101
|
Song H, Tian X, Liu D, Liu M, Liu Y, Liu J, Mei Z, Yan C, Han Y. CREG1 improves the capacity of the skeletal muscle response to exercise endurance via modulation of mitophagy. Autophagy 2021; 17:4102-4118. [PMID: 33726618 DOI: 10.1080/15548627.2021.1904488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CREG1 (cellular repressor of E1A-stimulated genes 1) is involved in tissue homeostasis and influences macroautophagy/autophagy to protect cardiovascular function. However, the physiological and pathological role of CREG1 in the skeletal muscle is not clear. Here, we established a skeletal muscle-specific creg1 knockout mouse model (creg1;Ckm-Cre) by crossing the Creg1-floxed mice (Creg1fl/fl) with a transgenic line expressing Cre recombinase under the muscle-specific Ckm (creatine kinase, muscle) promoter. In creg1;Ckm-Cre mice, the exercise time to exhaustion and running distance were significantly reduced compared to Creg1fl/fl mice at the age of 9 months. In addition, the administration of recombinant (re)CREG1 protein improved the motor function of 9-month-old creg1;Ckm-Cre mice. Moreover, electron microscopy images of 9-month-old creg1;Ckm-Cre mice showed that the mitochondrial quality and quantity were abnormal and associated with increased levels of PINK1 (PTEN induced putative kinase 1) and PRKN/PARKIN (parkin RBR E3 ubiquitin protein ligase) but reduced levels of the mitochondrial proteins PTGS2/COX2, COX4I1/COX4, and TOMM20. These results suggested that CREG1 deficiency accelerated the induction of mitophagy in the skeletal muscle. Mechanistically, gain-and loss-of-function mutations of Creg1 altered mitochondrial morphology and function, impairing mitophagy in C2C12 cells. Furthermore, HSPD1/HSP60 (heat shock protein 1) (401-573 aa) interacted with CREG1 (130-220 aa) to antagonize the degradation of CREG1 and was involved in the regulation of mitophagy. This was the first time to demonstrate that CREG1 localized to the mitochondria and played an important role in mitophagy modulation that determined skeletal muscle wasting during the growth process or disease conditions.Abbreviations: CCCP: carbonyl cyanide m-chlorophenylhydrazone; CKM: creatine kinase, muscle; COX4I1/COX4: cytochrome c oxidase subunit 4I1; CREG1: cellular repressor of E1A-stimulated genes 1; DMEM: dulbecco's modified eagle medium; DNM1L/DRP1: dynamin 1-like; FCCP: carbonyl cyanide p-trifluoro-methoxy phenyl-hydrazone; HSPD1/HSP60: heat shock protein 1 (chaperonin); IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; MFN2: mitofusin 2; MYH1/MHC-I: myosin, heavy polypeptide 1, skeletal muscle, adult; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; RFP: red fluorescent protein; RT-qPCR: real-time quantitative PCR; SQSTM1/p62: sequestosome 1; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage-dependent anion channel.
Collapse
Affiliation(s)
- HaiXu Song
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Meili Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhu Mei
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
102
|
Dall KB, Havelund JF, Harvald EB, Witting M, Færgeman NJ. HLH-30-dependent rewiring of metabolism during starvation in C. elegans. Aging Cell 2021; 20:e13342. [PMID: 33724708 PMCID: PMC8045935 DOI: 10.1111/acel.13342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most fundamental challenges for all living organisms is to sense and respond to alternating nutritional conditions in order to adapt their metabolism and physiology to promote survival and achieve balanced growth. Here, we applied metabolomics and lipidomics to examine temporal regulation of metabolism during starvation in wild‐type Caenorhabditis elegans and in animals lacking the transcription factor HLH‐30. Our findings show for the first time that starvation alters the abundance of hundreds of metabolites and lipid species in a temporal‐ and HLH‐30‐dependent manner. We demonstrate that premature death of hlh‐30 animals under starvation can be prevented by supplementation of exogenous fatty acids, and that HLH‐30 is required for complete oxidation of long‐chain fatty acids. We further show that RNAi‐mediated knockdown of the gene encoding carnitine palmitoyl transferase I (cpt‐1) only impairs survival of wild‐type animals and not of hlh‐30 animals. Strikingly, we also find that compromised generation of peroxisomes by prx‐5 knockdown renders hlh‐30 animals hypersensitive to starvation, which cannot be rescued by supplementation of exogenous fatty acids. Collectively, our observations show that mitochondrial functions are compromised in hlh‐30 animals and that hlh‐30 animals rewire their metabolism to largely depend on functional peroxisomes during starvation, underlining the importance of metabolic plasticity to maintain survival.
