101
|
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, Xu HE. Structures of the entire human opioid receptor family. Cell 2023; 186:413-427.e17. [PMID: 36638794 DOI: 10.1016/j.cell.2022.12.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (μOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including β-endorphin- and endomorphin-bound μOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.
Collapse
Affiliation(s)
- Yue Wang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwen Zhuang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Weiyi Liu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200031, China
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
102
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
103
|
Intranuovo F, Brunetti L, DelRe P, Mangiatordi GF, Stefanachi A, Laghezza A, Niso M, Leonetti F, Loiodice F, Ligresti A, Kostrzewa M, Brea J, Loza MI, Sotelo E, Saviano M, Colabufo NA, Riganti C, Abate C, Contino M. Development of N-(1-Adamantyl)benzamides as Novel Anti-Inflammatory Multitarget Agents Acting as Dual Modulators of the Cannabinoid CB2 Receptor and Fatty Acid Amide Hydrolase. J Med Chem 2023; 66:235-250. [PMID: 36542836 DOI: 10.1021/acs.jmedchem.2c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors. The new compounds were tested for their CB2R affinity/selectivity and CB2R and FAAH activity. Derivatives 13, 26, and 27, displaying the best pharmacodynamic profile as CB2R full agonists and FAAH inhibitors, decreased pro-inflammatory and increased anti-inflammatory cytokines production. Molecular docking simulations complemented the experimental findings by providing a molecular rationale behind the observed activities. These multitarget ligands constitute promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Francesca Intranuovo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Pietro DelRe
- Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Eddy Sotelo
- ComBioMed Research Group, Centro de Química Biológica y Materiales Moleculares (CIQUS), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi, 43, Caserta 81100, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università Degli Studi di Torino, Torino 10126, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy.,Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, Bari 70126, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| |
Collapse
|
104
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
105
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
106
|
Omar AM, Aljahdali AS, Safo MK, Mohamed GA, Ibrahim SRM. Docking and Molecular Dynamic Investigations of Phenylspirodrimanes as Cannabinoid Receptor-2 Agonists. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010044. [PMID: 36615238 PMCID: PMC9821895 DOI: 10.3390/molecules28010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56 revealed the highest docking score (-11.222 kcal/mol) compared to E3R_6KPF (native agonist, gscore value -12.12 kcal/mol). The molecular docking and molecular simulation results suggest that compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions displayed π-π stacking with Phe183 and hydrogen bond interactions with Thr114, Leu182, and Ser285. These findings identified the structural features of these metabolites that might lead to the design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be further investigated for their potential as a CB2 ligand.
Collapse
Affiliation(s)
- Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.O.); (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| | - Anfal S. Aljahdali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (A.M.O.); (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| |
Collapse
|
107
|
Liu T, Gu J, Yuan Y, Yang Q, Zheng PF, Shan C, Wang F, Li H, Xie XQ, Chen XH, Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. J Transl Med 2022; 20:565. [PMID: 36474298 PMCID: PMC9724349 DOI: 10.1186/s12967-022-03773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-β1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yuan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qunfang Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Fangqin Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hongwei Li
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiao-Hong Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
108
|
Casajuana-Martin N, Navarro G, Gonzalez A, Llinas del Torrent C, Gómez-Autet M, Quintana García A, Franco R, Pardo L. A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB 2 Receptor via the Lipid Bilayer. J Chem Inf Model 2022; 62:5771-5779. [PMID: 36302505 PMCID: PMC9709915 DOI: 10.1021/acs.jcim.2c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB2 receptor (CB2R). In CB2R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala2827.36Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators.
Collapse
Affiliation(s)
- Nil Casajuana-Martin
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gemma Navarro
- Department
of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain,Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Angel Gonzalez
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Claudia Llinas del Torrent
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marc Gómez-Autet
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Aleix Quintana García
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rafael Franco
- Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain,Department
of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Leonardo Pardo
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain,E-mail:
| |
Collapse
|
109
|
Gianquinto E, Sodano F, Rolando B, Kostrzewa M, Allarà M, Mahmoud AM, Kumar P, Spyrakis F, Ligresti A, Chegaev K. N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238152. [PMID: 36500256 PMCID: PMC9738591 DOI: 10.3390/molecules27238152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Ali Mokhtar Mahmoud
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| |
Collapse
|
110
|
Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Activation and signaling mechanism revealed by GPR119-G s complex structures. Nat Commun 2022; 13:7033. [PMID: 36396650 PMCID: PMC9671963 DOI: 10.1038/s41467-022-34696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Agonists selectively targeting cannabinoid receptor-like G-protein-coupled receptor (GPCR) GPR119 hold promise for treating metabolic disorders while avoiding unwanted side effects. Here we present the cryo-electron microscopy (cryo-EM) structures of the human GPR119-Gs signaling complexes bound to AR231453 and MBX-2982, two representative agonists reported for GPR119. The structures reveal a one-amino acid shift of the conserved proline residue of TM5 that forms an outward bulge, opening up a hydrophobic cavity between TM4 and TM5 at the middle of the membrane for its endogenous ligands-monounsaturated lipid metabolites. In addition, we observed a salt bridge between ICL1 of GPR119 and Gβs. Disruption of the salt bridge eliminates the cAMP production of GPR119, indicating an important role of Gβs in GPR119-mediated signaling. Our structures, together with mutagenesis studies, illustrate the conserved binding mode of the chemically different agonists, and provide insights into the conformational changes in receptor activation and G protein coupling.
