101
|
Trindade NR, Lopes PR, Naves LM, Fajemiroye JO, Alves PH, Amaral NO, Lião LM, Rebelo ACS, Castro CH, Braga VA, Menegatti R, Pedrino GR. The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1 H-Pyrazol-4-yl)-2 H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway. Front Physiol 2018; 9:1073. [PMID: 30131720 PMCID: PMC6091002 DOI: 10.3389/fphys.2018.01073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 01/13/2023] Open
Abstract
The search for new antihypertensive drugs has grown in recent years because of high rate of morbidity among hypertensive patients and several side effects that are associated with the first-line medications. The current study sought to investigate the antihypertensive effect of a newly synthesized pyrazole derivative known as 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-21). Spontaneously hypertensive rats (SHR) were used to evaluate the effect of LQFM-21 on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), arterial vascular conductance (AVC), baroreflex sensitivity (BRS) index, and vascular reactivity. Acute intravenous (iv) administration of LQFM-21 (0.05, 0.1, 0.2, and 0.4 mg kg-1) reduced MAP and HR, and increased RVC and AVC. Chronic oral administration of LQFM-21 (15 mg kg-1) for 15 days reduced MAP without altering BRS. The blockade of muscarinic receptors and nitric oxide synthase by intravenous infusion of atropine and L-NAME, respectively, attenuated cardiovascular effects of LQFM-21. In addition, ex vivo experiments showed that LQFM-21 induced an endothelium-dependent relaxation in isolated aortic rings from SHR. This effect was blocked by guanylyl cyclase inhibitor (ODQ) and L-NAME. These findings suggest the involvement of muscarinic receptor and NO/cGMP pathway in the antihypertensive and vasodilator effects of LQFM-21.
Collapse
Affiliation(s)
- Neidiane R Trindade
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Lara M Naves
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Pedro H Alves
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Nathalia O Amaral
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goiás, Goiânia, Brazil
| | - Ana C S Rebelo
- Department of Morphology, Federal University of Goiás, Goiânia, Brazil
| | - Carlos H Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Valdir A Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
102
|
Alom F, Miyakawa M, Matsuyama H, Nagano H, Tanahashi Y, Unno T. Possible antagonistic effects of the TRPC4 channel blocker ML204 on M 2 and M 3 muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J Vet Med Sci 2018; 80:1407-1415. [PMID: 29973432 PMCID: PMC6160885 DOI: 10.1292/jvms.18-0197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ML204, a potent transient receptor potential canonical 4 (TRPC4) channel blocker, is often used to elucidate the involvement of TRPC4 channels in receptor-operated signaling processes in
visceral smooth muscles. In the present study, we investigated the possible antagonistic actions of ML204 on M2 and M3 muscarinic receptors, which mediate contractions
in mouse ileal and detrusor smooth muscles. In ileal and detrusor smooth muscle preparations, ML204 (3 or 10 µM) significantly inhibited electrical field stimulation
(EFS)-evoked cholinergic contractions. However, it did not significantly inhibit high K+-induced and EFS-evoked non-cholinergic contractions in the ileal preparations. When the
muscarinic agonist, carbachol was cumulatively applied, ML204 (1, 3 and 10 µM) caused a rightward parallel shift of the concentration-response curves of carbachol.
Additionally, ML204 (1, 3 and 10 µM) inhibited carbachol-induced negative chronotropic response in atrial preparations, which is mediated by M2 muscarinic
receptors. Furthermore, ML204 significantly inhibited the contractions evoked by carbachol-induced intracellular Ca2+ release, which is mediated by M3 muscarinic
receptors. These results suggested that ML204 might exhibit antagonistic actions on M2 and M3 muscarinic receptors; in addition, the inhibitory effects of ML204 against
EFS-induced cholinergic contractions might be attributed to this receptor antagonism rather than inhibition of TRPC4 channel activity. Therefore, these effects should be considered when
ML204 is used as a TRPC4 channel blocker.
Collapse
Affiliation(s)
- Firoj Alom
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masumi Miyakawa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Nagano
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
103
|
Nurbaeva MK, Eckstein M, Devotta A, Saint-Jeannet JP, Yule DI, Hubbard MJ, Lacruz RS. Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Front Physiol 2018; 9:801. [PMID: 30013487 PMCID: PMC6036146 DOI: 10.3389/fphys.2018.00801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023] Open
Abstract
Dental enamel is formed by specialized epithelial cells which handle large quantities of Ca2+ while producing the most highly mineralized tissue. However, the mechanisms used by enamel cells to handle bulk Ca2+ safely remain unclear. Our previous work contradicted the dogma that Ca2+ is ferried through the cytosol of Ca2+-transporting cells and instead suggested an organelle-based route across enamel cells. This new paradigm involves endoplasmic reticulum (ER)-associated Ca2+ stores and their concomitant refilling by store-operated Ca2+ entry (SOCE) mediated by Ca2+ release activated Ca2+ (CRAC) channels. Given that Ca2+ handling is maximal during the enamel-mineralization stage (maturation), we anticipated that SOCE would also be elevated then. Confirmation was obtained here using single-cell recordings of cytosolic Ca2+ concentration ([Ca2+]cyt) in rat ameloblasts. A candidate SOCE agonist, cholecystokinin (CCK), was found to be upregulated during maturation, with Cck transcript abundance reaching 30% of that in brain. CCK-receptor transcripts were also detected and Ca2+ imaging showed that CCK stimulation increased [Ca2+]cyt in a dose-responsive manner that was sensitive to CRAC-channel inhibitors. Similar effects were observed with two other SOCE activators, acetylcholine and ATP, whose receptors were also found in enamel cells. These results provide the first evidence of a potential regulatory system for SOCE in enamel cells and so strengthen the Ca2+ transcytosis paradigm for ER-based transport of bulk Ca2+. Our findings also implicate enamel cells as a new physiological target of CCK and raise the possibility of an auto/paracrine system for regulating Ca2+ transport.
Collapse
Affiliation(s)
- Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Arun Devotta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Michael J Hubbard
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
104
|
Yohn SE, Conn PJ. Positive allosteric modulation of M 1 and M 4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 2018; 136:438-448. [PMID: 28893562 PMCID: PMC5844786 DOI: 10.1016/j.neuropharm.2017.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023]
Abstract
Current antipsychotic drugs provide symptomatic relief for positive symptoms of schizophrenia, but do not offer symptom management for negative and cognitive symptoms. In addition, many patients discontinue treatment due to adverse side effects. Therefore, there is a critical need to develop more effective and safe treatment options. Although the etiology of schizophrenia is unclear, considerable data from post-mortem, neuroimaging and neuropharmacology studies support a role of the muscarinic acetylcholine (mAChRs) in the pathophysiology of schizophrenia. Substantial evidence suggests that activation of mAChRs has the potential to treat all symptom domains of schizophrenia. Despite encouraging results in demonstrating efficacy, clinical trials of nonselective mAChR agonists were limited in their clinical utility due to dose-limiting peripheral side effects. Accordingly, efforts have been made to specifically target centrally located M1 and M4 mAChR subtypes devoid of adverse-effect liability. To circumvent this limitation, there have been tremendous advances in the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. The discovery of subtype-specific allosteric modulators has greatly advanced our understanding of the physiological role of various muscarinic receptor subtypes in schizophrenia and the potential utility of M1 and M4 mAChR subtypes as targets for the development of novel treatments for schizophrenia and related disorders. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Samantha E Yohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
105
|
van der Westhuizen ET, Spathis A, Khajehali E, Jörg M, Mistry SN, Capuano B, Tobin AB, Sexton PM, Scammells PJ, Valant C, Christopoulos A. Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M 1 Muscarinic Acetylcholine Receptors. Mol Pharmacol 2018; 94:770-783. [PMID: 29691279 PMCID: PMC7616191 DOI: 10.1124/mol.118.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Positive allosteric modulators (PAMs) that target the M1 muscarinic acetylcholine (ACh) receptor (M1 mAChR) are potential treatments for cognitive deficits in conditions such as Alzheimer disease and schizophrenia. We recently reported novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one M1 mAChR PAMs with the potential to display different modes of positive allosteric modulation and/or agonism but whose molecular mechanisms of action remain undetermined. The current study compared the pharmacology of three such novel PAMs with the prototypical first-generation PAM, benzyl quinolone carboxylic acid (BQCA), in a recombinant Chinese hamster ovary (CHO) cell line stably expressing the human M1 mAChR. Interactions between the orthosteric agonists and the novel PAMs or BQCA suggested their allosteric effects were solely governed by modulation of agonist affinity. The greatest degree of positive co-operativity was observed with higher efficacy agonists, whereas minimal potentiation was observed when the modulators were tested against the lower efficacy agonist, xanomeline. Each PAM was investigated for its effects on the endogenous agonist ACh on three different signaling pathways [extracellular signal-regulated kinases 1/2 phosphorylation, inositol monophosphate (IP1) accumulation, and β-arrestin-2 recruitment], revealing that the allosteric potentiation generally tracked with the efficiency of stimulus-response coupling, and that there was little pathway bias in the allosteric effects. Thus, despite the identification of novel allosteric scaffolds targeting the M1 mAChR, the molecular mechanism of action of these compounds is largely consistent with a model of allostery previously described for BQCA, suggesting that this may be a more generalized mechanism for M1 mAChR PAM effects than previously appreciated.