Collapse
Affiliation(s)
- Kathrine B. Dall
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Jesper F. Havelund
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Eva B. Harvald
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany
- Metabolomics and Proteomics Core Helmholtz Zentrum München Neuherberg Germany
- Chair of Analytical Food Chemistry Technische Universität München Freising Germany
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences University of Southern Denmark Odense M Denmark
| |
Collapse
|
103
|
Abstract
Exercise stimulates the biogenesis of mitochondria in muscle. Some literature supports the use of pharmaceuticals to enhance mitochondria as a substitute for exercise. We provide evidence that exercise rejuvenates mitochondrial function, thereby augmenting muscle health with age, in disease, and in the absence of cellular regulators. This illustrates the power of exercise to act as mitochondrial medicine in muscle.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
104
|
Kim J, Kim SH, Kang H, Lee S, Park SY, Cho Y, Lim YM, Ahn JW, Kim YH, Chung S, Choi CS, Jang YJ, Park HS, Heo Y, Kim KH, Lee MS. TFEB-GDF15 axis protects against obesity and insulin resistance as a lysosomal stress response. Nat Metab 2021; 3:410-427. [PMID: 33758420 DOI: 10.1038/s42255-021-00368-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/18/2021] [Indexed: 01/01/2023]
Abstract
TFEB, a key regulator of lysosomal biogenesis and autophagy, is induced not only by nutritional deficiency but also by organelle stress. Here, we find that Tfeb and its downstream genes are upregulated together with lipofuscin accumulation in adipose tissue macrophages (ATMs) of obese mice or humans, suggestive of obesity-associated lysosomal dysfunction/stress in ATMs. Macrophage-specific TFEB-overexpressing mice display complete abrogation of diet-induced obesity, adipose tissue inflammation and insulin resistance, which is independent of autophagy, but dependent on TFEB-induced GDF15 expression. Palmitic acid induces Gdf15 expression through lysosomal Ca2+-mediated TFEB nuclear translocation in response to lysosomal stress. In contrast, mice fed a high-fat diet with macrophage-specific Tfeb deletion show aggravated adipose tissue inflammation and insulin resistance, accompanied by reduced GDF15 level. Finally, we observe activation of TFEB-GDF15 in ATMs of obese humans as a consequence of lysosomal stress. These findings highlight the importance of the TFEB-GDF15 axis as a lysosomal stress response in obesity or metabolic syndrome and as a promising therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Hun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Discovery 1 team, GI Innovation, Seoul, Korea
| | - Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soyeon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| | - Yu-Mi Lim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Woong Ahn
- Brain Korea 21 Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Hwan Kim
- Brain Korea 21 Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Seungsoo Chung
- Brain Korea 21 Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Yeon Jin Jang
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hye Soon Park
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoonseok Heo
- Department of General Surgery, Inha University, College of Medicine, Incheon, Korea
| | - Kook Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
- Discovery 1 team, GI Innovation, Seoul, Korea.
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
105
|
Zhang J, Zhang Y, He X, Wang S, Pang S, Yan B. TFEB Gene Promoter Variants Effect on Gene Expression in Acute Myocardial Infarction. Front Cell Dev Biol 2021; 9:630279. [PMID: 33732699 PMCID: PMC7959723 DOI: 10.3389/fcell.2021.630279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Autophagy is involved in many physiological processes. Transcription factor EB (TFEB) is a master regulator of autophagy and coordinates the expression of autophagic proteins, lysosomal hydrolases, and lysosomal membrane proteins. Though autophagy has been implicated in several human diseases, little is known regarding TFEB gene expression and regulation in the process. Since dysfunctional autophagy plays critical roles in acute myocardial infarction (AMI), dysregulated TFEB gene expression may be associated with AMI by regulating autophagy. In this study, the TFEB gene promoter was genetically and functionally analyzed in AMI patients (n = 352) and ethnic-matched controls (n = 337). A total of fifteen regulatory variants of the TFEB gene, including eight single-nucleotide polymorphisms (SNPs), were identified in this population. Among these, six regulatory variants [g.41737274T>C (rs533895008), g.41737144A>G, g.41736987C > T (rs760293138), g.41736806C > T (rs748537297), g.41736635T > C (rs975050638), and g.41736544C > T] were only identified in AMI patients. These regulatory variants significantly altered the transcriptional activity of the TFEB gene promoter. Further electrophoretic mobility shift assay revealed that three of the variants evidently affected the binding of transcription factors. Therefore, this study identified novel TFEB gene regulatory variants which affect the gene expression. These TFEB gene regulatory variants may contribute to AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Yexin Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Xiaohui He
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
106
|
Du W, Ren L, Hamblin MH, Fan Y. Endothelial Cell Glucose Metabolism and Angiogenesis. Biomedicines 2021; 9:biomedicines9020147. [PMID: 33546224 PMCID: PMC7913320 DOI: 10.3390/biomedicines9020147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation from the pre-existing vascular bed, is a critical event in various physiological and pathological settings. Over the last few years, the role of endothelial cell (EC) metabolism in angiogenesis has received considerable attention. Accumulating studies suggest that ECs rely on aerobic glycolysis, rather than the oxidative phosphorylation pathway, to produce ATP during angiogenesis. To date, numerous critical regulators of glucose metabolism, fatty acid oxidation, and glutamine metabolism have been identified to modulate the EC angiogenic switch and pathological angiogenesis. The unique glycolytic feature of ECs is critical for cell proliferation, migration, and responses to environmental changes. In this review, we provide an overview of recent EC glucose metabolism studies, particularly glycolysis, in quiescent and angiogenic ECs. We also summarize and discuss potential therapeutic strategies that take advantage of EC metabolism. The elucidation of metabolic regulation and the precise underlying mechanisms could facilitate drug development targeting EC metabolism to treat angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
| | - Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (W.D.); (L.R.)
- Department of Internal Medicine, Division of Cardiovascular Health and Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
107
|
Pablo Tortola C, Fielitz B, Li Y, Rüdebusch J, Luft FC, Fielitz J. Activation of Tripartite Motif Containing 63 Expression by Transcription Factor EB and Transcription Factor Binding to Immunoglobulin Heavy Chain Enhancer 3 Is Regulated by Protein Kinase D and Class IIa Histone Deacetylases. Front Physiol 2021; 11:550506. [PMID: 33519497 PMCID: PMC7838639 DOI: 10.3389/fphys.2020.550506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Rationale The ubiquitin–proteasome system (UPS) is responsible for skeletal muscle atrophy. We showed earlier that the transcription factor EB (TFEB) plays a role by increasing E3 ubiquitin ligase muscle really interesting new gene-finger 1(MuRF1)/tripartite motif-containing 63 (TRIM63) expression. MuRF 1 ubiquitinates structural proteins and mediates their UPS-dependent degradation. We now investigated how TFEB-mediated TRIM63 expression is regulated. Objective Because protein kinase D1 (PKD1), histone deacetylase 5 (HDAC5), and TFEB belong to respective families with close structural, regulatory, and functional properties, we hypothesized that these families comprise a network regulating TRIM63 expression. Methods and Results We found that TFEB and transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) activate TRIM63 expression. The class IIa HDACs HDAC4, HDAC5, and HDAC7 inhibited this activity. Furthermore, we could map the HDAC5 and TFE3 physical interaction. PKD1, PKD2, and PKD3 reversed the inhibitory effect of all tested class IIa HDACs toward TFEB and TFE3. PKD1 mediated nuclear export of all HDACs and lifted TFEB and TFE3 repression. We also mapped the PKD2 and HDAC5 interaction. We found that the inhibitory effect of PKD1 and PKD2 toward HDAC4, HDAC5, and HDAC7 was mediated by their phosphorylation and 14-3-3 mediated nuclear export. Conclusion TFEB and TFE3 activate TRIM63 expression. Both transcription factors are controlled by HDAC4, HDAC5, HDAC7, and all PKD-family members. We propose that the multilevel PKD/HDAC/TFEB/TFE3 network tightly controls TRIM63 expression.
