101
|
Host Innate Immune Response of Geese Infected with Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Viruses. Microorganisms 2020; 8:microorganisms8020224. [PMID: 32046051 PMCID: PMC7074872 DOI: 10.3390/microorganisms8020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Since 2014, highly pathogenic avian influenza (HPAI) H5N6 viruses have circulated in waterfowls and caused human infections in China, posing significant threats to the poultry industry and the public health. However, the genetics, pathogenicity and innate immune response of H5N6 HPAIVs in geese remain largely unknown. In this study, we analyzed the genetic characteristic of the two H5N6 viruses (GS38 and DK09) isolated from apparently healthy domestic goose and duck in live poultry markets (LPMs) of Southern China in 2016. Phylogenetic analysis showed that the HA genes of the two H5N6 viruses belonged to clade 2.3.4.4 and were clustered into the MIX-like group. The MIX-like group viruses have circulated in regions such as China, Japan, Korea, and Vietnam. The NA genes of the two H5N6 viruses were classified into the Eurasian sublineage. The internal genes including PB2, PB1, PA, NP, M, and NS of the two H5N6 viruses derived from the MIX-like. Therefore, our results suggested that the two H5N6 viruses were reassortants of the H5N1 and H6N6 viruses and likely derived from the same ancestor. Additionally, we evaluated the pathogenicity and transmission of the two H5N6 viruses in domestic geese. Results showed that both the two viruses caused serious clinical symptoms in all inoculated geese and led to high mortality in these birds. Both the two viruses were transmitted efficiently to contact geese and caused lethal infection in these birds. Furthermore, we found that mRNA of pattern recognition receptors (PRRs), interferons (IFNs), and stimulated genes (ISGs) exhibited different levels of activation in the lungs and spleens of the two H5N6 viruses-inoculated geese though did not protect these birds from H5N6 HPAIVs infection. Our results suggested that the clade 2.3.4.4 waterfowl-origin H5N6 HPAIVs isolated from LPMs of Southern China could cause high mortality in geese and innate immune-related genes were involved in the geese innate immune response to H5N6 HPAIVs infection. Therefore, we should pay more attention to the evolution, pathogenic variations of these viruses and enhance virological surveillance of clade 2.3.4.4 H5N6 HPAIVs in waterfowls in China.
Collapse
|
102
|
Zou S, Tang J, Zhang Y, Liu L, Li X, Meng Y, Zhao X, Yang L, Shu Y, Wang D. Molecular characterization of H3 subtype avian influenza viruses based on poultry-related environmental surveillance in China between 2014 and 2017. Virology 2020; 542:8-19. [PMID: 31957664 DOI: 10.1016/j.virol.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/26/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The H3 subtype avian influenza virus (AIV) poses a threat to both animal and human health. In this study, phylogenetic analysis showed that the H3 AIVs had various genomic constellations and extensive reassortments, increasing genetic diversity and the emergence of new pathogenic viruses that might infect human beings. Molecular analysis demonstrated that the major molecular markers linked to drug resistance were identified in M genes of three studied viruses, and there might be wide range of resistant virus infections in poultry in the future. Although all the H3 viruses preferentially bound to the avian-type receptor, the growth kinetics experiments showed that the selected H3 viruses were capable of efficient replication in mammalian cells, suggesting a potential cross-species transmission of H3 viruses. Overall, our results emphasize the need for continued surveillance of H3 outbreaks and may also help us improve knowledge on H3 AIVs prevention and control.
Collapse
Affiliation(s)
- Shumei Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Jing Tang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Ye Zhang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Lijun Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Yao Meng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Xiang Zhao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Lei Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
103
|
Straus MR, Kinder JT, Segall M, Dutch RE, Whittaker GR. SPINT2 inhibits proteases involved in activation of both influenza viruses and metapneumoviruses. Virology 2020; 543:43-53. [PMID: 32056846 PMCID: PMC7112099 DOI: 10.1016/j.virol.2020.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
Abstract
Viruses possessing class I fusion proteins require proteolytic activation by host cell proteases to mediate fusion with the host cell membrane. The mammalian SPINT2 gene encodes a protease inhibitor that targets trypsin-like serine proteases. Here we show the protease inhibitor, SPINT2, restricts cleavage-activation efficiently for a range of influenza viruses and for human metapneumovirus (HMPV). SPINT2 treatment resulted in the cleavage and fusion inhibition of full-length influenza A/CA/04/09 (H1N1) HA, A/Aichi/68 (H3N2) HA, A/Shanghai/2/2013 (H7N9) HA and HMPV F when activated by trypsin, recombinant matriptase or KLK5. We also demonstrate that SPINT2 was able to reduce viral growth of influenza A/CA/04/09 H1N1 and A/X31 H3N2 in cell culture by inhibiting matriptase or TMPRSS2. Moreover, inhibition efficacy did not differ whether SPINT2 was added at the time of infection or 24 h post-infection. Our data suggest that the SPINT2 inhibitor has a strong potential to serve as a novel broad-spectrum antiviral.
Collapse
Affiliation(s)
- Marco R Straus
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.
| | - Jonathan T Kinder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Michal Segall
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
104
|
Berselli GB, Sarangi NK, Gimenez AV, Murphy PV, Keyes TE. Microcavity array supported lipid bilayer models of ganglioside – influenza hemagglutinin1 binding. Chem Commun (Camb) 2020; 56:11251-11254. [DOI: 10.1039/d0cc04276e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The binding of influenza receptor (HA1) to membranes containing different glycosphingolipid receptors was investigated at Microcavity Supported Lipid Bilayers (MSLBs).
Collapse
Affiliation(s)
| | | | | | - Paul V. Murphy
- School of Chemistry NUI Galway University Road
- Galway
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences
- Dublin City University
- Dublin
- Ireland
| |
Collapse
|
105
|
Whittaker GR, Straus MR. Human matriptase/ST 14 proteolytically cleaves H7N9 hemagglutinin and facilitates the activation of influenza A/Shanghai/2/2013 virus in cell culture. Influenza Other Respir Viruses 2019; 14:189-195. [PMID: 31820577 PMCID: PMC7040964 DOI: 10.1111/irv.12707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza is a zoonotic disease that infects millions of people each year resulting in hundreds of thousands of deaths, and in turn devastating pandemics. Influenza is caused by influenza viruses, including influenza A virus (IAV). There are many subtypes of IAV but only a few seem to be able to adapt to humans and to cause disease. In 2013, an H7N9 IAV subtype emerged in China that does not cause clinical symptoms in its chicken host but leads to severe infections when transmitted into humans. Since 2013, there have been six epidemic waves of H7N9 with 1567 laboratory-confirmed human infections and 615 deaths. Pathogenicity of IAV is complex, but a crucial feature contributing to virulence is the activation of the hemagglutinin (HA) fusion protein by host proteases that triggers membrane fusion and leads to subsequent virus propagation. METHODS 293T, VERO, and MDCK cells were used to conduct Western blot analysis, immunofluorescence assays, and pseudoparticle and live virus infections, and to evaluate H7N9 HA cleavage-activation. RESULTS/CONCLUSIONS We show that human matriptase/ST 14 is able to cleave H7N9 HA. Cleavage of H7N9 HA expressed in cell culture results in fusogenic HA and syncytia formation. In infection studies with viral pseudoparticles carrying matriptase/ST 14-activated H7N9 HA, we observed a high infectivity of cells. Finally, human matriptase/ST 14 also activated H7N9 live virus which resulted in high infectivity. Our data demonstrate that human matriptase/ST 14 is a likely candidate protease to promote H7N9 infections in humans.