Collapse
Affiliation(s)
- Yuxia Qian
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Jiening Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Lina Wang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Yun Lin
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Hong Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Lixin Ma
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Sheng Ye
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China ,grid.13402.340000 0004 1759 700XLife Sciences Institute, Zhejiang University, Hangzhou, Zhejiang China
| | - Shan Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Anna Qiao
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
111
|
Hsiao WC, Hsin KY, Wu ZW, Song JS, Yeh YN, Chen YF, Tsai CH, Chen PH, Shia KS, Chang CP, Hung MS. Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorg Chem 2022; 130:106236. [DOI: 10.1016/j.bioorg.2022.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
112
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
113
|
Díaz O, Renault P, Giraldo J. Evaluating Allosteric Perturbations in Cannabinoid Receptor 1 by In Silico Single-Point Mutation. ACS OMEGA 2022; 7:37873-37884. [PMID: 36312415 PMCID: PMC9608382 DOI: 10.1021/acsomega.2c04980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cannabinoid receptor 1 (CB1) is a promising drug target involved in many physiological processes. Using atomistic molecular dynamics (MD) simulations, we examined the structural effect of F237L mutation on CB1, a mutation that has qualitatively similar effects to allosteric ligand ORG27569 binding. This mutation showed a global effect on CB1 conformations. Among the observed effects, TM6 outward movement and the conformational change of the NPxxY motif upon receptor activation by CB1 agonist CP55940 were hindered compared to wt CB1. Within the orthosteric binding site, CP55940 interactions with CB1 were altered. Our results revealed that allosteric perturbations introduced by the mutation had a global impact on receptor conformations, suggesting that the mutation site is a key region for allosteric modulation in CB1.
Collapse
Affiliation(s)
- Oscar Díaz
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Pedro Renault
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jesús Giraldo
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
114
|
Raïch I, Rebassa JB, Lillo J, Cordomi A, Rivas-Santisteban R, Lillo A, Reyes-Resina I, Franco R, Navarro G. Antagonization of OX 1 Receptor Potentiates CB 2 Receptor Function in Microglia from APP Sw/Ind Mice Model. Int J Mol Sci 2022; 23:12801. [PMID: 36361598 PMCID: PMC9656664 DOI: 10.3390/ijms232112801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 08/01/2023] Open
Abstract
Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.
Collapse
Affiliation(s)
- Iu Raïch
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Jaume Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | | | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Alejandro Lillo
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Rafael Franco
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Gemma Navarro
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| |
Collapse
|
115
|
Stasiulewicz A, Lesniak A, Setny P, Bujalska-Zadrożny M, Sulkowska JI. Identification of CB1 Ligands among Drugs, Phytochemicals and Natural-Like Compounds: Virtual Screening and In Vitro Verification. ACS Chem Neurosci 2022; 13:2991-3007. [PMID: 36197801 PMCID: PMC9585589 DOI: 10.1021/acschemneuro.2c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cannabinoid receptor type 1 (CB1) is an important modulator of many key physiological functions and thus a compelling molecular target. However, safe CB1 targeting is a non-trivial task. In recent years, there has been a surge of data indicating that drugs successfully used in the clinic for years (e.g. paracetamol) show CB1 activity. Moreover, there is a lot of promise in finding CB1 ligands in plants other than Cannabis sativa. In this study, we searched for possible CB1 activity among already existing drugs, their metabolites, phytochemicals, and natural-like molecules. We conducted two iterations of virtual screening, verifying the results with in vitro binding and functional assays. The in silico procedure consisted of a wide range of structure- and ligand-based methods, including docking, molecular dynamics, and quantitative structure-activity relationship (QSAR). As a result, we identified travoprost and ginkgetin as CB1 ligands, which provides a starting point for future research on the impact of their metabolites or preparations on the endocannabinoid system. Moreover, we found five natural-like compounds with submicromolar or low micromolar affinity to CB1, including one mixed partial agonist/antagonist viable for hit-to-lead phase. Finally, the computational procedure established in this work will be of use for future screening campaigns for novel CB1 ligands.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department
of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland,Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Lesniak
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland,
| |
Collapse
|
116
|
Xu W, Wu L, Liu S, Liu X, Cao X, Zhou C, Zhang J, Fu Y, Guo Y, Wu Y, Tan Q, Wang L, Liu J, Jiang L, Fan Z, Pei Y, Yu J, Cheng J, Zhao S, Hao X, Liu ZJ, Hua T. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 2022; 377:1298-1304. [DOI: 10.1126/science.abo1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Taste sensing is a sophisticated chemosensory process, and bitter taste perception is mediated by type 2 taste receptors (TAS2Rs), or class T G protein–coupled receptors. Understanding the detailed molecular mechanisms behind taste sensation is hindered by a lack of experimental receptor structures. Here, we report the cryo–electron microscopy structures of human TAS2R46 complexed with chimeric mini–G protein gustducin, in both strychnine-bound and apo forms. Several features of TAS2R46 are disclosed, including distinct receptor structures that compare with known GPCRs, a new “toggle switch,” activation-related motifs, and precoupling with mini–G protein gustducin. Furthermore, the dynamic extracellular and more-static intracellular parts of TAS2R46 suggest possible diverse ligand-recognition and activation processes. This study provides a basis for further exploration of other bitter taste receptors and their therapeutic applications.