Collapse
Affiliation(s)
- Cristina Pablo Tortola
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Fielitz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yi Li
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Rüdebusch
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
108
|
Sun J, Lu H, Liang W, Zhao G, Ren L, Hu D, Chang Z, Liu Y, Garcia-Barrio MT, Zhang J, Chen YE, Fan Y. Endothelial TFEB (Transcription Factor EB) Improves Glucose Tolerance via Upregulation of IRS (Insulin Receptor Substrate) 1 and IRS2. Arterioscler Thromb Vasc Biol 2021; 41:783-795. [PMID: 33297755 PMCID: PMC8105265 DOI: 10.1161/atvbaha.120.315310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis. However, the role of endothelial TFEB in metabolism remains to be explored. In this study, we sought to investigate the role of endothelial TFEB in glucose metabolism and underlying molecular mechanisms. Approach and Results: To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout and EC-selective TFEB transgenic mice fed a high-fat diet. EC-selective TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-selective TFEB transgenic mice showed improved glucose tolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts Akt (AKT serine/threonine kinase) signaling. Adenovirus-mediated overexpression of TFEB consistently activates Akt and significantly increases glucose uptake in ECs. Mechanistically, TFEB upregulates IRS1 and IRS2 (insulin receptor substrate 1 and 2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495, and miR-548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-selective TFEB knockout mice and consistently improved in EC-selective TFEB transgenic mice on high-fat diet. CONCLUSIONS Our data revealed a critical role of TFEB in endothelial metabolism and suggest that TFEB constitutes a potential molecular target for the treatment of vascular and metabolic diseases.
Collapse
Affiliation(s)
- Jinjian Sun
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Die Hu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanbo Fan
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
109
|
Sebastián D, Zorzano A. Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism. Dev Cell 2021; 54:268-281. [PMID: 32693059 DOI: 10.1016/j.devcel.2020.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
Cellular processes that sense and transmit metabolic changes are crucial for adaptation to external signals. In this regard, autophagy provides energy upon nutrient deprivation and represents a quality control mechanism that eliminates damaged organelles or proteins. Here, we review recent findings on the metabolic pathways controlling autophagy in skeletal muscle, a plastic tissue that undergoes major changes in energy demands. We also analyze the implications of autophagy in the regulation of energy metabolism in muscle and how alterations in this process affect energy homeostasis at the whole-body level and the development of metabolic diseases and aging.
Collapse
Affiliation(s)
- David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
110
|
Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem 2021; 69:248-264. [PMID: 33442914 DOI: 10.1002/bab.2104] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Autophagy causes the breakdown of damaged proteins and organelles to their constituent components. The phosphatidylinositol 3-kinase (PI3K) pathway played an important role in regulating the autophagic response of cells in response to changing reactive oxygen species (ROS) levels. The PI3K α catalytic subunit inhibits autophagy, while its β catalytic subunit promotes autophagy in response to changes in ROS levels. The downstream Akt protein acts against autophagy initiation in response to increases in ROS levels under nutrient-rich conditions. Akt acts by activating a mechanistic target of the rapamycin complex 1 (mTORC1) and by arresting autophagic gene expression. The AMP-activated protein kinase (AMPK) protein counteracts the Akt actions. mTORC1 and mTORC2 inhibit autophagy under moderate ROS levels, but under high ROS levels, mTORC2 can promote cellular senescence via autophagy. Phosphatase and tensin homolog (PTEN) protein are the negative regulators of the PI3K pathway, and it has proautophagic activities. Studies conducted on cells treated with flavonoids and ionizing radiation showed that the moderate increase in ROS levels in the flavonoid-treated groups corresponded with higher PTEN levels and lowered Akt levels leading to a higher occurrence of autophagy. In contrast, higher ROS levels evoked by ionizing radiation caused a lowering of the incidence of autophagy.
Collapse
Affiliation(s)
- Lakhan Kma
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | |
Collapse
|
111
|
Memme JM, Hood DA. Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects. Front Physiol 2021; 11:615038. [PMID: 33584337 PMCID: PMC7874077 DOI: 10.3389/fphys.2020.615038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is common to many organ system disorders, including skeletal muscle. Aging muscle and diseases of muscle are often accompanied by defective mitochondrial ATP production. This manuscript will focus on the pre-clinical evidence supporting the use of regular exercise to improve defective mitochondrial metabolism and function in skeletal muscle, through the stimulation of mitochondrial turnover. Examples from aging muscle, muscle-specific mutations and cancer cachexia will be discussed. We will also examine the effects of exercise on the important mitochondrial regulators PGC-1α, and Parkin, and summarize the effects of exercise to reverse mitochondrial dysfunction (e.g., ROS production, apoptotic susceptibility, cardiolipin synthesis) in muscle pathology. This paper will illustrate the breadth and benefits of exercise to serve as "mitochondrial medicine" with age and disease.
