101
|
Abstract
Obsessive-compulsive disorder (OCD) has a worldwide prevalence of 2%-3%. Characterized by the presence of either one or two core symptoms-obsessions and compulsions-it generally runs a chronic course and may cause serious functional impairment. Though previously thought to be of psychogenic origin, the pathophysiology of OCD is now understood to be more complex. A multitude of environmental factors have been shown to contribute to the development of OCD, including infection, neonatal complications, childhood trauma, occurrence of stressful events, and brain injury. It has also been proposed that genetic vulnerability may play a role in OCD pathology, although candidate genes have yet to be identified. Likewise, although it is widely accepted that stress plays a role in OCD pathophysiology, the mechanisms remain unclear. Observations from the clinics indicate that stress may serve as both a triggering and aggravating factor, meaning it can prompt symptoms to appear while also contributing to their exacerbation. Additionally, dysfunction of the hypothalamic-pituitary-adrenal axis and impaired stress response have been identified in OCD patients. In this review, we analyze the role of stress in the pathophysiology of OCD, complemented by relevant findings from recent animal studies.
Collapse
|
102
|
Penninck L, Ibrahim EC, Artiges E, Gorgievski V, Desrivières S, Farley S, Filippi I, de Macedo CEA, Belzeaux R, Banaschewski T, Bokde ALW, Quinlan EB, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Fröhner JH, Smolka MN, Walter H, Whelan R, Grenier J, Schumann G, Paillère Martinot ML, Tzavara ET, Martinot JL. Immune-Related Genetic Overlap Between Regional Gray Matter Reductions and Psychiatric Symptoms in Adolescents, and Gene-Set Validation in a Translational Model. Front Syst Neurosci 2021; 15:725413. [PMID: 34658802 PMCID: PMC8514661 DOI: 10.3389/fnsys.2021.725413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Adolescence is a period of vulnerability for the maturation of gray matter (GM) and also for the onset of psychiatric disorders such as major depressive disorder (MDD), bipolar disorder and schizophrenia. Chronic neuroinflammation is considered to play a role in the etiology of these illnesses. However, the involvement of neuroinflammation in the observed link between regional GM volume reductions and psychiatric symptoms is not established yet. Here, we investigated a possible common immune-related genetic link between these two phenomena in european adolescents recruited from the community. Hippocampal and medial prefrontal cortex (mPFC) were defined a priori as regions of interest (ROIs). Their GM volumes were extracted in 1,563 14-year-olds from the IMAGEN database. We found a set of 26 SNPs that correlated with the hippocampal volumes and 29 with the mPFC volumes at age 14. We formed two ROI-Related Immune-gene scores (RRI) with the inflammation SNPs that correlated to hippocampal GM volume and to mPFC GM volume. The predictive ability of both RRIs with regards to the presence of psychiatric symptoms at age 18 was investigated by correlating the RRIs with psychometric questionnaires obtained at age 18. The RRIs (but not control scores constructed with random SNPs) correlated with the presence of depressive symptoms, positive psychotic symptoms, and externalizing symptoms in later adolescence. In addition, the effect of childhood maltreatment, one of the major environmental risk factors for depression and other mental disorders, interacted with the RRI effect. We next sought to validate this finding by investigating our set of inflammatory genes in a translational animal model of early life adversity. Mice were subjected to a protocol of maternal separation at an early post-natal age. We evaluated depressive behaviors in separated and non-separated mice at adolescence and their correlations with the concomitant expression of our genes in whole blood samples. We show that in mice, early life adversity affected the expression of our set of genes in peripheral blood, and that levels of expression correlated with symptoms of negative affect in adolescence. Overall, our translational findings in adolescent mice and humans provide a novel validated gene-set of immune-related genes for further research in the early stages of mood disorders.
Collapse
Affiliation(s)
- Lukas Penninck
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - El Chérif Ibrahim
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- EPS Barthelemy Durand, Etampes, France
| | | | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
| | | | - Irina Filippi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Raoul Belzeaux
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- AP-HM, Hôpital Sainte Marguerite, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Department of Psychiatry and Psychology, University of Vermont, Burlington, VT, United States
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, United Kingdom
- PONS Research Group, Department of Psychiatry and Psychotherapy, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eleni T. Tzavara
- University of Paris, CNRS, INCC, Paris, France
- AP-HM, Hôpital Sainte Marguerite, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
- Fondation Fondamental, Créteil, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | |
Collapse
|
103
|
Alshanbayeva A, Tanwar DK, Roszkowski M, Manuella F, Mansuy IM. Early life stress affects the miRNA cargo of epididymal extracellular vesicles in mouse†. Biol Reprod 2021; 105:593-602. [PMID: 34426825 DOI: 10.1093/biolre/ioab156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles (EVs) released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal EVs using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal EVs, particularly miRNAs, is altered in adult males exposed to postnatal stress. In some cases, these miRNA changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.
Collapse
Affiliation(s)
- Anar Alshanbayeva
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Deepak K Tanwar
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Martin Roszkowski
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich, Zurich, Switzerland.,Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland
| |
Collapse
|
104
|
Gawliński D, Gawlińska K, Smaga I. Maternal High-Fat Diet Modulates Cnr1 Gene Expression in Male Rat Offspring. Nutrients 2021; 13:nu13082885. [PMID: 34445045 PMCID: PMC8402185 DOI: 10.3390/nu13082885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype.
Collapse
|
105
|
Gapp K, Parada GE, Gross F, Corcoba A, Kaur J, Grau E, Hemberg M, Bohacek J, Miska EA. Single paternal dexamethasone challenge programs offspring metabolism and reveals multiple candidates in RNA-mediated inheritance. iScience 2021; 24:102870. [PMID: 34386731 PMCID: PMC8346661 DOI: 10.1016/j.isci.2021.102870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023] Open
Abstract
Single traumatic events that elicit an exaggerated stress response can lead to the development of neuropsychiatric conditions. Rodent studies suggested germline RNA as a mediator of effects of chronic environmental exposures to the progeny. The effects of an acute paternal stress exposure on the germline and their potential consequences on offspring remain to be seen. We find that acute administration of an agonist for the stress-sensitive Glucocorticoid receptor, using the common corticosteroid dexamethasone, affects the RNA payload of mature sperm as soon as 3 hr after exposure. It further impacts early embryonic transcriptional trajectories, as determined by single-embryo sequencing, and metabolism in the offspring. We show persistent regulation of tRNA fragments in sperm and descendant 2-cell embryos, suggesting transmission from sperm to embryo. Lastly, we unravel environmentally induced alterations in sperm circRNAs and their targets in the early embryo, highlighting this class as an additional candidate in RNA-mediated inheritance of disease risk.
Collapse
Affiliation(s)
- Katharina Gapp
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, 8057, Switzerland
| | - Guillermo E. Parada
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Fridolin Gross
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
| | | | - Jasmine Kaur
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
| | - Evelyn Grau
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medicine, CITIID, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Hemberg
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, 8057, Switzerland
| | - Eric A. Miska
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
106
|
Lux V, Non AL, Pexman PM, Stadler W, Weber LAE, Krüger M. A Developmental Framework for Embodiment Research: The Next Step Toward Integrating Concepts and Methods. Front Syst Neurosci 2021; 15:672740. [PMID: 34393730 PMCID: PMC8360894 DOI: 10.3389/fnsys.2021.672740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Embodiment research is at a turning point. There is an increasing amount of data and studies investigating embodiment phenomena and their role in mental processing and functions from across a wide range of disciplines and theoretical schools within the life sciences. However, the integration of behavioral data with data from different biological levels is challenging for the involved research fields such as movement psychology, social and developmental neuroscience, computational psychosomatics, social and behavioral epigenetics, human-centered robotics, and many more. This highlights the need for an interdisciplinary framework of embodiment research. In addition, there is a growing need for a cross-disciplinary consensus on level-specific criteria of embodiment. We propose that a developmental perspective on embodiment is able to provide a framework for overcoming such pressing issues, providing analytical tools to link timescales and levels of embodiment specific to the function under study, uncovering the underlying developmental processes, clarifying level-specific embodiment criteria, and providing a matrix and platform to bridge disciplinary boundaries among the involved research fields.