Collapse
Affiliation(s)
- Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoling Cao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cui Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - You Fu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhongbo Fan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
117
|
Akasaka H, Tanaka T, Sano FK, Matsuzaki Y, Shihoya W, Nureki O. Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist. Nat Commun 2022; 13:5417. [PMID: 36109516 PMCID: PMC9477835 DOI: 10.1038/s41467-022-33121-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is one of the six G protein-coupled receptors activated by the bioactive lipid, lysophosphatidic acid (LPA). LPA1 is a drug target for various diseases, including cancer, inflammation, and neuropathic pain. Notably, LPA1 agonists have potential therapeutic value for obesity and urinary incontinence. Here, we report a cryo-electron microscopy structure of the active human LPA1-Gi complex bound to ONO-0740556, an LPA analog with more potent activity against LPA1. Our structure elucidated the details of the agonist binding mode and receptor activation mechanism mediated by rearrangements of transmembrane segment 7 and the central hydrophobic core. A structural comparison of LPA1 and other phylogenetically-related lipid-sensing GPCRs identified the structural determinants for lipid preference of LPA1. Moreover, we characterized the structural polymorphisms at the receptor-G-protein interface, which potentially reflect the G-protein dissociation process. Our study provides insights into the detailed mechanism of LPA1 binding to agonists and paves the way toward the design of drug-like agonists targeting LPA1. LPA1 is one of the GPCRs that are drug targets for various diseases. Here the authors report a cryo-EM structure of the active human LPA1-Gi complex bound to an LPA analog with more potent activity against LPA1 and clarified the ligand recognition mechanism.
Collapse
|
118
|
Suno R, Sugita Y, Morimoto K, Takazaki H, Tsujimoto H, Hirose M, Suno-Ikeda C, Nomura N, Hino T, Inoue A, Iwasaki K, Kato T, Iwata S, Kobayashi T. Structural insights into the G protein selectivity revealed by the human EP3-G i signaling complex. Cell Rep 2022; 40:111323. [PMID: 36103815 DOI: 10.1016/j.celrep.2022.111323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Prostaglandin receptors have been implicated in a wide range of functions, including inflammation, immune response, reproduction, and cancer. Our group has previously determined the crystal structure of the active-like EP3 bound to its endogenous agonist, prostaglandin E2. Here, we present the single-particle cryoelectron microscopy (cryo-EM) structure of the human EP3-Gi signaling complex at a resolution of 3.4 Å. The structure reveals the binding mode of Gi to EP3 and the structural changes induced in EP3 by Gi binding. In addition, we compare the structure of the EP3-Gi complex with other subtypes of prostaglandin receptors (EP2 and EP4) bound to Gs that have been previously reported and examine the differences in amino acid composition at the receptor-G protein interface. Mutational analysis reveals that the selectivity of the G protein depends on specific amino acid residues in the second intracellular loop and TM5.
Collapse
Affiliation(s)
- Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Yukihiko Sugita
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kazushi Morimoto
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Takazaki
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Chiyo Suno-Ikeda
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Norimichi Nomura
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
119
|
Ye L, Wang X, McFarland A, Madsen JJ. 19F NMR: A promising tool for dynamic conformational studies of G protein-coupled receptors. Structure 2022; 30:1372-1384. [PMID: 36130592 DOI: 10.1016/j.str.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Advances in X-ray crystallography and cryoelectron microscopy enabled unprecedented insights into the activation processes of G protein-coupled receptors (GPCRs). However, these static receptor structures provide limited information about dynamics and conformational transitions that play pivotal roles in mediating signaling diversity through the multifaceted interactions between ligands, receptors, and transducers. Developing NMR approaches to probe the dynamics of conformational transitions will push the frontier of receptor science toward a more comprehensive understanding of these signaling processes. Although much progress has been made during the last decades, it remains challenging to delineate receptor conformational states and interrogate the functions of the individual states at a quantitative level. Here we cover the progress of 19F NMR applications in GPCR conformational and dynamic studies during the past 20 years. Current challenges and limitations of 19F NMR for studying GPCR dynamics are also discussed, along with experimental strategies that will drive this field forward.
Collapse
Affiliation(s)
- Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA.
| | - Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Aidan McFarland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
120
|
Welling MT, Deseo MA, Bacic A, Doblin MS. Biosynthetic origins of unusual cannabimimetic phytocannabinoids in Cannabis sativa L: A review. PHYTOCHEMISTRY 2022; 201:113282. [PMID: 35718133 DOI: 10.1016/j.phytochem.2022.113282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Plants of Cannabis sativa L. (Cannabaceae) produce an array of more than 160 isoprenylated resorcinyl polyketides, commonly referred to as phytocannabinoids. These compounds represent molecules of therapeutic importance due to their modulation of the human endocannabinoid system (ECS). While understanding of the biosynthesis of the major phytocannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has grown rapidly in recent years, the biosynthetic origin and genetic regulation of many potentially therapeutically relevant minor phytocannabinoids remain unknown, which limits the development of chemotypically elite varieties of C. sativa. This review provides an up-to-date inventory of unusual phytocannabinoids which exhibit cannabimimetic-like activities and proposes putative metabolic origins. Metabolic branch points exploitable for combinatorial biosynthesis and engineering of phytocannabinoids with augmented therapeutic activities are also described, as is the role of phytocannabinoid remodelling to accelerate the therapeutic portfolio expansion in C. sativa.
Collapse
Affiliation(s)
- Matthew T Welling
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Monika S Doblin
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
121
|
Zhang LY, Kim AY, Cheer JF. Regulation of glutamate homeostasis in the nucleus accumbens by astrocytic CB1 receptors and its role in cocaine-motivated behaviors. ADDICTION NEUROSCIENCE 2022; 3:100022. [PMID: 36419922 PMCID: PMC9681119 DOI: 10.1016/j.addicn.2022.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades of histological and electrophysiological studies have established CB1R as presynaptic G-protein coupled receptors (GPCRs) that inhibit neurotransmitter release through retrograde signaling mechanisms. Recent seminal work demonstrates CB1R expression on astrocytes and the pivotal function of glial cells in endocannabinoid-mediated modulation of neuron-astrocyte signaling. Here, we review key facets of CB1R-mediated astroglia regulation of synaptic glutamate transmission in the nucleus accumbens with a specific emphasis on cocaine-directed behaviors.