Collapse
Affiliation(s)
- Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marco R Straus
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
106
|
Uccellini MB, García-Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep 2019; 25:2784-2796.e3. [PMID: 30517866 PMCID: PMC6317368 DOI: 10.1016/j.celrep.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection. Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6Chi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
Collapse
Affiliation(s)
- Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
107
|
Song Y, Li W, Wu W, Liu Z, He Z, Chen Z, Zhao B, Wu S, Yang C, Qu X, Liao M, Jiao P. Phylogeny, Pathogenicity, Transmission, and Host Immune Responses of Four H5N6 Avian Influenza Viruses in Chickens and Mice. Viruses 2019; 11:v11111048. [PMID: 31717638 PMCID: PMC6893672 DOI: 10.3390/v11111048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
H5Nx viruses have continuously emerged in the world, causing poultry industry losses and posing a potential public health risk. Here, we studied the phylogeny, pathogenicity, transmission, and immune response of four H5N6 avian influenza viruses in chickens and mice, which were isolated from waterfowl between 2013 and 2014. Their HA genes belong to Clade 2.3.4.4, circulated in China since 2008. Their NA genes fall into N6-like/Eurasian sublineage. Their internal genes originated from different H5N1 viruses. The results suggested that the four H5N6 viruses were reassortants of the H5N1 and H6N6 viruses. They cause lethal infection with high transmission capability in chickens. They also cause mild to severe pathogenicity in mice and can spread to the brain through the blood–brain barrier. During the infection, the viruses result in the up-regulation of PRRs and cytokine in brains and lungs of chickens and mice. Our results suggested that the high viral loads of several organs may result in disease severity in chickens and mice; there were varying levels of cytokines induced by the H5N6 viruses with different pathogenicity in chickens and mice.
Collapse
Affiliation(s)
- Yafen Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Wenbo Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Xiaoyun Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- Correspondence: (P.J.); (M.L.); Tel.: +86-020-85283309 (M.L. & P.J.)
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- Correspondence: (P.J.); (M.L.); Tel.: +86-020-85283309 (M.L. & P.J.)
| |
Collapse
|
108
|
TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J Virol 2019; 93:JVI.00649-19. [PMID: 31391268 DOI: 10.1128/jvi.00649-19] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.
Collapse
|
109
|
Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options. Biochimie 2019; 166:203-213. [PMID: 31518617 DOI: 10.1016/j.biochi.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) is one of the most common infectious pathogen and associated with significant morbidity and mortality. Although processing the IAV hemagglutinin (HA) envelope glycoprotein precursor is a pre-requisite for viral membrane fusion activity, viral entry and transmission, HA-processing protease is not encoded in the IAV genome and thus the cellular trypsin-type serine HA-processing proteases determine viral infectious tropism and viral pathogenicity. The initial process of IAV infection of the airway is followed by marked upregulation of ectopic trypsin in various organs and endothelial cells through the induction of various proinflammatory cytokines, and this process has been termed the "influenza virus-cytokine-trypsin" cycle. In the advanced stage of IAV infection, the cytokine storm induces disorders of glucose and lipid metabolism and the "metabolic disorders-cytokine" cycle is then linked with the "influenza virus-cytokine-trypsin" cycle, to advance the pathogenic process into energy crisis and multiple organ failure. Application of protease inhibitors and treatment of metabolic disorders that break these cycles and their interconnection is therefore a promising therapeutic approach against influenza. This review discusses IAV pathogenicity on trypsin type serine HA-processing proteases, cytokines, metabolites and therapeutic options.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan.
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| |
Collapse
|
110
|
Sączyńska V, Romanik-Chruścielewska A, Florys K, Cecuda-Adamczewska V, Łukasiewicz N, Sokołowska I, Kęsik-Brodacka M, Płucienniczak G. Prime-Boost Vaccination With a Novel Hemagglutinin Protein Produced in Bacteria Induces Neutralizing Antibody Responses Against H5-Subtype Influenza Viruses in Commercial Chickens. Front Immunol 2019; 10:2006. [PMID: 31552018 PMCID: PMC6736996 DOI: 10.3389/fimmu.2019.02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen. In contrast, we used a bacterial expression system to produce vaccine targeting the HA protein. A fragment of the HA ectodomain from H5N1, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. The resulting antigen, rH5-E. coli, was validated in terms of conformational integrity and oligomerization status. Previously, the protective efficacy of rH5-E. coli adjuvanted with aluminum hydroxide, has been positively verified by challenging the specific pathogen-free layer chickens with homologous and heterologous H5N1 HPAIVs. Protection was provided primarily by the H5 subtype-specific antibodies, as detected in the FluAC H5 test. The present studies were conducted to assess the performance of alum-adjuvanted rH5-E. coli in commercial birds. Broiler chickens were vaccinated twice with 25 μg of rH5-E. coli at 2- and 4-week intervals, while the layer chickens were vaccinated with 5- to 25-μg antigen doses at 4- and 6-week intervals. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition (HI) tests. Prime-boost immunizations with rH5-E. coli elicited H5 HA-specific antibodies in all the chickens tested. Two antigen doses administered at 4- or 6-week intervals were sufficient to induce neutralizing antibodies against H5-subtype HAs; however, they were ineffective when applied with a 2-week delay. In the layers, 80% to 100% of individuals developed antibodies that were active in the FluAC H5 and/or HI tests. A dose-sparing effect was seen when using the longer prime-boost interval. In the broiler chickens, 62.5% positivity was achieved in the FluAC H5 and/or HI tests. The trials confirmed the vaccine potential of rH5-E. coli and provided indications for anti-influenza vaccination with respect to the chicken type and immunization scheme.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Katarzyna Florys
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Iwona Sokołowska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Grażyna Płucienniczak
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| |
Collapse
|
111
|
Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 2019; 9:11556. [PMID: 31399610 PMCID: PMC6689016 DOI: 10.1038/s41598-019-47938-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys and ducks.
Collapse
|
112
|
Sun X, Belser JA, Yang H, Pulit-Penaloza JA, Pappas C, Brock N, Zeng H, Creager HM, Stevens J, Maines TR. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology 2019; 535:232-240. [PMID: 31325838 DOI: 10.1016/j.virol.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that despite no airborne transmissibility increase compared to low pathogenic avian influenza viruses, select human isolates of highly pathogenic avian influenza A(H7N9) virus exhibit greater virulence in animal models and a lower threshold pH for fusion. In the current study, we utilized both in vitro and in vivo approaches to identify key residues responsible for hemagglutinin (HA) intracellular cleavage, acid stability, and virulence in mice. We found that the four amino acid insertion (-KRTA-) at the HA cleavage site of A/Taiwan/1/2017 virus is essential for HA intracellular cleavage and contributes to disease in mice. Furthermore, a lysine to glutamic acid mutation at position HA2-64 increased the threshold pH for HA activation, reduced virus stability, and replication in mice. Identification of a key residue responsible for enhanced acid stability of A(H7N9) viruses is of great significance for future surveillance activities and improvements in vaccine stability.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
113
|
Samir A, Adel A, Arafa A, Sultan H, Hussein Ahmed HA. Molecular pathogenic and host range determinants of reassortant Egyptian low pathogenic avian influenza H9N2 viruses from backyard chicken. Int J Vet Sci Med 2019; 7:10-19. [PMID: 31620483 PMCID: PMC6776986 DOI: 10.1080/23144599.2019.1637046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/19/2023] Open
Abstract
Since the introduction of H9N2 low pathogenic avian influenza virus in Egypt, it became an endemic disease causing considerable economic losses in different poultry sectors especially in the presence of other secondary bacterial and viral infections. The H9N2 viruses in Egypt are in continuous evolution that needs deep analysis for their evolution pattern based on the genetic constitutions of the pathogenic determinant genes (HA, PB2, PB1, PA, and NS). In this work, samples were collected from the backyard chickens from 3 Egyptian governorates. Five selected viruses were sequenced and analyzed for the hemagglutinin gene which showed genetic relatedness to the Asian G1 lineage group B, similar to the circulating H9N2 viruses in Egypt since 2013. The sequence for PB2, PB1, PA, HA and NS genes of the selected five viruses indicate a natural re-assortment event with recent Eurasian subtypes and similar to Egyptian H9N2 virus isolated from pigeon in Egypt during 2014. The Egyptian viruses of our study possess amino acids signatures including S42, V127, L550, L672 and V504 in the internal genes NS1, PA, and PB2, of respectively of an impact on virus transmission and replication. This work indicates that the H9N2 is in continuous evolution with alarming to the reassortment occurrence.
