101
|
Novel Opioid Analgesics for the Development of Transdermal Opioid Patches That Possess Morphine-Like Pharmacological Profiles Rather Than Fentanyl: Possible Opioid Switching Alternatives Among Patch Formula. Anesth Analg 2022; 134:1082-1093. [PMID: 35427270 PMCID: PMC8986634 DOI: 10.1213/ane.0000000000005954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transdermal fentanyl is widely used in the treatment of severe pain because of convenience, safety, and stable blood concentrations. Nevertheless, patients often develop tolerance to fentanyl, necessitating the use of other opioids; transdermal buprenorphine patch is widely used as an analgesic agent, though available formulation does not provide comparable analgesic effect as transdermal fentanyl patch. Opioids bind to the opioid receptor (OR) to activate both G protein–mediated and β-arrestin–mediated pathways. We synthesized morphine-related compounds with high transdermal absorbability (N1 and N2) and evaluated their OR activities pharmacologically in comparison with fentanyl and morphine.
Collapse
|
102
|
Jiménez-Vargas NN, Yu Y, Jensen DD, Bok DD, Wisdom M, Latorre R, Lopez C, Jaramillo-Polanco JO, Degro C, Guzman-Rodriguez M, Tsang Q, Snow Z, Schmidt BL, Reed DE, Lomax AE, Margolis KG, Stein C, Bunnett NW, Vanner SJ. Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects. Gut 2022; 71:695-704. [PMID: 33785555 PMCID: PMC8608554 DOI: 10.1136/gutjnl-2021-324070] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit β-arrestins and evoke MOPr endocytosis. CONCLUSION In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
Collapse
Affiliation(s)
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Dane D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Diana Daeun Bok
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Matthew Wisdom
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Cintya Lopez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Josue O Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Claudius Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Zachary Snow
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Alan Edward Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Christoph Stein
- Department Experimental Anaesthesiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| |
Collapse
|
103
|
Mösslein N, Pohle LMG, Fuss A, Bünemann M, Krasel C. Residency time of agonists does not affect the stability of GPCR-arrestin complexes. Br J Pharmacol 2022; 179:4107-4116. [PMID: 35352338 DOI: 10.1111/bph.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The interaction of arrestins with G-protein-coupled receptors (GPCRs) desensitizes agonist-dependent receptor responses and often leads to receptor internalization. GPCRs that internalize without arrestin have been classified as "class A" GPCRs whereas "class B" GPCRs co-internalize with arrestin into endosomes. The interaction of arrestins with GPCRs requires both agonist activation and receptor phosphorylation. Here we ask the question whether agonists with very slow off-rate can cause the formation of particularly stable receptor-arrestin complexes. EXPERIMENTAL APPROACH The stability of GPCR-arrestin-3 complexes at two class A GPCRs, the β2 -adrenergic receptor and the μ-opioid receptor, was assessed using two different techniques, fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) employing several ligands with very different off-rates. Arrestin trafficking was determined by confocal microscopy. KEY RESULTS Upon agonist washout, GPCR-arrestin-3 complexes showed markedly different dissociation rates in single-cell FRET experiments. In FRAP experiments, however, all full agonists led to the formation of receptor-arrestin complexes of identical stability whereas the complex between the μ-opioid receptor and arrestin-3 induced by the partial agonist morphine was less stable. Agonists with very slow off-rates could not mediate the co-internalization of arrestin-3 with class A GPCRs into endosomes. CONCLUSIONS AND IMPLICATIONS Agonist off-rates do not affect the stability of GPCR-arrestin complexes but phosphorylation patterns do. Our results imply that orthosteric agonists will not be able to pharmacologically convert class A into class B GPCRs.
Collapse
Affiliation(s)
- Nadja Mösslein
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Lisa-Marie Geertje Pohle
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,current address: Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Fuss
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Moritz Bünemann
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Krasel
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
104
|
Sutcliffe KJ, Corey RA, Alhosan N, Cavallo D, Groom S, Santiago M, Bailey C, Charlton SJ, Sessions RB, Henderson G, Kelly E. Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2. [PMID: 35909438 PMCID: PMC7613138 DOI: 10.3389/adar.2022.10280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overdose deaths from fentanyl have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist that is less well reversed by naloxone than morphine. Due to fentanyl’s high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by its interactions with the lipid membrane on route to binding to the μ-opioid receptor (MOPr). Through coarse-grained molecular dynamics simulations, electrophysiological recordings and cell signalling assays, we determined how fentanyl and morphine access the orthosteric pocket of MOPr. Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl may take a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices. In electrophysiological recordings fentanyl-induced currents returned after washout, suggesting fentanyl deposits in the lipid membrane. However, mutation of residues forming the potential MOPr transmembrane access site did not alter fentanyl’s pharmacological profile in vitro. A high local concentration of fentanyl in the lipid membrane, possibly in combination with a novel lipophilic binding route, may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.
Collapse
Affiliation(s)
- Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sam Groom
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Marina Santiago
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Chris Bailey
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Steven J Charlton
- Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
105
|
Mizobuchi Y, Miyano K, Manabe S, Uezono E, Komatsu A, Kuroda Y, Nonaka M, Matsuoka Y, Sato T, Uezono Y, Morimatsu H. Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules 2022; 12:426. [PMID: 35327617 PMCID: PMC8946650 DOI: 10.3390/biom12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The issue of tolerance to continuous or repeated administration of opioids should be addressed. The ability of ketamine to improve opioid tolerance has been reported in clinical studies, and its mechanism of tolerance may involve improved desensitization of μ-opioid receptors (MORs). We measured changes in MOR activity and intracellular signaling induced by repeated fentanyl and morphine administration and investigated the effects of ketamine on these changes with human embryonic kidney 293 cells expressing MOR using the CellKey™, cADDis cyclic adenosine monophosphate, and PathHunter® β-arrestin recruitment assays. Repeated administration of fentanyl or morphine suppressed the second MOR responses. Administration of ketamine before a second application of opioids within clinical concentrations improved acute desensitization and enhanced β-arrestin recruitment elicited by fentanyl but not by morphine. The effects of ketamine on fentanyl were suppressed by co-treatment with an inhibitor of G-protein-coupled receptor kinase (GRK). Ketamine may potentially reduce fentanyl tolerance but not that of morphine through modulation of GRK-mediated pathways, possibly changing the conformational changes of β-arrestin to MOR.