Collapse
Affiliation(s)
- Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Y. Kim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
122
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
123
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
124
|
Benzothiazole Derivatives Endowed with Antiproliferative Activity in Paraganglioma and Pancreatic Cancer Cells: Structure–Activity Relationship Studies and Target Prediction Analysis. Pharmaceuticals (Basel) 2022; 15:ph15080937. [PMID: 36015085 PMCID: PMC9412555 DOI: 10.3390/ph15080937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The antiproliferative effects played by benzothiazoles in different cancers have aroused the interest for these molecules as promising antitumor agents. In this work, a library of phenylacetamide derivatives containing the benzothiazole nucleus was synthesized and compounds were tested for their antiproliferative activity in paraganglioma and pancreatic cancer cell lines. The novel synthesized compounds induced a marked viability reduction at low micromolar concentrations both in paraganglioma and pancreatic cancer cells. Derivative 4l showed a greater antiproliferative effect and higher selectivity index against cancer cells, as compared to other compounds. Notably, combinations of derivative 4l with gemcitabine at low concentrations induced enhanced and synergistic effects on pancreatic cancer cell viability, thus supporting the relevance of compound 4l in the perspective of clinical translation. A target prediction analysis was also carried out on 4l by using multiple computational tools, identifying cannabinoid receptors and sentrin-specific proteases as putative targets contributing to the observed antiproliferative activity.
Collapse
|
125
|
Whiting ZM, Yin J, de la Harpe SM, Vernall AJ, Grimsey NL. Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future. Trends Pharmacol Sci 2022; 43:754-771. [PMID: 35906103 DOI: 10.1016/j.tips.2022.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Cannabinoid Receptor 2 (CB2) is a G protein-coupled receptor (GPCR) with considerable, though as yet unrealised, therapeutic potential. Promising preclinical data supports the applicability of CB2 activation in autoimmune and inflammatory diseases, pain, neurodegeneration, and osteoporosis. A diverse pharmacopoeia of cannabinoid ligands is available, which has led to considerable advancements in the understanding of CB2 function and extensive preclinical evaluation. However, until recently, most CB2 ligands were highly lipophilic and as such not optimal for clinical application due to unfavourable physicochemical properties. A number of strategies have been applied to develop CB2 ligands to achieve closer to 'drug-like' properties and a few such compounds have now undergone clinical trial. We review the current state of CB2 ligand development and progress in optimising physicochemical properties, understanding advanced molecular pharmacology such as functional selectivity, and clinical evaluation of CB2-targeting compounds.
Collapse
Affiliation(s)
- Zak M Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiazhen Yin
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Sara M de la Harpe
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
126
|
Gado F, Ferrisi R, Polini B, Mohamed KA, Ricardi C, Lucarini E, Carpi S, Domenichini F, Stevenson LA, Rapposelli S, Saccomanni G, Nieri P, Ortore G, Pertwee RG, Ghelardini C, Di Cesare Mannelli L, Chiellini G, Laprairie RB, Manera C. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. J Med Chem 2022; 65:9918-9938. [PMID: 35849804 PMCID: PMC10168668 DOI: 10.1021/acs.jmedchem.2c00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands. In contrast to the parent orthosteric compound, our bitopic ligands selectively target CB2R versus CB1R and show a functional selectivity for the cAMP signaling pathway versus βarrestin2 recruitment. Moreover, the most promising bitopic ligand FD-22a displayed anti-inflammatory activity in a human microglial cell inflammatory model and antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Finally, computational studies clarified the binding mode of these compounds inside the CB2R, further confirming their bitopic nature.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,Department of Pathology, University of Pisa, Pisa 56126, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa 56126, Italy
| | | | - Lesley A Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
127
|
Uba AI, Aluwala H, Liu H, Wu C. Elucidation of partial activation of cannabinoid receptor type 2 and identification of potential partial agonists: Molecular dynamics simulation and structure-based virtual screening. Comput Biol Chem 2022; 99:107723. [PMID: 35850049 DOI: 10.1016/j.compbiolchem.2022.107723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023]
Abstract
Cannabinoid receptor type 2 (CB2R) is a member of the class A G protein-coupled receptor (GPCRs) family and a component of the endocannabinoid system that is modulated by the psychoactive chemical from Cannabis sativa, partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Selective activation of CB2R allows for the treatment of inflammatory and immune-related conditions without the psychotropic effects of CB1R. While CB2R-selective agonists are available, CB2R partial agonists are scarce. Hence, the pharmacological difference between CB2R full agonists and partial agonists remains to be deciphered, prompting the search for novel partial agonists. Here, using an induced-fit docking approach, we built a partial agonist Δ9-THC bound CB2R system from the inactive CB2R structure (PDB ID: 5ZTY) and performed microsecond molecular dynamics (MD) simulations. The simulations reveal an upward shift of the "toggle switch" W6.48(258) and minor outward movement of the transmembrane helix 6 (TM6). Dynamic network model identifies a possible communication path between the ligand and the toggle switch" W6.48(258). Furthermore, to identify potential CB2R partial agonists, we conducted structure-based virtual screening of ZINC15 "Druglike" library containing 17,900742 compounds against 3 conformations derived from MD simulation of CB2R complexed with partial agonist Δ9-THC using Glide virtual screening protocol comprising various filters with increasing accuracy. Nine diverse compounds predicted to have high MM-GBSA binding energy scores and good ADMET properties (including high gastrointestinal absorption and low toxicity) are proposed as potential CB2R partial agonists.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Harika Aluwala
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
128
|
Yue Y, Liu L, Wu LJ, Wu Y, Wang L, Li F, Liu J, Han GW, Chen B, Lin X, Brouillette RL, Breault É, Longpré JM, Shi S, Lei H, Sarret P, Stevens RC, Hanson MA, Xu F. Structural insight into apelin receptor-G protein stoichiometry. Nat Struct Mol Biol 2022; 29:688-697. [PMID: 35817871 DOI: 10.1038/s41594-022-00797-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.