Collapse
Affiliation(s)
- Vanessa Lux
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA, United States
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Waltraud Stadler
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lilian A E Weber
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Warneford Hospital, Oxford, United Kingdom.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Krüger
- Institute of Sports Science, Faculty of Humanities, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
107
|
Effects of early life adversity on maternal effort and glucocorticoids in wild olive baboons. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03056-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
108
|
Cunningham AM, Walker DM, Ramakrishnan A, Doyle MA, Bagot RC, Cates HM, Peña CJ, Issler O, Lardner CK, Browne C, Russo SJ, Shen L, Nestler EJ. Sperm Transcriptional State Associated with Paternal Transmission of Stress Phenotypes. J Neurosci 2021; 41:6202-6216. [PMID: 34099514 PMCID: PMC8287983 DOI: 10.1523/jneurosci.3192-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Paternal stress can induce long-lasting changes in germ cells potentially propagating heritable changes across generations. To date, no studies have investigated differences in transmission patterns between stress-resilient and stress-susceptible mice. We tested the hypothesis that transcriptional alterations in sperm during chronic social defeat stress (CSDS) transmit increased susceptibility to stress phenotypes to the next generation. We demonstrate differences in offspring from stressed fathers that depend on paternal category (resilient vs susceptible) and offspring sex. Importantly, artificial insemination (AI) reveals that sperm mediates some of the behavioral phenotypes seen in offspring. Using RNA-sequencing (RNA-seq), we report substantial and distinct changes in the transcriptomic profiles of sperm following CSDS in susceptible versus resilient fathers, with alterations in long noncoding RNAs (lncRNAs) predominating especially in susceptibility. Correlation analysis revealed that these alterations were accompanied by a loss of regulation of protein-coding genes by lncRNAs in sperm of susceptible males. We also identify several co-expression gene modules that are enriched in differentially expressed genes (DEGs) in sperm from either resilient or susceptible fathers. Taken together, these studies advance our understanding of intergenerational epigenetic transmission of behavioral experience.SIGNIFICANCE STATEMENT This manuscript contributes to the complex factors that influence the paternal transmission of stress phenotypes. By leveraging the segregation of males exposed to chronic social defeat stress (CSDS) into either resilient or susceptible categories we were able to identify the phenotypic differences in the paternal transmission of stress phenotypes across generations between the two lineages. Importantly, this work also alludes to the significance of both long noncoding RNAs (lncRNAs) and protein coding genes (PCGs) mediating the paternal transmission of stress. The knowledge gained from these data are of particular interest in understanding the risk for the development of psychiatric disorders such as anxiety and depression.
Collapse
Affiliation(s)
- Ashley M Cunningham
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Deena M Walker
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Aarthi Ramakrishnan
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Marie A Doyle
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Rosemary C Bagot
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Hannah M Cates
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Catherine J Peña
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Orna Issler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Casey K Lardner
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Caleb Browne
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Li Shen
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| |
Collapse
|
109
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
110
|
McLeod DV, Wild G, Úbeda F. Epigenetic memories and the evolution of infectious diseases. Nat Commun 2021; 12:4273. [PMID: 34257309 PMCID: PMC8277771 DOI: 10.1038/s41467-021-24580-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Genes with identical DNA sequence may show differential expression because of epigenetic marks. Where epigenetic marks respond to past conditions, they represent a form of "memory". Despite their medical relevance, the impact of memories on the evolution of infectious diseases has rarely been considered. Here we explore the evolution of virulence in pathogens that carry memories of the sex of their previous host. We show that this form of memory provides information about the sex of present and future hosts when the sexes differ in their pathogen's transmission pattern. Memories of past hosts enable the evolution of greater virulence in infections originating from one sex and infections transmitted across sexes. Thus, our results account for patterns of virulence that have, to date, defied medical explanation. In particular, it has been observed that girls infected by boys (or boys infected by girls) are more likely to die from measles, chickenpox and polio than girls infected by girls (or boys infected by boys). We also evaluate epigenetic therapies that tamper with the memories of infecting pathogens. More broadly, our findings imply that pathogens can be selected to carry memories of past environments other than sex. This identifies new directions in personalised medicine.
Collapse
Affiliation(s)
- David V McLeod
- Centre D'Ecologie Fonctionnelle & Evolutive, CNRS, Montpellier, France
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Geoff Wild
- Department of Applied Mathematics, The University of Western Ontario, London, ON, Canada
| | - Francisco Úbeda
- Department of Biology, Royal Holloway University of London, Egham, Surrey, UK.
| |
Collapse
|
111
|
Duffy KA, Bale TL, Epperson CN. Germ Cell Drivers: Transmission of Preconception Stress Across Generations. Front Hum Neurosci 2021; 15:642762. [PMID: 34322003 PMCID: PMC8311293 DOI: 10.3389/fnhum.2021.642762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to stress can accelerate maturation and hasten reproduction. Although potentially adaptive, the trade-off is higher risk for morbidity and mortality. In humans, the intergenerational effects of stress have been demonstrated, but the precise mechanisms are unknown. Strikingly, even if parental stress occurs prior to conception, as adults, their offspring show worse mental and physical health. Emerging evidence primarily from preclinical models suggests that epigenetic programming may encode preconception stress exposures in germ cells, potentially impacting the phenotype of the offspring. In this narrative review, we evaluate the strength of the evidence for this mechanism across animals and humans in both males and females. The strongest evidence comes from studies of male mice, in which paternal preconception stress is associated with a host of phenotypic changes in the offspring and stress-induced changes in the small non-coding RNA content in sperm have been implicated. Two recent studies in men provide evidence that some small non-coding RNAs in sperm are responsive to past and current stress, including some of the same ones identified in mice. Although preliminary evidence suggests that findings from mice may map onto men, the next steps will be (1) considering whether stress type, severity, duration, and developmental timing affect germ cell epigenetic markers, (2) determining whether germ cell epigenetic markers contribute to disease risk in the offspring of stress-exposed parents, and (3) overcoming methodological challenges in order to extend this research to females.