Collapse
Affiliation(s)
- Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdelsatar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Hesham Sultan
- Avian and Rabbit Diseases Dept., Faculty of Veterinary Medicine, University of Sadat, City Sadat, Minoufiya, Egypt
| | | |
Collapse
|
114
|
Andrés C, Peremiquel-Trillas P, Gimferrer L, Piñana M, Codina MG, Rodrigo-Pendás JÁ, Campins-Martí M, Carmen Martín M, Fuentes F, Rubio S, Pumarola T, Antón A. Molecular influenza surveillance at a tertiary university hospital during four consecutive seasons (2012-2016) in Catalonia, Spain. Vaccine 2019; 37:2470-2476. [PMID: 30926297 PMCID: PMC7173002 DOI: 10.1016/j.vaccine.2019.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Influenza viruses (FLUV) are continuously evolving, which explain the occurrence of seasonal influenza epidemics and the need to review the vaccine strain composition annually. The aim is to describe the genetic diversity and clinical outcomes of FLUV detected at a tertiary university hospital in Barcelona (Spain) during the 2012-2016 seasons. METHODS The detection of FLUV from patients attended at the Emergency Department or admitted to the hospital was performed by either immunofluorescence or PCR-based assays. A specific real-time one-step multiplex RT-PCR was performed for influenza A (FLUAV) subtyping. The complete coding haemagglutinin domain 1 (HA1) and neuraminidase (NA) (2015-2016) protein sequences from a representative sampling were molecular characterised. RESULTS A total 1774 (66.1%) FLUAV and 910 (33.9%) influenza B (FLUBV) cases were laboratory-confirmed. The hospitalisation rate was different between seasons, being the highest (81.4%) during the 2014-2015 season. FLUV were genetically close to vaccine strains except to the 2014-2015, in which most characterised A(H3N2) viruses belonged to a genetic group different from the vaccine strain. During the 2015-2016 season, B/Victoria-like viruses were the most predominant, but this component was not included in the trivalent vaccine used. Mutations D222G or D222N in HA1-domain were found in 3 A(H1N1)pdm09 strains from ICU-admitted cases. Three A(H1N1)pdm09 strains carried the NA H275Y (2) and S247N (1) mutations, respectively related to resistance or decreased susceptibility to oseltamivir. CONCLUSIONS The circulation of drifted A(H3N2) strains during the 2014-2015 season was related to the high hospitalisation rate due to the mismatch with the vaccine strains. The predominance of a FLUBV lineage not included in the trivalent influenza vaccine during the 2015-2016 season highlights the need to use a tetravalent influenza vaccine. Virological surveillance of viral variants carrying protein changes that alter tropism and susceptibility to antivirals features should be strengthened in hospital settings.
Collapse
Affiliation(s)
- Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - Laura Gimferrer
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Ángel Rodrigo-Pendás
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - Magda Campins-Martí
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - María Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Fuentes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rubio
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
115
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
116
|
Ding F, Cheng J, Fu Y, Chen T, Li B, Jiang D, Xie J. Early Transcriptional Response to DNA Virus Infection in Sclerotinia sclerotiorum. Viruses 2019; 11:v11030278. [PMID: 30893849 PMCID: PMC6466436 DOI: 10.3390/v11030278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023] Open
Abstract
We previously determined that virions of Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 (SsHADV-1) could directly infect hyphae of Sclerotinia sclerotiorum, resulting in hypovirulence of the fungal host. However, the molecular mechanisms of SsHADV-1 virions disruption of the fungal cell wall barrier and entrance into the host cell are still unclear. To investigate the early response of S. sclerotiorum to SsHADV-1 infection, S. sclerotiorum hyphae were inoculated with purified SsHADV-1 virions. The pre- and post-infection hyphae were collected at one–three hours post-inoculation for transcriptome analysis. Further, bioinformatic analysis showed that differentially expressed genes (DEGs) regulated by SsHADV-1 infection were identified in S. sclerotiorum. In total, 187 genes were differentially expressed, consisting of more up-regulated (114) than down-regulated (73) genes. The identified DEGs were involved in several important pathways. Metabolic processes, biosynthesis of antibiotics, and secondary metabolites were the most affected categories in S. sclerotiorum upon SsHADV-1 infection. Cell structure analysis suggested that 26% of the total DEGs were related to membrane tissues. Furthermore, 10 and 27 DEGs were predicted to be located in the cell membrane and mitochondria, respectively. Gene ontology enrichment analyses of the DEGs were performed, followed by functional annotation of the genes. Interestingly, one third of the annotated functional DEGs could be involved in the Ras-small G protein signal transduction pathway. These results revealed that SsHADV-1 virions may be able to bind host membrane proteins and influence signal transduction through Ras-small G protein-coupled receptors during early infection, providing new insight towards the molecular mechanisms of virions infection in S. sclerotiorum.
Collapse
Affiliation(s)
- Feng Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
117
|
Eladl AH, Alzayat AA, Ali HS, Fahmy HA, Ellakany HF. Comparative molecular characterization, pathogenicity and seroprevalence of avian influenza virus H9N2 in commercial and backyard poultry flocks. Comp Immunol Microbiol Infect Dis 2019; 64:81-89. [PMID: 31174705 DOI: 10.1016/j.cimid.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
This study was conducted to perform the comparative molecular characterization of avian influenza virus (AIV) H9N2, pathogenicity and seroprevalence in commercial and backyard poultry flocks. Fifty commercial poultry flocks were investigated between 2012 and 2015. Eighteen flocks (36%) out of 50 were positive HA. Seven (38.9%) out of 18 were positive by chromatographic strip test for AI common antigen. By Real-time RT-PCR, only two flocks were positive H9. The molecular characterization of two different AI-H9N2 viruses, one isolated from a broiler flock (A/chicken/Egypt/Mansoura-18/2013) and the other from a layer flock (A/chicken/Egypt/Mansoura-36/2015) was conducted on HA gene. Moreover, a higher seroprevalence, using the broiler strain as a known antigen, was shown in backyard chicken flocks 15/26 (57.7%) than duck flocks 9/74 (12.2%). Interestingly, the pathogenicity index (PI) of the H9N2 broiler strain in inoculated experimental chickens ranged from 1.2 (oculonasal route) to 1.9 (Intravenous route). The PI indicated a highly pathogenic effect, with high mortality (up to 100%) in the inoculated chickens correlated with the high mortality (80%) in the flock where the virus was isolated. The firstly recorded clinical signs, including cyanosis in the combs and wattles and subcutaneous haemorrhages in the leg shanks and lesions, as well as histopathology and immunohistochemistry, revealed a systemic infection of the high pathogenicity with the H9N2 virus. Conversely, the H9N2 layer strain showed a low pathogenicity. In conclusion, as a first report, the molecular analysis and pathogenicity of the tested strains confirmed the presence of a high pathogenicity AIV-H9N2 with systemic infections.