Collapse
Affiliation(s)
- Emma T van der Westhuizen
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Arthur Spathis
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Elham Khajehali
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Manuela Jörg
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Shailesh N Mistry
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Ben Capuano
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Andrew B Tobin
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Patrick M Sexton
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Peter J Scammells
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Celine Valant
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| | - Arthur Christopoulos
- Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.B.T.)
| |
Collapse
|
106
|
Malhotra D, Shin J, Solnica-Krezel L, Raz E. Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors. eLife 2018; 7:e33574. [PMID: 29873633 PMCID: PMC5990360 DOI: 10.7554/elife.33574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Chemokines are secreted proteins that regulate a range of processes in eukaryotic organisms. Interestingly, different chemokine receptors control distinct biological processes, and the same receptor can direct different cellular responses, but the basis for this phenomenon is not known. To understand this property of chemokine signaling, we examined the function of the chemokine receptors Cxcr4a, Cxcr4b, Ccr7, Ccr9 in the context of diverse processes in embryonic development in zebrafish. Our results reveal that the specific response to chemokine signaling is dictated by cell-type-specific chemokine receptor signal interpretation modules (CRIM) rather than by chemokine-receptor-specific signals. Thus, a generic signal provided by different receptors leads to discrete responses that depend on the specific identity of the cell that receives the signal. We present the implications of employing generic signals in different contexts such as gastrulation, axis specification and single-cell migration.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Movement/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Signal Transduction/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - Jimann Shin
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | | | - Erez Raz
- Institute for Cell BiologyZMBEMuensterGermany
| |
Collapse
|
107
|
Káradóttir RT, Kuo CT. Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 2018; 41:139-161. [PMID: 29618286 DOI: 10.1146/annurev-neuro-072116-031054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of new neurons and oligodendroglia in the postnatal and adult mammalian brain presents distinct forms of gray and white matter plasticity. Substantial effort has been devoted to understanding the cellular and molecular mechanisms controlling postnatal neurogenesis and gliogenesis, revealing important parallels to principles governing the embryonic stages. While during central nervous system development, scripted temporal and spatial patterns of neural and glial progenitor proliferation and differentiation are necessary to create the nervous system architecture, it remains unclear what driving forces maintain and sustain postnatal neural stem cell (NSC) and oligodendrocyte progenitor cell (OPC) production of new neurons and glia. In recent years, neuronal activity has been identified as an important modulator of these processes. Using the distinct properties of neurotransmitter ionotropic and metabotropic channels to signal downstream cellular events, NSCs and OPCs share common features in their readout of neuronal activity patterns. Here we review the current evidence for neuronal activity-dependent control of NSC/OPC proliferation and differentiation in the postnatal brain, highlight some potential mechanisms used by the two progenitor populations, and discuss future studies that might advance these research areas further.
Collapse
Affiliation(s)
- Ragnhildur T Káradóttir
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom; .,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Chay T Kuo
- Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA.,Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
108
|
Fabio DSM, Antonio FSC, Elismar DCM, Rachel MR, Antonio CRB, Marilene ODRB. Antidiarrhoeal and antispasmodic activity of leaves of Syzygium cumini L. (Myrtaceae) mediated through calcium channel blockage. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajpp2017.4868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
109
|
Abstract
Humans swallow a great variety and often large amounts of chemicals as nutrients, incidental food additives and contaminants, drugs, and inhaled particles and chemicals, thus exposing the gastrointestinal tract to many potentially toxic substances. It serves as a barrier in many cases to protect other components of the body from such substances and infections. Fortunately, the gastrointestinal tract is remarkably robust and generally is able to withstand multiple daily assaults by the chemicals to which it is exposed. Some chemicals, however, can affect one or more aspects of the gastrointestinal tract to produce abnormal events that reflect toxicity. It is the purpose of this chapter to evaluate the mechanisms by which toxic chemicals produce their deleterious effects and to determine the consequences of the toxicity on integrity of gastrointestinal structure and function. Probably because of the intrinsic ability of the gastrointestinal tract to resist toxic chemicals, there is a paucity of data regarding gastrointestinal toxicology. It is therefore necessary in many cases to extrapolate toxic mechanisms from infectious processes, inflammatory conditions, ischemia, and other insults in addition to more conventional chemical sources of toxicity.
Collapse
|
110
|
Comparative Analysis of Spontaneous and Stimulus-Evoked Calcium Transients in Proliferating and Differentiating Human Midbrain-Derived Stem Cells. Stem Cells Int 2017; 2017:9605432. [PMID: 29201062 PMCID: PMC5671755 DOI: 10.1155/2017/9605432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/10/2017] [Indexed: 12/24/2022] Open
Abstract
Spontaneous cytosolic calcium transients and oscillations have been reported in various tissues of nonhuman and human origin but not in human midbrain-derived stem cells. Using confocal microfluorimetry, we studied spontaneous calcium transients and calcium-regulating mechanisms in a human ventral mesencephalic stem cell line undergoing proliferation and neuronal differentiation. Spontaneous calcium transients were detected in a large fraction of both proliferating (>50%) and differentiating (>55%) cells. We provide evidence for the existence of intracellular calcium stores that respond to muscarinic activation of the cells, having sensitivity for ryanodine and thapsigargin possibly reflecting IP3 receptor activity and the presence of ryanodine receptors and calcium ATPase pumps. The observed calcium transient activity potentially supports the existence of a sodium-calcium antiporter and the existence of calcium influx induced by depletion of calcium stores. We conclude that the cells have developed the most important mechanisms governing cytosolic calcium homeostasis. This is the first comparative report of spontaneous calcium transients in proliferating and differentiating human midbrain-derived stem cells that provides evidence for the mechanisms that are likely to be involved. We propose that the observed spontaneous calcium transients may contribute to mechanisms involved in cell proliferation, phenotypic differentiation, and general cell maturation.
Collapse
|
111
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
112
|
Inhibition of salivary secretion by tolterodine transdermal patch. Arch Pharm Res 2017; 40:1455-1463. [DOI: 10.1007/s12272-017-0988-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
|
113
|
Endogenous Gαq-Coupled Neuromodulator Receptors Activate Protein Kinase A. Neuron 2017; 96:1070-1083.e5. [PMID: 29154125 DOI: 10.1016/j.neuron.2017.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/11/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
Abstract
Protein kinase A (PKA) integrates inputs from G-protein-coupled neuromodulator receptors to modulate synaptic and cellular function. Gαs signaling stimulates PKA activity, whereas Gαi inhibits PKA activity. Gαq, on the other hand, signals through phospholipase C, and it remains unclear whether Gαq-coupled receptors signal to PKA in their native context. Here, using two independent optical reporters of PKA activity in acute mouse hippocampus slices, we show that endogenous Gαq-coupled muscarinic acetylcholine receptors activate PKA. Mechanistically, this effect is mediated by parallel signaling via either calcium or protein kinase C. Furthermore, multiple Gαq-coupled receptors modulate phosphorylation by PKA, a classical Gαs/Gαi effector. Thus, these results highlight PKA as a biochemical integrator of three major types of GPCRs and necessitate reconsideration of classic models used to predict neuronal signaling in response to the large family of Gαq-coupled receptors.