Collapse
Affiliation(s)
- Jonathan M. Memme
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
112
|
La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2021; 8:609683. [PMID: 33490073 PMCID: PMC7815692 DOI: 10.3389/fcell.2020.609683] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
113
|
Kim D, Hwang HY, Ji ES, Kim JY, Yoo JS, Kwon HJ. Activation of mitochondrial TUFM ameliorates metabolic dysregulation through coordinating autophagy induction. Commun Biol 2021; 4:1. [PMID: 33398033 PMCID: PMC7782552 DOI: 10.1038/s42003-020-01566-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload. Kim, Hwang et al. use in vitro and in vivo models of autophagy disorder/metabolic dysfunction to show that in this context, the natural compound kaempferide is an autophagy enhancer and reveal that one of the underlying mechanisms governing this is mediated by the mitochondrial elongation factor TUFM. This insight may have therapeutic value in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
114
|
Theodosakis N, Pagan AD, Fisher DE. The role of MiT/TFE family members in autophagy regulation. CURRENT TOPICS IN BIOCHEMICAL RESEARCH 2021; 22:151-159. [PMID: 35663368 PMCID: PMC9165699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The MiT/TFE family of proteins are important regulators of a number of metabolic processes. One of their most important roles is activating the autophagy pathway in the setting of nutrient deprivation or buildup of toxic metabolites. Their proper and improper functioning in this role has been linked to several types of disease, including cancer and multiple forms of neurodegeneration. In this review we will briefly outline what is known about individual family members' roles in regulating autophagy across a variety of contexts.
Collapse
Affiliation(s)
| | - Angel D Pagan
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Ponce Health Sciences University School of Medicine, Ponce, Puerto Rico, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
115
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
116
|
Astanina E, Bussolino F, Doronzo G. Multifaceted activities of transcription factor EB in cancer onset and progression. Mol Oncol 2020; 15:327-346. [PMID: 33252196 PMCID: PMC7858119 DOI: 10.1002/1878-0261.12867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in cancer biology. Together with microphthalmia‐associated transcription factor, transcription factor E3 and transcription factor EC, TFEB belongs to the microphthalmia family of bHLH‐leucine zipper transcription factors that may be implicated in human melanomas, renal and pancreatic cancers. TFEB was originally described as being translocated in a juvenile subset of pediatric renal cell carcinoma; however, whole‐genome sequencing reported that somatic mutations were sporadically found in many different cancers. Besides its oncogenic activity, TFEB controls the autophagy‐lysosomal pathway by recognizing a recurrent motif present in the promoter regions of a set of genes that participate in lysosome biogenesis; furthermore, its dysregulation was found to have a crucial pathogenic role in different tumors by modulating the autophagy process. Other than regulating cancer cell‐autonomous responses, recent findings indicate that TFEB participates in the regulation of cellular functions of the tumor microenvironment. Here, we review the emerging role of TFEB in regulating cancer cell behavior and choreographing tumor–microenvironment interaction. Recognizing TFEB as a hub of network of signals exchanged within the tumor between cancer and stroma cells provides a fresh perspective on the molecular principles of tumor self‐organization, promising to reveal numerous new and potentially druggable vulnerabilities.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
117
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
118
|
da Costa A, Metais T, Mouthon F, Kerkovich D, Charvériat M. Evaluating and modulating TFEB in the control of autophagy: toward new treatments in CNS disorders. Fundam Clin Pharmacol 2020; 35:539-551. [PMID: 33259088 DOI: 10.1111/fcp.12634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
TFEB is a mammalian transcription factor that binds directly to the CLEAR consensus sequence (5'-GTCACGTGAC-3') present in the regulatory regions of genes inducing autophagosome formation, autophagosome-lysosome fusion, hydrolase enzyme expression, and lysosomal exocytosis. By modulating these activities, TFEB coordinates on-demand control over each cell's degradation pathway. Thus, a nuclear signaling pathway regulates cellular energy metabolism through TFEB. Our growing understanding of the role of TFEB and CLEAR in the promotion of healthy clearance together with in vitro and in vivo preclinical findings in various animal models of disease supports the conclusion that the pharmacological activation of TFEB could clear toxic proteins to treat both rare and common forms of neurodegenerative disease.
Collapse
|
119
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
120
|
Ma WQ, Sun XJ, Zhu Y, Liu NF. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis 2020; 11:991. [PMID: 33203874 PMCID: PMC7673024 DOI: 10.1038/s41419-020-03162-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy regulation. Previous studies suggested that PDK4 is increased in the calcified vessels of patients with atherosclerosis and is closely associated with mitochondrial function, but the precise regulatory mechanisms remain largely unknown. This study aims to investigate the role of PDK4 in vascular calcification and the molecular mechanisms involved. Using a variety of complementary techniques, we found impaired autophagic activity in the process of vascular smooth muscle cells (VSMCs) calcification, whereas knocking down PDK4 had the opposite effect. PDK4 drives the metabolic reprogramming of VSMCs towards a Warburg effect, and the inhibition of PDK4 abrogates VSMCs calcification. Mechanistically, PDK4 disturbs the integrity of the mitochondria-associated endoplasmic reticulum membrane, concomitantly impairing mitochondrial respiratory capacity, which contributes to a decrease in lysosomal degradation by inhibiting the V-ATPase and lactate dehydrogenase B interaction. PDK4 also inhibits the nuclear translocation of the transcription factor EB, thus inhibiting lysosomal function. These changes result in the interruption of autophagic flux, which accelerates calcium deposition in VSMCs. In addition, glycolysis serves as a metabolic adaptation to improve VSMCs oxidative stress resistance, whereas inhibition of glycolysis by 2-deoxy-D-glucose induces the apoptosis of VSMCs and increases the calcium deposition in VSMCs. Our results suggest that PDK4 plays a key role in vascular calcification through autophagy inhibition and metabolic reprogramming.