Collapse
Affiliation(s)
- Yusuke Mizobuchi
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Sei Manabe
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Eiko Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Yoshikazu Matsuoka
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Tetsufumi Sato
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| |
Collapse
|
106
|
Bilel S, Azevedo Neto J, Arfè R, Tirri M, Gaudio RM, Fantinati A, Bernardi T, Boccuto F, Marchetti B, Corli G, Serpelloni G, De-Giorgio F, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo pharmaco-dynamic study of the novel fentanyl derivatives: Acrylfentanyl, Ocfentanyl and Furanylfentanyl. Neuropharmacology 2022; 209:109020. [PMID: 35247453 DOI: 10.1016/j.neuropharm.2022.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and β-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the β-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote β-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Joaquim Azevedo Neto
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit Verona, Italy and Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
107
|
Humphreys K, Shover CL, Andrews CM, Bohnert ASB, Brandeau ML, Caulkins JP, Chen JH, Cuéllar MF, Hurd YL, Juurlink DN, Koh HK, Krebs EE, Lembke A, Mackey SC, Larrimore Ouellette L, Suffoletto B, Timko C. Responding to the opioid crisis in North America and beyond: recommendations of the Stanford-Lancet Commission. Lancet 2022; 399:555-604. [PMID: 35122753 PMCID: PMC9261968 DOI: 10.1016/s0140-6736(21)02252-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Keith Humphreys
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Chelsea L Shover
- Division of General Internal Medicine and Health Services Research, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Christina M Andrews
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Amy S B Bohnert
- Department of Psychiatry and Department of Anesthesiology, University of Michigan Health System, Ann Arbor, MI, USA; Veterans Affairs Center for Clinical Management Research, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Margaret L Brandeau
- Department of Management Science and Engineering, Huang Engineering Center, Stanford University, Stanford, CA USA
| | | | - Jonathan H Chen
- Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA, USA; Division of Hospital Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yasmin L Hurd
- Addiction Institute, Icahn School of Medicine, New York, NY, USA
| | - David N Juurlink
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Howard K Koh
- Department of Health Policy and Management, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Erin E Krebs
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Center for Care Delivery and Outcomes Research, Veterans Affairs Minneapolis Health Care System, Minneapolis, MN, USA
| | - Anna Lembke
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Brian Suffoletto
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine Timko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
108
|
Somogyi AA, Musolino ST, Barratt DT. New pharmacological perspectives and therapeutic options for opioids: Differences matter. Anaesth Intensive Care 2022; 50:127-140. [PMID: 35112584 DOI: 10.1177/0310057x211063891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Opioids remain the major drug class for the treatment of acute, chronic and cancer pain, but have major harmful effects such as dependence and opioid-induced ventilatory impairment. Although no new typical opioids have come onto the market in the past almost 50 years, a plethora of new innovative formulations has been developed to meet the clinical need. This review is intended to shed light on new understanding of the molecular pharmacology of opioids, which has arisen largely due to the genomic revolution, and what new drugs may become available in the coming years. Atypical opioids have and are being developed which not only target the mu opioid receptor but other targets in the pain pathway. Biased mu agonists have been developed but remain 'unbiased' clinically. The contribution of drugs targeting non-mu opioid receptors either alone or as heterodimers shows potential promise but remains understudied. That gene splice variants of the mu opioid receptor produce multiple receptor isoforms in different brain regions, and may change with pain chronicity and phenotype, presents new challenges but also opportunities for precision pain medicine. Finally, that opioids also have pro-inflammatory effects not aligned with mu opioid receptor binding affinity implicates a fresh understanding of their role in chronic pain, whether cancer or non-cancer. Hopefully, a new understanding of opioid analgesic drug action may lead to new drug development and better precision medicine in acute and chronic pain relief with less patient harm.
Collapse
Affiliation(s)
- Andrew A Somogyi
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Stefan T Musolino
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Daniel T Barratt
- Discipline of Physiology, University of Adelaide, Adelaide, Australia
| |
Collapse
|
109
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
110
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
111
|
Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Front Cell Neurosci 2022; 15:814547. [PMID: 35110998 PMCID: PMC8801586 DOI: 10.3389/fncel.2021.814547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neurons integrate inputs over different time and space scales. Fast excitatory synapses at boutons (ms and μm), and slow modulation over entire dendritic arbors (seconds and mm) are all ultimately combined to produce behavior. Understanding the timing of signaling events mediated by G-protein-coupled receptors is necessary to elucidate the mechanism of action of therapeutics targeting the nervous system. Measuring signaling kinetics in live cells has been transformed by the adoption of fluorescent biosensors and dyes that convert biological signals into optical signals that are conveniently recorded by microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling has now become routine with the application of equations in familiar curve fitting software to estimate the rates of signaling from the waveform. Here we describe examples of the application of these methods, including (1) Kinetic analysis of opioid signaling dynamics and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying the signaling activity of illicit synthetic cannabinoid receptor agonists measured using a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin functions from analysis of biosensor waveforms and quantification of the rates of these processes. These examples show how temporal analysis provides additional dimensions to enhance the understanding of GPCR signaling and therapeutic mechanisms in the nervous system.
Collapse
Affiliation(s)
- Sam R. J. Hoare
- Pharmechanics LLC, Owego, NY, United States
- *Correspondence: Sam R. J. Hoare
| | | | - Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
112
|
Synthesis, biological, and structural explorations of a series of μ-opioid receptor (MOR) agonists with high G protein signaling bias. Eur J Med Chem 2022; 228:113986. [PMID: 34802839 DOI: 10.1016/j.ejmech.2021.113986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Biased agonism refers to the ability of compounds to drive preferred signaling pathways and avoid adverse signaling pathways in a ligand-dependent manner for some G-protein-coupled receptors. It is thought that the separation of therapeutic efficacy (e.g., analgesia) from adverse effects (e.g., respiration depression) can be achieved through the design of biased MOR agonists and one example is the recently approved MOR biased agonist oliceridine (TRV130). However, oliceridine only demonstrates modest beneficial effects as compared to other opioids in terms of therapeutic/adverse effect balance. One possibility attributable to the modest success of oliceridine is its limited bias, and as such developing MOR ligands with a more biased agonism profile could in theory further improve the beneficial effects of the ligands. Here, we rationally designed and synthesized a series of derivatives as potent highly biased MOR agonists (19a-v) through the modification and structure-activity relationship study of TRV130. This novel synthetic molecule, LPM3480392 (19m), demonstrated improved in vitro biased agonism (EC50 = 0.35 nM, Emax = 91.4%) with no measured β-arrestin recruitment (EC50 > 30000 nM, Emax = 1.6%), good brain penetration (B/P ratio = 4.61, 0.25 h post-IV dosing 2.0 mg/kg), a favorable pharmacokinetic profile (distribution volume = 10766 mL/kg, t1/2 = 1.9 h) and produced potent antinociceptive effect with reduced respiratory suppression (sO2(%) = 92.17, 0.32 mg/kg, SC) as compared to TRV130. LPM3480392 has completed preclinical studies and is currently under clinical development (CTR20210370) as an analgesic for the treatment of moderate to severe pain.
Collapse
|
113
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Analgesic Opioid Ligand Discovery Based on Nonmorphinan Scaffolds Derived from Natural Sources. J Med Chem 2022; 65:1612-1661. [PMID: 34995453 DOI: 10.1021/acs.jmedchem.0c01915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strong opioid analgesics, including morphine, are the mainstays for treating moderate to severe acute pain and alleviating chronic cancer pain. However, opioid-related adverse effects, including nausea or vomiting, sedation, respiratory depression, constipation, pruritus (itch), analgesic tolerance, and addiction and abuse liability, are problematic. In addition, the use of opioids to relieve chronic noncancer pain is controversial due to the "opioid crisis" characterized by opioid misuse or abuse and escalating unintentional death rates due to respiratory depression. Hence, considerable research internationally has been aimed at the "Holy Grail" of the opioid analgesic field, namely the discovery of novel and safer opioid analgesics with improved opioid-related adverse effects. In this Perspective, medicinal chemistry strategies are addressed, where structurally diverse nonmorphinan-based opioid ligands derived from natural sources were deployed as lead molecules. The current state of play, clinical or experimental status, and novel opioid ligand discovery approaches are elaborated in the context of retaining analgesia with improved safety and reduced adverse effects, especially addiction liability.