Collapse
|
114
|
Fish I, Stößel A, Eitel K, Valant C, Albold S, Huebner H, Möller D, Clark MJ, Sunahara RK, Christopoulos A, Shoichet BK, Gmeiner P. Structure-Based Design and Discovery of New M 2 Receptor Agonists. J Med Chem 2017; 60:9239-9250. [PMID: 29094937 DOI: 10.1021/acs.jmedchem.7b01113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Muscarinic receptor agonists are characterized by apparently strict restraints on their tertiary or quaternary amine and their distance to an ester or related center. On the basis of the active state crystal structure of the muscarinic M2 receptor in complex with iperoxo, we explored potential agonists that lacked the highly conserved functionalities of previously known ligands. Using structure-guided pharmacophore design followed by docking, we found two agonists (compounds 3 and 17), out of 19 docked and synthesized compounds, that fit the receptor well and were predicted to form a hydrogen-bond conserved among known agonists. Structural optimization led to compound 28, which was 4-fold more potent than its parent 3. Fortified by the discovery of this new scaffold, we sought a broader range of chemotypes by docking 2.2 million fragments, which revealed another three micromolar agonists unrelated either to 28 or known muscarinics. Even pockets as tightly defined and as deeply studied as that of the muscarinic reveal opportunities for the structure-based design and the discovery of new chemotypes.
Collapse
Affiliation(s)
- Inbar Fish
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States.,Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University , Ramat Aviv, Israel
| | - Anne Stößel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University , Schuhstraße 19, 91052 Erlangen, Germany
| | - Katrin Eitel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University , Schuhstraße 19, 91052 Erlangen, Germany
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville Victoria 3052, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville Victoria 3052, Australia
| | - Harald Huebner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University , Schuhstraße 19, 91052 Erlangen, Germany
| | - Dorothee Möller
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University , Schuhstraße 19, 91052 Erlangen, Germany
| | - Mary J Clark
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville Victoria 3052, Australia
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University , Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
115
|
Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics 2017; 50:1-9. [PMID: 29093194 DOI: 10.1152/physiolgenomics.00062.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscarinic acetylcholine receptors belong to the G protein-coupled receptor superfamily and are widely known to mediate numerous functions within the central and peripheral nervous system. Thus, they have become attractive therapeutic targets for various disorders. It has long been known that the parasympathetic system, governed by acetylcholine, plays an essential role in regulating cardiovascular function. Unfortunately, due to the lack of pharmacologic selectivity for any one muscarinic receptor, there was a minimal understanding of their distribution and function within this region. However, in recent years, advancements in research have led to the generation of knockout animal models, better antibodies, and more selective ligands enabling a more thorough understanding of the unique role muscarinic receptors play in the cardiovascular system. These advances have shown muscarinic receptor 2 is no longer the only functional subtype found within the heart and muscarinic receptors 1 and 3 mediate both dilation and constriction in the vasculature. Although muscarinic receptors 4 and 5 are still not well characterized in the cardiovascular system, the recent generation of knockout animal models will hopefully generate a better understanding of their function. This mini review aims to summarize recent findings and advances of muscarinic involvement in the cardiovascular system.
Collapse
Affiliation(s)
- Hannah C Saternos
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Hayley M Gibson
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Mahmood A Meqdad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Raymond B Antypas
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Ajay Lingireddy
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Wissam A AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| |
Collapse
|
116
|
She X, Pegoli A, Mayr J, Hübner H, Bernhardt G, Gmeiner P, Keller M. Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M 2R Affinity and Selectivity. ACS OMEGA 2017; 2:6741-6754. [PMID: 30023530 PMCID: PMC6044897 DOI: 10.1021/acsomega.7b01085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 05/13/2023]
Abstract
In search for selective ligands for the muscarinic acetylcholine receptor (MR) subtype M2, the dimeric ligand approach, that is combining two pharmacophores in one and the same molecule, was pursued. Different types (agonists, antagonists, orthosteric, and allosteric) of monomeric MR ligands were combined by various linkers with a dibenzodiazepinone-type MR antagonist, affording five types of heterodimeric compounds ("DIBA-xanomeline," "DIBA-TBPB," "DIBA-77-LH-28-1," "DIBA-propantheline," and "DIBA-4-DAMP"), which showed high M2R affinities (pKi > 8.3). The heterodimeric ligand UR-SK75 (46) exhibited the highest M2R affinity and selectivity [pKi (M1R-M5R): 8.84, 10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric derivatives ("DIBA-xanomeline"-type: [3H]UR-SK71 ([3H]44) and "DIBA-TBPB"-type: [3H]UR-SK59 ([3H]64)) were prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84 (14), and LY2119620 (15)] on the equilibrium (13-15) or saturation (14) binding of [3H]64 suggested a competitive mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.
Collapse
Affiliation(s)
- Xueke She
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrea Pegoli
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Judith Mayr
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- E-mail: . Phone: (+49)941-9433329.
Fax: (+49)941-9434820 (M.K.)
| |
Collapse
|
117
|
Morelli A, Sarchielli E, Guarnieri G, Coppi E, Pantano D, Comeglio P, Nardiello P, Pugliese AM, Ballerini L, Matucci R, Ambrosini S, Castronovo G, Valente R, Mazzanti B, Bucciantini S, Maggi M, Casamenti F, Gallina P, Vannelli GB. Young Human Cholinergic Neurons Respond to Physiological Regulators and Improve Cognitive Symptoms in an Animal Model of Alzheimer's Disease. Front Cell Neurosci 2017; 11:339. [PMID: 29163051 PMCID: PMC5666298 DOI: 10.3389/fncel.2017.00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM) in the basal forebrain (BF) is associated to the cognitive decline of Alzheimer's disease (AD) patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs) in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase) and acetylcholine (Ach) release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa) and potassium (IK) currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF), through the activation of the high-affinity NGF receptor TrkA, as well as by 17-β-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration) reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.
Collapse
Affiliation(s)
- Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna M Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lara Ballerini
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosanna Matucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefano Ambrosini
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe Castronovo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Clinical Physiopathology, Florence, Italy
| | - Rosa Valente
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Pasquale Gallina
- Neurosurgery School of Tuscany, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella B Vannelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
118
|
Aquila I, Gratteri S, Sacco MA, Nuzzolese E, Fineschi V, Frati P, Ricci P. Could the screening for correct oral health reduce the impact of death due to bolus asphyxia in adult patients? A forensic case report. Med Hypotheses 2017; 110:23-26. [PMID: 29317062 DOI: 10.1016/j.mehy.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION "Bolus death" or "Café Coronary syndrome" refers to death due to asphyxia caused by an occlusion of the upper airways due to food. In this kind of asphyxia, the food bolus obstructs the larynx or the bronchial branches. This kind of event often affects subjects with acute intoxication due to alcohol or drugs, or with edentulism and with neurological or psychiatric diseases. CASE REPORT An elderly woman, suffering from schizophrenia, was found dead in her house due to food bolus asphyxia. The post-mortem toxicological analysis on the deceased's biological fluids revealed the presence of tricyclic antidepressants, antipsychotics and neuroleptics. Study of the oral cavity showed the presence of partial edentulism and periodontal disease. HYPOTHESIS We hypothesize that this kind of asphyxia in adults can be prevented. We believe that there are two major preventable factors: edentulism and salivation disorders in elderly and neuropsychiatric patients. The primary prevention of these pathologies would deal with the basic physician, similarly to other screenings already effectively in place. CONCLUSIONS It is possible to prevent fatal asphyxia in subjects who suffer from this kind of diseases through appropriate screening. This prevention strategy would greatly reduce the amount of choking deaths in adults.
