VA, USA
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas Richardson, TX, USA
| | - Theodore C Dumas
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Joseph J Pancrazio
- Quantitative Scientific SolutionsArlington, VA, USA; Department of Bioengineering, University of Texas at DallasRichardson, TX, USA
| |
Collapse
|
135
|
Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion. BIOSENSORS-BASEL 2016; 6:27. [PMID: 27322338 PMCID: PMC4931487 DOI: 10.3390/bios6020027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/25/2023]
Abstract
The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.
Collapse
|
136
|
Xiang Z, Yen SC, Sheshadri S, Wang J, Lee S, Liu YH, Liao LD, Thakor NV, Lee C. Progress of Flexible Electronics in Neural Interfacing - A Self-Adaptive Non-Invasive Neural Ribbon Electrode for Small Nerves Recording. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4472-4479. [PMID: 26568483 DOI: 10.1002/adma.201503423] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/17/2015] [Indexed: 06/05/2023]
Abstract
A novel flexible neural ribbon electrode with a self-adaptive feature is successfully implemented for various small nerves recording. As a neural interface, the selective recording capability is characterized by having reliable signal acquisitions from the sciatic nerve and its branches such as the peroneal nerve, the tibial nerve, and the sural nerve.
Collapse
Affiliation(s)
- Zhuolin Xiang
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Shih-Cheng Yen
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
| | - Swathi Sheshadri
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
| | - Jiahui Wang
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Sanghoon Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Yu-Hang Liu
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
| | - Lun-De Liao
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
| | - Nitish V Thakor
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
- Singapore Institute for Neurotechnology (SiNAPSE), National University of Singapore, 28 Medical Drive, #05-COR, 117456, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| |
Collapse
|
137
|
Etemadi L, Mohammed M, Thorbergsson PT, Ekstrand J, Friberg A, Granmo M, Pettersson LME, Schouenborg J. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. PLoS One 2016; 11:e0155109. [PMID: 27159159 PMCID: PMC4861347 DOI: 10.1371/journal.pone.0155109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/25/2016] [Indexed: 01/03/2023] Open
Abstract
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.
Collapse
Affiliation(s)
- Leila Etemadi
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mohsin Mohammed
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Palmi Thor Thorbergsson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joakim Ekstrand
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annika Friberg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Granmo
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lina M. E. Pettersson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| |
Collapse
|
138
|
McCreery D, Cogan S, Kane S, Pikov V. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. J Neural Eng 2016; 13:036012. [PMID: 27108712 DOI: 10.1088/1741-2560/13/3/036012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. APPROACH 'Utah'-type intracortical microelectrode arrays were implanted into cats' sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson's product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). MAIN RESULTS S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. SIGNIFICANCE Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode's electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes' long-term functionality.
Collapse
|
139
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
140
|
Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. SENSORS 2016; 16:s16030330. [PMID: 26959021 PMCID: PMC4813905 DOI: 10.3390/s16030330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 01/20/2023]
Abstract
Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential.
Collapse
|
141
|
Prodanov D, Delbeke J. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design. Front Neurosci 2016; 10:11. [PMID: 26903786 PMCID: PMC4746296 DOI: 10.3389/fnins.2016.00011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022] Open
Abstract
Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.