Collapse
|
114
|
Mas-Orea X, Basso L, Blanpied C, Gaveriaux-Ruff C, Cenac N, Dietrich G. Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. J Neuroinflammation 2022; 19:7. [PMID: 34991641 PMCID: PMC8740424 DOI: 10.1186/s12974-021-02352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Lilian Basso
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
- INFINITy, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Catherine Blanpied
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | | | - Nicolas Cenac
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Gilles Dietrich
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
115
|
Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2022; 18:264-271. [PMID: 34949837 PMCID: PMC8885419 DOI: 10.1038/s41589-021-00918-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Biased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1-Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6-2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of β-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine-receptor complexes, providing new insights into the mode of chemokine recognition.
Collapse
|
116
|
DiBerto JF, Olsen RHJ, Roth BL. TRUPATH: An Open-Source Biosensor Platform for Interrogating the GPCR Transducerome. Methods Mol Biol 2022; 2525:185-195. [PMID: 35836068 DOI: 10.1007/978-1-0716-2473-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most highly targeted protein family by United States Food and Drug Administration-approved drugs. Despite their historic and continued importance as drug targets, their therapeutic potential remains underexplored and underexploited. While it has been known for some time that GPCRs are able to engage multiple signaling pathways, the majority of drug research and development has followed the older dogma of a single primary pathway for each receptor. This has been due in part to historical reasons, or to a lack of appreciation of the potential to exploit specific pathways over others as a therapeutic modality. Additionally, only recently have technologies been developed to discern selective GPCR-G protein interactions. In this chapter, we introduce TRUPATH, a bioluminescence resonance energy transfer (BRET)-based platform that allows the unambiguous measurement of receptor-catalyzed dissociation or rearrangement of 14 Gα subunits from their respective Gβ and Gγ subunits. Specifically, we provide a detailed protocol for TRUPATH plasmid transfection, microplate preparation, assay implementation, and data analysis. In doing so, we create a template for using TRUPATH to answer basic biological questions, such as "To which G proteins does a given GPCR couple?", and facilitate drug discovery efforts to identify ligands with intra- and inter-G protein family pathway selectivity.
Collapse
Affiliation(s)
- Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Discovery Biology and GPCR Pharmacology, Exscientia PLC., Oxford, UK
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
117
|
Comparison of an Addictive Potential of μ-Opioid Receptor Agonists with G Protein Bias: Behavioral and Molecular Modeling Studies. Pharmaceutics 2021; 14:pharmaceutics14010055. [PMID: 35056950 PMCID: PMC8779292 DOI: 10.3390/pharmaceutics14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Among different approaches to the search for novel—safer and less addictive—opioid analgesics, biased agonism has received the most attention in recent years. Some μ-opioid receptor agonists with G protein bias, including SR compounds, were proposed to induce diminished side effects. However, in many aspects, behavioral effects of those compounds, as well as the mechanisms underlying differences in their action, remain unexplored. Here, we aimed to evaluate the effects of SR-14968 and SR-17018, highly G protein-biased opioid agonists, on antinociception, motor activity and addiction-like behaviors in C57BL/6J mice. The obtained results showed that the compounds induce strong and dose-dependent antinociception. SR-14968 causes high, and SR-17018 much lower, locomotor activity. Both agonists develop reward-associated behavior and physical dependence. The compounds also cause antinociceptive tolerance, however, developing more slowly when compared to morphine. Interestingly, SR compounds, in particular SR-17018, slow down the development of antinociceptive tolerance to morphine and inhibit some symptoms of morphine withdrawal. Therefore, our results indicate that SR agonists possess rewarding and addictive properties, but can positively modulate some symptoms of morphine dependence. Next, we have compared behavioral effects of SR-compounds and PZM21 and searched for a relationship to the substantial differences in molecular interactions that these compounds form with the µ-opioid receptor.
Collapse
|
118
|
Mahinthichaichan P, Vo QN, Ellis CR, Shen J. Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor. JACS AU 2021; 1:2208-2215. [PMID: 34977892 PMCID: PMC8715493 DOI: 10.1021/jacsau.1c00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Driven by illicit fentanyl, opioid related deaths have reached the highest level in 2020. Currently, an opioid overdose is resuscitated by the use of naloxone, which competitively binds and antagonizes the μ-opioid receptor (mOR). Thus, knowledge of the residence times of opioids at mOR and the unbinding mechanisms is valuable for assessing the effectiveness of naloxone. In the present study, we calculate the fentanyl-mOR dissociation time and elucidate the mechanism by applying an enhanced sampling molecular dynamics (MD) technique. Two sets of metadynamics simulations with different initial structures were performed while accounting for the protonation state of the conserved H2976.52, which has been suggested to modulate the ligand-mOR affinity and binding mode. Surprisingly, with the Nδ-protonated H2976.52, fentanyl can descend as much as 10 Å below the level of the conserved D1473.32 before escaping the receptor and has a calculated residence time τ of 38 s. In contrast, with the Nϵ- and doubly protonated H2976.52, the calculated τ are 2.6 and 0.9 s, respectively. Analysis suggests that formation of the piperidine-Hid297 hydrogen bond strengthens the hydrophobic contacts with the transmembrane helix (TM) 6, allowing fentanyl to explore a deep pocket. Considering the experimental τ of ∼4 min for fentanyl and the role of TM6 in mOR activation, the deep insertion mechanism may be biologically relevant. The work paves the way for large-scale computational predictions of opioid dissociation rates to inform evaluation of strategies for opioid overdose reversal. The profound role of the histidine protonation state found here may shift the paradigm in computational studies of ligand-receptor kinetics.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Quynh N. Vo
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Christopher R. Ellis
- Division
of Applied Regulatory Science, Office of Clinical Pharmacology, Office
of Translational Sciences, Center for Drug
Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
119
|
Shokri-Kojori E, Naganawa M, Ramchandani VA, Wong DF, Wang GJ, Volkow ND. Brain opioid segments and striatal patterns of dopamine release induced by naloxone and morphine. Hum Brain Mapp 2021; 43:1419-1430. [PMID: 34873784 PMCID: PMC8837588 DOI: 10.1002/hbm.25733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Opioid receptors are expressed throughout the brain and play a major role in regulating striatal dopamine (DA) release. Clinical studies have shown that naloxone (NAL, a nonspecific opioid antagonist) in individuals with opioid use disorder and morphine (MRP, a nonspecific opioid agonist) in healthy controls, resulted in DA release in the dorsal and ventral striatum, respectively. It is not known whether the underlying patterns of striatal DA release are associated with the striatal distribution of opioid receptors. We leveraged previously published PET datasets (collected in independent cohorts) to study the brain‐wide distribution of opioid receptors and to compare striatal opioid receptor availability with striatal DA release patterns. We identified three major gray matter segments based on availability maps of DA and opioid receptors: striatum, and primary and secondary opioid segments with high and intermediate opioid receptor availability, respectively. Patterns of DA release induced by NAL and MRP were inversely associated and correlated with kappa (NAL: r(68) = −0.81, MRP: r(68) = 0.54), and mu (NAL: r(68) = −0.62, MRP: r(68) = 0.46) opioid receptor availability. Kappa opioid receptor availability accounted for a unique part of variance in NAL‐ and MRP‐DA release patterns (ΔR2 >0.14, p <.0001). In sum, distributions of opioid receptors distinguished major cortical and subcortical regions. Patterns of NAL‐ and MRP‐induced DA release had inverse associations with striatal opioid receptor availability. Our approach provides a pattern‐based characterization of drug‐induced DA targets and is relevant for modeling the role of opioid receptors in modulating striatal DA release.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mika Naganawa