Collapse
Affiliation(s)
- Isabella Aquila
- Chair of Legal Medicine, University "Magna Graecia" of Catanzaro, Italy.
| | - Santo Gratteri
- Chair of Legal Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Matteo A Sacco
- Chair of Legal Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Emilio Nuzzolese
- Chair of Legal Medicine, University "Magna Graecia" of Catanzaro, Italy
| | | | - Paola Frati
- Chair of Legal Medicine, University "La Sapienza" of Rome, Italy
| | | |
Collapse
|
119
|
Kurimoto E, Matsuda S, Shimizu Y, Sako Y, Mandai T, Sugimoto T, Sakamoto H, Kimura H. An Approach to Discovering Novel Muscarinic M1 Receptor Positive Allosteric Modulators with Potent Cognitive Improvement and Minimized Gastrointestinal Dysfunction. J Pharmacol Exp Ther 2017; 364:28-37. [DOI: 10.1124/jpet.117.243774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022] Open
|
120
|
Inhibition of 12/15 LOX ameliorates cognitive and cholinergic dysfunction in mouse model of hypobaric hypoxia via. attenuation of oxidative/nitrosative stress. Neuroscience 2017; 359:308-324. [DOI: 10.1016/j.neuroscience.2017.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 11/23/2022]
|
121
|
Tomàs JM, Garcia N, Lanuza MA, Nadal L, Tomàs M, Hurtado E, Simó A, Cilleros V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front Mol Neurosci 2017; 10:255. [PMID: 28848391 PMCID: PMC5552667 DOI: 10.3389/fnmol.2017.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M1, M2 and M4), adenosine receptors (AR; A1 and A2A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various combinations of selective and specific PKA and PKC inhibitors could help to elucidate the role of these kinases in synapse maturation.
Collapse
Affiliation(s)
- Josep M Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
122
|
Sakata K, Overacre AE. Promoter IV-BDNF deficiency disturbs cholinergic gene expression of CHRNA5, CHRM2, and CHRM5: effects of drug and environmental treatments. J Neurochem 2017; 143:49-64. [PMID: 28722769 DOI: 10.1111/jnc.14129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes maturation of cholinergic neurons. However, how activity-dependent BDNF expression affects specific cholinergic gene expression remains unclear. This study addressed this question by determining mRNA levels of 22 acetylcholine receptor subunits, the choline transporter (CHT), and the choline acetyltransferase (ChAT) in mice deficient in activity-dependent BDNF via promoter IV (KIV) and control wild-type mice. Quantitative RT-PCR revealed significant reductions in nicotinic acetylcholine receptor alpha 5 (CHRNA5) in the frontal cortex and hippocampus and M5 muscarinic acetylcholine receptor (CHRM5) in the hippocampus, but significant increases in M2 muscarinic acetylcholine receptor (CHRM2) in the frontal cortex of KIV mice compared to wild-type mice. Three-week treatments with fluoxetine, phenelzine, duloxetine, imipramine, or an enriched environment treatment (EET) did not affect the altered expression of these genes except that EET increased CHRNA5 levels only in KIV frontal cortex. EET also increased levels of CHRNA7, CHT, and ChAT, again only in the KIV frontal cortex. The imipramine treatment was most prominent among the four antidepressants; it up-regulated hippocampal CHRM2 and frontal cortex CHRM5 in both genotypes, and frontal cortex CHRNA7 only in KIV mice. To the best of our knowledge, this is the first evidence that BDNF deficiency disturbs expression of CHRNA5, CHRM2, and CHRM5. Our results suggest that promoter IV-BDNF deficiency - which occurs under chronic stress - causes cholinergic dysfunctions via these receptors. EET is effective on CHRNA5, while its compensatory induction of other cholinergic genes or drugs targeting CHRNA5, CHRM2, and CHRM5 may become an alternative strategy to reverse these BDNF-linked cholinergic dysfunctions.
Collapse
Affiliation(s)
- Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Abigail E Overacre
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
123
|
Menozzi A, Pozzoli C, Poli E, Bontempi G, Serventi P, Meucci V, Intorre L, Bertini S. Role of muscarinic receptors in the contraction of jejunal smooth muscle in the horse: An in vitro study. Res Vet Sci 2017; 115:387-392. [PMID: 28711697 DOI: 10.1016/j.rvsc.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 07/08/2017] [Indexed: 11/19/2022]
Abstract
Nonselective antimuscarinic drugs are clinically useful in several pathologic conditions of horses, but, blocking all muscarinic receptor (MR) subtypes, may cause several side effects. The availability of selective antimuscarinic drugs could improve therapeutic efficacy and safety. We aimed to enlighten the role of different MR subtypes by evaluating the effects of nonselective, and selective M1, M2 and M3 MR antagonists on the contractions of horse jejunum. Segments of circular muscle of equine jejunum, were put into organ baths, connected to isotonic transducers, and the effects on ACh concentration-response curves, and on electrical field stimulation (EFS)-evoked contractions of intestinal preparations, induced by nonselective or selective MR antagonists, compared to pre-drug level, were studied. Atropine (nonselective MR antagonist), pirenzepine (selective M1 antagonist), and p-FHHSiD (selective M3 antagonist) competitively antagonized ACh (pA2=9.78±0.21; 7.14±0.25 and 7.56±0.17, respectively). Methoctramine (selective M2 antagonist) antagonized ACh in a concentration-unrelated fashion; however, it competitively antagonized carbachol, a nonselective muscarinic agonist (pA2=6.42±0.23). Atropine dose-dependently reduced EFS-evoked contractions, reaching a maximal effect of -45.64±6.54%; the simultaneous block of neurokinin receptors, almost completely abolished the atropine-insensitive contractions. p-FHHSiD dose-dependently reduced EFS-induced contractions, while pirenzepine caused a minor decrease. Methoctramine, ineffective up to 10-7M, enhanced the contractions at 10-6M; the block of neurokinin receptors abolished the increase of contraction. Cholinergic contractions of horse jejunum are mainly mediated by M3 receptors; M2 selective antagonists seem to scarcely affect cholinergic, and to enhance neurokininergic contractions of equine jejunum, thus their use entails a lower risk of causing intestinal hypomotility, compared to nonselective drugs.
Collapse
Affiliation(s)
- Alessandro Menozzi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Cristina Pozzoli
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Enzo Poli
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giada Bontempi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Paolo Serventi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, Via Livornese, S. Piero a Grado, Pisa, Italy
| | - Luigi Intorre
- Department of Veterinary Science, University of Pisa, Via Livornese, S. Piero a Grado, Pisa, Italy
| | - Simone Bertini
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
124
|
Hu X, Yuan M, Yin Y, Wang Y, Li Y, Zhang N, Sun X, Yu Z, Xu B. Electroacupuncture at LI11 promotes jejunal motility via the parasympathetic pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:329. [PMID: 28637453 PMCID: PMC5480127 DOI: 10.1186/s12906-017-1826-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastrointestinal motility disorder has been demonstrated to be regulated by acupuncture treatment. The mechanisms underlying the effects of acupuncture stimulation of abdominal and lower limb acupoints on gastrointestinal motility have been thoroughly studied; however, the physiology underlying the effects of acupuncture on the forelimbs to mediate gastrointestinal motility requires further exploration. The aim of this study was to determine whether electroacupuncture (EA) at LI11 promotes jejunal motility, whether the parasympathetic pathway participates in this effect, and if so, which somatic afferent nerve fibres are involved. METHODS A manometric balloon was used to observe jejunal motility. The effects and mechanisms of EA at LI11 were explored in male Sprague-Dawley rats with or without drug administration (propranolol, clenbuterol, acetylcholine, and atropine) and with or without vagotomy. Three types of male mice (β1β2 receptor-knockout [β1β2-/-] mice, M2M3 receptor-knockout [M2M3-/-] mice and wild-type [WT] mice) were also studied by using different EA intensities (1, 2, 4, 6, and 8 mA). A total of 72 rats and 56 mice were included in the study. RESULTS EA at LI11 increased the contractile amplitude of jejunal motility in the majority of both rats and mice. However, EA at LI11 did not enhance jejunal motility in rats administered atropine, rats that underwent vagotomy, and M2M3-/- mice (at all intensities). In WT mice, EA at LI11 significantly increased jejunal motility at all intensities except 1 mA, and a plateau was reached at intensities greater than 4 mA. CONCLUSION Our results suggest that EA at LI11 promotes jejunal motility primarily by exciting the parasympathetic pathway, and that Aδ-fibres and C-fibres may play important roles in the process.