Collapse
Affiliation(s)
- Korrina A. Duffy
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Tracy L. Bale
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C. Neill Epperson
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, United States
- Helen and Arthur E. Johnson Depression Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
112
|
Xiao J, Gao Y, Yu Y, Toft G, Zhang Y, Luo J, Xia Y, Chawarska K, Olsen J, Li J, Liew Z. Associations of parental birth characteristics with autism spectrum disorder (ASD) risk in their offspring: a population-based multigenerational cohort study in Denmark. Int J Epidemiol 2021; 50:485-495. [PMID: 33411909 DOI: 10.1093/ije/dyaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fetal exposure risk factors are associated with increased autism spectrum disorder (ASD) risk. New hypotheses regarding multigenerational risk for ASD have been proposed, but epidemiological evidence is largely lacking. We evaluated whether parental birth characteristics, including preterm birth and low birthweight, were associated with ASD risk in offspring. METHODS We conducted a nationwide register-based cohort study that included 230 174 mother-child and 157 926 father-child pairs in Denmark. Logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for offspring ASD according to parental preterm (<37 weeks) and low birthweight (<2500 g) status, with or without adjustment for certain grandmaternal sociodemographic factors. Mediation analyses were performed for selected parental and offspring health-related factors. RESULTS Offspring of mothers or fathers with adverse birth characteristics had about 31-43% higher risk for ASD (maternal preterm birth, OR = 1.31, 95% CI= 1.12, 1.55; maternal low birthweight, OR = 1.35, 95% CI: 1.17,1.57; paternal preterm birth, OR = 1.43, 95% CI = 1.18, 1.73; paternal low birthweight, OR = 1.38, 95% CI= 1.13, 1.70). Parents born very preterm (<32 weeks) marked a nearly 2-fold increase in ASD risk in their children. These associations were slightly attenuated upon adjustment for grandmaternal sociodemographic factors. Mediation analyses suggested that parental social-mental and offspring perinatal factors might explain a small magnitude of the total effect observed, especially for maternal birth characteristic associations. CONCLUSIONS Offspring of parents born with adverse characteristics had an elevated risk for ASD. Transmission of ASD risk through maternal and paternal factors should be considered in future research on ASD aetiology.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Yu Gao
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA.,Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfu Yu
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Yuntian Xia
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.,Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
113
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane. Biol Reprod 2021; 105:735-746. [PMID: 34192761 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
114
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
115
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
116
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
117
|
Burstein O, Simon N, Simchon-Tenenbaum Y, Rehavi M, Franko M, Shamir A, Doron R. Moderation of the transgenerational transference of antenatal stress-induced anxiety. Transl Psychiatry 2021; 11:268. [PMID: 33947833 PMCID: PMC8094124 DOI: 10.1038/s41398-021-01383-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Maternal stress has debilitating implications for both mother and child, including increased risk for anxiety. The current COVID-19 pandemic escalates these phenomena, thus, urging the need to further explore and validate feasible therapeutic options. Unlike the protracted nature of clinical studies, animal models could offer swift evidence. Prominent candidates for treatment are selective serotonin reuptake inhibitors (SSRIs) to the mother, that putatively accommodate maternal functioning, and, thereby, also protect the child. However, SSRIs might have deleterious effects. It is important to assess whether SSRIs and other pharmacotherapies can moderate the transference of anxiety by soothing maternal anxiety and to examine the extent of offspring's exposure to the drugs via lactation. To our knowledge, the possibility that antenatal stress exacerbates lactation-driven exposure to SSRIs has not been tested yet. Thirty ICR-outbred female mice were exposed to stress during gestation and subsequently administered with either the SSRI, escitalopram, or the novel herbal candidate, shan-zha, during lactation. Upon weaning, both dams' and pups' anxiety-like behavior and serum escitalopram levels were assessed. The major findings of the current study show that both agents moderated the antenatal stress-induced transgenerational transference of anxiety by ameliorating dams' anxiety. Interestingly though, pups' exposure to escitalopram via lactation was exacerbated by antenatal stress. The latter finding provides a significant insight into the mechanism of lactation-driven exposure to xenobiotics and calls for a further consideration vis-à-vis the administration of other drugs during breastfeeding.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Noam Simon
- School of Behavioral Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv-Yaffo, Israel
| | - Yaarit Simchon-Tenenbaum
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Motty Franko
- Department of Psychology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel
| | - Alon Shamir
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Mazor Mental Health Center, Akko, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
118
|
Intergenerational Trauma and Its Relationship to Mental Health Care: A Qualitative Inquiry. Community Ment Health J 2021; 57:631-643. [PMID: 32804293 DOI: 10.1007/s10597-020-00698-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Intergenerational trauma is a discrete form of trauma which occurs when traumatic effects are passed across generations without exposure to the original event. This qualitative study aimed to explore how psychiatrists understand intergenerational trauma in respect to their practice, for the purposes of identifying interventions for addressing intergenerational trauma in public mental health services. Findings revealed that psychiatrists observe intergenerational trauma frequently in their roles and try to opportunistically promote awareness of trauma with adults, and refer families to external services for supportive interventions. They feel powerless when faced with directly intervening with intergenerational trauma and required restructuring of their roles to adequately address it in public settings. Findings have implications for training, advocacy and research on the relationship between trauma and mental illness. Alongside this, there is an indicated need for examination of how systems can ensure access to appropriate services once organisations become trauma-informed.
Collapse
|
119
|
Morris AS, Hays-Grudo J, Kerr KL, Beasley LO. The heart of the matter: Developing the whole child through community resources and caregiver relationships. Dev Psychopathol 2021; 33:533-544. [PMID: 33955346 PMCID: PMC8108681 DOI: 10.1017/s0954579420001595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous developmental scholars have been influenced by the research, policies, and thinking of the late Edward Zigler, who was instrumental in founding Head Start and Early Head Start. In line with the research and advocacy work of Zigler, we discuss two models that support the development of the whole child. We begin by reviewing how adverse and protective experiences "get under the skin" and affect developmental trajectories and risk and resilience processes. We then present research and examples of how experiences affect the whole child, the heart and the head (social, emotional, cognitive, and physical development), and consider development within context and across domains. We discuss examples of interventions that strengthen nurturing relationships as the mechanism of change. We offer a public health perspective on promoting optimal development through nurturing relationships and access to resources during early childhood. We end with a discussion of the myth that our current society is child-focused and argue for radical, essential change to make promoting optimal development for all children the cornerstone of our society.
Collapse
|
120
|
Lamadé EK, Hendlmeier F, Wudy SA, Blum WF, Witt SH, Rietschel M, Coenen M, Gilles M, Deuschle M. Childhood trauma and insulin-like growth factors in amniotic fluid: An exploratory analysis of 79 women. Psychoneuroendocrinology 2021; 127:105180. [PMID: 33690109 DOI: 10.1016/j.psyneuen.2021.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Perinatal stress has adverse effects on fetal outcome, yet the effect of early maternal trauma on fetal outcome has scarcely been studied. We investigated effects of maternal childhood trauma and current environment on important regulators of prenatal growth, fetal insulin-like growth factor (IGF)-1 and IGF-2 in amniotic fluid and assessed the impact of IGFs on newborn anthropometrics. METHODS 79 pregnant women in their second trimester who underwent amniocentesis (15.9 ± 0.9 weeks of gestational age) and their newborns at birth were analyzed. Maternal childhood trauma was assessed using the childhood trauma questionnaire (CTQ) and current environment was operationalized by assessing maternal psychosocial, physical health and endocrine measurements in amniotic fluid. RESULTS In this exploratory analysis of 79 pregnant women, maternal childhood trauma, defined as reporting at least low scores on any of the CTQ subscales, negatively correlated with fetal IGF-1 (Mln = 3.48 vs. 2.98; p = 0.012) and IGF-2 (Mdnln = 4.99 vs. 4.70; p = 0.002). Trauma severity, defined as the overall trauma score, negatively correlated with fetal IGF-2 (r = -0.24; p = 0.037). From trauma subscales, maternal sexual abuse correlated with fetal IGF-1 (r = -0.32; p = 0.006) and IGF-2 (r = -0.39; p = 0.001). Maternal BMI negatively correlated with fetal IGF-1 (r = -0.26; p = 0.023) and IGF-2 (r = -0.29; p = 0.011). Newborn anthropometrics were operationalized by length, weight, sex, gestational age, length/gestational age and weight/gestational age at birth. Fetal weight at birth associated with a trend with fetal IGF-1 when controlling for BMI. Maternal hypothalamus-pituitary-adrenal axis activity and maternal exercise did not contribute significantly to predicting fetal IGFs. Maternal childhood trauma (β = -0.27; p = 0.011) and BMI (β = -0.24; p = 0.026) remained significantly associated with fetal IGF-1. Maternal childhood trauma (β = -0.32; p = 0.003), maternal BMI (β = -0.30; p = 0.005) and maternal sexual abuse (β = -0.22; p = 0.049) remained significantly associated with fetal IGF-2 and with a trend with fetal IGF-1 (β = -0.21; p = 0.076) when excluding women with gestational diabetes. CONCLUSION Maternal childhood trauma and BMI associate negatively with fetal IGF-1 and IGF-2 in amniotic fluid. Controlling for maternal BMI, fetal weight at birth remains associated with a trend with fetal IGF-1. The presented data suggests that childhood trauma can affect endocrine measurements of the developing next generation, providing a mechanism by which adverse maternal life events are transmitted to the next generation.