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Dean F Wong
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
120
|
Wang X, Gou X, Yu X, Bai D, Tan B, Cao P, Qian M, Zheng X, Wang H, Tang P, Zhang C, Ye F, Ni J. Antinociceptive and Antipruritic Effects of HSK21542, a Peripherally-Restricted Kappa Opioid Receptor Agonist, in Animal Models of Pain and Itch. Front Pharmacol 2021; 12:773204. [PMID: 34867403 PMCID: PMC8635029 DOI: 10.3389/fphar.2021.773204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists have been promising therapeutic candidates, owing to their potential for relieving pain and treating intractable pruritus. Although lacking morphine-like central nervous system (CNS) effects, KOR agonists do elicit sedation, dysphoria and diuresis which seriously impede their development. Peripherally-restricted KOR agonists have a poor ability to penetrate into the CNS system, so that CNS-related adverse effects can be ameliorated or even abolished. However, the only approved peripherally-restricted KOR agonist CR845 remains some frequent CNS adverse events. In the present study, we aim to address pharmacological profiles of HSK21542, with an expectation to provide a safe and effective alternative for patients who are suffering from pain and pruritus. The in vitro experimental results showed that HSK21542 was a selective and potent KOR agonist with higher potency than CR845, and had a brain/plasma concentration ratio of 0.001, indicating its peripheral selectivity. In animal models of pain, HSK21542 significantly inhibited acetic acid-, hindpaw incision- or chronic constriction injury-induced pain-related behaviors, and the efficacy was comparable to CR845 at 15 min post-dosing. HSK21542 had a long-lasting analgesic potency with a median effective dose of 1.48 mg/kg at 24 h post-drug in writhing test. Meanwhile, the antinociceptive activity of HSK21542 was effectively reversed by a KOR antagonist nor-binaltorphimine. In addition, HSK21542 had powerful antipruritic activities in compound 48/80-induced itch model. On the other hand, HSK21542 had a weak ability to produce central antinociceptive effects in a hot-plate test and fewer effects on the locomotor activity of mice. HSK21542 didn't affect the respiratory rate of mice. Therefore, HSK21542 might be a safe and effective KOR agonist and promising candidate for treating pain and pruritus.
Collapse
Affiliation(s)
- Xin Wang
- Intensive Care Unit, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoli Gou
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaojuan Yu
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Dongdong Bai
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Bowei Tan
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingfeng Cao
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Meilin Qian
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Xiaoxiao Zheng
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Hairong Wang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Pingming Tang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Chen Zhang
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Fei Ye
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| | - Jia Ni
- Center for Drug Research and Development, Haisco Pharmaceutical Group Co., Ltd., Chegdu, China
| |
Collapse
|
121
|
Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 2021; 46:2241-2249. [PMID: 34257415 PMCID: PMC8581001 DOI: 10.1038/s41386-021-01054-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Opioid drugs are widely used analgesics that activate the G protein-coupled µ-opioid receptor, whose endogenous neuropeptide agonists, endorphins and enkephalins, are potent pain relievers. The therapeutic utility of opioid drugs is hindered by development of tolerance to the analgesic effects, requiring dose escalation for persistent pain control and leading to overdose and fatal respiratory distress. The prevailing hypothesis is that the intended analgesic effects of opioid drugs are mediated by µ-opioid receptor signaling to G protein, while the side-effects of respiratory depression and analgesic tolerance are caused by engagement of the receptor with the arrestin-3 protein. Consequently, opioid drug development has focused exclusively on identifying agonists devoid of arrestin-3 engagement. Here, we challenge the prevailing hypothesis with a panel of six clinically relevant opioid drugs and mice of three distinct genotypes with varying abilities to promote morphine-mediated arrestin-3 engagement. With this genetic and pharmacological approach, we demonstrate that arrestin-3 recruitment does not impact respiratory depression, and effective arrestin-3 engagement reduces, rather than exacerbates, the development of analgesic tolerance. These studies suggest that future development of safer opioids should focus on identifying opioid ligands that recruit both G protein and arrestin-3, thereby mimicking the signaling profile of most endogenous µ-opioid receptor agonists.
Collapse
|
122
|
G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc Natl Acad Sci U S A 2021; 118:2102178118. [PMID: 34819362 DOI: 10.1073/pnas.2102178118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.
Collapse
|
123
|
Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021; 26:molecules26237236. [PMID: 34885825 PMCID: PMC8659279 DOI: 10.3390/molecules26237236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.
Collapse
|
124
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
125
|
Azzam AAH, Lambert DG. Preclinical Discovery and Development of oliceridine (Olinvyk®) for the Treatment of Post-Operative Pain. Expert Opin Drug Discov 2021; 17:215-223. [PMID: 34817313 DOI: 10.1080/17460441.2022.2008903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Opioids acting at the MOP(mu:µ) receptor produce analgesia but also side-effects. There is debate suggesting opioid receptors produce analgesia via G-protein and side-effects via β-arrestin-2 pathways. Opioids targeting G-proteins over the arrestins (bias) offer potential therapeutic advantages. Oliceridine is a putative MOP, G-protein biased agonist. AREAS COVERED Oliceridine is selective for MOP receptors with greater activity at G-proteins over arrestins. A substantial body of evidence now points to a simpler pharmacological descriptor of partial agonist. Pre-clinical in vivo data indicates a robust antinociceptive response of shorter duration than morphine. Apollo trials (Phase-III RCT-bunionectomy/abdominoplasty) describe good analgesic efficacy that was non-inferior to morphine with good tolerability and side-effect profile. There is evidence for improved respiratory safety profile. Oliceridine is approved by the FDA. EXPERT OPINION Oliceridine will be an important addition to the clinical armamentarium for use for the management of acute pain severe enough to require an intravenous opioid analgesic and for whom alternative treatments are inadequate. Respiratory advantage and the possibility of reduced abuse potential are possible advantages over the use of traditional opioids. Based on a number of excellent, highly detailed studies, oliceridine should be described as a partial agonist; this 'label' does not matter.