Collapse
Affiliation(s)
- Xuanming Hu
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Mengqian Yuan
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Yin Yin
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Yidan Wang
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Yuqin Li
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Na Zhang
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Xueyi Sun
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Zhi Yu
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| | - Bin Xu
- Key Laboratory of Integrated Acupuncture and Drugs Constructed, Nanjing University of Chinese Medicine, Ministry of Education, Nanjing, 210023 China
| |
Collapse
|
125
|
Greig CJ, Cowles RA. Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis. J Pediatr Surg 2017; 52:1031-1034. [PMID: 28359586 DOI: 10.1016/j.jpedsurg.2017.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Intestinal mucosal homeostasis is controlled by multiple factors and an intact, functional mucosa is essential for survival. Maintenance of the epithelium begins with crypt base stem cells which eventually give rise to all epithelial cell types. Evidence suggests an important role of the enteric cholinergic nervous system in these processes. We hypothesized that mice with altered muscarinic signaling would exhibit differences in mucosal morphometric and proliferative parameters compared to wild-type mice. METHODS Mouse lines specifically deficient in one of the five muscarinic acetylcholine receptors (M1KO-M5KO) were used for experiments. Distal ileal segments were obtained and histologic sections created. Villus height and crypt depth were measured using H&E-stained sections, while crypt proliferation index (CPI) was calculated using Ki67-stained sections. RESULTS The ileal mucosa from mice deficient in mAChRs exhibited differences from wild-type ileal mucosa in nearly all measured parameters. Knockout of mAChR2, mAChR3 and mAChR5 resulted in changes in all measured parameters. Ileal mucosa from M2KO mice showed an unexpected combination decreased VH but paradoxically increased CD and CPI. CONCLUSIONS Alterations in mAChR signaling causes change in ileal mucosal morphometry and crypt cell proliferation. While all mAChR subtypes may be involved, mAChR2, mAChR3, and mAChR5 appear to be critical for mucosal homeostasis. Further characterization of these pathways is warranted.
Collapse
Affiliation(s)
- Chasen J Greig
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Robert A Cowles
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
126
|
Li J, Liao S, Wang X, Liu Q, Meng F, Zhang W, Zhang T, Yang C, Song X, Luo H, Wang J, Li Z, Zhong B, Zhang Z. A rapid and efficient analytical method for the quantification of a novel anticholinergic compound, R-
phencynonate, by stable isotope-dilution LC-MS/MS and its application to bioavailability and dose proportionality studies. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/25/2016] [Accepted: 10/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jinglai Li
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Sha Liao
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Xiaoying Wang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Qian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Fei Meng
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Cuiping Yang
- New Drug Safety Evaluation Center, Institute of Materia Medica; Chinese Academy of Medical Sciences; Beijing People's Republic of China
| | - Xinyi Song
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
- Department of Preventive Medicine; Qinghai University School of Medicine; Xining People's Republic of China
| | - Huan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Juan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Zheng Li
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Bohua Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures; Beijing Institute of Pharmacology and Toxicology; Beijing People's Republic of China
| |
Collapse
|
127
|
Tsentsevitsky AN, Kovyazina IV, Nurullin LF, Nikolsky EE. Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction. Neurosci Lett 2017; 649:62-69. [PMID: 28408330 DOI: 10.1016/j.neulet.2017.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
Muscarinic cholinoreceptors regulate the neurosecretion process in vertebrate neuromuscular junctions. The diversity of muscarinic effects on acetylcholine (ACh) secretion may be attributed to the different muscarinic subtypes involved in this process. In the present study, the location of five muscarinic receptor subtypes (M1, M2, M3, M4 and M5) on the motor nerve terminals of frog cutaneous pectoris muscle was shown using specific polyclonal antibodies. The modulatory roles of these receptors were investigated via assessment of the effects of muscarine and specific muscarinic antagonists on the quantal content of endplate currents (EPCs) and the time course of secretion, which was estimated from the distribution of "real" synaptic delays of EPCs recorded in a low Ca2+/high Mg2+ solution. The agonist muscarine decreased the EPC quantal content and synchronized the release process. The depressing action of muscarine on the EPC quantal content was abolished only by pretreatment of the preparation with the M3 blockers 4-DAMP (1,1-Dimethyl-4-diphenylacetoxypiperidinium iodide) and J 104129 fumarate ((αR)-α-Cyclopentyl-α-hydroxy-N-[1-(4-methyl-3-pentenyl)-4-piperidinyl]benzeneacetamide fumarate). Moreover, antagonists of the M1, M2, M3 and M4 receptors per se diminished the intensity of secretion, which suggests a putative up-regulation of the release by endogenous ACh.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia
| | - Irina V Kovyazina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia.
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia; Department of Biology, Kazan State Medical University, Butlerov Str., 49, Kazan, 420012, Russia
| | - Eugeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia; Department of Medical and Biological Physics, Kazan State Medical University, Butlerov Str., 49, Kazan, 420012, Russia
| |
Collapse
|
128
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
129
|
Chintamaneni PK, Krishnamurthy PT, Rao PV, Pindiprolu SS. Surface modified nano-lipid drug conjugates of positive allosteric modulators of M1 muscarinic acetylcholine receptor for the treatment of Alzheimer’s disease. Med Hypotheses 2017; 101:17-22. [DOI: 10.1016/j.mehy.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022]
|
130
|
Zhao YR, Lv WR, Zhou JL. Role of carbonyl sulfide in acute lung injury following limb ischemia/reperfusion in rats. Eur J Med Res 2017; 22:12. [PMID: 28351415 PMCID: PMC5371182 DOI: 10.1186/s40001-017-0255-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effect of carbonyl sulfide (COS) on limb ischemia/reperfusion (I/R)-induced acute lung injury (ALI) and the associated mechanism in rats. METHODS ALI was induced by bilateral hind limb I/R in Sprague-Dawley (SD) rats. Sixty-four SD rats were randomly divided into the control group, I/R group, I/R + COS group, and I/R + AIR group. We observed the survival rate of the rats and the morphological changes of lung tissues, and we measured the change in the lung coefficient, the expression levels of the intercellular adhesion factor-1 (ICAM-1) protein in lung tissue, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-lβ, and interleukin (IL)-6 in both lung tissue and serum, and cell apoptosis. RESULTS Limb I/R caused significant lung tissue damage. The number of polymorphonuclear neutrophil in alveolar septa, the expression level of the ICAM-1 protein in lung tissue, the expression levels of TNF-α, IL-1, and IL-6 in lung tissue and serum, the lung coefficient, and cell apoptosis all increased. When a low dose of COS gas was administered prior to limb I/R, the variation of the above indicators was significantly reduced, while an increase in the dose of COS did not reduce the lung injury but rather increased the mortality rate. CONCLUSION Carbonyl sulfide is another new gaseous signaling molecule, and a low dose of exogenous COS may play a protective role in I/R-induced ALI by acting as an anti-inflammatory agent by promoting the production of antioxidants and by inhibiting the expression of adhesion molecule proteins.