Collapse
Affiliation(s)
- Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Ferdinand Hendlmeier
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michaela Coenen
- Institute for Medical Information Processing, Biometry and Epidemiology, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany; Pettenkofer School of Public Health, Munich, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
121
|
Lewis CR, Breitenstein RS, Henderson A, Sowards HA, Piras IS, Huentelman MJ, Doane LD, Lemery-Chalfant K. Harsh Parenting Predicts Novel HPA Receptor Gene Methylation and NR3C1 Methylation Predicts Cortisol Daily Slope in Middle Childhood. Cell Mol Neurobiol 2021; 41:783-793. [PMID: 32472381 PMCID: PMC11448560 DOI: 10.1007/s10571-020-00885-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/23/2020] [Indexed: 01/16/2023]
Abstract
Adverse experiences in childhood are associated with altered hypothalamic-pituitary-adrenal (HPA) axis function and negative health outcomes throughout life. It is now commonly accepted that abuse and neglect can alter epigenetic regulation of HPA genes. Accumulated evidence suggests harsh parenting practices such as spanking are also strong predictors of negative health outcomes. We predicted harsh parenting at 2.5 years old would predict HPA gene DNA methylation similarly to abuse and neglect, and cortisol output at 8.5 years old. Saliva samples were collected three times a day across 3 days to estimate cortisol diurnal slopes. Methylation was quantified using the Illumina Infinium MethylationEPIC array BeadChip (850 K) with DNA collected from buccal cells. We used principal components analysis to compute a summary statistic for CpG sites across candidate genes. The first and second components were used as outcome variables in mixed linear regression analyses with harsh parenting as a predictor variable. We found harsh parenting significantly predicted methylation of several HPA axis genes, including novel gene associations with AVPRB1, CRHR1, CRHR2, and MC2R (FDR corrected p < 0.05). Further, we found NR3C1 methylation predicted a steeper diurnal cortisol slope. Our results extend the current literature by demonstrating harsh parenting may influence DNA methylation similarly to more extreme early life experiences such as abuse and neglect. Further, we show NR3C1 methylation is associated with diurnal HPA function. Elucidating the molecular consequences of harsh parenting on health can inform best parenting practices and provide potential treatment targets for common complex disorders.
Collapse
Affiliation(s)
- Candace R Lewis
- Neurogenomics, Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA.
- Psychology, Arizona State University, Tempe, AZ, USA.
| | | | - Adrienne Henderson
- Neurogenomics, Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | | | - Ignazio S Piras
- Neurogenomics, Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Matthew J Huentelman
- Neurogenomics, Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Leah D Doane
- Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
122
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
123
|
A next-generation sequencing study on mechanisms by which restraint and social instability stresses of male mice alter offspring anxiety-like behavior. Sci Rep 2021; 11:7952. [PMID: 33846458 PMCID: PMC8042048 DOI: 10.1038/s41598-021-87060-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Pathophysiological mechanisms for depression/anxiety are largely unknown. Evidence for transgenerational transmission of acquired epigenetic marks remains limited. We bred unstressed (US) female mice with adolescently restraint-stressed (RS), social instability-stressed (SI) or US males to produce RS, SI and control F1 offspring, respectively. Compared to controls, while paternal RS decreased anxiety-like behavior (ALB) in both female and male offspring, paternal SI increased ALB only in female offspring. Next-generation sequencing and bioinformatics using RS and SI female offspring identified 5 candidate anxiety-transmitting (CAT) genes; each showed a consistent pattern of DNA methylation from F0 spermatozoa through F1 blastocysts to fetal and adult hippocampi. Further analyses validated 4 CAT genes, demonstrated that paternal SI caused ALB differences between male and female offspring through modifying the CAT genes, and indicated a strong correlation between inflammation and ALB pathogenesis and an important function for intronic DNA methylation in regulating ALB-related genes. In conclusion, this study identified important CAT genes and suggested the possibility that stresses on males might alter offspring's ALB by modifying sperm DNA methylation.
Collapse
|
124
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
125
|
Hossin MZ, Falkstedt D, Allebeck P, Mishra G, Koupil I. Early life programming of adult ischemic heart disease within and across generations: The role of the socioeconomic context. Soc Sci Med 2021; 275:113811. [PMID: 33713928 DOI: 10.1016/j.socscimed.2021.113811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The developmental origins of ischemic heart disease (IHD) have been widely documented but little is known about their persistence across more than one generation. This study aimed to investigate whether the effects of early life disadvantages on adult IHD have changed between generations and are mediated by adult socioeconomic circumstances, and further explore the transgenerational effects of grandparental and parental exposures to disadvantaged circumstances on adult offspring's IHD. METHODS We used register-based data from the Uppsala Multigenerational Study, Sweden. The study populations were the parents born 1915-1929 and their offspring born 1932-1972 with available obstetric data. The offspring were further linked to grandparents who had their socioeconomic and demographic data recorded. The outcome was incident IHD assessed at ages 32-75 during a follow-up from January 1, 1964 till December 31, 2008. The exposures included birthweight standardized-for-gestational age, ponderal index, gestational length, and parental socioeconomic position (SEP). Education and income were analyzed as mediators. Potential transgenerational associations were explored by linking offspring IHD to parents' standardized birthweight and gestational length, grandparental SEP, and to grandmothers' age, parity, and marital status at parental birth. All associations were examined in Cox proportional hazard regression models. RESULTS Lower standardized birthweight and lower parental SEP were found to be associated with higher IHD rates in both generations, with no evidence of effect modification by generation. Education and income did not mediate the association between standardized birthweight and IHD. Disadvantaged grandparental SEP, younger and older childbearing ages of grandmothers, and paternal preterm birth affected offspring's IHD independent of parental education, income, or IHD history. CONCLUSIONS The findings point to similar magnitudes of IHD inequalities by early life disadvantages across two historical periods and the existence of transgenerational effects on IHD. Epigenetic dysregulation involving the germline is a plausible candidate mechanism underlying the transgenerational associations that warrant further research.
Collapse
Affiliation(s)
| | - Daniel Falkstedt
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Peter Allebeck
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.
| | - Gita Mishra
- School of Public Health, The University of Queensland, Herston, Australia.
| | - Ilona Koupil
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden; Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
126
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
127
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
128
|
Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry 2021; 11:113. [PMID: 33547270 PMCID: PMC7865076 DOI: 10.1038/s41398-021-01220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.
Collapse
Affiliation(s)
- Hiba Zaidan
- grid.18098.380000 0004 1937 0562School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Dalia Galiani
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.
| |
Collapse
|
129
|
Mullola S, Brooks-Gunn J, Elovainio M, Hakulinen C, Schneper LM, Notterman DA. Early childhood psychosocial family risks and cumulative dopaminergic sensitizing score: Links to behavior problems in U.S. 9-year-olds. J Affect Disord 2021; 280:432-441. [PMID: 33227672 PMCID: PMC7839973 DOI: 10.1016/j.jad.2020.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/24/2020] [Accepted: 11/07/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND We examined, (a) whether in early childhood exposure to risky family environment in different domains (socioeconomic, mental, parenting practices, health behavior, and child-related risks) and accumulatively across various domains (cumulative risk) is associated with child's problem behavior at age 9, and (b) whether the association is more pronounced in children carrying cumulative dopaminergic sensitizing genotype or living in low-income families. METHODS Participants were 2,860 9-year old children (48% females; 48% Black) and their mothers from the 'Fragile Families and Child Wellbeing Study', a probability birth cohort from large U.S. cities. Mothers responded to questions on child's problem behavior (CBCL). Children responded to questions about their vandalism and substance use. RESULTS Cumulative family risk was associated with higher internalizing and externalizing behavior and higher vandalism and substance use. All domain-specific risk clusters were associated with higher internalizing behavior and, with the exception of child-related risk, with higher externalizing behavior. Mental health risks, risky parenting practices, and risky health behavior were associated with higher vandalism. Risky parenting practices were associated with higher substance use. The associations were robust to adjustment for cumulative dopaminergic sensitizing genotype. No G x E interactions with dopaminergic genotype and family SES were observed. LIMITATIONS Sample size was relatively small for genetic analysis and polygenic risk scores were not available. CONCLUSIONS Exposure to cumulative psychosocial family risks from early childhood is associated with early indicators of problem behavior in adolescence.