Collapse
Affiliation(s)
- Ammar A H Azzam
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, Leicester, LE1 9HN. UK
| | - David G Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, Leicester, LE1 9HN. UK
| |
Collapse
|
126
|
Sharma KK, Cassell RJ, Meqbil YJ, Su H, Blaine AT, Cummins BR, Mores KL, Johnson DK, van Rijn RM, Altman RA. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands. RSC Med Chem 2021; 12:1958-1967. [PMID: 34825191 DOI: 10.1039/d1md00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
μ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional μ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit β-arrestins, which correlate with certain adverse effects at μ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and μ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced β-arrestin recruitment efficacy through both the δ-opioid and μ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased μ/δ opioid agonist pharmacological profiles.
Collapse
Affiliation(s)
- Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University USA
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Yazan J Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Computational Interdisciplinary Graduate Program (CIGP), Purdue University USA
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Interdisciplinary Life Science Graduate Program, Purdue University USA
| | | | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - David K Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Institute for Drug Discovery, Purdue University USA.,Purdue Institute for Integrative Neuroscience, Purdue University USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Department of Chemistry, Purdue University USA
| |
Collapse
|
127
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
128
|
Gopalakrishnan L, Chatterjee O, Ravishankar N, Suresh S, Raju R, Mahadevan A, Prasad TSK. Opioid receptors signaling network. J Cell Commun Signal 2021; 16:475-483. [PMID: 34724150 DOI: 10.1007/s12079-021-00653-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022] Open
Abstract
Opioid receptors belong to the class A G-protein-coupled receptors and are activated by alkaloid opiates such as morphine, and endogenous ligands such as endorphins and enkephalins. Opioid receptors are widely distributed in the human body and are involved in numerous physiological processes through three major classical opioid receptor subtypes; the mu, delta and kappa along with a lesser characterized subtype, opioid receptor-like (ORL1). Opioids are the most potent analgesics and have been extensively used as a therapeutic drug for the treatment of pain and related disorders. Chronic administration of clinically used opioids is associated with adverse effects such as drug tolerance, addiction and constipation. Several investigations attempted to identify the molecular signaling networks associated with endogenous as well as synthetic opiates, however, there is a paucity of a cumulative depiction of these signaling events. Here, we report a systemic collection of downstream molecules pertaining to four subtypes of opioid receptors (MOR, KOR, DOR and ORL1) in the form of a signaling pathway map. We manually curated reactions induced by the activation of opioid receptors from the literature into five categories- molecular association, activation/inhibition, catalysis, transport, and gene regulation. This led to a dataset of 180 molecules, which is collectively represented in the opioid receptor signaling network following NetPath criteria. We believe that the public availability of an opioid receptor signaling pathway map can accelerate biomedical research in this area because of its high therapeutic significance. The opioid receptors signaling pathway map is uploaded to a freely available web resource, WikiPathways enabling ease of access ( https://www.wikipathways.org/index.php/Pathway:WP5093 ).
Collapse
Affiliation(s)
- Lathika Gopalakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576 104, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690 525, India
| | - Namitha Ravishankar
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Sneha Suresh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560 029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Neurobiology Research Centre, Bangalore, 560 029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.
| |
Collapse
|
129
|
Hernández-Alvarado RB, Madariaga-Mazón A, Cosme-Vela F, Marmolejo-Valencia AF, Nefzi A, Martinez-Mayorga K. Encoding mu-opioid receptor biased agonism with interaction fingerprints. J Comput Aided Mol Des 2021; 35:1081-1093. [PMID: 34713377 DOI: 10.1007/s10822-021-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Opioids are potent painkillers, however, their therapeutic use requires close medical monitoring to diminish the risk of severe adverse effects. The G-protein biased agonists of the μ-opioid receptor (MOR) have shown safer therapeutic profiles than non-biased ligands. In this work, we performed extensive all-atom molecular dynamics simulations of two markedly biased ligands and a balanced reference molecule. From those simulations, we identified a protein-ligand interaction fingerprint that characterizes biased ligands. Then, we built and virtually screened a database containing 68,740 ligands with proven or potential GPCR agonistic activity. Exemplary molecules that fulfill the interacting pattern for biased agonism are showcased, illustrating the usefulness of this work for the search of biased MOR ligands and how this contributes to the understanding of MOR biased signaling.
Collapse
Affiliation(s)
| | | | - Fernando Cosme-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Adel Nefzi
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA.,Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | |
Collapse
|
130
|
Cong X, Maurel D, Déméné H, Vasiliauskaité-Brooks I, Hagelberger J, Peysson F, Saint-Paul J, Golebiowski J, Granier S, Sounier R. Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Mol Cell 2021; 81:4165-4175.e6. [PMID: 34433090 DOI: 10.1016/j.molcel.2021.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
Collapse
Affiliation(s)
- Xiaojing Cong
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Hélène Déméné
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054, University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | - Ieva Vasiliauskaité-Brooks
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Joanna Hagelberger
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Fanny Peysson
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Julie Saint-Paul
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice UMR7272, 06108 Nice, France; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| |
Collapse
|
131
|
Kroning KE, Li M, Petrescu DI, Wang W. A genetically encoded sensor with improved fluorescence intensity for opioid detection at cellular resolution. Chem Commun (Camb) 2021; 57:10560-10563. [PMID: 34557886 DOI: 10.1039/d1cc04524e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mu-opioid receptor (MOR) regulates the neuronal pathways involved in pain, reward, and respiration. To increase our understanding of MOR's roles in these pathways, there is a need to detect opioids at cellular resolution. Here, we engineered an improved opioid-sensor, called M-SPOTIT2, which is 11x brighter than our previously engineered M-SPOTIT1.1. We engineered M-SPOTIT2 by adding the amino acids YNSH, located near the fluorophore of the enhanced green fluorescent protein, to the circular permuted green fluorescent protein in M-SPOTIT2. M-SPOTIT2 is 11x brighter than our previously engineered M-SPOTIT1.1 in HEK293T cell culture and 2.7x brighter in neuronal culture. M-SPOTIT2 will potentially be useful for the detection of opioids in cell culture for drug screening and the detection of opioids at cellular resolution in animal tissues. By using M-SPOTIT2, researchers can gain more understanding about the mechanisms of addiction, respiratory suppression, and pain-modulation involved in opioid signaling.