Collapse
Affiliation(s)
- Yan-Rui Zhao
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Wen-Rui Lv
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
131
|
Kessler P, Marchot P, Silva M, Servent D. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions. J Neurochem 2017; 142 Suppl 2:7-18. [PMID: 28326549 DOI: 10.1111/jnc.13975] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Three-finger fold toxins are miniproteins frequently found in Elapidae snake venoms. This fold is characterized by three distinct loops rich in β-strands and emerging from a dense, globular core reticulated by four highly conserved disulfide bridges. The number and diversity of receptors, channels, and enzymes identified as targets of three-finger fold toxins is increasing continuously. Such manifold diversity highlights the specific adaptability of this fold for generating pleiotropic functions. Although this toxin superfamily disturbs many biological functions by interacting with a large diversity of molecular targets, the most significant target is the cholinergic system. By blocking the activity of the nicotinic and muscarinic acetylcholine receptors or by inhibiting the enzyme acetylcholinesterase, three-finger fold toxins interfere most drastically with neuromuscular junction functioning. Several of these toxins have become powerful pharmacological tools for studying the function and structure of their molecular targets. Most importantly, since dysfunction of these receptors/enzyme is involved in many diseases, exploiting the three-finger scaffold to create novel, highly specific therapeutic agents may represent a major future endeavor. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascale Marchot
- Aix-Marseille Université/Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Faculté des Sciences Campus Luminy, Marseille, France
| | - Marcela Silva
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
132
|
Lv X, Dickerson JW, Rook JM, Lindsley CW, Conn PJ, Xiang Z. M 1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology 2017; 118:209-222. [PMID: 28336323 DOI: 10.1016/j.neuropharm.2017.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023]
Abstract
The dorsolateral striatum is critically involved in movement control and motor learning. Striatal function is regulated by a variety of neuromodulators including acetylcholine. Previous studies have shown that cholinergic activation excites striatal principal projection neurons, medium spiny neurons (MSNs), and this action is mediated by muscarinic acetylcholine subtype 1 receptors (M1) through modulating multiple potassium channels. In the present study, we used electrophysiology techniques in conjunction with optogenetic and pharmacological tools to determine the long-term effects of striatal cholinergic activation on MSN intrinsic excitability. A transient increase in acetylcholine release in the striatum by optogenetic stimulation resulted in a long-lasting increase in excitability of MSNs, which was associated with hyperpolarizing shift of action potential threshold and decrease in afterhyperpolarization (AHP) amplitude, leading to an increase in probability of EPSP-action potential coupling. The M1 selective antagonist VU0255035 prevented, while the M1 selective positive allosteric modulator (PAM) VU0453595 potentiated the cholinergic activation-induced persistent increase in MSN intrinsic excitability, suggesting that M1 receptors are critically involved in the induction of this long-lasting response. This M1 receptor-dependent long-lasting change in MSN intrinsic excitability could have significant impact on striatal processing and might provide a novel mechanism underlying cholinergic regulation of the striatum-dependent motor learning and cognitive function. Consistent with this, behavioral studies indicate that potentiation of M1 receptor signaling by VU0453595 enhanced performance of mice in cue-dependent water-based T-maze, a dorsolateral striatum-dependent learning task.
Collapse
Affiliation(s)
- Xiaohui Lv
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan W Dickerson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jerri M Rook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
133
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
134
|
Stallaert W, van der Westhuizen ET, Schönegge AM, Plouffe B, Hogue M, Lukashova V, Inoue A, Ishida S, Aoki J, Le Gouill C, Bouvier M. Purinergic Receptor Transactivation by the β2-Adrenergic Receptor Increases Intracellular Ca 2+ in Nonexcitable Cells. Mol Pharmacol 2017; 91:533-544. [PMID: 28280061 DOI: 10.1124/mol.116.106419] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) increases intracellular Ca2+ in a variety of cell types. By combining pharmacological and genetic manipulations, we reveal a novel mechanism through which the β2AR promotes Ca2+ mobilization (pEC50 = 7.32 ± 0.10) in nonexcitable human embryonic kidney (HEK)293S cells. Downregulation of Gs with sustained cholera toxin pretreatment and the use of Gs-null HEK293 (∆Gs-HEK293) cells generated using the clustered regularly interspaced short palindromic repeat-associated protein-9 nuclease (CRISPR/Cas9) system, combined with pharmacological modulation of cAMP formation, revealed a Gs-dependent but cAMP-independent increase in intracellular Ca2+ following β2AR stimulation. The increase in cytoplasmic Ca2+ was inhibited by P2Y purinergic receptor antagonists as well as a dominant-negative mutant form of Gq, a Gq-selective inhibitor, and an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, suggesting a role for this Gq-coupled receptor family downstream of the β2AR activation. Consistent with this mechanism, β2AR stimulation promoted the extracellular release of ATP, and pretreatment with apyrase inhibited the β2AR-promoted Ca2+ mobilization. Together, these data support a model whereby the β2AR stimulates a Gs-dependent release of ATP, which transactivates Gq-coupled P2Y receptors through an inside-out mechanism, leading to a Gq- and IP3-dependent Ca2+ mobilization from intracellular stores. Given that β2AR and P2Y receptors are coexpressed in various tissues, this novel signaling paradigm could be physiologically important and have therapeutic implications. In addition, this study reports the generation and validation of HEK293 cells deleted of Gs using the CRISPR/Cas9 genome editing technology that will undoubtedly be powerful tools to study Gs-dependent signaling.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Emma T van der Westhuizen
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Anne-Marie Schönegge
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Bianca Plouffe
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Mireille Hogue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Viktoria Lukashova
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Asuka Inoue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Satoru Ishida
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Junken Aoki
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Christian Le Gouill
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Michel Bouvier
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| |
Collapse
|
135
|
Lian W, Fang J, Xu L, Zhou W, Kang D, Xiong W, Jia H, Liu AL, Du GH. DL0410 Ameliorates Memory and Cognitive Impairments Induced by Scopolamine via Increasing Cholinergic Neurotransmission in Mice. Molecules 2017; 22:molecules22030410. [PMID: 28272324 PMCID: PMC6155334 DOI: 10.3390/molecules22030410] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the cholinergic model has not been evaluated, and its action mechanism has also not been illustrated. In the present study, the capability of DL0410 in ameliorating the amnesia induced by scopolamine was investigated, and its effect on the cholinergic system in the hippocampus and its binding mode in the active site of AChE was also explored. Mice were administrated DL0410 (3 mg/kg, 10 mg/kg, and 30 mg/kg), and mice treated with donepezil were used as a positive control. The Morris water maze, escape learning task, and passive avoidance task were used as behavioral tests. The test results indicated that DL0410 could significantly improve the learning and memory impairments induced by scopolamine, with 10 mg/kg performing best. Further, DL0410 inhibited the AChE activity and increased acetylcholine (ACh) levels in a dose-dependent manner, and interacted with the active site of AChE in a similar manner as donepezil. However, no difference in the activity of BuChE was found in this study. All of the evidence indicated that its AChE inhibition is an important mechanism in the anti-amnesia effect. In conclusion, DL0410 could be an effective therapeutic drug for the treatment of dementia, especially Alzheimer’s disease.