Collapse
Affiliation(s)
- Dimiter Prodanov
- Department of Environment, Health and Safety, ImecLeuven, Belgium
- Neuroscience Research FlandersLeuven, Belgium
| | - Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent UniversityGhent, Belgium
| |
Collapse
|
142
|
Barrese JC, Aceros J, Donoghue JP. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J Neural Eng 2016; 13:026003. [PMID: 26824680 DOI: 10.1088/1741-2560/13/2/026003] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Signal attenuation is a major problem facing intracortical sensors for chronic neuroprosthetic applications. Many studies suggest that failure is due to gliosis around the electrode tips, however, mechanical and material causes of failure are often overlooked. The purpose of this study was to investigate the factors contributing to progressive signal decline by using scanning electron microscopy (SEM) to visualize structural changes in chronically implanted arrays and histology to examine the tissue response at corresponding implant sites. APPROACH We examined eight chronically implanted intracortical microelectrode arrays (MEAs) explanted from non-human primates at times ranging from 37 to 1051 days post-implant. We used SEM, in vivo neural recordings, and histology (GFAP, Iba-1, NeuN). Three MEAs that were never implanted were also imaged as controls. MAIN RESULTS SEM revealed progressive corrosion of the platinum electrode tips and changes to the underlying silicon. The parylene insulation was prone to cracking and delamination, and in some instances the silicone elastomer also delaminated from the edges of the MEA. Substantial tissue encapsulation was observed and was often seen growing into defects in the platinum and parylene. These material defects became more common as the time in vivo increased. Histology at 37 and 1051 days post-implant showed gliosis, disruption of normal cortical architecture with minimal neuronal loss, and high Iba-1 reactivity, especially within the arachnoid and dura. Electrode tracts were either absent or barely visible in the cortex at 1051 days, but were seen in the fibrotic encapsulation material suggesting that the MEAs were lifted out of the brain. Neural recordings showed a progressive drop in impedance, signal amplitude, and viable channels over time. SIGNIFICANCE These results provide evidence that signal loss in MEAs is truly multifactorial. Gliosis occurs in the first few months after implantation but does not prevent useful recordings for several years. Progressive meningeal fibrosis encapsulates and lifts MEAs out of the cortex while ongoing foreign body reactions lead to progressive degradation of the materials. Long-term impedance drops are due to the corrosion of platinum, cracking and delamination of parylene, and delamination of silicone elastomer. Oxygen radicals released by cells of the immune system likely mediate the degradation of these materials. Future MEA designs must address these problems through more durable insulation materials, more inert electrode alloys, and pharmacologic suppression of fibroblasts and leukocytes.
Collapse
Affiliation(s)
- James C Barrese
- Department of Neurological Surgery, New Jersey Medical School, Rutgers University, Newark, NJ, USA. Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
143
|
Harris JP, Struzyna LA, Murphy PL, Adewole DO, Kuo E, Cullen DK. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J Neural Eng 2016; 13:016019. [PMID: 26760138 DOI: 10.1088/1741-2560/13/1/016019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. APPROACH We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. MAIN RESULTS The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter-white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. SIGNIFICANCE Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson's disease, traumatic brain injury, stroke, and brain tumor excision.
Collapse
Affiliation(s)
- J P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
144
|
Franca E, Jao PF, Fang SP, Alagapan S, Pan L, Yoon JH, Yoon YK, Wheeler BC. Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion. IEEE Trans Nanobioscience 2016; 15:11-8. [PMID: 26829799 PMCID: PMC4791169 DOI: 10.1109/tnb.2016.2519505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI). Carbonized nanofibers were fabricated by electrospinning SU-8 and pyrolyzing the nanofiber depositions. Additional substrates tested were carbonized and SU-8 thin films and SU-8 nanofibers. Surfaces were O2-plasma treated, coated with varying concentrations of PEI, seeded with E18 rat cortical cells, and examined at 3, 4, and 7 days in vitro (DIV). Neural adhesion was examined at 4 DIV utilizing a parallel plate flow chamber. At 3 DIV, neural viability was lower on the nanofiber and thin film depositions treated with higher PEI concentrations which corresponded with significantly higher zeta potentials (surface charge); this significance was drastically higher on the nanofibers suggesting that the nanostructure may collect more PEI molecules, causing increased toxicity. At 7 DIV, significantly higher neurite outgrowth was observed on SU-8 nanofiber substrates with nanofibers a significant fraction of a neuron's size. No differences were detected for carbonized nanofibers or carbon nanotubes. Both carbonized and SU-8 nanofibers had significantly higher cellular adhesion post-flow in comparison to controls whereas the carbon nanotubes were statistically similar to control substrates. These data suggest a neural cell preference for larger-scale nanomaterials with specific surface treatments. These characteristics could be taken advantage of in the future design and fabrication of neural microelectrodes.