Collapse
Affiliation(s)
- Kayla E Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingcheng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - D Isabel Petrescu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
132
|
Treatment of overdose in the synthetic opioid era. Pharmacol Ther 2021; 233:108019. [PMID: 34637841 DOI: 10.1016/j.pharmthera.2021.108019] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Overdose deaths are often viewed as the leading edge of the opioid epidemic which has gripped the United States over the past two decades (Skolnick, 2018a). This emphasis is perhaps unsurprising because opioid overdose is both the number-one cause of death for individuals between 25 and 64 years old (Dezfulian et al., 2021) and a significant contributor to the decline in average lifespan (Dowell et al., 2017). Exacerbated by the COVID 19 pandemic, it was estimated there were 93,400 drug overdose deaths in the United States during the 12 months ending December 2020, with more than 69,000 (that is, >74%) of these fatalities attributed to opioid overdose (Ahmad et al., 2021). However, the focus on mortality statistics (Ahmad et al., 2021; Shover et al., 2020) tends to obscure the broader medical impact of nonfatal opioid overdose. Analyses of multiple databases indicate that for each opioid-induced fatality, there are between 6.4 and 8.4 non-fatal overdoses, exacting a significant burden on both the individual and society. Over the past 7-8 years, there has been an alarming increase in the misuse of synthetic opioids ("synthetics"), primarily fentanyl and related piperidine-based analogs. Within the past 2-3 years, a structurally unrelated class of high potency synthetics, benzimidazoles exemplified by etonitazene and isotonitazene ("iso"), have also appeared in illicit drug markets (Thompson, 2020; Ujvary et al. 2021). In 2020, it was estimated that over 80% of fatal opioid overdoses in the United States now involve synthetics (Ahmad et al., 2021). The unique physicochemical and pharmacological properties of synthetics described in this review are responsible for both the morbidity and mortality associated with their misuse as well as their widespread availability. This dramatic increase in the misuse of synthetics is often referred to as the "3rd wave" (Pardo et al., 2019; Volkow and Blanco, 2020) of the opioid epidemic. Among the consequences resulting from misuse of these potent opioids is the need for higher doses of the competitive antagonist, naloxone, to reverse an overdose. The development of more effective reversal agents such as those described in this review is an essential component of a tripartite strategy (Volkow and Collins, 2017) to reduce the biopsychosocial impact of opioid misuse in the "synthetic era".
Collapse
|
133
|
Karasawa Y, Miyano K, Fujii H, Mizuguchi T, Kuroda Y, Nonaka M, Komatsu A, Ohshima K, Yamaguchi M, Yamaguchi K, Iseki M, Uezono Y, Hayashida M. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021; 26:molecules26196079. [PMID: 34641621 PMCID: PMC8513079 DOI: 10.3390/molecules26196079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., 5-11-2, Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Yui Kuroda
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Akane Komatsu
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Correspondence:
| | - Masakazu Hayashida
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
134
|
Bateman JT, Levitt ES. Evaluation of G protein bias and β-arrestin 2 signaling in opioid-induced respiratory depression. Am J Physiol Cell Physiol 2021; 321:C681-C683. [PMID: 34469203 DOI: 10.1152/ajpcell.00259.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory depression is a potentially fatal side effect of opioid analgesics and a major limitation to their use. G protein-biased opioid agonists have been proposed as "safer" analgesics with less respiratory depression. These agonists are biased to activate G proteins rather than β-arrestin signaling. Respiratory depression has been shown to correlate with both G protein bias and intrinsic efficacy, and recent work has refuted the role of β-arrestin signaling in opioid-induced respiratory depression. In addition, there is substantial evidence that G proteins do, in fact, mediate respiratory depression by actions in respiratory-controlling brainstem neurons. Based on these studies, we provide the perspective that protection from respiratory depression displayed by newly developed G protein-biased agonists is due to factors other than G protein versus arrestin bias.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida
| |
Collapse
|
135
|
Castro DC, Oswell CS, Zhang ET, Pedersen CE, Piantadosi SC, Rossi MA, Hunker AC, Guglin A, Morón JA, Zweifel LS, Stuber GD, Bruchas MR. An endogenous opioid circuit determines state-dependent reward consumption. Nature 2021; 598:646-651. [PMID: 34646022 PMCID: PMC8858443 DOI: 10.1038/s41586-021-04013-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
| | - Corinna S Oswell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Eric T Zhang
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Christian E Pedersen
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Mark A Rossi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Avery C Hunker
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Anthony Guglin
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jose A Morón
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
| | - Larry S Zweifel
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
136
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
137
|
Noble F, Marie N. Biased Opioid Ligands: Revolution or Evolution? FRONTIERS IN PAIN RESEARCH 2021; 2:722820. [PMID: 35295469 PMCID: PMC8915667 DOI: 10.3389/fpain.2021.722820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Opioid are the most powerful analgesics ever but their use is still limited by deleterious side effects such as tolerance, dependence, and respiratory depression that could eventually lead to a fatal overdose. The opioid crisis, mainly occurring in north America, stimulates research on finding new opioid ligands with reduced side effects. Among them, biased ligands are likely the most promising compounds. We will review some of the latest discovered biased opioid ligands and see if they were able to fulfill these expectations.
Collapse
|
138
|
Chakraborty S, DiBerto JF, Faouzi A, Bernhard SM, Gutridge AM, Ramsey S, Zhou Y, Provasi D, Nuthikattu N, Jilakara R, Nelson MNF, Asher WB, Eans SO, Wilson LL, Chintala SM, Filizola M, van Rijn RM, Margolis EB, Roth BL, McLaughlin JP, Che T, Sames D, Javitch JA, Majumdar S. A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. J Med Chem 2021; 64:13873-13892. [PMID: 34505767 PMCID: PMC8530377 DOI: 10.1021/acs.jmedchem.1c01273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3 group with phenyl (4), methyl (5), or 3'-furanyl [6 (SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine. 6 (SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-protein Emax ≈ 10%) in cell lines while yet attaining maximal antinociception in vivo with reduced opioid liabilities.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Male
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Secologanin Tryptamine Alkaloids/adverse effects
- Secologanin Tryptamine Alkaloids/chemical synthesis
- Secologanin Tryptamine Alkaloids/metabolism
- Secologanin Tryptamine Alkaloids/pharmacology
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Sarah M. Bernhard
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Melissa N. F. Nelson
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Wesley B. Asher
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Shainnel O. Eans
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Lisa L. Wilson
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Satyanarayana M. Chintala
- Department of Anesthesiology, Washington University School of
Medicine, St. Louis, Missouri 63110, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Elyssa B. Margolis
- Department of Neurology, UCSF Weill Institute for Neurosciences,
University of California San Francisco, San Francisco, California 94158,
United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States; Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027,
United States
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| |
Collapse
|
139
|
Pickford P, Lucey M, Rujan RM, McGlone ER, Bitsi S, Ashford FB, Corrêa IR, Hodson DJ, Tomas A, Deganutti G, Reynolds CA, Owen BM, Tan TM, Minnion J, Jones B, Bloom SR. Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Mol Metab 2021; 51:101242. [PMID: 33933675 PMCID: PMC8163982 DOI: 10.1016/j.molmet.2021.101242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 and glucagon receptor (GLP-1R/GCGR) co-agonism can maximise weight loss and improve glycaemic control in type 2 diabetes and obesity. In this study, we investigated the cellular and metabolic effects of modulating the balance between G protein and β-arrestin-2 recruitment at GLP-1R and GCGR using oxyntomodulin (OXM)-derived co-agonists. This strategy has been previously shown to improve the duration of action of GLP-1R mono-agonists by reducing target desensitisation and downregulation. METHODS Dipeptidyl dipeptidase-4 (DPP-4)-resistant OXM analogues were generated and assessed for a variety of cellular readouts. Molecular dynamic simulations were used to gain insights into the molecular interactions involved. In vivo studies were performed in mice to identify the effects on glucose homeostasis and weight loss. RESULTS Ligand-specific reductions in β-arrestin-2 recruitment were associated with slower GLP-1R internalisation and prolonged glucose-lowering action in vivo. The putative benefits of GCGR agonism were retained, with equivalent weight loss compared to the GLP-1R mono-agonist liraglutide despite a lesser degree of food intake suppression. The compounds tested showed only a minor degree of biased agonism between G protein and β-arrestin-2 recruitment at both receptors and were best classified as partial agonists for the two pathways measured. CONCLUSIONS Diminishing β-arrestin-2 recruitment may be an effective way to increase the therapeutic efficacy of GLP-1R/GCGR co-agonists. These benefits can be achieved by partial rather than biased agonism.