Collapse
Affiliation(s)
- Wenwen Lian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Jiansong Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Lvjie Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Wei Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - De Kang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Wandi Xiong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Hao Jia
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
- Beijing Key Laboratory of Drug Target Research and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
- Beijing Key Laboratory of Drug Target Research and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
136
|
Wong KKL, Tang LCY, Zhou J, Ho V. Analysis of spatiotemporal pattern and quantification of gastrointestinal slow waves caused by anticholinergic drugs. Organogenesis 2017; 13:39-62. [PMID: 28277890 DOI: 10.1080/15476278.2017.1295904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anticholinergic drugs are well-known to cause adverse effects, such as constipation, but their effects on baseline contractile activity in the gut driven by slow waves is not well established. In a video-based gastrointestinal motility monitoring (GIMM) system, a mouse's small intestine was placed in Krebs solution and recorded using a high definition camera. Untreated controls were recorded for each specimen, then treated with a therapeutic concentration of the drug, and finally, treated with a supratherapeutic dose of the drug. Next, the video clips showing gastrointestinal motility were processed, giving us the segmentation motions of the intestine, which were then converted via Fast Fourier Transform (FFT) into their respective frequency spectrums. These contraction quantifications were analyzed from the video recordings under standardised conditions to evaluate the effect of drugs. Six experimental trials were included with benztropine and promethazine treatments. Only the supratherapeutic dose of benztropine was shown to significantly decrease the amplitude of contractions; at therapeutic doses of both drugs, neither frequency nor amplitude was significantly affected. We have demonstrated that intestinal slow waves can be analyzed based on the colonic frequency or amplitude at a supratherapeutic dose of the anticholinergic medications. More research is required on the effects of anticholinergic drugs on these slow waves to ascertain the true role of ICC in neurologic control of gastrointestinal motility.
Collapse
Affiliation(s)
- Kelvin K L Wong
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Lauren C Y Tang
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Jerry Zhou
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Vincent Ho
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| |
Collapse
|
137
|
Nadal L, Garcia N, Hurtado E, Simó A, Tomàs M, Lanuza MA, Cilleros V, Tomàs J. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development. Front Aging Neurosci 2017; 9:24. [PMID: 28228723 PMCID: PMC5296322 DOI: 10.3389/fnagi.2017.00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 01/21/2023] Open
Abstract
The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M1-, M2- and M4-subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo. Our previous results show that M1, M2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M2 receptor is largely independent of both M1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination.
Collapse
Affiliation(s)
- Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Victor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili Reus, Spain
| |
Collapse
|
138
|
Trailović SM, Marjanović DS, Uzelac TV, Milovanović M, Trailović JN. Two opposite dose-dependent effects of diazinon on the motor activity of the rat ileum. Res Vet Sci 2017; 112:18-25. [PMID: 28107667 DOI: 10.1016/j.rvsc.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 11/25/2022]
Abstract
Acute poisoning with OPs may lead to a range of neurological effects, which cannot be explained by AChE inhibition alone. Several OPs interact directly with cholinergic receptors in mammals, but such data does not exist for invertebrates. The aim of current study was to investigate the direct and indirect effects of diazinon on the contractions of rat ileum and to compare those effects on the nervemuscle preparation of the Ascaris suum. In the presence of increasing concentrations of diazinon (3, 10 and 30nM), EFS-induced ileal contractions were increased significantly. In the same preparation, diazinon 3nM, significantly increased contractions induced by EFS, but did not affect the contractions caused by 5MFI. Contrarily, 1μM of diazinon significantly and reversibly inhibited the EFS-induced ileal contractions. Diazinon exhibited competitive and non-competitive inhibitions of 5MFI induced contractions. The control EC50 of 5MFI was 2.48μM with Rmax=1.88g. In the presence of diazinon, EC50 was 12.45μM, while Rmax was reduced to 0.43g. After washing, the EC50 and Rmax values were again closer to the control level (3.80μM and 1.04g). Diazinon 1μM did not inhibit Ascaris suum contractions caused by ACh, but it increased the Rmax. Diazinon in our study exhibits two opposite effects on the motor activity of the ileum. In low nanomolar concentrations the dominat is its effect on AChE and the stimulation of contractions. Furthermore, in concentrations that approach micromolar values diazinon has a direct inhibitory effect on muscarinic receptors. The direct inhibitory effect of diazinon on A. suum contractions was not found.
Collapse
Affiliation(s)
- Saša M Trailović
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, Bulevar oslobođenja 18, 11000 Beograd, Serbia.
| | - Djordje S Marjanović
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, Bulevar oslobođenja 18, 11000 Beograd, Serbia
| | - Teodora Vidonja Uzelac
- Institute for Biological Research "Siniša Stanković", Department of Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Beograd, Serbia
| | - Mirjana Milovanović
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, Bulevar oslobođenja 18, 11000 Beograd, Serbia
| | - Jelena Nedeljković Trailović
- Faculty of Veterinary Medicine, Department of Nutrition, University of Belgrade, Bulevar oslobođenja 18, 11000 Beograd, Serbia
| |
Collapse
|
139
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
140
|
Soukup O, Winder M, Killi UK, Wsol V, Jun D, Kuca K, Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr Neuropharmacol 2017; 15:637-653. [PMID: 27281175 PMCID: PMC5543679 DOI: 10.2174/1570159x14666160607212615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
Collapse
Affiliation(s)
- Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Michael Winder
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Uday Kumar Killi
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vladimir Wsol
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Czech Republic
| | - Gunnar Tobin
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
141
|
Seemann WK, Wenzel D, Schrage R, Etscheid J, Bödefeld T, Bartol A, Warnken M, Sasse P, Klöckner J, Holzgrabe U, DeAmici M, Schlicker E, Racké K, Kostenis E, Meyer R, Fleischmann BK, Mohr K. Engineered Context-Sensitive Agonism: Tissue-Selective Drug Signaling through a G Protein-Coupled Receptor. J Pharmacol Exp Ther 2016; 360:289-299. [PMID: 28082514 DOI: 10.1124/jpet.116.237149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 11/22/2022] Open
Abstract
Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a postreceptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M2-receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue toward postreceptor pharmacologic selectivity, which even works in target tissues operated by the same subtype of pharmacologic receptor.
Collapse
Affiliation(s)
- Wiebke K Seemann
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Daniela Wenzel
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Justine Etscheid
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Theresa Bödefeld
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Anna Bartol
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Mareille Warnken
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Philipp Sasse
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Jessica Klöckner
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Ulrike Holzgrabe
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Marco DeAmici
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Eberhard Schlicker
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Kurt Racké
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Evi Kostenis
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Rainer Meyer
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Bernd K Fleischmann
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| |
Collapse
|
142
|
Electroacupuncture at ST37 Enhances Jejunal Motility via Excitation of the Parasympathetic System in Rats and Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3840230. [PMID: 27818700 PMCID: PMC5080522 DOI: 10.1155/2016/3840230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022]
Abstract
Background. The roles of the sympathetic and parasympathetic systems in mediating the effect of electroacupuncture (EA) at ST37 on jejunal motility have yet to be demonstrated. Aim. We used rats and mice to investigate the effect and mechanism of action of EA at ST37 on jejunal motility. Methods. Jejunal motility was recorded by a balloon placed in the jejunum and connected to a biological signal collection system through a transducer. The effects of EA (3 mA) at ST37 were evaluated in Sprague-Dawley rats without drugs and with the administration of clenbuterol, propranolol, acetylcholine, and atropine. Further, the efficacy of EA at different intensities (1/2/4/6/8 mA) was measured in wild-type mice and β1β2−/− mice and M2M3−/− mice. Results. In Sprague-Dawley rats, the excitatory effect of EA at ST37 on jejunal motility disappeared in the presence of the muscarinic receptor antagonist atropine. EA at ST37 was less effective in M2M3−/− mice than in wild-type mice. Furthermore, to a certain extent, there existed “intensity-response” relationship between jejunal motility and EA. Conclusions. EA at ST37 can enhance jejunal motility in rats and mice mainly via excitation of the parasympathetic pathway. There is an “intensity-response” relationship between EA and effect on jejunal motility.