Collapse
Affiliation(s)
- Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China.
| |
Collapse
|
121
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
122
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
123
|
CARM1 Regulates AMPK Signaling in Skeletal Muscle. iScience 2020; 23:101755. [PMID: 33241200 PMCID: PMC7672286 DOI: 10.1016/j.isci.2020.101755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK. We observed altered interactions between CARM1 and AMPK and its network, including forkhead box protein O1, during muscle disuse. CARM1 methylated AMPK during the early stages of muscle inactivity, whereas CARM1 mKO mitigated progression of denervation-induced atrophy and was accompanied by attenuated phosphorylation of AMPK targets such as unc-51 like autophagy-activating kinase 1Ser555. Lower acetyl-coenzyme A corboxylaseSer79 phosphorylation, as well as reduced peroxisome proliferator-activated receptor-γ coactivator-1α, was also observed in mKO animals following acute administration of the direct AMPK activator MK-8722. Our study suggests that targeting CARM1-AMPK interplay may have broad impacts on neuromuscular health and disease. Role of the arginine methyltransferase CARM1 in muscle biology remains undefined Skeletal muscle-specific removal of CARM1 alters autophagic and atrophic processes CARM1 methylates AMPK and mediates AMPK signaling during neurogenic muscle disuse Targeted pharmacological AMPK stimulation is impacted by CARM1 in skeletal muscle
Collapse
|
124
|
Carey KL, Paulus GLC, Wang L, Balce DR, Luo JW, Bergman P, Ferder IC, Kong L, Renaud N, Singh S, Kost-Alimova M, Nyfeler B, Lassen KG, Virgin HW, Xavier RJ. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep 2020; 33:108371. [PMID: 33176151 DOI: 10.1016/j.celrep.2020.108371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues. Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and infectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find TFEB targets that protect cells from or sensitize cells to lysosomal cell death. BHLHE40 and BHLHE41, genes responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this negative feedback to the current understanding of TFEB regulatory mechanisms.
Collapse
Affiliation(s)
- Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingfei Wang
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica W Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Bergman
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ianina C Ferder
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria Kost-Alimova
- Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kara G Lassen
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
125
|
Programmed cell death 4 modulates lysosomal function by inhibiting TFEB translation. Cell Death Differ 2020; 28:1237-1250. [PMID: 33100324 DOI: 10.1038/s41418-020-00646-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. The post-translational phosphorylation modulations of TFEB by mTOR and ERK signaling can determine its nucleocytoplasmic shuttling and activity in response to nutrient availability. However, regulations of TFEB at translational level are rarely known. Here, we found that programmed cell death 4 (PDCD4), a tumor suppressor, decreased levels of nuclear TFEB to inhibit lysosome biogenesis and function. Mechanistically, PDCD4 reduces global pool of TFEB by suppressing TFEB translation in an eIF4A-dependent manner, rather than influencing mTOR- and ERK2-dependnet TFEB nucleocytoplasmic shuttling. Both of MA3 domains within PDCD4 are required for TFEB translation inhibition. Furthermore, TFEB is required for PDCD4-mediated lysosomal function suppression. In the tumor microenvironment, PDCD4 deficiency promotes the anti-tumor effect of macrophage via enhancing TFEB expression. Our research reveals a novel PDCD4-dependent TFEB translational regulation and supports PDCD4 as a potential therapeutic target for lysosome dysfunction related diseases.
Collapse
|
126
|
Saftig P, Puertollano R. How Lysosomes Sense, Integrate, and Cope with Stress. Trends Biochem Sci 2020; 46:97-112. [PMID: 33012625 DOI: 10.1016/j.tibs.2020.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Lysosomes are in the center of the cellular control of catabolic and anabolic processes. These membrane-surrounded acidic organelles contain around 70 hydrolases, 200 membrane proteins, and numerous accessory proteins associated with the cytosolic surface of lysosomes. Accessory and transmembrane proteins assemble in signaling complexes that sense and integrate multiple signals and transmit the information to the nucleus. This communication allows cells to respond to changes in multiple environmental conditions, including nutrient levels, pathogens, energy availability, and lysosomal damage, with the goal of restoring cellular homeostasis. This review summarizes our current understanding of the major molecular players and known pathways that are involved in control of metabolic and stress responses that either originate from lysosomes or regulate lysosomal functions.
Collapse
Affiliation(s)
- Paul Saftig
- Biochemical Institute, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
127
|
Markby GR, Sakamoto K. Transcription factor EB and TFE3: new metabolic coordinators mediating adaptive responses to exercise in skeletal muscle? Am J Physiol Endocrinol Metab 2020; 319:E763-E768. [PMID: 32830550 DOI: 10.1152/ajpendo.00339.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In response to the increased energy demands of contractions, skeletal muscle adapts remarkably well through acutely regulating metabolic pathways to maintain energy balance and in the longer term by regulating metabolic reprogramming, such as remodeling and expanding the mitochondrial network. This long-term adaptive response involves modulation of gene expression at least partly through the regulation of specific transcription factors and transcriptional coactivators. The AMPK-peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) pathway has long been known to orchestrate contraction-mediated adaptive responses, although AMPK- and PGC1α-independent pathways have also been proposed. Transcription factor EB (TFEB) and TFE3, known as important regulators of lysosomal biogenesis and autophagic processes, have emerged as new metabolic coordinators. The activity of TFEB/TFE3 is regulated through posttranslational modifications (i.e., phosphorylation) and spatial organization. Under nutrient and energy stress, TFEB and TFE3 are dephosphorylated and translocate to the nucleus, where they activate transcription of their target genes. It has recently been reported that exercise promotes nuclear translocation and activation of TFEB/TFE3 in mouse skeletal muscle through the Ca2+-stimulated protein phosphatase calcineurin. Skeletal muscle-specific ablation of TFEB exhibits impaired glucose homeostasis and mitochondrial biogenesis with reduced metabolic flexibility during exercise, and global TFE3 depletion results in diminished endurance and abolished exercise-induced metabolic benefits. Transcriptomic analysis of the muscle-specific TFEB-null mice has demonstrated that TFEB regulates the expression of genes involved in glucose metabolism and mitochondrial homeostasis. This review aims to summarize and discuss emerging roles for TFEB/TFE3 in metabolic and adaptive responses to exercise and contractile activity in skeletal muscle.