Collapse
Affiliation(s)
- Sari Mullola
- Columbia University, Teachers College, National Center for Children and Families (NCCF), Thorndike Hall 525 West 120th Street, Box 39 New York, NY 10027, USA; Tampere University, Faculty of Education and Culture, Main Campus Virta, Åkerlundinkatu 5, P.O. Box 700, FI-33014 Tampere University, Finland; University of Helsinki, Faculty of Educational Sciences, Siltavuorenpenger 5A, P.O. Box 9, 00014 University of Helsinki, Finland.
| | - Jeanne Brooks-Gunn
- Columbia University, Teachers College, National Center for Children and Families (NCCF), Thorndike Hall 525 West 120th Street, Box 39 New York, NY 10027, USA; Columbia University, The College of Physicians and Surgeons, New York, NY 10027, USA.
| | - Marko Elovainio
- University of Helsinki, Medical Faculty, Department of Psychology and Logopedics, Helsinki, Finland; Institute for Health and Welfare, P.O. Box 30, 00370 Helsinki, Finland.
| | - Christian Hakulinen
- University of Helsinki, Medical Faculty, Department of Psychology and Logopedics, Helsinki, Finland.
| | - Lisa M. Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
130
|
Hays-Grudo J, Morris AS, Beasley L, Ciciolla L, Shreffler K, Croff J. Integrating and synthesizing adversity and resilience knowledge and action: The ICARE model. AMERICAN PSYCHOLOGIST 2021; 76:203-215. [PMID: 33734789 PMCID: PMC8188569 DOI: 10.1037/amp0000766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article proposes a model for understanding the effects of adverse childhood experiences (ACEs) as dynamic and interrelated biobehavioral adaptations to early life stress that have predictable consequences on development and health. Drawing upon research from multiple theoretical and methodological approaches, the intergenerational and cumulative adverse and resilient experiences (ICARE) model posits that the negative consequences of ACEs result from biological and behavioral adaptations to adversity that alter cognitive, social, and emotional development. These adaptations often have negative consequences in adulthood and may be transmitted to subsequent generations through epigenetic changes as well as behavioral and environmental pathways. The ICARE model also incorporates decades of resilience research documenting the power of protective relationships and contextual resources in mitigating the effects of ACEs. Examples of interventions are provided that illustrate the importance of targeting the dysregulated biobehavioral adaptations to ACEs and developmental impairments as well as resulting problem behaviors and health conditions. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Jennifer Hays-Grudo
- Department of Psychiatry and Behavioral Science, OSU Center for Health Sciences
| | | | - Lana Beasley
- Department of Human Development and Family Science, Oklahoma State University
| | | | - Karina Shreffler
- Department of Human Development and Family Science, Oklahoma State University, Tulsa
| | - Julie Croff
- Department of Rural Health, OSU Center for Health Sciences
| |
Collapse
|
131
|
Mariani N, Borsini A, Cecil CAM, Felix JF, Sebert S, Cattaneo A, Walton E, Milaneschi Y, Cochrane G, Amid C, Rajan J, Giacobbe J, Sanz Y, Agustí A, Sorg T, Herault Y, Miettunen J, Parmar P, Cattane N, Jaddoe V, Lötjönen J, Buisan C, González Ballester MA, Piella G, Gelpi JL, Lamers F, Penninx BWJH, Tiemeier H, von Tottleben M, Thiel R, Heil KF, Järvelin MR, Pariante C, Mansuy IM, Lekadir K. Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity: The EarlyCause project. PLoS One 2021; 16:e0245475. [PMID: 33476328 PMCID: PMC7819604 DOI: 10.1371/journal.pone.0245475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases. However, possible causative mechanisms linking early life stress (ELS) with psycho-cardio-metabolic (PCM) multi-morbidity are not well understood. This prevents a full understanding of causal pathways towards the shared risk of these diseases and the development of coordinated preventive and therapeutic interventions. Methods and analysis This paper describes the study protocol for EarlyCause, a large-scale and inter-disciplinary research project funded by the European Union’s Horizon 2020 research and innovation programme. The project takes advantage of human longitudinal birth cohort data, animal studies and cellular models to test the hypothesis of shared mechanisms and molecular pathways by which ELS shapes an individual’s physical and mental health in adulthood. The study will research in detail how ELS converts into biological signals embedded simultaneously or sequentially in the brain, the cardiovascular and metabolic systems. The research will mainly focus on four biological processes including possible alterations of the epigenome, neuroendocrine system, inflammatome, and the gut microbiome. Life-course models will integrate the role of modifying factors as sex, socioeconomics, and lifestyle with the goal to better identify groups at risk as well as inform promising strategies to reverse the possible mechanisms and/or reduce the impact of ELS on multi-morbidity development in high-risk individuals. These strategies will help better manage the impact of multi-morbidity on human health and the associated risk.
Collapse
Affiliation(s)
- Nicole Mariani
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- * E-mail:
| | - Alessandra Borsini
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Charlotte A. M. Cecil
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F. Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sylvain Sebert
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Genomic Medicine, Imperial College London, London, United Kingdom
| | - Annamaria Cattaneo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Biological Psychiatry Laboratory, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije Universiteit & GGZinGeest, Amsterdam Public Health and Amsterdam Neuroscience Research Institutes, Amsterdam, The Netherlands
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jeena Rajan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juliette Giacobbe
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Ana Agustí
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Tania Sorg
- Centre Européen de Recherche en Biologie et Médicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, PHENOMIN-ICS, Université de Strasbourg, CNRS, INSERM, Strasbourg, France
| | - Yann Herault
- Centre Européen de Recherche en Biologie et Médicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, PHENOMIN-ICS, Université de Strasbourg, CNRS, INSERM, Strasbourg, France
| | - Jouko Miettunen
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Priyanka Parmar
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Nadia Cattane
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Biological Psychiatry Laboratory, Brescia, Italy
| | - Vincent Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jyrki Lötjönen
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carme Buisan
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel A. González Ballester
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Gemma Piella
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep L. Gelpi
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Femke Lamers
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Henning Tiemeier
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | | | - Rainer Thiel
- Empirica Communication and Technology Research, Bonn, Germany
| | - Katharina F. Heil
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Marjo-Riitta Järvelin
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Carmine Pariante
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Isabelle M. Mansuy
- Medical Faculty of the University of Zürich and Department of Health Science and Technology of the ETH Zürich, Laboratory of Neuroepigenetics, Brain Research Institute, Zürich Neuroscience Center, Zürich, Switzerland
| | - Karim Lekadir
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
132
|
Li X, Rollo CD. Radiation induces stress and transgenerational impacts in the cricket, Acheta domesticus. Int J Radiat Biol 2021; 98:1098-1105. [PMID: 33428853 DOI: 10.1080/09553002.2021.1872816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Radiation exposure of crickets during their fourth juvenile molt inflicted ionizing radiation damage and altered growth rate, adult size at sexual maturity. High levels of ionizing radiation also impacted the subsequent generation, likely via heritable epigenetic mechanisms. Using radiation as a proxy for external stress, we aim to understand the transgenerational impacts of stress on non-irradiated offspring. METHODS AND MATERIALS We assess the impacts of ionizing radiation on maturation mass and growth rate in F0 male and female house crickets (Acheta domesticus). We also assessed trans-generational impacts of irradiation on growth rate and maturation mass on non-irradiated offspring of irradiated parents compared to non-irradiated controls. RESULTS Early-life exposure to high levels of ionizing radiation-induced lower growth rate and maturation mass compared to controls (p < .0001). Non-irradiated male F1 offspring of irradiated parents demonstrated significantly lower mass at maturation (p = .0012) and significantly faster time of maturation (p < .0001) compared to F1 non-irradiated controls. CONCLUSION Our results show that a single early-life exposure to ionizing radiation can alter male offspring development through accelerated maturation and reduced maturation mass.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Biology, McMaster University, Hamilton, Canada
| | - C D Rollo
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
133
|
Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int J Genomics 2021; 2021:6632719. [PMID: 33532485 PMCID: PMC7837765 DOI: 10.1155/2021/6632719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
The major biological function of the sperm cell is to transmit the paternal genetic and epigenetic information to the embryo as well as the following offspring. Sperm has a unique epigenome. An increasing body of epidemiological study supports that paternal stress induced by environmental exposures and lifestyle can modulate the sperm epigenome (including histone modification, DNA methylation, and noncoding RNA expression), sperm-egg fusion, embryo development, and offspring health. Based on the existing literature, we have summarized the paternal exposure on sperm epigenome along with the representative phenotypes of offspring and the possible mechanism involved.