Collapse
Affiliation(s)
- Phil Pickford
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Giuseppe Deganutti
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Christopher A Reynolds
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Bryn M Owen
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
140
|
Stahl EL, Bohn LM. Low Intrinsic Efficacy Alone Cannot Explain the Improved Side Effect Profiles of New Opioid Agonists. Biochemistry 2021; 61:1923-1935. [PMID: 34468132 DOI: 10.1021/acs.biochem.1c00466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a recent report in Science Signaling (Gillis, A., et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signaling 2020, 13, eaaz3140 10.1126/scisignal.aaz3140), it was suggested that low intrinsic agonism, and not biased agonism, leads to an improvement in the separation of potency in opioid-induced respiratory suppression versus antinociception. Although many of the compounds that were tested have been shown to display G protein signaling bias in prior publications, the authors conclude that because they cannot detect biased agonism in their cellular signaling studies the compounds are therefore not biased agonists. Rather, they conclude that it is low intrinsic efficacy that leads to the therapeutic window improvement. Intrinsic efficacy is the extent to which an agonist can stimulate a G protein-coupled receptor response in a system, while biased agonism takes into consideration not only the intrinsic efficacy but also the potency of an agonist in an assay. Herein, we have reanalyzed the data presented in the published work (10.1126/scisignal.aaz3140) [including the recent Erratum (10.1126/scisignal.abf9803)] to derive intrinsic efficacy and bias factors as ΔΔlog(τ/KA) and ΔΔlog(Emax/EC50), respectively. On the basis of this reanalysis, the data support the conclusion that biased agonism, favoring G protein signaling, was observed. Moreover, a conservation of rank order intrinsic efficacy was not observed upon comparing responses in each assay, further suggesting that multiple active receptor states were present. These observations agree with prior studies in which oliceridine, PZM21, and SR-17018 were first described as biased agonists with improvement in antinociception over respiratory suppression in mice. Therefore, the data in the Science Signaling paper provide strong corroborating evidence that G protein signaling bias may be a means of improving opioid analgesia while avoiding certain undesirable side effects.
Collapse
Affiliation(s)
- Edward L Stahl
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
141
|
Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. eLife 2021; 10:e67523. [PMID: 34402425 PMCID: PMC8390004 DOI: 10.7554/elife.67523] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the μ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm-generating network particularly prone to collapse when challenged with exogenous opioids.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department Neurological Surgery, University of WashingtonSeattleUnited States
| |
Collapse
|
142
|
Cornelissen JC, Blough BE, Bohn LM, Negus SS, Banks ML. Some effects of putative G-protein biased mu-opioid receptor agonists in male rhesus monkeys. Behav Pharmacol 2021; 32:453-458. [PMID: 33883450 PMCID: PMC8266741 DOI: 10.1097/fbp.0000000000000634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G-protein-biased mu-opioid receptor (GPB-MOR) agonists are an emerging class of compounds being evaluated as candidate analgesics and agonist medications for opioid use disorder. Most of the basic pharmacology of GPB-MOR agonists has been conducted in rodents and much less is known how the basic behavioral pharmacology of these compounds translates to nonhuman primates. The present study determined the antinociceptive potency and time course of three putative GPB-MOR agonists: (+)-oliceridine (i.e. TRV130), SR14968, and SR17018 in male rhesus monkeys (n = 3). In addition, the respiratory effects of these compounds were also indirectly determined using a pulse oximeter to measure percent peripheral oxygen saturation (%SpO2). The largest intramuscular oliceridine dose (3.2 mg/kg) produced significant antinociception at 50°C, but not 54°C, and peak effects were between 10 and 30 min. Oliceridine also decreased SpO2 below the 90% threshold that would be clinically categorized as hypoxia in two out of three monkeys. The largest intramuscular SR14968 dose (0.32 mg/kg) produced 100% MPE at 50°C, but not 54°C, in two out of three monkeys, and peak effects were between 30 and 100 min. The largest intravenous SR17018 dose (1 mg/kg) produced 100% MPE at 50°C, but not 54°C, in the same two out of three monkeys, and peak effects were between 30 and 100 min. Solubility limitations for both SR14968 and SR17018 impaired our ability to determine in-vivo potency and effectiveness on antinociceptive and %SpO2 measures for these two compounds.
Collapse
Affiliation(s)
- Jeremy C. Cornelissen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA 27709
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| |
Collapse
|
143
|
Fritzwanker S, Schulz S, Kliewer A. SR-17018 Stimulates Atypical µ-Opioid Receptor Phosphorylation and Dephosphorylation. Molecules 2021; 26:4509. [PMID: 34361663 PMCID: PMC8348759 DOI: 10.3390/molecules26154509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid-associated overdoses and deaths due to respiratory depression are a major public health problem in the US and other Western countries. In the past decade, much research effort has been directed towards the development of G-protein-biased µ-opioid receptor (MOP) agonists as a possible means to circumvent this problem. The bias hypothesis proposes that G-protein signaling mediates analgesia, whereas ß-arrestin signaling mediates respiratory depression. SR-17018 was initially reported as a highly biased µ-opioid with an extremely wide therapeutic window. It was later shown that SR-17018 can also reverse morphine tolerance and prevent withdrawal via a hitherto unknown mechanism of action. Here, we examined the temporal dynamics of SR-17018-induced MOP phosphorylation and dephosphorylation. Exposure of MOP to saturating concentrations of SR-17018 for extended periods of time stimulated a MOP phosphorylation pattern that was indistinguishable from that induced by the full agonist DAMGO. Unlike DAMGO-induced MOP phosphorylation, which is reversible within minutes after agonist washout, SR-17018-induced MOP phosphorylation persisted for hours under otherwise identical conditions. Such delayed MOP dephosphorylation kinetics were also found for the partial agonist buprenorphine. However, buprenorphine, SR-17018-induced MOP phosphorylation was fully reversible when naloxone was included in the washout solution. SR-17018 exhibits a qualitative and temporal MOP phosphorylation profile that is strikingly different from any other known biased, partial, or full MOP agonist. We conclude that detailed analysis of receptor phosphorylation may provide novel insights into previously unappreciated pharmacological properties of newly synthesized MOP ligands.