Collapse
Affiliation(s)
- Greg Robert Markby
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
128
|
Kobayashi T, Kageyama R. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. FEBS J 2020; 288:3082-3093. [PMID: 32902139 PMCID: PMC8246936 DOI: 10.1111/febs.15555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Quiescence is a cellular strategy for maintaining somatic stem cells in a specific niche in a low metabolic state without senescence for a long period of time. During development, neural stem cells (NSCs) actively proliferate and self-renew, and their progeny differentiate into both neurons and glial cells to form mature brain tissues. On the other hand, most NSCs in the adult brain are quiescent and arrested in G0/G1 phase of the cell cycle. Quiescence is essential in order to avoid the precocious exhaustion of NSCs, ensuring a sustainable source of available stem cells in the brain throughout the lifespan. After receiving activation signals, quiescent NSCs reenter the cell cycle and generate new neurons. This switching between quiescence and proliferation is tightly regulated by diverse signaling pathways. Recent studies suggest significant involvement of cellular proteostasis (homeostasis of the proteome) in the quiescent state of NSCs. Proteostasis is the result of integrated regulation of protein synthesis, folding, and degradation. In this review, we discuss regulation of quiescence by multiple signaling pathways, especially bone morphogenetic protein and Notch signaling, and focus on the functional involvement of the lysosome, an organelle governing cellular degradation, in quiescence of adult NSCs.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
129
|
Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat Cell Biol 2020; 22:973-985. [PMID: 32753672 PMCID: PMC7482486 DOI: 10.1038/s41556-020-0549-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
Collapse
|
130
|
Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy 2020; 16:1506-1523. [PMID: 31690173 PMCID: PMC7469609 DOI: 10.1080/15548627.2019.1688488] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum. We further show that Mn exposure suppresses autophagic-lysosomal degradation of mitochondria and induces accumulation of unhealthy mitochondria. Activation of autophagy by rapamycin or TFEB overexpression ameliorates Mn-induced mitochondrial respiratory dysfunction and reactive oxygen species (ROS) generation in astrocytes, suggesting a causal relation between autophagic failure and mitochondrial dysfunction in Mn toxicity. Taken together, our data demonstrate that Mn inhibits TFEB activity, leading to impaired autophagy that is causally related to mitochondrial dysfunction in astrocytes. These findings reveal a previously unappreciated role for Mn in dysregulation of autophagy and identify TFEB as a potential therapeutic target to mitigate Mn toxicity. ABBREVIATIONS BECN1: beclin 1; CTSD: cathepsin D; DMEM: Dulbecco's Modified Eagle Medium; GFAP: glial fibrillary acid protein; GFP: green fluorescent protein; HBSS: hanks balanced salt solution; LAMP: lysosomal-associated membrane protein; LDH: lactate dehydrogenase; Lys Inh: lysosomal inhibitors; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; Mn: manganese; MTOR: mechanistic target of rapamycin kinase; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PI: propidium iodide; ROS: reactive oxygen species; s.c.: subcutaneous; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Miles R. Bryan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine
- Diabetes Research Center
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
131
|
Abou Sawan S, Mazzulla M, Moore DR, Hodson N. More than just a garbage can: emerging roles of the lysosome as an anabolic organelle in skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C561-C568. [PMID: 32726158 DOI: 10.1152/ajpcell.00241.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is a highly plastic tissue capable of remodeling in response to a range of physiological stimuli, including nutrients and exercise. Historically, the lysosome has been considered an essentially catabolic organelle contributing to autophagy, phagocytosis, and exo-/endocytosis in skeletal muscle. However, recent evidence has emerged of several anabolic roles for the lysosome, including the requirement for autophagy in skeletal muscle mass maintenance, the discovery of the lysosome as an intracellular signaling hub for mechanistic target of rapamycin complex 1 (mTORC1) activation, and the importance of transcription factor EB/lysosomal biogenesis-related signaling in the regulation of mTORC1-mediated protein synthesis. We, therefore, propose that the lysosome is an understudied organelle with the potential to underpin the skeletal muscle adaptive response to anabolic stimuli. Within this review, we describe the molecular regulation of lysosome biogenesis and detail the emerging anabolic roles of the lysosome in skeletal muscle with particular emphasis on how these roles may mediate adaptations to chronic resistance exercise. Furthermore, given the well-established role of amino acids to support muscle protein remodeling, we describe how dietary proteins "labeled" with stable isotopes could provide a complementary research tool to better understand how lysosomal biogenesis, autophagy regulation, and/or mTORC1-lysosomal repositioning can mediate the intracellular usage of dietary amino acids in response to anabolic stimuli. Finally, we provide avenues for future research with the aim of elucidating how the regulation of this important organelle could mediate skeletal muscle anabolism.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Michael Mazzulla
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel R Moore
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
132
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
133
|
Wang Y, Gunewardena S, Li F, Matye DJ, Chen C, Chao X, Jung T, Zhang Y, Czerwiński M, Ni HM, Ding WX, Li T. An FGF15/19-TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis. Nat Commun 2020; 11:3612. [PMID: 32681035 PMCID: PMC7368063 DOI: 10.1038/s41467-020-17363-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Bile acid synthesis plays a key role in regulating whole body cholesterol homeostasis. Transcriptional factor EB (TFEB) is a nutrient and stress-sensing transcriptional factor that promotes lysosomal biogenesis. Here we report a role of TFEB in regulating hepatic bile acid synthesis. We show that TFEB induces cholesterol 7α-hydroxylase (CYP7A1) in human hepatocytes and mouse livers and prevents hepatic cholesterol accumulation and hypercholesterolemia in Western diet-fed mice. Furthermore, we find that cholesterol-induced lysosomal stress feed-forward activates TFEB via promoting TFEB nuclear translocation, while bile acid-induced fibroblast growth factor 19 (FGF19), acting via mTOR/ERK signaling and TFEB phosphorylation, feedback inhibits TFEB nuclear translocation in hepatocytes. Consistently, blocking intestinal bile acid uptake by an apical sodium-bile acid transporter (ASBT) inhibitor decreases ileal FGF15, enhances hepatic TFEB nuclear localization and improves cholesterol homeostasis in Western diet-fed mice. This study has identified a TFEB-mediated gut-liver signaling axis that regulates hepatic cholesterol and bile acid homeostasis.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David J Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cheng Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Taeyoon Jung