Collapse
|
134
|
Laricchiuta D, Sciamanna G, Gimenez J, Termine A, Fabrizio C, Caioli S, Balsamo F, Panuccio A, De Bardi M, Saba L, Passarello N, Cutuli D, Mattioni A, Zona C, Orlando V, Petrosini L. Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. Int J Mol Sci 2021; 22:ijms22020810. [PMID: 33467450 PMCID: PMC7830910 DOI: 10.3390/ijms22020810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Correspondence:
| | - Giuseppe Sciamanna
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Juliette Gimenez
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Andrea Termine
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Carlo Fabrizio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Francesca Balsamo
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Anna Panuccio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Marco De Bardi
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Luana Saba
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Noemi Passarello
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Debora Cutuli
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Anna Mattioni
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Valerio Orlando
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| |
Collapse
|
135
|
Kestering-Ferreira E, Tractenberg SG, Lumertz FS, Orso R, Creutzberg KC, Wearick-Silva LE, Viola TW, Grassi-Oliveira R. Long-term Effects of Maternal Separation on Anxiety-Like Behavior and Neuroendocrine Parameters in Adult Balb/c Mice. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:24705470211067181. [PMID: 34993376 PMCID: PMC8725222 DOI: 10.1177/24705470211067181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Introduction: Disruption of maternal care using maternal separation (MS) models has provided significant evidence of the deleterious long-term effects of early life stress. Several preclinical studies investigating MS showed multiple behavioral and biomolecular alterations. However, there is still conflicting results from MS studies, which represents a challenge for reliability and replicability of those findings. Objective: To address that, this study was conducted to investigate whether MS would affect anxiety-like behaviors using a battery of classical tasks, as well as central and peripheral stress-related biomarkers. Methods: Male Balb/c mice were exposed to MS from postnatal day (PND) 2 to 14 for 180-min per day. Two independent cohorts were performed to evaluate both baseline and anxiety-like behavior responses to MS at PND60. We performed composite scores to evaluate MS effects on anxiety and risk assessment phenotypes. Also, we assessed mRNA gene expression in the medial pre-frontal cortex (mPFC) of glucocorticoid and mineralocorticoid receptors (GR and MR) using real-time PCR and peripheral corticosterone levels (CORT) to investigate possible neurobiological correlates to anxiety behaviors. Results: We found increased anxiety-like behavior and decreased risk assessment and exploratory behaviors in MS mice. The animals exposed to MS also presented a decrease in MR mRNA expression and higher levels of CORT compared to controls. Conclusions: Our findings reinforce the body of evidence suggesting that long-term MS induces effects on anxiety and risk assessment phenotypes following the exposure to a standardized MS protocol. Moreover, MS affected the expression of MR mRNA and induced significant changes on CORT response. This data highlights that the reprograming MS effects on HPA axis could be mediate by MR gene expression in mPFC and chronic overactivity of peripheral CORT levels.
Collapse
Affiliation(s)
- Erika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | | | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
- Aarhus University, Denmark
| |
Collapse
|
136
|
P11 deficiency increases stress reactivity along with HPA axis and autonomic hyperresponsiveness. Mol Psychiatry 2021; 26:3253-3265. [PMID: 33005029 PMCID: PMC8505237 DOI: 10.1038/s41380-020-00887-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Patients suffering from mood disorders and anxiety commonly exhibit hypothalamic-pituitary-adrenocortical (HPA) axis and autonomic hyperresponsiveness. A wealth of data using preclinical animal models and human patient samples indicate that p11 deficiency is implicated in depression-like phenotypes. In the present study, we used p11-deficient (p11KO) mice to study potential roles of p11 in stress responsiveness. We measured stress response using behavioral, endocrine, and physiological readouts across early postnatal and adult life. Our data show that p11KO pups respond more strongly to maternal separation than wild-type pups, even though their mothers show no deficits in maternal behavior. Adult p11KO mice display hyperactivity of the HPA axis, which is paralleled by depression- and anxiety-like behaviors. p11 was found to be highly enriched in vasopressinergic cells of the paraventricular nucleus and regulates HPA hyperactivity in a V1B receptor-dependent manner. Moreover, p11KO mice display sympathetic-adrenal-medullary (SAM) axis hyperactivity, with elevated adrenal norepinephrine and epinephrine levels. Using conditional p11KO mice, we demonstrate that this SAM hyperactivity is partially regulated by the loss of p11 in serotonergic neurons of the raphe nuclei. Telemetric electrocardiogram measurements show delayed heart rate recovery in p11KO mice in response to novelty exposure and during expression of fear following auditory trace fear conditioning. Furthermore, p11KO mice have elevated basal heart rate in fear conditioning tests indicating increased autonomic responsiveness. This set of experiments provide strong and versatile evidence that p11 deficiency leads to HPA and SAM axes hyperresponsiveness along with increased stress reactivity.
Collapse
|
137
|
Matheson K, Asokumar A, Anisman H. Resilience: Safety in the Aftermath of Traumatic Stressor Experiences. Front Behav Neurosci 2020; 14:596919. [PMID: 33408619 PMCID: PMC7779406 DOI: 10.3389/fnbeh.2020.596919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The relationship between adverse experiences and the emergence of pathology has often focused on characteristics of the stressor or of the individual (stressor appraisals, coping strategies). These features are thought to influence multiple biological processes that favor the development of mental and physical illnesses. Less often has attention focused on the aftermath of traumatic experiences, and the importance of safety and reassurance that is necessary for longer-term well-being. In some cases (e.g., post-traumatic stress disorder) this may be reflected by a failure of fear extinction, whereas in other instances (e.g., historical trauma), the uncertainty about the future might foster continued anxiety. In essence, the question becomes one of how individuals attain feelings of safety when it is fully understood that the world is not necessarily a safe place, uncertainties abound, and feelings of agency are often illusory. We consider how individuals acquire resilience in the aftermath of traumatic and chronic stressors. In this respect, we review characteristics of stressors that may trigger particular biological and behavioral coping responses, as well as factors that undermine their efficacy. To this end, we explore stressor dynamics and social processes that foster resilience in response to specific traumatic, chronic, and uncontrollable stressor contexts (intimate partner abuse; refugee migration; collective historical trauma). We point to resilience factors that may comprise neurobiological changes, such as those related to various stressor-provoked hormones, neurotrophins, inflammatory immune, microbial, and epigenetic processes. These behavioral and biological stress responses may influence, and be influenced by, feelings of safety that come about through relationships with others, spiritual and place-based connections.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Ajani Asokumar
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
138
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
139
|
Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, Kovacs-Balint ZA, Meyer JS, Styner M, Fair D, Sanchez MM. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol 2020; 32:1579-1596. [PMID: 33427167 PMCID: PMC11500993 DOI: 10.1017/s0954579420001133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the strong link between childhood maltreatment and psychopathology, the underlying neurodevelopmental mechanisms are poorly understood and difficult to disentangle from heritable and prenatal factors. This study used a translational macaque model of infant maltreatment in which the adverse experience occurs in the first months of life, during intense maturation of amygdala circuits important for stress and emotional regulation. Thus, we examined the developmental impact of maltreatment on amygdala functional connectivity (FC) longitudinally, from infancy through the juvenile period. Using resting state functional magnetic resonance imaging (MRI) we performed amygdala-prefrontal cortex (PFC) region-of-interest and exploratory whole-brain amygdala FC analyses. The latter showed (a) developmental increases in amygdala FC with many regions, likely supporting increased processing of socioemotional-relevant stimuli with age; and (b) maltreatment effects on amygdala coupling with arousal and stress brain regions (locus coeruleus, laterodorsal tegmental area) that emerged with age. Maltreated juveniles showed weaker FC than controls, which was negatively associated with infant hair cortisol concentrations. Findings from the region-of-interest analysis also showed weaker amygdala FC with PFC regions in maltreated animals than controls since infancy, whereas bilateral amygdala FC was stronger in maltreated animals. These effects on amygdala FC development may underlie the poor behavioral outcomes associated with this adverse experience.