Collapse
Affiliation(s)
- Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Egypt.
| | - Asmaa A Alzayat
- Department of Poultry Diseases, Animal Health Research Institute, Mansoura branch, Egypt
| | - Hanaa S Ali
- Department of Pathology, Animal Health Research Institute, Mansoura branch, Egypt
| | - Hanan A Fahmy
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt
| | - Hany F Ellakany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhour University, Egypt
| |
Collapse
|
118
|
Viral infection detection using metagenomics technology in six poultry farms of eastern China. PLoS One 2019; 14:e0211553. [PMID: 30785912 PMCID: PMC6382132 DOI: 10.1371/journal.pone.0211553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
With rapidly increasing animal pathogen surveillance requirements, new technologies are needed for a comprehensive understanding of the roles of pathogens in the occurrence and development of animal diseases. We applied metagenomic technology to avian virus surveillance to study the main viruses infecting six poultry farms in two provinces in eastern China. Cloacal/throat double swabs were collected from 60 birds at each farm according to a random sampling method. The results showed that the method could simultaneously detect major viruses infecting farms, including avian influenza virus, infectious bronchitis virus, Newcastle disease virus, rotavirus G, duck hepatitis B virus, and avian leukemia virus subgroup J in several farms. The test results were consistent with the results from traditional polymerase chain reaction (PCR) or reverse transcription-PCR analyses. Five H9N2 and one H3N8 avian influenza viruses were detected at the farms and were identified as low pathogenic avian influenza viruses according to HA cleavage sites analysis. One detected Newcastle disease virus was classified as Class II genotype I and avirulent type according to F0 cleavage sites analysis. Three avian infectious bronchitis viruses were identified as 4/91, CK/CH/LSC/99I and TC07-2 genotypes by phylogenetic analysis of S1 genes. The viral infection surveillance method using metagenomics technology enables the monitoring of multiple viral infections, which allows the detection of main infectious viruses.
Collapse
|
119
|
Aliyu IA, Ling KH, Md Hashim N, Chee HY. Annexin A2 extracellular translocation and virus interaction: A potential target for antivirus-drug discovery. Rev Med Virol 2019; 29:e2038. [PMID: 30746844 DOI: 10.1002/rmv.2038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia.,Department of Medical Laboratory Science, Faculty of Allied Health Science, College of Health Science, Bayero University, Kano, Nigeria
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Nurfariesha Md Hashim
- Department of Biomedical Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
120
|
Kayed AS, Kandeil A, Gomaa MR, El-Shesheny R, Mahmoud S, Hegazi N, Fayez M, Sheta B, McKenzie PP, Webby RJ, Kayali G, Ali MA. Surveillance for avian influenza viruses in wild birds at live bird markets, Egypt, 2014-2016. Influenza Other Respir Viruses 2019; 13:407-414. [PMID: 30714323 PMCID: PMC6586179 DOI: 10.1111/irv.12634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 01/16/2023] Open
Abstract
AIM Egypt is the habitat for a large number of bird species and serves as a vital stopover for millions of migratory birds during their annual migration between the Palearctic and Afrotropical ecozones. Surveillance for avian influenza viruses (AIVs) is critical to assessing risks for potential spreading of these viruses among domestic poultry. Surveillance for AIV among hunted and captured wild birds in Egypt was conducted in order to understand the characteristics of circulating viruses. METHODS Sampling of wild bird species occurred in two locations along the Mediterranean Coast of Egypt in the period from 2014 to 2016. A total of 1316 samples (cloacal and oropharyngeal swabs) were collected from 20 different species of hunted or captured resident and migratory birds sold at live bird markets. Viruses were propagated then sequenced. Phylogenetic analysis and receptor binding affinities were studied. RESULTS Eighteen AIVs (1.37%) were isolated from migratory Anseriformes at live bird markets. Further characterization of the viral isolates identified five hemagglutinin (H3, H5, H7, H9, and H10) and five neuraminidase (N1, N2, N3, N6, and N9) subtypes, which were related to isolates reported in the Eurasian region. Two of the 18 isolates were highly pathogenic H5N1 viruses related to clade 2.2.1, while three isolates were G1-like H9N2 viruses. CONCLUSIONS Our data show significant diversity of AIVs in Anserifromes sold at live bird markets in Egypt. This allows for genetic exchanges between imported and enzootic viruses and put the exposed humans at a higher risk of infection.
Collapse
Affiliation(s)
- Ahmed S Kayed
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt
| | - Ahmed Kandeil
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt
| | - Mokhtar R Gomaa
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt
| | - Rabeh El-Shesheny
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Sara Mahmoud
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt
| | - Nabil Hegazi
- Faculty of Agriculture, Department of Microbiology, Cairo University, Giza, Egypt
| | - Mohamed Fayez
- Faculty of Agriculture, Department of Microbiology, Cairo University, Giza, Egypt
| | - Basma Sheta
- Faculty of Science, Zoology Department, Damietta University, New Damietta, Egypt
| | - Pamela P McKenzie
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, Texas.,Human Link, Baabda, Lebanon
| | - Mohamed A Ali
- Environmental Research Division, Water Pollution Research Department, Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
121
|
Chamberlain N, Korwin-Mihavics BR, Nakada EM, Bruno SR, Heppner DE, Chapman DG, Hoffman SM, van der Vliet A, Suratt BT, Dienz O, Alcorn JF, Anathy V. Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics. Redox Biol 2019; 22:101129. [PMID: 30735910 PMCID: PMC6365984 DOI: 10.1016/j.redox.2019.101129] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.
Collapse
Affiliation(s)
- Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States; Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Translational Airways Group, School of Life Sciences, University of Technology, Sydney, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Oliver Dienz
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States.
| |
Collapse
|
122
|
Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res 2019; 163:34-49. [PMID: 30653997 DOI: 10.1016/j.antiviral.2019.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically-transmitted viral hepatitis worldwide. Increasing numbers of HEV infections, together with no available specific anti-HEV treatment, contributes to the pathogen's major health burden. A robust cell culture system is required for virologic studies and the development of new antiviral drugs. Unfortunately, like other hepatitis viruses, HEV is difficult to propagate in conventional cell lines. Many different cell culture systems have been tested using various HEV strains, but viral replication usually progresses very slowly, and infection with low virion counts results in non-productive HEV replication. However, recent progress involving generation of cDNA clones and passaging primary patient isolates in distinct cell lines has improved in vitro HEV propagation. This review describes various approaches to cultivate HEV in cellular and animal models and how these systems are used to study HEV infections and evaluate anti-HEV drug candidates.