Collapse
|
143
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
144
|
Jeon WJ, Dean B, Scarr E, Gibbons A. The Role of Muscarinic Receptors in the Pathophysiology of Mood Disorders: A Potential Novel Treatment? Curr Neuropharmacol 2016; 13:739-49. [PMID: 26630954 PMCID: PMC4759313 DOI: 10.2174/1570159x13666150612230045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The central cholinergic system has been implicated in the pathophysiology of mood disorders. An imbalance in central cholinergic neurotransmitter activity has been proposed to contribute to the manic and depressive episodes typical of these disorders. Neuropharmacological studies into the effects of cholinergic agonists and antagonists on mood state have provided considerable support for this hypothesis. Furthermore, recent clinical studies have shown that the pan-CHRM antagonist, scopolamine, produces rapid-acting antidepressant effects in individuals with either major depressive disorder (MDD) or bipolar disorder (BPD), such as bipolar depression, contrasting the delayed therapeutic response of conventional mood stabilisers and antidepressants. This review presents recent data from neuroimaging, post-mortem and genetic studies supporting the involvement of muscarinic cholinergic receptors (CHRMs), particularly CHRM2, in the pathophysiology of MDD and BPD. Thus, novel drugs that selectively target CHRMs with negligible effects in the peripheral nervous system might produce more rapid and robust clinical improvement in patients with BPD and MDD.
Collapse
Affiliation(s)
| | - Brian Dean
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
145
|
Gao W, Zan Y, Wang ZJJ, Hu XY, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin 2016; 37:1166-77. [PMID: 27498772 DOI: 10.1038/aps.2016.58] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/21/2016] [Indexed: 11/09/2022] Open
Abstract
AIM Severe painful sensory neuropathy often occurs during paclitaxel chemotherapy. Since paclitaxel can activate mast cell and basophils, whereas quercetin, a polyphenolic flavonoid contained in various plants, which can specifically inhibit histamine release as a mast cell stabilizer. In this study we explore whether quercetin could ameliorate paclitaxel-induced neuropathic pain and elucidated the underlying mechanisms. METHODS Quercetin inhibition on histamine release was validated in vitro by detecting histamine release from rat basophilic leukemia (RBL-2H3) cells stimulated with paclitaxel (10 μmol/L). In the in vivo experiments, rats and mice received quercetin (20, 40 mg·kg(-1)·d(-1)) for 40 and 12 d, respectively. Meanwhile, the animals were injected with paclitaxel (2 mg/kg, ip) four times on d 1, 3, 5 and 7. Heat hyperalgesia and mechanical allodynia were evaluated at the different time points. The animals were euthanized and spinal cords and dorsal root ganglions were harvested for analyzing PKCε and TRPV1 expression levels. The plasma histamine levels were assessed in rats on d 31. RESULTS Pretreatment with quercetin (3, 10, 30 μmol/L) dose-dependently inhibited excessive histamine release from paclitaxel-stimulated RBL-2H3 cells in vitro, and quercetin administration significantly suppressed the high plasma histamine levels in paclitaxel-treated rats. Quercetin administration dose-dependently raised the thresholds for heat hyperalgesia and mechanical allodynia in paclitaxel-treated rats and mice. Furthermore, quercetin administration dose-dependently suppressed the increased expression levels of PKCε and TRPV1 in the spinal cords and DRGs of paclitaxel-treated rats and mice. Moreover, quercetin administration may inhibited the translocation of PKCε from the cytoplasm to the membrane in the spinal cord and DRG of paclitaxel-treated rats. CONCLUSION Our results reveal the underlying mechanisms of paclitaxel-induced peripheral neuropathy and demonstrate the therapeutic potential of quercetin for treating this side effect.
Collapse
|
146
|
Characterization of muscarinic receptor binding by the novel radioligand, [(3)H]imidafenacin, in the bladder and other tissues of rats. J Pharmacol Sci 2016; 131:184-9. [PMID: 27430986 DOI: 10.1016/j.jphs.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to directly characterize specific binding sites of tritium ([(3)H])-labeled imidafenacin, a new radioligand for labeling muscarinic receptors, in the bladder and other peripheral or central nervous tissues of rats. Muscarinic receptors in rat tissues were measured by radioligand binding assay using [(3)H]imidafenacin. Specific [(3)H]imidafenacin binding in rat tissues was saturable, reversible, and of high affinity. Estimated dissociation constants (Kd values) were significantly lower in submaxillary gland and prostate and higher in heart than in bladder, indicating lower Kd values in M1 and M3 subtype- than M2 subtype-dominating tissues. Unlabeled imidafenacin and clinically used antimuscarinic agents competed with [(3)H]imidafenacin for binding sites in bladder and other tissues in a concentration-dependent manner, which indicated pharmacological specificity of [(3)H]imidafenacin binding sites. Pretreatment with N-(2-chloroethyl)-4-piperidinyl diphenylacetate (4-DAMP mustard), an irreversible inactivating agent of M3 subtype, significantly decreased the number of [(3)H]imidafenacin binding sites in bladder, submaxillary gland, and colon, but not in heart. [(3)H]imidafenacin labeled muscarinic receptors in M1 and M3 subtype-dominating tissues with higher affinity than [N-methyl-(3)H]scopolamine methyl chloride (NMS). [(3)H]imidafenacin is a useful radioligand to label muscarinic receptors in M1- and M3-dominating tissues with high affinity.
Collapse
|
147
|
Smith DL, Davoren JE, Edgerton JR, Lazzaro JT, Lee CW, Neal S, Zhang L, Grimwood S. Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284. Mol Pharmacol 2016; 90:177-87. [DOI: 10.1124/mol.116.104737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
|
148
|
Stoyek MR, Quinn TA, Croll RP, Smith FM. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. Am J Physiol Heart Circ Physiol 2016; 311:H676-88. [PMID: 27342878 DOI: 10.1152/ajpheart.00330.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons.
Collapse
Affiliation(s)
- Matthew R Stoyek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; and
| |
Collapse
|
149
|
Kreinin A, Miodownik C, Mirkin V, Gaiduk Y, Yankovsky Y, Bersudsky Y, Lerner PP, Bergman J, Lerner V. Double-Blind, Randomized, Placebo-Controlled Trial of Metoclopramide for Hypersalivation Associated With Clozapine. J Clin Psychopharmacol 2016; 36:200-5. [PMID: 27028980 DOI: 10.1097/jcp.0000000000000493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypersalivation is a frequent, disturbing, and uncomfortable adverse effect of clozapine therapy that frequently leads to noncompliance. The aim of this study was to examine the efficacy of metoclopramide (dopamine D2 antagonist, antiemetic medication) as an option for management of hypersalivation associated with clozapine (HAC). A 3-week, double-blind, placebo-controlled trial was conducted in university-based research clinics from January 2012 to May 2014, on 58 inpatients treated with clozapine who were experiencing hypersalivation. The subjects were randomly divided into placebo and metoclopramide groups. The starting dose was 10 mg/d. Participants who did not respond were up-titrated 10 mg/d weekly to a total of 30 mg/d during the third week. The number of placebo capsules was increased accordingly up to 3 capsules per day. Primary outcome was the change from baseline to the end of study in the severity of hypersalivation as measured with the Nocturnal Hypersalivation Rating Scale and the Drooling Severity Scale. Secondary outcomes included Clinical Global Impression of Improvement scale and adverse effect scales. Significant improvement on the Nocturnal Hypersalivation Rating Scale was demonstrated in the metoclopramide group from the end of the second week (P < 0.004), and on the Drooling Severity Scale (P < 0.02) in the third week. Clinical Global Impression-Improvement scale scores revealed major improvement. Twenty subjects (66.7%) treated with metoclopramide reported significant decline or total disappearance of HAC in comparison to 8 patients (28.6%) who received placebo (P = 0.031). No adverse effects to metoclopramide were reported. Metoclopramide was found to be safe and effective for the treatment of HAC.
Collapse
Affiliation(s)
- Anatoly Kreinin
- From the *Mental Health Center Ma'ale Carmel, Bruce Rapaport Faculty of Medicine Technion, Haifa; †Be'er-Sheva Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva; and ‡Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ferreira MJ, Zanesco A. Heart rate variability as important approach for assessment autonomic modulation. MOTRIZ: REVISTA DE EDUCACAO FISICA 2016. [DOI: 10.1590/s1980-65742016000200001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Angelina Zanesco
- Universidade Estadual Paulista "Julio de Mesquita Filho", Brazil
| |
Collapse
|