Collapse
Affiliation(s)
- Elyse L Morin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Brittany R Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Melanie Pincus
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Katherine Reding
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jerrold S Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Damien Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
140
|
van Steenwyk G, Gapp K, Jawaid A, Germain P, Manuella F, Tanwar DK, Zamboni N, Gaur N, Efimova A, Thumfart KM, Miska EA, Mansuy IM. Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO J 2020; 39:e104579. [PMID: 33034389 PMCID: PMC7705452 DOI: 10.15252/embj.2020104579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Environmental factors can change phenotypes in exposed individuals and offspring and involve the germline, likely via biological signals in the periphery that communicate with germ cells. Here, using a mouse model of paternal exposure to traumatic stress, we identify circulating factors involving peroxisome proliferator-activated receptor (PPAR) pathways in the effects of exposure to the germline. We show that exposure alters metabolic functions and pathways, particularly lipid-derived metabolites, in exposed fathers and their offspring. We collected data in a human cohort exposed to childhood trauma and observed similar metabolic alterations in circulation, suggesting conserved effects. Chronic injection of serum from trauma-exposed males into controls recapitulates metabolic phenotypes in the offspring. We identify lipid-activated nuclear receptors PPARs as potential mediators of the effects from father to offspring. Pharmacological PPAR activation in vivo reproduces metabolic dysfunctions in the offspring and grand-offspring of injected males and affects the sperm transcriptome in fathers and sons. In germ-like cells in vitro, both serum and PPAR agonist induce PPAR activation. Together, these results highlight the role of circulating factors as potential communication vectors between the periphery and the germline.
Collapse
Affiliation(s)
- Gretchen van Steenwyk
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Katharina Gapp
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral NeuroscienceETH ZurichZurichSwitzerland
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteHinxtonUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Ali Jawaid
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Laboratory of Translational Research in Neuropsychiatric DisordersBRAINCITY Nencki‐EMBL Center of Excellence for Neural Plasticity and Brain DisordersWarsawPoland
| | - Pierre‐Luc Germain
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Statistical Bioinformatics GroupSwiss Institute of BioinformaticsZürichSwitzerland
| | - Francesca Manuella
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Deepak K Tanwar
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
- Statistical Bioinformatics GroupSwiss Institute of BioinformaticsZürichSwitzerland
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Niharika Gaur
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Anastasiia Efimova
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Kristina M Thumfart
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| | - Eric A Miska
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Wellcome Trust Sanger InstituteHinxtonUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Isabelle M Mansuy
- Laboratory of NeuroepigeneticsBrain Research InstituteMedical Faculty of the University of ZurichZurichSwitzerland
- Institute for NeuroscienceDepartment of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Zurich Neuroscience CenterETH Zurich and University of ZurichZurichSwitzerland
| |
Collapse
|
141
|
Goli P, Yazdi M, Poursafa P, Kelishadi R. Intergenerational influence of paternal physical activity on the offspring's brain: A systematic review and meta-analysis. Int J Dev Neurosci 2020; 81:10-25. [PMID: 33252826 DOI: 10.1002/jdn.10081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on brain in the offspring have not been explored in detail. OBJECTIVE This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the offspring's hippocampus. STUDY DESIGN In this systematic review and meta-analysis, electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. RESULTS The systematic review revealed the important role of environmental enrichment in the behavioral development of next generation. Also, offspring of exercised fathers displayed higher levels of memory ability, and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. CONCLUSION These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.
Collapse
Affiliation(s)
- Parvin Goli
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Cellular and Molecular Biology Department, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
142
|
Duffy HBD, Roth TL. Increases in Bdnf DNA Methylation in the Prefrontal Cortex Following Aversive Caregiving Are Reflected in Blood Tissue. Front Hum Neurosci 2020; 14:594244. [PMID: 33324186 PMCID: PMC7721665 DOI: 10.3389/fnhum.2020.594244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Child maltreatment not only leads to epigenetic changes, but also increases the risk of related behavioral deficits and mental disorders. These issues presumably are most closely associated with epigenetic changes in the brain, but epigenetic changes in peripheral tissues like blood are often examined instead, due to their accessibility. As such, the reliability of using the peripheral epigenome as a proxy for that of the brain is imperative. Previously, our lab has found aberrant methylation at the Brain-derived neurotrophic factor (Bdnf) gene in the prefrontal cortex of rats following aversive caregiving. The current study examined whether aversive caregiving alters Bdnf DNA methylation in the blood compared to the prefrontal cortex. It was revealed that DNA methylation associated with adversity increased in both tissues, but this methylation was not correlated between tissues. These findings indicate that group trends in Bdnf methylation between blood and the brain are comparable, but variation exists among individual subjects.
Collapse
Affiliation(s)
- Hannah B D Duffy
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
143
|
Jawaid A, Jehle KL, Mansuy IM. Impact of Parental Exposure on Offspring Health in Humans. Trends Genet 2020; 37:373-388. [PMID: 33189388 DOI: 10.1016/j.tig.2020.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The possibility that parental life experiences and environmental exposures influence mental and physical health across generations is an important concept in biology and medicine. Evidence from animal models has established the existence of a non-genetic mode of inheritance. This form of heredity involves transmission of the effects of parental exposure to the offspring through epigenetic changes in the germline. Studying the mechanisms of epigenetic inheritance in humans is challenging because it is difficult to obtain multigeneration cohorts, to collect reproductive cells in exposed parents, and to exclude psychosocial and cultural confounders. Nonetheless, epidemiological studies in humans exposed to famine, stress/trauma, or toxicants have provided evidence that parental exposure can impact the health of descendants, in some cases, across several generations. A few studies have also started to reveal epigenetic changes in the periphery and sperm after certain exposures. This article reviews these studies and evaluates the current evidence for the potential contribution of epigenetic factors to heredity in humans. The challenges and limitations of this fundamental biological process, its implications, and its societal relevance are also discussed.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, Zürich, Switzerland; Institute for Neuroscience, Department of Health Science and Technology of the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland; BRAINCITY EMBL-Nencki Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland; Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | | | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, Zürich, Switzerland; Institute for Neuroscience, Department of Health Science and Technology of the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
| |
Collapse
|
144
|
Stenson AF, van Rooij SJH, Carter SE, Powers A, Jovanovic T. A legacy of fear: Physiological evidence for intergenerational effects of trauma exposure on fear and safety signal learning among African Americans. Behav Brain Res 2020; 402:113017. [PMID: 33197457 DOI: 10.1016/j.bbr.2020.113017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the influence of maternal trauma and posttraumatic stress disorder (PTSD) symptoms on children's physiological response to threat and safety signals during a fear conditioning task in trauma-exposed mothers and children. METHOD Participants were African American mother-child dyads (N = 137; children aged 8-13 years). Mothers' trauma history and PTSD symptoms were assessed; Latent Class Analysis (LCA) was conducted from these measures to identify distinct classes. Children reported violence exposure and completed a differential fear conditioning task using fear-potentiated startle (FPS) responses to conditioned danger (CS+) and safety (CS-) signals. RESULTS Four classes of maternal trauma history and PTSD symptoms emerged: 1) Lower Trauma, 2) Moderate Trauma, 3) High Sexual Abuse, and 4) High Trauma and PTSD Symptoms. Children's FPS to CS + and CS- were tested with maternal class as the between-subjects factor. FPS to the danger signal was not significantly different across maternal classes, but FPS to safety (CS-) was significantly higher for the Lower Trauma and High Trauma and PTSD Symptoms classes than either the Moderate Trauma or the High Sexual Abuse classes. CONCLUSIONS Results indicate that maternal trauma impacts children's ability to modulate fear responses in the presence of a safety signal, independent of the children's own trauma exposure. To our knowledge, this is the first study to demonstrate that children's fear inhibition is impacted by maternal trauma exposure. Prior studies have linked fear inhibition to mental health outcomes, highlighting the need to understand intergenerational modulation of fear learning and physiology.