Collapse
Affiliation(s)
- Toni L Meister
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Janina Bruening
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Daniel Todt
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Eike Steinmann
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| |
Collapse
|
123
|
Zou S, Zhang Y, Li X, Bo H, Wei H, Dong L, Yang L, Dong J, Liu J, Shu Y, Wang D. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016. Virology 2019; 529:135-143. [PMID: 30703577 DOI: 10.1016/j.virol.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
H9N2 avian influenza viruses (AIVs) have become panzootic and caused sporadic human cases since 1998. Based on the poultry-related environmental surveillance data in mainland China from 2013 to 2016, a total of 68 representative environment isolates were selected and further investigated systematically. Phylogenetic analysis indicated that Y280-like H9N2 viruses have been predominant during 2013-2016 and acquired multiple specific amino acid substitutions that might favor viral transmission from avian to mammalians. Additionally, the viruses have undergone dramatic evolution and reassortment, resulting in an increased genetic diversity or acting as the gene contributors to new avian viruses. Receptor-binding tests indicated that most of the H9N2 isolates bound to human-type receptor, making them easily cross the species barrier and infect human efficiently. Our results suggested that the H9N2 AIVs prevalent in poultry may pose severe public health threat.
Collapse
Affiliation(s)
- Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Libo Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| |
Collapse
|
124
|
Perrier A, Eluard M, Petitjean M, Vanet A. In Silico Design of New Inhibitors Against Hemagglutinin of Influenza. J Phys Chem B 2018; 123:582-592. [DOI: 10.1021/acs.jpcb.8b10767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aurélie Perrier
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas Mann, F-75205 Paris Cedex 13, France
- Epôle de Génoinformatique, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
| | - Matthias Eluard
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France
- Epôle de Génoinformatique, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
- Pathologies de la replication de l’ADN, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
| | - Michel Petitjean
- Epôle de Génoinformatique, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
- MTi, UMR-S 973, INSERM, University Denis Diderot, Paris 7, F-75013 Paris, France
| | - Anne Vanet
- Epôle de Génoinformatique, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
- Pathologies de la replication de l’ADN, Institut Jacques Monod, UMR7592, CNRS, F-75013 Paris, France
| |
Collapse
|
125
|
Risk Assessment of Fifth-Wave H7N9 Influenza A Viruses in Mammalian Models. J Virol 2018; 93:JVI.01740-18. [PMID: 30305359 DOI: 10.1128/jvi.01740-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.
Collapse
|
126
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
127
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
128
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
129
|
Sicca F, Neppelenbroek S, Huckriede A. Effector mechanisms of influenza-specific antibodies: neutralization and beyond. Expert Rev Vaccines 2018; 17:785-795. [PMID: 30145912 DOI: 10.1080/14760584.2018.1516553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Antibodies directed against influenza virus execute their protective function by exploiting a variety of effector mechanisms. Neutralizing antibodies have been thoroughly studied because of their pivotal role in preventing influenza virus infection and their presence in host serum is correlated with protection. Influenza antibodies can also exploit non-neutralizing effector mechanisms, which until recently have been largely overlooked. AREAS COVERED Here, we discuss the antibody response to influenza virus in its entire breadth. Neutralizing antibodies mostly target variable epitopes on influenza surface proteins and interfere with virus binding, fusion, or egress. Non-neutralizing antibodies instead usually target conserved epitopes which can be located on surface as well as internal proteins. They drive viral clearance via interaction of their Fc region with components of the innate immune system such as immune effector cells (e.g. NK cells, macrophages) or the complement system. EXPERT COMMENTARY Recent research has unraveled that influenza-specific antibodies target multiple proteins and make use of diverse effector mechanisms. Often these antibodies are cross-reactive among virus strains of the same subtype or even between subtypes. As such they are induced early in life and are boosted by regular encounters with virus or vaccine. Designing strategies to optimally exploit these pre-existing antibodies may represent the key for the development of new broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Federica Sicca
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Sam Neppelenbroek
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
130
|
Kosono S, Kasai A, Komaba S, Matsubara T, Sato T, Takahashi D, Toshima K. Novel hemagglutinin-binding sulfated oligofucosides and their effect on influenza virus infection. Chem Commun (Camb) 2018; 54:7467-7470. [PMID: 29915822 DOI: 10.1039/c8cc03865a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among a series of chemically synthesized fucoidan derivatives (1-9), 5 was found for the first time to bind to influenza virus hemagglutinins (HAs) and inhibit hemagglutination activity. In addition, a designed C3-symmetric tripodal ligand 10, synthesized with three sulfated oligofucoside moieties of 5, exhibited much greater hemagglutination inhibition activity than 5. A plaque assay using MDCK cells demonstrated that 10 effectively inhibited influenza virus infection.
Collapse
Affiliation(s)
- Shuhei Kosono
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Akihiro Kasai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Sumika Komaba
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Teruhiko Matsubara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
131
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
132
|
Trost JF, LeMasters EH, Liu F, Carney P, Lu X, Sugawara K, Hongo S, Stevens J, Steinhauer DA, Tumpey T, Katz JM, Levine MZ, Li ZN. Development of a high-throughput assay to detect antibody inhibition of low pH induced conformational changes of influenza virus hemagglutinin. PLoS One 2018; 13:e0199683. [PMID: 29949635 PMCID: PMC6021090 DOI: 10.1371/journal.pone.0199683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Many broadly neutralizing antibodies (bnAbs) bind to conserved areas of the hemagglutinin (HA) stalk region and can inhibit the low pH induced HA conformational changes necessary for viral membrane fusion activity. We developed and evaluated a high-throughput virus-free and cell-free ELISA based low pH induced HA Conformational Change Inhibition Antibody Detection Assay (HCCIA) and a complementary proteinase susceptibility assay. Human serum samples (n = 150) were tested by HCCIA using H3 recombinant HA. Optical density (OD) ratios of mAb HC31 at pH 4.8 to pH 7.0 ranged from 0.87 to 0.09. Our results demonstrated that low pH induced HA conformational change inhibition antibodies (CCI) neutralized multiple H3 strains after removal of head-binding antibodies. The results suggest that HCCIA can be utilized to detect and characterize CCI in sera, that are potentially broadly neutralizing, and serves as a useful tool for evaluating universal vaccine candidates targeting the HA stalk.
Collapse
MESH Headings
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Hemagglutinin Glycoproteins, Influenza Virus/blood
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- High-Throughput Screening Assays/methods
- Humans
- Hydrogen-Ion Concentration
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Models, Molecular
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Jessica F. Trost
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elizabeth H. LeMasters
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul Carney
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Xiuhua Lu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - James Stevens
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Terrence Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Min Z. Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zhu-Nan Li
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
133
|
Margolin E, Chapman R, Williamson A, Rybicki EP, Meyers AE. Production of complex viral glycoproteins in plants as vaccine immunogens. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1531-1545. [PMID: 29890031 PMCID: PMC6097131 DOI: 10.1111/pbi.12963] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 05/19/2023]
Abstract
Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ros Chapman
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Anna‐Lise Williamson
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Edward P. Rybicki
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ann E. Meyers
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
134
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
135
|
New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five. J Virol 2018; 92:JVI.00301-18. [PMID: 29563296 DOI: 10.1128/jvi.00301-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G, and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5.IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.