Collapse
Affiliation(s)
- Yang Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lier Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Jie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Bo Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Rebecca L Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émile Breault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Songting Shi
- Structure Therapeutics, South San Francisco, CA, USA
| | - Hui Lei
- Structure Therapeutics, South San Francisco, CA, USA
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Structure Therapeutics, South San Francisco, CA, USA
| | | | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
129
|
Bondar AN. Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics. J Phys Chem B 2022; 126:3973-3984. [PMID: 35639610 DOI: 10.1021/acs.jpcb.2c00200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania.,Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
130
|
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, Xu HE. GPCRs steer G i and G s selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol Cell 2022; 82:2681-2695.e6. [PMID: 35714614 DOI: 10.1016/j.molcel.2022.05.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023]
Abstract
Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.
Collapse
Affiliation(s)
- Sijie Huang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; SARomics Biostructures AB, Scheelevägen 2, 223 63 Lund, Sweden; Present address: Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huadong Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yumu Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongzhao You
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuekui Yu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
131
|
Structural insights into human brain-gut peptide cholecystokinin receptors. Cell Discov 2022; 8:55. [PMID: 35672283 PMCID: PMC9174195 DOI: 10.1038/s41421-022-00420-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The intestinal hormone and neuromodulator cholecystokinin (CCK) receptors CCK1R and CCK2R act as a signaling hub in brain–gut axis, mediating digestion, emotion, and memory regulation. CCK receptors exhibit distinct preferences for ligands in different posttranslational modification (PTM) states. CCK1R couples to Gs and Gq, whereas CCK2R primarily couples to Gq. Here we report the cryo-electron microscopy (cryo-EM) structures of CCK1R–Gs signaling complexes liganded either by sulfated cholecystokinin octapeptide (CCK-8) or a CCK1R-selective small-molecule SR146131, and CCK2R–Gq complexes stabilized by either sulfated CCK-8 or a CCK2R-selective ligand gastrin-17. Our structures reveal a location-conserved yet charge-distinct pocket discriminating the effects of ligand PTM states on receptor subtype preference, the unique pocket topology underlying selectivity of SR146131 and gastrin-17, the conformational changes in receptor activation, and key residues contributing to G protein subtype specificity, providing multiple structural templates for drug design targeting the brain–gut axis.
Collapse
|
132
|
Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1. Nat Chem Biol 2022; 18:831-840. [DOI: 10.1038/s41589-022-01038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
|
133
|
Liddle I, Glass M, Tyndall JDA, Vernall AJ. Covalent cannabinoid receptor ligands - structural insight and selectivity challenges. RSC Med Chem 2022; 13:497-510. [PMID: 35694688 PMCID: PMC9132230 DOI: 10.1039/d2md00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
X-ray crystallography and cryogenic electronic microscopy have provided significant advancement in the knowledge of GPCR structure and have allowed the rational design of GPCR ligands. The class A GPCRs cannabinoid receptor type 1 and type 2 are implicated in many pathophysiological processes and thus rational design of drug and tool compounds is of great interest. Recent structural insight into cannabinoid receptors has already led to a greater understanding of ligand binding sites and receptor residues that likely contribute to ligand selectivity. Herein, classes of heterocyclic covalent cannabinoid receptor ligands are reviewed in light of the recent advances in structural knowledge of cannabinoid receptors, with particular discussion regarding covalent ligand selectivity and rationale design.
Collapse
Affiliation(s)
- Ian Liddle
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago Dunedin New Zealand
| | | | - Andrea J Vernall
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| |
Collapse
|
134
|
Xiao W, Chen Y. TRPV1 in male reproductive system: focus on sperm function. Mol Cell Biochem 2022; 477:2567-2579. [PMID: 35595954 DOI: 10.1007/s11010-022-04469-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a receptor used to perceive external noxious stimuli and participates in the regulation of various pathophysiological mechanisms in vivo by integrating multiple signals. The explosive growth in knowledge of TRPV1 stemmed from research on neuronal pain and heat sensation over the last decades and is being expanded tremendously in peripheral tissue research. The discovery that TRPV1 is functionally active in male animal and human reproductive tissues have attracted increasing attention in recent years. Indeed, many studies have indicated that TRPV1 is an endocannabinoid receptor that mediates Anandamide's regulation of sperm function. Other characteristics of the TRPV1 channel itself, such as calcium penetration and temperature sensitivity, have also been investigated, especially the possibility that TRPV1 could act as a mediator for sperm thermotaxis. In addition, some reproductive diseases appear to be related to the protective effects of TRPV1 on oxidative stress and heat stress. A better understanding of TRPV1 in these areas should provide strategies for tackling male infertility. This paper is the first to review the expression and mechanism of TRPV1 in the male reproductive system from molecular and cellular perspectives. A focus is given on sperm function, including calcium homeostasis, crosstalk with endocannabinoid system, participation in cholesterol-related sperm maturation, and thermotaxis, hoping to capture the current situation of this rapidly developing field.