Collapse
Affiliation(s)
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany;
| | - Andrea Kliewer
- Department of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany;
| |
Collapse
|
144
|
Kelly B, Hollingsworth SA, Blakemore DC, Owen RM, Storer RI, Swain NA, Aydin D, Torella R, Warmus JS, Dror RO. Delineating the Ligand-Receptor Interactions That Lead to Biased Signaling at the μ-Opioid Receptor. J Chem Inf Model 2021; 61:3696-3707. [PMID: 34251810 PMCID: PMC8317888 DOI: 10.1021/acs.jcim.1c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/28/2022]
Abstract
Biased agonists, which selectively stimulate certain signaling pathways controlled by a G protein-coupled receptor (GPCR), hold great promise as drugs that maximize efficacy while minimizing dangerous side effects. Biased agonists of the μ-opioid receptor (μOR) are of particular interest as a means to achieve analgesia through G protein signaling without dose-limiting side effects such as respiratory depression and constipation. Rational structure-based design of biased agonists remains highly challenging, however, because the ligand-mediated interactions that are key to activation of each signaling pathway remain unclear. We identify several compounds for which the R- and S-enantiomers have distinct bias profiles at the μOR. These compounds serve as excellent comparative tools to study bias because the identical physicochemical properties of enantiomer pairs ensure that differences in bias profiles are due to differences in interactions with the μOR binding pocket. Atomic-level simulations of compounds at μOR indicate that R- and S-enantiomers adopt different poses that form distinct interactions with the binding pocket. A handful of specific interactions with highly conserved binding pocket residues appear to be responsible for substantial differences in arrestin recruitment between enantiomers. Our results offer guidance for rational design of biased agonists at μOR and possibly at related GPCRs.
Collapse
Affiliation(s)
- Brendan Kelly
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Scott A. Hollingsworth
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - David C. Blakemore
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert M. Owen
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - R. Ian Storer
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nigel A. Swain
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Deniz Aydin
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Rubben Torella
- Pfizer Medicine Design, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Warmus
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ron O. Dror
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| |
Collapse
|
145
|
Groff D, Stuckey H, Philpott C, Van Dyke E, Silvis M, Leong SL, Bone C. Kratom use disorder: a primer for primary care physicians. J Addict Dis 2021; 40:131-141. [PMID: 34281482 DOI: 10.1080/10550887.2021.1950263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Kratom is a substance similar to opioids that is often used for its euphoric effects, however it can be obtained legally in most of the United States. The substance is often not assessed on routine urine drug screen, however it is estimated that millions of people engage in kratom use each year and level of use is rising. Given the increasing prevalence of kratom use, and its potentially lethal consequences, it is imperative that primary care physicians be familiar with this substance and have a framework to approach identification and treatment of individuals with kratom use disorder. This manuscript offers a review of the epidemiology and pharmacology of kratom, along with guidance for care of individuals with kratom use disorder in the primary care setting.
Collapse
Affiliation(s)
- Destin Groff
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Heather Stuckey
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Carolyn Philpott
- UC Health: University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Erika Van Dyke
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Matthew Silvis
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Shou Ling Leong
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Curtis Bone
- Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
146
|
Pergolizzi JV, Webster LR, Vortsman E, Ann LeQuang J, Raffa RB. Wooden Chest syndrome: The atypical pharmacology of fentanyl overdose. J Clin Pharm Ther 2021; 46:1505-1508. [PMID: 34240442 DOI: 10.1111/jcpt.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE A large percentage of opioid overdose fatalities involve fentanyl or one of its legal or illegal analogs (F/FAs). Is there something about the pharmacology of these drugs that make them unusually dangerous in an overdose? COMMENT Some of the reasons for the dangers of overdose of F/FAs is their high potency and low cost (that leads to wide distribution). But it is rarely asked if the basic pharmacology of F/FAs differ in some fundamental way from conventional opioids such as morphine and heroin. In addition to centrally mediated respiratory depression via opioid receptors, F/FAs cause rigidity in the key respiratory muscles of the chest, upper airway and diaphragm ("wooden chest syndrome," WCS) by a non-opioid mechanism. WHAT IS NEW AND CONCLUSION WCS is an atypical pharmacology of F/FAs. Because of its rapid onset and non-opioid mechanism, WCS makes F/FA overdose particularly dangerous.
Collapse
Affiliation(s)
- Joseph V Pergolizzi
- NEMA Research Inc, Naples, FL, USA.,Neumentum Inc, Summit, NJ, USA.,Enalare Therapeutics Inc, Princeton, NJ, USA
| | | | | | | | - Robert B Raffa
- Neumentum Inc, Summit, NJ, USA.,Enalare Therapeutics Inc, Princeton, NJ, USA.,College of Pharmacy (Adjunct), University of Arizona, Tucson, AZ, USA.,School of Pharmacy (Prof. emer), Temple University, Philadelphia, PA, USA
| |
Collapse
|
147
|
Fujita W. Aiming at Ideal Therapeutics-MOPr/DOPr or MOPr-DOPr Heteromertargeting Ligand. Curr Top Med Chem 2021; 20:2843-2851. [PMID: 32324516 DOI: 10.2174/1568026620666200423095231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The recent alarming reports related to "opioid crisis" necessitate the development of safer and effective analgesics without unwanted side effects. Thus, there needs to be an alternative target or strategy for the development of drugs for the treatment of opioid use/abuse. As one of the novel targets, in these two decades, ligands targeting opioid receptor "heteromerization" including mu-opioid receptor (MOPr)-delta opioid receptor (DOPr) heteromer have been proposed and the pharmacological advancement of reduced side effects has been broadly accepted and well recognized. In this review, some of the ligands targeting both MOPr and DOPr or MOPr-DOPr heteromers are introduced especially focusing on their pharmacological effects in vivo. CONCLUSION It has been found that most of those ligands possess potent antinociceptive activity (as much as or higher than that of morphine) with reduced side effects such as tolerance. In addition, some of them are also able to reduce or prevent physiological withdrawal symptoms observed under chronic opioid use. Importantly, there are an increasing number of evidence that show changes in heteromer expression in various pathological animal models and these strongly argue for targeting heteromers for the development of the next generation of pain medication in the near future.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
148
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
149
|
Weiss N, Zamponi GW. Opioid Receptor Regulation of Neuronal Voltage-Gated Calcium Channels. Cell Mol Neurobiol 2021; 41:839-847. [PMID: 32514826 DOI: 10.1007/s10571-020-00894-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022]
Abstract
Neuronal voltage-gated calcium channels play a pivotal role in the conversion of electrical signals into calcium entry into nerve endings that is required for the release of neurotransmitters. They are under the control of a number of cellular signaling pathways that serve to fine tune synaptic activities, including G-protein coupled receptors (GPCRs) and the opioid system. Besides modulating channel activity via activation of second messengers, GPCRs also physically associate with calcium channels to regulate their function and expression at the plasma membrane. In this mini review, we discuss the mechanisms by which calcium channels are regulated by classical opioid and nociceptin receptors. We highlight the importance of this regulation in the control of neuronal functions and their implication in the development of disease conditions. Finally, we present recent literature concerning the use of novel μ-opioid receptor/nociceptin receptor modulators and discuss their use as potential drug candidates for the treatment of pain.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
150
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|