Collapse
|
136
|
Jang JW, Lee CY, Kim IH, Choi JG, Lee YJ, Yuk SS, Lee JH, Song CS, Kim JH, Kwon HJ. Optimized clade 2.3.2.1c H5N1 recombinant-vaccine strains against highly pathogenic avian influenza. J Vet Sci 2018; 18:299-306. [PMID: 28859269 PMCID: PMC5583417 DOI: 10.4142/jvs.2017.18.s1.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
A/Puerto Rico/8/34 (PR8)-derived recombinant viruses have been used for seasonal flu vaccines; however, they are insufficient for vaccines against some human-fatal H5N1 highly pathogenic avian influenza (HPAI) viruses (HPAIV) due to low productivity. Additionally, the polymerase basic 2 (PB2) protein, an important mammalian-pathogenicity determinant, of PR8 possesses several mammalian-pathogenic mutations. We previously reported two avian PB2 genes (01310 and 0028) related to efficient replication in embryonated chicken eggs (ECEs) and nonpathogenicity in BALB/c mice. In this study, we generated PR8-derived H5N1 recombinant viruses harboring hemagglutinin (attenuated) and neuraminidase genes of a clade 2.3.2.1c H5N1 HPAIV (K10-483), as well as the 01310 or 0028 PB2 genes, and investigated their replication and immunogenicity. Compared with a control virus harboring six internal PR8 genes (rK10-483), the recombinant viruses possessing the 01310 and 0028 PB2 genes showed significantly higher replication efficiency in ECEs and higher antibody titers in chickens. In contrast to rK10-483, none of the viruses replicated in BALB/c mice, and all showed low titers in Madin-Darby canine kidney cells. Additionally, the recombinant viruses did not induce a neutralization antibody but elicited decreased protective immune responses against K10-483 in mice. Thus, the highly replicative and mammalian nonpathogenic recombinant H5N1 strains might be promising vaccine candidates against HPAI in poultry.
Collapse
Affiliation(s)
- Jin-Wook Jang
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Chung-Young Lee
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Il-Hwan Kim
- Center for Infectious Diseases, Korean National Institute of Health, Osong 28159, Korea
| | - Jun-Gu Choi
- Laboratory of Foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn-Jeong Lee
- Laboratory of Avian Diseases, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Seong-Su Yuk
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ji-Ho Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Production Medicine, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| |
Collapse
|
137
|
Kongsune P, Hannongbua S. The role of conserved QXG and binding affinity of S23G & S26G receptors on avian H5, swine H1 and human H1 of influenza A virus hemagglutinin. J Mol Graph Model 2018; 82:12-19. [PMID: 29625417 DOI: 10.1016/j.jmgm.2018.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Outbreaks of avian, human and swine influenza are a serious concern for public health. In the reproductive cycle of the influenza virus, hemagglutinin (HA) is the primary protein responsible for binding to glycan receptor sites on the host cell surface. MD simulations of avian H5, swine H1 and human H1 complexed with S23G and S26G receptors were performed to study the role of key residues on the receptor conformational behaviors, hydrogen bond formation, binding free energy and residue-wise energy contribution. The obtained results indicated that the relative energies of swH1_S23G and swH1_S26G were found to be close to each other (3.1 kcal/mol) while the relative energies of AvH5 and HuH1 were found to be significantly different (11.1 ± 6.8 and 29.0 ± 8.2 kcal/mol for AvH5 and HuH1, respectively).
Collapse
Affiliation(s)
- Panita Kongsune
- Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, 93210, Thailand.
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
138
|
Lee DW, Whittaker GR. Use of AAScatterPlot tool for monitoring the evolution of the hemagglutinin cleavage site in H9 avian influenza viruses. Bioinformatics 2018; 33:2431-2435. [PMID: 28383669 DOI: 10.1093/bioinformatics/btx203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/04/2017] [Indexed: 02/03/2023] Open
Abstract
Motivation Viruses rapidly evolve due to their error-prone genome replication, and identifying which mutations are selected for during evolution is critical for virus surveillance efforts. Here we introduce a scatter plot tool (AAScatterPlot) that easily shows the selection and avoidance of certain protein mutations based on biochemical properties. We demonstrate its utility for monitoring the evolution of H9 avian influenza viruses from China between 2005 and 2015, particularly at the hemagglutinin (HA) proteolytic cleavage site (PCS) that can affect virus activation and pathogenicity. Results Given genome sequences, the AAScatterPlot tool compacts into a single plot, information about the hydropathy index, Van der Waals volume, chemical property and occurrence frequency of amino acid residues. The tool also shows the range of residues that could arise from a single point mutation in the genome, which can then be compared against the observed residues to identify mutation constraints. Through this approach, we found that the 2nd position towards the N-terminus side of the HA PCS (P2 position) avoided hydrophobic residues, whereas the P3 position avoided hydrophilic residues. Availability and Implementation AAScatterPlot is available at https://github.com/WhittakerLab/AAScatterPlot. Contact gary.whittaker@cornell.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
139
|
Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells. Viruses 2018; 10:v10020083. [PMID: 29443887 PMCID: PMC5850390 DOI: 10.3390/v10020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.
Collapse
|
140
|
Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018; 32:811-822. [PMID: 29356205 DOI: 10.1002/ptr.6024] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo studies met the inclusion criteria of this review. The inferences from scientific literature review, focusing on potential therapeutic consequences of medicinal plants on experimental models of HIV, HSV, influenza, hepatitis, and coxsackievirus have ascertained the curative antiviral potential of plants. Fifty-four medicinal plants belonging to 36 different families having antiviral potential were documented. Out of 54 plants, 27 individually belong to particular plant families. On the basis of the work of several independent research groups, the therapeutic potential of medicinal plants against listed common viral diseases in the region has been proclaimed. In this context, the herbal formulations as alternative medicine may contribute to the eradication of complicated viral infection significantly. The current review consolidates the data of the various medicinal plants, those are Sambucus nigra, Caesalpinia pulcherrima, and Hypericum connatum, holding promising specific antiviral activities scientifically proven through studies on experimental animal models. Consequently, the original research addressing the development of novel nutraceuticals based on listed medicinal plants is highly recommended for the management of viral disorders.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Awais Altaf
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Khalil Ahmad
- Department of Eastern Medicine, University College of Conventional Medicine, Islamia University, Bahawalpur, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Suhaila Nasir
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
141
|
Tang H, Mori Y. Glycoproteins of HHV-6A and HHV-6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:145-165. [PMID: 29896667 DOI: 10.1007/978-981-10-7230-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses' entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.
Collapse
Affiliation(s)
- Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
142
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
143
|
Ma Y, Sun J, Gu L, Bao H, Zhao Y, Shi L, Yao W, Tian G, Wang X, Chen H. Annexin A2 (ANXA2) interacts with nonstructural protein 1 and promotes the replication of highly pathogenic H5N1 avian influenza virus. BMC Microbiol 2017; 17:191. [PMID: 28893180 PMCID: PMC5594581 DOI: 10.1186/s12866-017-1097-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Non-structural protein 1 (NS1) is a multifunctional protein and a crucial regulatory factor in the replication and pathogenesis of avian influenza virus (AIV). Studies have shown that NS1 can interact with a variety of host proteins to modulate the viral life cycle. We previously generated a monoclonal antibody against NS1 protein; In the current research study, using this antibody, we immunoprecipitated host proteins that interact with NS1 to better understand the roles played by NS1 in communications between virus and host. RESULTS Co-immunoprecipitation experiments identified annexin A2 (ANXA2) as a target molecule interacting with NS1. Results from confocal laser scanning microscopy indicated that NS1 co-localized with ANXA2 in the cell cytoplasm. Overexpression of ANXA2 significantly increased the titer of H5N1 subtype HPAIV, whereas siRNA-mediated knockdown of ANXA2 markedly inhibited the expression of viral proteins and reduced the progeny virus titer. CONCLUSIONS Our results indicate that ANXA2 interacts with NS1 and ANXA2 expression increases HPAIV replication.