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
134
|
Tai YK, Ng C, Purnamawati K, Yap JLY, Yin JN, Wong C, Patel BK, Soong PL, Pelczar P, Fröhlich J, Beyer C, Fong CHH, Ramanan S, Casarosa M, Cerrato CP, Foo ZL, Pannir Selvan RM, Grishina E, Degirmenci U, Toh SJ, Richards PJ, Mirsaidi A, Wuertz‐Kozak K, Chong SY, Ferguson SJ, Aguzzi A, Monici M, Sun L, Drum CL, Wang J, Franco‐Obregón A. Magnetic fields modulate metabolism and gut microbiome in correlation with
Pgc‐1α
expression: Follow‐up to an in vitro magnetic mitohormetic study. FASEB J 2020; 34:11143-11167. [DOI: 10.1096/fj.201903005rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yee Kit Tai
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Charmaine Ng
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Kristy Purnamawati
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Craig Wong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Bharati Kadamb Patel
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Poh Loong Soong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pawel Pelczar
- Centre for Transgenic Models University of Basel Basel Switzerland
- Institute of Laboratory Animal Science University of Zürich Zürich Switzerland
| | | | - Christian Beyer
- Centre Suisse d'électronique et de microtechnique, CSEM SA Neuchatel Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Sharanya Ramanan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Institute for Biomechanics ETH Zürich Zürich Switzerland
| | | | - Zi Ling Foo
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Elina Grishina
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Ufuk Degirmenci
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
| | - Shi Jie Toh
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pete J. Richards
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Ali Mirsaidi
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Karin Wuertz‐Kozak
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
- Department of Biomedical Engineering Rochester Institute of Technology (RIT) Rochester NY USA
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Suet Yen Chong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Stephen J. Ferguson
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institut für Neuropathologie Universitätsspital Zürich Zürich Switzerland
| | - Monica Monici
- ASAcampus JL, ASA Res. Div. ‐ Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
| | - Lei Sun
- DUKE‐NUS Graduate Medical School Singapore Singapore Singapore
| | - Chester L. Drum
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Jiong‐Wei Wang
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Alfredo Franco‐Obregón
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Institute for Health Innovation & Technology, iHealthtech National University of Singapore Singapore Singapore
| |
Collapse
|
135
|
Napolitano G, Di Malta C, Esposito A, de Araujo MEG, Pece S, Bertalot G, Matarese M, Benedetti V, Zampelli A, Stasyk T, Siciliano D, Venuta A, Cesana M, Vilardo C, Nusco E, Monfregola J, Calcagnì A, Di Fiore PP, Huber LA, Ballabio A. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome. Nature 2020; 585:597-602. [PMID: 32612235 PMCID: PMC7610377 DOI: 10.1038/s41586-020-2444-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1–3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism mediated by RagGTPases. Thus, TFEB phosphorylation is strictly dependent on amino acid-mediated activation of RagC/D GTPase but, unlike other mTORC1 substrates such as S6K and 4E-BP1, insensitive to growth factor-induced Rheb activity. This mechanism plays a crucial role in Birt-Hogg-Dubé (BHD) syndrome, a disorder caused by mutations of the RagC/D activator folliculin (FLCN) and characterized by benign skin tumors, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and paradoxical mTORC1 hyperactivity observed in BHD syndrome. Remarkably, depletion of TFEB in a kidney-specific mouse model of BHD syndrome fully rescued the disease phenotype and associated lethality and normalized mTORC1 activity. Together, these findings identify a substrate-specific control mechanism of mTORC1, whose dysregulation leads to kidney cysts and cancer.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Maria Matarese
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Taras Stasyk
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Alessia Calcagnì
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute (ADSI), Innsbruck, Austria
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy. .,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. .,SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
136
|
Gutierrez-Monreal MA, Harmsen JF, Schrauwen P, Esser KA. Ticking for Metabolic Health: The Skeletal-Muscle Clocks. Obesity (Silver Spring) 2020; 28 Suppl 1:S46-S54. [PMID: 32468732 PMCID: PMC7381376 DOI: 10.1002/oby.22826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
To be prepared for alternating metabolic demands occurring over the 24-hour day, the body preserves information on time in skeletal muscle, and in all cells, through a circadian-clock mechanism. Skeletal muscle can be considered the largest collection of peripheral clocks in the body, with a major contribution to whole-body energy metabolism. Comparison of circadian-clock gene expression between skeletal muscle of nocturnal rodents and diurnal humans reveals very common patterns based on rest/active cycles rather than light/dark cycles. Rodent studies in which the circadian clock is disrupted in skeletal muscle demonstrate impaired glucose handling and insulin resistance. Experimental circadian misalignment in humans modifies the skeletal-muscle clocks and leads to disturbed energy metabolism and insulin resistance. Preclinical studies have revealed that timing of exercise over the day can influence the beneficial effects of exercise on skeletal-muscle metabolism, and studies suggest similar applicability in humans. Current strategies to improve metabolic health (e.g., exercise) should be reinvestigated in their capability to modify the skeletal-muscle clocks by taking timing of the intervention into account.