Collapse
Affiliation(s)
- Wanglong Xiao
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China.
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
135
|
Gazzi T, Brennecke B, Atz K, Korn C, Sykes D, Forn-Cuni G, Pfaff P, Sarott RC, Westphal MV, Mostinski Y, Mach L, Wasinska-Kalwa M, Weise M, Hoare BL, Miljuš T, Mexi M, Roth N, Koers EJ, Guba W, Alker A, Rufer AC, Kusznir EA, Huber S, Raposo C, Zirwes EA, Osterwald A, Pavlovic A, Moes S, Beck J, Nettekoven M, Benito-Cuesta I, Grande T, Drawnel F, Widmer G, Holzer D, van der Wel T, Mandhair H, Honer M, Fingerle J, Scheffel J, Broichhagen J, Gawrisch K, Romero J, Hillard CJ, Varga ZV, van der Stelt M, Pacher P, Gertsch J, Ullmer C, McCormick PJ, Oddi S, Spaink HP, Maccarrone M, Veprintsev DB, Carreira EM, Grether U, Nazaré M. Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chem Sci 2022; 13:5539-5545. [PMID: 35694350 PMCID: PMC9116301 DOI: 10.1039/d1sc06659e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs. Detection and visualization of the cannabinoid receptor type 2 by a cell-permeable high affinity fluorescent probe platform enables tracing receptor trafficking in live cells and in zebrafish.![]()
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Benjamin Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Kenneth Atz
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Claudia Korn
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | | | - Patrick Pfaff
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Roman C Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias V Westphal
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Malgorzata Wasinska-Kalwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Marie Weise
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Bradley L Hoare
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Tamara Miljuš
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Maira Mexi
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Nicolas Roth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Eline J Koers
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - André Alker
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Arne C Rufer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Eric A Kusznir
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Sylwia Huber
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Catarina Raposo
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Elisabeth A Zirwes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anja Osterwald
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anto Pavlovic
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Svenja Moes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jennifer Beck
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Matthias Nettekoven
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Faye Drawnel
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Gabriella Widmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Daniela Holzer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Harpreet Mandhair
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Michael Honer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Germany.,Allergology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Zoltan V Varga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA.,HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University 1085 Budapest Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Christoph Ullmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo 64100 Teramo European Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
| | - Herman P Spaink
- Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
| | - Dmitry B Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
136
|
Kevin RC, Mirlohi S, Manning JJ, Boyd R, Cairns EA, Ametovski A, Lai F, Luo JL, Jorgensen W, Ellison R, Gerona RR, Hibbs DE, McGregor IS, Glass M, Connor M, Bladen C, Zamponi GW, Banister SD. Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca V3) Inhibitors. ACS Chem Neurosci 2022; 13:1395-1409. [PMID: 35442021 DOI: 10.1021/acschemneuro.1c00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a large and growing class of new psychoactive substances (NPSs). Two recently identified compounds, MEPIRAPIM and 5F-BEPIRAPIM (NNL-2), have not been confirmed as agonists of either cannabinoid receptor subtype but share structural similarities with both SCRAs and a class of T-type calcium channel (CaV3) inhibitors under development as new treatments for epilepsy and pain. In this study, MEPIRAPIM and 5F-BEPIRAPIM and 10 systematic analogues were synthesized, analytically characterized, and pharmacologically evaluated using in vitro cannabinoid receptor and CaV3 assays. Several compounds showed micromolar affinities for CB1 and/or CB2, with several functioning as low potency agonists of CB1 and CB2 in a membrane potential assay. 5F-BEPIRAPIM and four other derivatives were identified as potential CaV3 inhibitors through a functional calcium flux assay (>70% inhibition), which was further confirmed using whole-cell patch-clamp electrophysiology. Additionally, MEPIRAPIM and 5F-BEPIRAPIM were evaluated in vivo using a cannabimimetic mouse model. Despite detections of MEPIRAPIM and 5F-BEPIRAPIM in the NPS market, only the highest MEPIRAPIM dose (30 mg/kg) elicited a mild hypothermic response in mice, with no hypothermia observed for 5F-BEPIRAPIM, suggesting minimal central CB1 receptor activity.
Collapse
Affiliation(s)
- Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Somayeh Mirlohi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Jamie J. Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | | | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Mark Connor
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Chris Bladen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
137
|
De novo design of a transcription factor for a progesterone biosensor. Biosens Bioelectron 2022; 203:113897. [DOI: 10.1016/j.bios.2021.113897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
|
138
|
Markham J, Sparkes E, Boyd R, Chen S, Manning JJ, Finlay D, Lai F, McGregor E, Maloney CJ, Gerona RR, Connor M, McGregor IS, Hibbs DE, Glass M, Kevin RC, Banister SD. Defining Steric Requirements at CB 1 and CB 2 Cannabinoid Receptors Using Synthetic Cannabinoid Receptor Agonists 5F-AB-PINACA, 5F-ADB-PINACA, PX-1, PX-2, NNL-1, and Their Analogues. ACS Chem Neurosci 2022; 13:1281-1295. [PMID: 35404067 DOI: 10.1021/acschemneuro.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.