Collapse
Affiliation(s)
- Yong Ma
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jiashan Sun
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Linlin Gu
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Hongmei Bao
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Yuhui Zhao
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Lin Shi
- Animal Epidemic Diseases Control and Prevention Center of Liaoning Province, Shenyang, China
| | - Wei Yao
- Animal Epidemic Diseases Control and Prevention Center of Liaoning Province, Shenyang, China
| | - Guobin Tian
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Xiurong Wang
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Hualan Chen
- State Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| |
Collapse
|
144
|
Jing-Xia G, Yu-Liang Z, Jin-Feng L, Shu-Zhen L, Guo-Yang L, Qi L. Safety and effectiveness assessment of 2011-2012 seasonal influenza vaccine produced in China: a randomized trial. Postgrad Med 2017; 129:907-914. [PMID: 28825515 DOI: 10.1080/00325481.2017.1369133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study evaluated the effectiveness and safety of the egg-based, trivalent, inactivated split influenza vaccine produced by the Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, China. METHODS From March 2012 through May 2012, we enrolled a total of 1390 healthy volunteers between the ages of 3 and 80 years in a randomized clinical trial at the Hebei Disease Control Center Vaccine Clinical Evaluation Center. For all subjects, body part adverse reactions and whole-body adverse reactions were observed 30 min, 6 h, and 1-7 days' post-inoculation. If no severe adverse effects were observed 7 days' post-vaccination, the local and systemic reactions of preliminary test participants were recorded until day 28. There was no placebo group in this study. Blood samples were taken for serological testing before vaccination and 28 days' post-vaccination. RESULTS Twenty-eight days after vaccination, the seroconversion rates of experimental and control groups were H1N1 75.3% and 75.7%, H3N2 75.8% and 71.8%, B 70.7% vs. 69.4%, (P > 0.05). The antibody Geometric Mean Titer(GMT)of experimental and control groups were H1N1 (179.7, 182.4), H3N2 (584.0, 445.7), B (201.4,191.6). The protection rate of experimental and control groups was not statistically significant (H1N1: 86% vs. 87%, H3N2: 99% vs. 98%, B: 98% vs. 98%). Also, 95% confidence intervals of the protection rate difference between the experimental and the control group were H1N1: -0.1% (-4.1,3.8) %, H3N2: 0.3% (-1.0,1.7) % and B: 0.2% (-1.5,1.9) %; confidence intervals exceeded the limit of -5%. The rates of adverse reactions between experimental and control groups were 6.3% and 7.7% in local response reactions, and 19.5% and 18.0% in systemic reactions. Three hundred and twenty-seven adverse events (AEs) in 1200 (27.76%) subjects were reported within 28 d after vaccination. No serious adverse events occurred during the study. CONCLUSIONS The experimental vaccine three-antibody protection rate was non-inferior to the control vaccine. Our results demonstrated that the experimental vaccine achieved the primary immunogenic end point of the intended clinical protocol, as well as a secondary immunogenic end-point, with an acceptable level of safety. IRB approval for this study was issued under #2012Y0005 and registered as Clinical Trial No. NCT01551810.
Collapse
Affiliation(s)
- Gao Jing-Xia
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhao Yu-Liang
- b The Vaccine Clinical Evaluation Center Department , Hebei Province Center for Disease Prevention and Control , Hebei , People's Republic of China
| | - Liu Jin-Feng
- c Dingxing County Center for Disease Prevention and Control, Dingxing County , Hebei Province , China
| | - Liu Shu-Zhen
- d National Institutes for Food and Drug Control , Beijing , China
| | - Liao Guo-Yang
- a The fifth Department of Biological products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Li Qi
- b The Vaccine Clinical Evaluation Center Department , Hebei Province Center for Disease Prevention and Control , Hebei , People's Republic of China
| |
Collapse
|
145
|
Shin WJ, Seong BL. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin Drug Discov 2017; 12:1139-1152. [DOI: 10.1080/17460441.2017.1372417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
146
|
Seok JH, Kim J, Lee DB, Cho KJ, Lee JH, Bae G, Chung MS, Kim KH. Conformational modulation of influenza virus hemagglutinin: characterization and in vivo efficacy of monomeric form. Sci Rep 2017; 7:7540. [PMID: 28790432 PMCID: PMC5548806 DOI: 10.1038/s41598-017-08021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Mutational changes that mostly occur at the head region of hemagglutinin (HA) lead to the emergence of new epidemic influenza viruses, whereas HA antigens have been modified to generate broadly neutralizing antibodies toward highly conserved epitopes in the HA stem. Interestingly, a recent analysis of serum antibody repertoires showed that broadly neutralizing antibodies bind to HA monomer at a conserved region occluded at the intermonomer interface of HA trimer and confer protection in animal models. We showed previously that the recombinant HA ectodomain from a pandemic strain A/Korea/01/2009 was monomeric in solution and crystal structure. In order to examine the potential antigenicity of a monomeric form, we designed HA monomer that incorporates mutations to destabilize trimer conformations. Starting with the HA trimer from a seasonal strain A/Thailand/CU44/2006, mutations were introduced at the intermonomer interface, Ser199 of HA1 and Gly47, Arg75, Phe88, Val91, and Arg106 of HA2. Two mutants, F88E and V91W, were characterized to form a monomer and their double mutant F88E/V91W monomer was selected as an antigen. Animal studies showed that the HA monomer induced protective immunity in vivo, comparable to the trimer, albeit low antibody titers in sera.
Collapse
Affiliation(s)
- Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Jeongwon Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Dan Bi Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Ki Joon Cho
- Antibody Engineering Team, Mogam Institute, Yongin Kyunggi, 16924, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Garam Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
147
|
Liu YF, Lai HZ, Li L, Liu YP, Zhang WY, Gao R, Huang WK, Luo QF, Gao Y, Luo Q, Xie XY, Xu JH, Chen RA. Endemic Variation of H9N2 Avian Influenza Virus in China. Avian Dis 2017; 60:817-825. [PMID: 27902899 DOI: 10.1637/11452-061616-reg] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Forty-two H9N2 subtype AIV strains were isolated from vaccinated commercial chickens in China from 2012 to 2015. Their HA genes had nucleotide sequence homology from 86.7% to 99.7%, and similarity to the classic vaccine strain was 88.6%-92.6%. A comparison was carried out with published HA genes (410 H9 strains) and whole genomes (306 strains) isolated in China during 2012-2015. Interestingly, 99.1% (448/452) of Chinese H9N2 AIV belonged to lineage h9.4.2, and 98.5% (445/452) of the viruses belonged to h9.4.2.5. Meanwhile, 99.6% (443/445) of lineage 9.4.2.5 viruses had PSRSSR↓GLF instead of PARSSR↓GLF motifs in the HA cleavage sites; 98.2% (444/452) of HA genes showed human receptor binding associated mutation Q226L. A total of 96.8% (337/348) of the viruses had three amino-acid deletions at 63-65 in the NA stalk, associated with enhanced virulence in chickens and mice; 97.1% (338/348) of M2 proteins had the S31N mutation associated with adamantane resistance in humans. Two H9 viruses isolated in this study were highly homologous to the human-origin H9N2 virus reported in 2013. The isolates were divided into four different genotypes (U, S, V, and W). Genotype S was the major one, accounting for 94.8% (330/348). Genotypes V and W were new reassortment genotypes, with genotype W recombined with the PB2 gene originating from the new wild waterfowl-like lineage. According to the cross-HI antibody titer data, HA gene evolution, and isolation history, the isolates were divided into A, B, and C antigenic groups successively. All the antigenic group viruses were found to circulate throughout China. This study emphasizes the importance of updated vaccine and strengthened veterinary biosecurity on poultry farms and trade markets.