Collapse
Affiliation(s)
- Anaïs F Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States.
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Sierra E Carter
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
145
|
Hannan AJ. Paternal bloodlines sculpting seminal concepts: circulating factors as mediators of transgenerational 'epigenopathy' and 'epigenetic resilience'. EMBO J 2020; 39:e107014. [PMID: 33175448 DOI: 10.15252/embj.2020107014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence, particularly from rodent and human studies, shows that the environmental exposures and experience of a father prior to conception can modulate sperm epigenetics and subsequent offspring phenotypes. In this issue of The EMBO Journal, van Steenwyk and colleagues (2020) provide important new insights into how one form of paternal experience (early-life stress or trauma) may impact sperm epigenetics via circulating factors, presenting novel experimental evidence from a mouse model and an analogous human cohort.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
146
|
Abstract
The climate crisis is the existential threat of our times and for generations to come. This is no longer a threat but a reality affecting us, our children, and the generations that follow. Pregnant mothers, their fetuses, and their children are among those at greatest risk in every population and every jurisdiction. A timely consideration is the health of racialized groups who are particularly vulnerable owing to the confluence of several risk factors that are compounded by climate change. Included among these are Indigenous communities that are the most directly threatened by climate change. This review discusses the main health challenges faced by mothers, fathers, and their children during the climate crisis, focusing on mental health as a causal factor. Exploration of this topic includes the role of prenatal maternal and paternal stresses, allostatic load, and the effect of degradation of the environment and ecosystems on individuals. These will be examined in relation to adverse pregnancy outcomes and altered developmental trajectories of children. The climate crisis is a health threat multiplier that amplifies the health inequities of the most at-risk populations and individuals. It accelerates the increase in allostatic load of those at risk. The path of tragedy begins with an accumulating allostatic load that overwhelms both individual and socio-ecological resilience. This can lead to worse mental health including depression and anxiety and, in the case of pregnant women and their children, more adverse pregnancy outcomes and impaired developmental trajectories for their newborn children. We argue that there is an urgent need to develop new (or re-discover or re-purpose existing) tools that will predict communities and individuals who are experiencing the highest levels of climate-related hazards and intervene to reduce stress and increase resilience in pre-conceptual women and men, pregnant and post-partum women, and their young children.
Collapse
Affiliation(s)
- David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, 220 HMRC, Edmonton, Alberta, T6G 2S2, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
147
|
Li M, Fu X, Xie W, Guo W, Li B, Cui R, Yang W. Effect of Early Life Stress on the Epigenetic Profiles in Depression. Front Cell Dev Biol 2020; 8:867. [PMID: 33117794 PMCID: PMC7575685 DOI: 10.3389/fcell.2020.00867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Depression is one of the most common mental disorders and has caused an overwhelming burden on world health. Abundant studies have suggested that early life stress may grant depressive-like phenotypes in adults. Childhood adversities that occurred in the developmental period amplified stress events in adulthood. Epigenetic-environment interaction helps to explain the role of early life stress on adulthood depression. Early life stress shaped the epigenetic profiles of the HPA axis, monoamine, and neuropeptides. In the context of early adversities increasing the risk of depression, early life stress decreased the activity of the glucocorticoid receptors, halted the circulation and production of serotonin, and reduced the molecules involved in modulating the neurogenesis and neuroplasticity. Generally, DNA methylation, histone modifications, and the regulation of non-coding RNAs programmed the epigenetic profiles to react to early life stress. However, genetic precondition, subtypes of early life stress, the timing of epigenetic status evaluated, demographic characteristics in humans, and strain traits in animals favored epigenetic outcomes. More research is needed to investigate the direct evidence for how early life stress-induced epigenetic changes contribute to the vulnerability of depression.
Collapse
Affiliation(s)
- Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
148
|
Marrocco J, Einhorn NR, McEwen BS. Environmental epigenetics of sex differences in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:209-220. [PMID: 33008526 DOI: 10.1016/b978-0-444-64123-6.00015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States.
| | - Nathan R Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| |
Collapse
|
149
|
Joushi S, Esmaeilpour K, Taherizadeh Z, Taheri F, Sheibani V. Intergenerational effects of maternal separation on cognitive abilities of adolescent rats. Int J Dev Neurosci 2020; 80:687-698. [DOI: 10.1002/jdn.10066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Farahnaz Taheri
- Neuroscience Research Center Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| | - Vahid Sheibani
- Neuroscience Research Center Institute of NeuropharmacologyKerman University of Medical Sciences Kerman Iran
| |
Collapse
|
150
|
Brynildsen JK, Sanchez V, Yohn NL, Carpenter MD, Blendy JA. Sex-specific transgenerational effects of morphine exposure on reward and affective behaviors. Behav Brain Res 2020; 395:112842. [PMID: 32745660 PMCID: PMC8941987 DOI: 10.1016/j.bbr.2020.112842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 11/15/2022]
Abstract
Current estimates indicate that millions of people in the United States abuse opioid drugs, which may also affect their offspring. To determine whether parental exposure to morphine alters reward and affective behaviors in subsequent generations we exposed male and female C57BL/6NTac mice to morphine (75 mg) or placebo pellets for 4 weeks. Naïve mice were used as mating partners to create subsequent generations (F1 and F2). Adult male and female F1 and F2 mice were tested in the morphine conditioned place preference paradigm (CPP), marble burying (MB), acoustic startle response (ASR), and open field tests (OFT). Paternal morphine exposure resulted in significantly attenuated preference scores amongst F1 male offspring, but significantly higher preference scores amongst F1 female offspring at the lowest CPP dose tested (5 mg/kg). In contrast, maternal exposure to morphine did not affect morphine reward in the F1 generation; however, the F2 male offspring of morphine-exposed F0 females displayed significantly higher CPP preference scores. Preference scores in F2 females were not affected by F0 male or female morphine exposure. Sex-specific alterations in affective behaviors were observed only in the offspring of F0 males exposed to morphine with F1 males spending less time in the center of the open field and F1 females spending more time in the center of the open field. One generation later, affective behaviors were no longer altered in F2 males but F2 females from the F0 male morphine exposure buried more marbles in the MB test. In summary, early exposure to morphine in males and females causes lineage-specific inheritance of reward and affective behaviors.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Sanchez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole L Yohn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|