Collapse
|
145
|
Malaga KA, Schroeder KE, Patel PR, Irwin ZT, Thompson DE, Nicole Bentley J, Lempka SF, Chestek CA, Patil PG. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. J Neural Eng 2015; 13:016010. [PMID: 26655972 DOI: 10.1088/1741-2560/13/1/016010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. APPROACH A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. MAIN RESULTS From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. SIGNIFICANCE This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.
Collapse
Affiliation(s)
- Karlo A Malaga
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Scholten K, Meng E. Materials for microfabricated implantable devices: a review. LAB ON A CHIP 2015; 15:4256-72. [PMID: 26400550 DOI: 10.1039/c5lc00809c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The application of microfabrication to the development of biomedical implants has produced a new generation of miniaturized technology for assisting treatment and research. Microfabricated implantable devices (μID) are an increasingly important tool, and the development of new μIDs is a rapidly growing field that requires new microtechnologies able to safely and accurately function in vivo. Here, we present a review of μID research that examines the critical role of material choice in design and fabrication. Materials commonly used for μID production are identified and presented along with their relevant physical properties and a survey of the state-of-the-art in μID development. The consequence of material choice as it pertains to microfabrication and biocompatibility is discussed in detail with a particular focus on the divide between hard, rigid materials and soft, pliable polymers.
Collapse
Affiliation(s)
- Kee Scholten
- Department of Biomedical Engineering, Univ. of Southern California, Los Angeles, CA 90089-1111, USA.
| | - Ellis Meng
- Department of Biomedical Engineering, Univ. of Southern California, Los Angeles, CA 90089-1111, USA.
| |
Collapse
|
147
|
Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights. J Neurosci Methods 2015; 258:46-55. [PMID: 26526459 DOI: 10.1016/j.jneumeth.2015.10.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Two-photon microscopy has enabled the visualization of dynamic tissue changes to injury and disease in vivo. While this technique has provided powerful new information, in vivo two-photon chronic imaging around tethered cortical implants, such as microelectrodes or neural probes, present unique challenges. NEW METHOD A number of strategies are described to prepare a cranial window to longitudinally observe the impact of neural probes on brain tissue and vasculature for up to 3 months. RESULTS It was found that silastic sealants limit cell infiltration into the craniotomy, thereby limiting light scattering and preserving window clarity over time. In contrast, low concentration hydrogel sealants failed to prevent cell infiltration and their use at high concentration displaced brain tissue and disrupted probe performance. COMPARISON WITH EXISTING METHOD(S) The use of silastic sealants allows for a suitable imaging window for long term chronic experiments and revealed new insights regarding the dynamic leukocyte response around implants and the nature of chronic BBB leakage in the sub-dural space. CONCLUSION The presented method provides a valuable tool for evaluating the chronic inflammatory response and the performance of emerging implantable neural technologies.
Collapse
|
148
|
Qiao S, Stieglitz T, Yoshida K. Estimation of the Electrode-Fiber Bioelectrical Coupling From Extracellularly Recorded Single Fiber Action Potentials. IEEE Trans Neural Syst Rehabil Eng 2015; 24:951-960. [PMID: 26469339 DOI: 10.1109/tnsre.2015.2489924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selective peripheral neural interfaces are currently capable of detecting minute electrical signals from nearby nerve fibers as single fiber action potential (SFAP) waveforms. Each detected single unit has a distinct shape originating from the unique bioelectrical coupling that exists between the neuroprosthetic electrode, the nerve fiber and the extracellular milieu. The bioelectrical coupling manifests itself as a series of low-pass Bessel filters acting on the action currents along the nerve fiber. Here, we present a method to estimate the electrode-fiber bioelectrical coupling through a quantitative analysis of the spectral distribution of the single units extracellularly recorded with the thin-film longitudinal intrafascicular electrode (tfLIFE) in an in vivo mammalian peripheral nerve animal model. The bioelectrical coupling estimate is an estimate of the electrode sensitivity function traversed by the nerve fiber, suggesting that it is as a means to directly measure the spatial relationship between the nerve fiber and electrode. It not only reflects a shape change to the SFAP, but has implications for in situ nerve fiber location tracking, in situ diagnostics of nerves and neuroproshetic electrodes, and assessment of the biocompatibility of neural interfaces and the health of the reporting nerve fibers.