Collapse
Affiliation(s)
- Yu-Fu Liu
- A College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong Province, 510642, China
| | - Han-Zhang Lai
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China.,C Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biological Products, Zhaoqing Dahuanong Biological Medicine Co., Ltd., Zhaoqing High-Tech Development Zone, Zhaoqing, Guangdong Province 526238, China
| | - Lin Li
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Yu-Peng Liu
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China.,C Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biological Products, Zhaoqing Dahuanong Biological Medicine Co., Ltd., Zhaoqing High-Tech Development Zone, Zhaoqing, Guangdong Province 526238, China
| | - Wen-Yan Zhang
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Ren Gao
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Wen-Ke Huang
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Qin-Fang Luo
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Yan Gao
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Qiong Luo
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Xiao-Yu Xie
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China
| | - Jia-Hua Xu
- B Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, P. R. China, Guangdong Wens Dahuanong Biotechnology Co., Ltd., No. 6 Dongdi North Road, Xincheng Town, Xinxing County, Yunfu City, 527400, China.,C Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biological Products, Zhaoqing Dahuanong Biological Medicine Co., Ltd., Zhaoqing High-Tech Development Zone, Zhaoqing, Guangdong Province 526238, China
| | - Rui-Ai Chen
- A College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong Province, 510642, China
| |
Collapse
|
148
|
Gonzalez-Reiche AS, Müller ML, Ortiz L, Cordón-Rosales C, Perez DR. Prevalence and Diversity of Low Pathogenicity Avian Influenza Viruses in Wild Birds in Guatemala, 2010-2013. Avian Dis 2017; 60:359-64. [PMID: 27309080 DOI: 10.1637/11130-050715-reg] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Waterfowl species are known to harbor the greatest diversity of low pathogenicity influenza A virus (LPAIV) subtypes and are recognized as their main natural reservoir. In Guatemala there is evidence of circulation of LPAIV in wild ducks; however, the bird species contributing to viral diversity during the winter migration in Central America are unknown. In this study, samples obtained from 1250 hunter-killed birds from 22 different species were collected on the Pacific coast of Guatemala during three winter migration seasons between 2010 and 2013. Prevalence of LPAIV detected by real-time reverse-transcriptase polymerase chain reaction was 38.2%, 23.5%, and 24.7% in the 2010-11, 2011-12, and 2012-13 seasons, respectively. The highest virus prevalence was detected in the northern shoveler (Anas clypeata), followed by the blue-winged teal (Anas discors). The majority of positive samples and viral isolates were obtained from the blue-winged teal. Analysis of LPAIV prevalence over time in this species indicated a decreasing trend in monthly prevalence within a migration season. Sixty-eight viruses were isolated, and nine HA and seven NA subtypes were identified in 19 subtype combinations. In 2012-13 the most prevalent subtype was H14, a subtype identified for the first time in the Western Hemisphere in 2010. The results from this study represent the most detailed description available to date of LPAIV circulation in Central America.
Collapse
Affiliation(s)
- Ana S Gonzalez-Reiche
- A Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602.,B Laboratorio de Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), 18 Ave. 11-95, Zona 15 V.H.3, Guatemala City, Guatemala 01015.,C Department of Veterinary Medicine, University of Maryland College Park, and Virginia-Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742
| | - Maria L Müller
- B Laboratorio de Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), 18 Ave. 11-95, Zona 15 V.H.3, Guatemala City, Guatemala 01015
| | - Lucía Ortiz
- B Laboratorio de Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), 18 Ave. 11-95, Zona 15 V.H.3, Guatemala City, Guatemala 01015
| | - Celia Cordón-Rosales
- B Laboratorio de Virus Zoonóticos, Centro de Estudios en Salud, Universidad del Valle de Guatemala (CES-UVG), 18 Ave. 11-95, Zona 15 V.H.3, Guatemala City, Guatemala 01015
| | - Daniel R Perez
- A Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602
| |
Collapse
|
149
|
Graaf A, Beer M, Harder T. Real-time reverse transcription PCR-based sequencing-independent pathotyping of Eurasian avian influenza A viruses of subtype H7. Virol J 2017; 14:137. [PMID: 28738896 PMCID: PMC5525275 DOI: 10.1186/s12985-017-0808-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Low pathogenic avian influenza viruses (LPAIV) of the subtypes H5 and H7 are known to give rise to highly pathogenic (HP) phenotypes by spontaneous insertional mutations which convert a monobasic trypsin-sensitive endoproteolytical cleavage site (CS) within the hemagglutinin (HA) protein into a polybasic subtilisin-sensitive one. Sporadic outbreaks of notifiable LPAIV H7 infections are continuously recorded in Europe and in Asia, and some lineages showed zoonotic transmission. De novo generation of HPAIV H7 from LPAIV precursors has been reported several times over the past decade. Rapid differentiation between LP and HP H7 virus strains is required as a prerequisite to emplace appropriate control measures. Here, reverse transcription real-time PCR assays (RT-qPCR) were developed and evaluated that allow LP and HP pathotype identification and distinction by probe-assisted detection of the HACS. These new RT-qPCRs allow a sensitive and highly specific pathotype identification of Eurasian subtype H7 AIV in allantoic fluids as well as in diagnostic field samples. RT-qPCR assisted pathotyping presents a rapid and sensitive alternative to pathotyping by animal inoculation or nucleotide sequencing.
Collapse
Affiliation(s)
- Annika Graaf
- Friedrich Loeffler Institute, Institute of Diagnostic Virology, Südufer 10, Greifswald, 17493, Germany
| | - Martin Beer
- Friedrich Loeffler Institute, Institute of Diagnostic Virology, Südufer 10, Greifswald, 17493, Germany
| | - Timm Harder
- Friedrich Loeffler Institute, Institute of Diagnostic Virology, Südufer 10, Greifswald, 17493, Germany.
| |
Collapse
|
150
|
Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A 2017; 114:E6613-E6622. [PMID: 28739896 DOI: 10.1073/pnas.1621172114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Development of pneumonia is the most lethal consequence of influenza, increasing mortality more than 50-fold compared with uncomplicated infection. The spread of viral infection from conducting airways to the alveolar epithelium is therefore a pivotal event in influenza pathogenesis. We found that mitogenic stimulation with keratinocyte growth factor (KGF) markedly accelerated mortality after infectious challenge with influenza A virus (IAV). Coadministration of KGF with IAV markedly accelerated the spread of viral infection from the airways to alveoli compared with challenge with IAV alone, based on spatial and temporal analyses of viral nucleoprotein staining of lung tissue sections and dissociated lung cells. To better define the temporal relationship between KGF administration and susceptibility to IAV infection in vivo, we administered KGF 120, 48, 24, and 0 h before intrapulmonary IAV challenge and assessed the percentages of proliferating and IAV-infected, alveolar type II (AECII) cells in dispersed lung cell populations. Peak AECII infectivity coincided with the timing of KGF administration that also induced peak AECII proliferation. AECII from mice that were given intrapulmonary KGF before isolation and then infected with IAV ex vivo exhibited the same temporal pattern of proliferation and infectious susceptibility. KGF-induced increases in mortality, AECII proliferation, and enhanced IAV susceptibility were all reversed by pretreatment of the animals with the mTOR inhibitor rapamycin before mitogenic stimulation. Taken together, these data suggest mTOR signaling-dependent, mitogenic conditioning of AECII is a determinant of host susceptibility to infection with IAV.
Collapse
|