Collapse
Affiliation(s)
- Jack Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Jamie J. Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - David Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Eila McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney 2005, New South Wales, Australia
| | - Callan J. Maloney
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney 2005, New South Wales, Australia
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Pharmacy, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, New South Wales, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| |
Collapse
|
139
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
140
|
Xiong X, Chen S, Shen J, You H, Yang H, Yan C, Fang Z, Zhang J, Cai X, Dong X, Kang T, Li W, Zhou P. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct Target Ther 2022; 7:99. [PMID: 35383142 PMCID: PMC8983672 DOI: 10.1038/s41392-022-00918-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
The combination of immune checkpoint blockade (ICB) with chemotherapy significantly improves clinical benefit of cancer treatment. Since chemotherapy is often associated with adverse events, concomitant treatment with drugs managing side effects of chemotherapy is frequently used in the combination therapy. However, whether these ancillary drugs could impede immunotherapy remains unknown. Here, we showed that ∆9-tetrahydrocannabinol (THC), the key ingredient of drugs approved for the treatment of chemotherapy-caused nausea, reduced the therapeutic effect of PD-1 blockade. The endogenous cannabinoid anandamide (AEA) also impeded antitumor immunity, indicating an immunosuppressive role of the endogenous cannabinoid system (ECS). Consistently, high levels of AEA in the sera were associated with poor overall survival in cancer patients. We further found that cannabinoids impaired the function of tumor-specific T cells through CNR2. Using a knock-in mouse model expressing a FLAG-tagged Cnr2 gene, we discovered that CNR2 binds to JAK1 and inhibits the downstream STAT signaling in T cells. Taken together, our results unveiled a novel mechanism of the ECS-mediated suppression on T-cell immunity against cancer, and suggest that cannabis and cannabinoid drugs should be avoided during immunotherapy.
Collapse
Affiliation(s)
- Xinxin Xiong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510515, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, China
| | - Hua You
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Ziqian Fang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiuyu Cai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xingjun Dong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China.
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
141
|
Wu Y, Li X, Hua T, Liu ZJ, Liu H, Zhao S. MD Simulations Revealing Special Activation Mechanism of Cannabinoid Receptor 1. Front Mol Biosci 2022; 9:860035. [PMID: 35425811 PMCID: PMC9004671 DOI: 10.3389/fmolb.2022.860035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is gaining much interest for its regulating role in the central nervous system and its value as a drug target. Structures of CB1 in inactive and active states have revealed conformational change details that are not common in other GPCRs. Here, we performed molecular dynamics simulations of CB1 in different ligand binding states and with mutations to reveal its activation mechanism. The conformational change of the “twin toggle switch” residues F2003.36 and W3566.48 that correlates with ligand efficacy is identified as a key barrier step in CB1 activation. Similar conformational change of residues 3.36/6.48 is also observed in melanocortin receptor 4, showing this “twin toggle switch” residue pair is crucial for the activation of multiple GPCR members.
Collapse
Affiliation(s)
- Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| |
Collapse
|
142
|
Creanza TM, Lamanna G, Delre P, Contino M, Corriero N, Saviano M, Mangiatordi GF, Ancona N. DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues. J Chem Inf Model 2022; 62:1411-1424. [PMID: 35294184 DOI: 10.1021/acs.jcim.2c00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, we present a deep learning algorithm for automated design of druglike analogues (DeLA-Drug), a recurrent neural network (RNN) model composed of two long short-term memory (LSTM) layers and conceived for data-driven generation of similar-to-bioactive compounds. DeLA-Drug captures the syntax of SMILES strings of more than 1 million compounds belonging to the ChEMBL28 database and, by employing a new strategy called sampling with substitutions (SWS), generates molecules starting from a single user-defined query compound. Remarkably, the algorithm preserves druglikeness and synthetic accessibility of the known bioactive compounds present in the ChEMBL28 repository. The absence of any time-demanding fine-tuning procedure enables DeLA-Drug to perform a fast generation of focused libraries for further high-throughput screening and makes it a suitable tool for performing de novo design even in low-data regimes. To provide a concrete idea of its applicability, DeLA-Drug was applied to the cannabinoid receptor subtype 2 (CB2R), a known target involved in different pathological conditions such as cancer and neurodegeneration. DeLA-Drug, available as a free web platform (http://www.ba.ic.cnr.it/softwareic/deladrugportal/), can help medicinal chemists interested in generating analogues of compounds already available in their laboratories and, for this reason, good candidates for an easy and low-cost synthesis.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- CNR─Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Giuseppe Lamanna
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.,CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.,CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Nicola Corriero
- CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | - Michele Saviano
- CNR─Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | | | - Nicola Ancona
- CNR─Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| |
Collapse
|
143
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
144
|
El-Atawneh S, Goldblum A. Candidate Therapeutics by Screening for Multitargeting Ligands: Combining the CB2 Receptor With CB1, PPARγ and 5-HT4 Receptors. Front Pharmacol 2022; 13:812745. [PMID: 35295337 PMCID: PMC8918518 DOI: 10.3389/fphar.2022.812745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, the cannabinoid type 2 receptor (CB2R) has become a major target for treating many disease conditions. The old therapeutic paradigm of “one disease-one target-one drug” is being transformed to “complex disease-many targets-one drug.” Multitargeting, therefore, attracts much attention as a promising approach. We thus focus on designing single multitargeting agents (MTAs), which have many advantages over combined therapies. Using our ligand-based approach, the “Iterative Stochastic Elimination” (ISE) algorithm, we produce activity models of agonists and antagonists for desired therapeutic targets and anti-targets. These models are used for sequential virtual screening and scoring large libraries of molecules in order to pick top-scored candidates for testing in vitro and in vivo. In this study, we built activity models for CB2R and other targets for combinations that could be used for several indications. Those additional targets are the cannabinoid 1 receptor (CB1R), peroxisome proliferator-activated receptor gamma (PPARγ), and 5-Hydroxytryptamine receptor 4 (5-HT4R). All these models have high statistical parameters and are reliable. Many more CB2R/CBIR agonists were found than combined CB2R agonists with CB1R antagonist activity (by 200 fold). CB2R agonism combined with PPARγ or 5-HT4R agonist activity may be used for treating Inflammatory Bowel Disease (IBD). Combining CB2R agonism with 5-HT4R generates more candidates (14,008) than combining CB2R agonism with agonists for the nuclear receptor PPARγ (374 candidates) from an initial set of ∼2.1 million molecules. Improved enrichment of true vs. false positives may be achieved by requiring a better ISE score cutoff or by performing docking. Those candidates can be purchased and tested experimentally to validate their activity. Further, we performed docking to CB2R structures and found lower statistical performance of the docking (“structure-based”) compared to ISE modeling (“ligand-based”). Therefore, ISE modeling may be a better starting point for molecular discovery than docking.