Collapse
|
149
|
Agorelius J, Tsanakalis F, Friberg A, Thorbergsson PT, Pettersson LME, Schouenborg J. An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation-initial evaluation in cortex cerebri of awake rats. Front Neurosci 2015; 9:331. [PMID: 26441505 PMCID: PMC4585103 DOI: 10.3389/fnins.2015.00331] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/04/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A major challenge in the field of neural interfaces is to overcome the problem of poor stability of neuronal recordings, which impedes long-term studies of individual neurons in the brain. Conceivably, unstable recordings reflect relative movements between electrode and tissue. To address this challenge, we have developed a new ultra-flexible electrode array and evaluated its performance in awake non-restrained animals. METHODS An array of eight separated gold leads (4 × 10 μm), individually flexible in 3D, were cut from a gold sheet using laser milling and insulated with Parylene C. To provide structural support during implantation into rat cortex, the electrode array was embedded in a hard gelatin based material, which dissolves after implantation. Recordings were made during 3 weeks. At termination, the animals were perfused with fixative and frozen to prevent dislocation of the implanted electrodes. A thick slice of brain tissue, with the electrode array still in situ, was made transparent using methyl salicylate to evaluate the conformation of the implanted electrode array. RESULTS Median noise levels and signal/noise remained relatively stable during the 3 week observation period; 4.3-5.9 μV and 2.8-4.2, respectively. The spike amplitudes were often quite stable within recording sessions and for 15% of recordings where single-units were identified, the highest-SNR unit had an amplitude higher than 150 μV. In addition, high correlations (>0.96) between unit waveforms recorded at different time points were obtained for 58% of the electrode sites. The structure of the electrode array was well preserved 3 weeks after implantation. CONCLUSIONS A new implantable multichannel neural interface, comprising electrodes individually flexible in 3D that retain its architecture and functionality after implantation has been developed. Since the new neural interface design is adaptable, it offers a versatile tool to explore the function of various brain structures.
Collapse
Affiliation(s)
- Johan Agorelius
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
- The Nanometer Structure Consortium, Lund UniversityLund, Sweden
| | - Fotios Tsanakalis
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
| | - Annika Friberg
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
| | - Palmi T. Thorbergsson
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
| | - Lina M. E. Pettersson
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
| | - Jens Schouenborg
- Department of Experimental Medical Science, Neuronano Research Centre, Lund UniversityLund, Sweden
- The Nanometer Structure Consortium, Lund UniversityLund, Sweden
| |
Collapse
|
150
|
Patel PR, Na K, Zhang H, Kozai TDY, Kotov NA, Yoon E, Chestek CA. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J Neural Eng 2015; 12:046009. [PMID: 26035638 PMCID: PMC4789140 DOI: 10.1088/1741-2560/12/4/046009] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Single carbon fiber electrodes (d = 8.4 μm) insulated with parylene-c and functionalized with PEDOT pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ∼150 μm pitch. APPROACH Two approaches were tested for the insertion of carbon fiber arrays. The first method used a poly(ethylene glycol) (PEG) coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm-1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. MAIN RESULTS Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in five rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in three acute rat surgeries. In one of those surgeries a stacked device with three layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. SIGNIFICANCE From these studies we have found that carbon fibers spaced at ∼150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, College of Engineering, University of Michigan, USA
| | | | | | | | | | | | | |
Collapse
|