Collapse
|
145
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
146
|
Franco R, Morales P, Navarro G, Jagerovic N, Reyes-Resina I. The Binding Mode to Orthosteric Sites and/or Exosites Underlies the Therapeutic Potential of Drugs Targeting Cannabinoid CB2 Receptors. Front Pharmacol 2022; 13:852631. [PMID: 35250601 PMCID: PMC8889005 DOI: 10.3389/fphar.2022.852631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
The classical terms agonists and antagonists for G protein coupled receptors (GPCRs) have often become misleading. Even the biased agonism concept does not describe all the possibilities already demonstrated for GPCRs. The cannabinoid CB2 receptor (CB2R) emerged as a promising target for a variety of diseases. Reasons for such huge potential are centered around the way drugs sit in the orthosteric and/or exosites of the receptor. On the one hand, a given drug in a specific CB2R conformation leads to a signaling cascade that differs qualitatively and/or quantitatively from that triggered by another drug. On the other hand, a given drug may lead to different signaling outputs in two different tissues (or cell contexts) in which the conformation of the receptor is affected by allosteric effects derived from interactions with other proteins or with membrane lipids. This highlights the pharmacological complexity of this receptor and the need to further unravel the binding mode of CB2R ligands in order to fine-tune signaling effects and therapeutic propositions.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rafael Franco,
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Irene Reyes-Resina
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
147
|
Dutta S, Selvam B, Shukla D. Distinct Binding Mechanisms for Allosteric Sodium Ion in Cannabinoid Receptors. ACS Chem Neurosci 2022; 13:379-389. [PMID: 35019279 DOI: 10.1021/acschemneuro.1c00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of cannabinoid receptors is not fully explored due to psychoactive side effects and lack of selectivity associated with orthosteric ligands. Allosteric modulators have the potential to become selective therapeutics for cannabinoid receptors. Biochemical experiments have shown the effects of the allosteric Na+ binding on cannabinoid receptor activity. However, the Na+ coordination site and binding pathway are still unknown. Here, we perform molecular dynamic simulations to explore Na+ binding in the cannabinoid receptors, CB1 and CB2. Simulations reveal that Na+ binds to the primary binding site from different extracellular sites for CB1 and CB2. A distinct secondary Na+ coordination site is identified in CB1 that is not present in CB2. Furthermore, simulations also show that intracellular Na+ could bind to the Na+ binding site in CB1. Constructed Markov state models show that the standard free energy of Na+ binding is similar to the previously calculated free energy for other class A GPCRs.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
148
|
Mechanistic Origin of Partial Agonism of Tetrahydrocannabinol for Cannabinoid Receptors. J Biol Chem 2022; 298:101764. [PMID: 35227761 PMCID: PMC8965160 DOI: 10.1016/j.jbc.2022.101764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative as they can mitigate overstimulation and side effects. One of the key bottlenecks in the design of partial agonists, however, is the lack of understanding of the molecular mechanism of partial agonism itself. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and predict the mechanistic basis of partial agonism exhibited by Δ9-Tetrahydrocannabinol (THC) against CB1. In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist-binding poses or from its ability to only partially activate the receptor. We used extensive molecular dynamics simulations and Markov state modeling to capture the THC binding in both antagonist and agonist-binding poses in the CB1 receptor. Furthermore, we predict that binding of THC in the agonist-binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. Taken together, this study provides important insights into the mechanistic origin of the partial agonism of THC.
Collapse
|
149
|
Improved cyclobutyl nabilone analogs as potent CB1 receptor agonists. Eur J Med Chem 2022; 230:114027. [DOI: 10.1016/j.ejmech.2021.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022]
|
150
|
Structural basis of the ligand binding and signaling mechanism of melatonin receptors. Nat Commun 2022; 13:454. [PMID: 35075127 PMCID: PMC8786939 DOI: 10.1038/s41467-022-28111-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Melatonin receptors (MT1 and MT2 in humans) are family A G protein-coupled receptors that respond to the neurohormone melatonin to regulate circadian rhythm and sleep. Numerous efforts have been made to develop drugs targeting melatonin receptors for the treatment of insomnia, circadian rhythm disorder, and cancer. However, designing subtype-selective melatonergic drugs remains challenging. Here, we report the cryo-EM structures of the MT1-Gi signaling complex with 2-iodomelatonin and ramelteon and the MT2-Gi signaling complex with ramelteon. These structures, together with the reported functional data, reveal that although MT1 and MT2 possess highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be targeted to design subtype-selective drugs. The unique structural motifs in MT1 and MT2 mediate structural rearrangements with a particularly wide opening on the cytoplasmic side. Gi is engaged in the receptor core shared by MT1 and MT2 and presents a conformation deviating from those in other Gi complexes. Together, our results provide new clues for designing melatonergic drugs and further insights into understanding the G protein coupling mechanism.
Collapse
|