Collapse
Affiliation(s)
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Florida, USA
| |
Collapse
|
137
|
Endocytic regulation of cellular ion homeostasis controls lysosome biogenesis. Nat Cell Biol 2020; 22:815-827. [PMID: 32601373 DOI: 10.1038/s41556-020-0535-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lysosomes serve as cellular degradation and signalling centres that coordinate metabolism in response to intracellular cues and extracellular signals. Lysosomal capacity is adapted to cellular needs by transcription factors, such as TFEB and TFE3, which activate the expression of lysosomal and autophagy genes. Nuclear translocation and activation of TFEB are induced by a variety of conditions such as starvation, lysosome stress and lysosomal storage disorders. How these various cues are integrated remains incompletely understood. Here, we describe a pathway initiated at the plasma membrane that controls lysosome biogenesis via the endocytic regulation of intracellular ion homeostasis. This pathway is based on the exo-endocytosis of NHE7, a Na+/H+ exchanger mutated in X-linked intellectual disability, and serves to control intracellular ion homeostasis and thereby Ca2+/calcineurin-mediated activation of TFEB and downstream lysosome biogenesis in response to osmotic stress to promote the turnover of toxic proteins and cell survival.
Collapse
|
138
|
Asrani K, Murali S, Lam B, Na CH, Phatak P, Sood A, Kaur H, Khan Z, Noë M, Anchoori RK, Talbot CC, Smith B, Skaro M, Lotan TL. mTORC1 feedback to AKT modulates lysosomal biogenesis through MiT/TFE regulation. J Clin Invest 2020; 129:5584-5599. [PMID: 31527310 DOI: 10.1172/jci128287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
The microphthalmia family of transcription factors (MiT/TFEs) controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. However, the mechanisms by which cells with constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we found that epidermal Tsc1 deletion resulted in a phenotype characterized by wavy hair and curly whiskers, and was associated with increased EGFR and HER2 degradation. Unexpectedly, constitutive mTORC1 activation with Tsc1 loss increased lysosomal content via upregulated expression and activity of MiT/TFEs, whereas genetic deletion of Rheb or Rptor or prolonged pharmacologic mTORC1 inactivation had the reverse effect. This paradoxical increase in lysosomal biogenesis by mTORC1 was mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE downregulation. Thus, inhibiting hyperactive AKT signaling in the context of mTORC1 loss-of-function fully restored MiT/TFE expression and activity. These data suggest that signaling feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling, respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Chan-Hyun Na
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pornima Phatak
- Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
139
|
Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 2020; 128:110272. [PMID: 32447212 DOI: 10.1016/j.biopha.2020.110272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are energy producers that play a vital role in cell survival. Mitochondrial dysfunction is involved in many diseases, including metabolic syndrome, neurodegenerative disorders, cardiomyopathies, cancer, obesity, and diabetic kidney disease, and challenges still remain in terms of treatments for these diseases. Mitochondrial quality control (MQC), which is defined as the maintenance of the quantity, morphology, and function of mitochondria, plays a pivotal role in maintaining cellular metabolic homeostasis and cell survival. Recently, growing evidence suggests that the transcription factor EB (TFEB) plays a pivotal role in MQC. Here, we systemically investigate the potential role and mechanisms of TFEB in MQC, which include the activation of mitophagy, regulation of mitochondrial biogenesis, reactive oxygen species (ROS) clearance, and the balance of mitochondria fission-fusion cycle. Importantly, we further discuss the therapeutic measures and effects aimed at TFEB on mitochondrial dysfunction-related diseases. Taken together, targeting TFEB to regulate MQC may represent an appealing therapeutic strategy for mitochondrial dysfunction related-diseases.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaoyu Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weihuang Zhang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
140
|
Pastore N, Huynh T, Herz NJ, Calcagni' A, Klisch TJ, Brunetti L, Kim KH, De Giorgi M, Hurley A, Carissimo A, Mutarelli M, Aleksieva N, D'Orsi L, Lagor WR, Moore DD, Settembre C, Finegold MJ, Forbes SJ, Ballabio A. TFEB regulates murine liver cell fate during development and regeneration. Nat Commun 2020; 11:2461. [PMID: 32424153 PMCID: PMC7235048 DOI: 10.1038/s41467-020-16300-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.
Collapse
Affiliation(s)
- Nunzia Pastore
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Tuong Huynh
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Niculin J Herz
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alessia Calcagni'
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tiemo J Klisch
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kangho Ho Kim
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ayrea Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, 80078, Italy
| | | | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, 80078, Italy
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David D Moore
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, 80078, Italy
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, 80131, Italy
| | - Milton J Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Andrea Ballabio
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, 80078, Italy.
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, 80131, Italy.
| |
Collapse
|
141
|
Trivedi PC, Bartlett JJ, Mercer A, Slade L, Surette M, Ballabio A, Flibotte S, Hussein B, Rodrigues B, Kienesberger PC, Pulinilkunnil T. Loss of function of transcription factor EB remodels lipid metabolism and cell death pathways in the cardiomyocyte. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165832. [PMID: 32437957 DOI: 10.1016/j.bbadis.2020.165832] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Glucolipotoxicity following nutrient overload causes cardiomyocyte injury by inhibiting TFEB and suppressing lysosomal function. We ascertained whether in addition to the amount, the type of fatty acids (FAs) and duration of FA exposure regulate TFEB action and dictate cardiomyocyte viability. Saturated FA, palmitate, but not polyunsaturated FAs decreased TFEB content in a concentration- and time-dependent manner in cardiomyocytes. Hearts from high-fat high-sucrose diet-fed mice exhibited a temporal decline in nuclear TFEB content with marked elevation of diacylglycerol and triacylglycerol, suggesting that lipid deposition and TFEB loss are concomitant molecular events. Next, we examined the identity of signaling and metabolic pathways engaged by the loss of TFEB action in the cardiomyocyte. Transcriptome analysis in murine cardiomyocytes with targeted deletion of myocyte TFEB (TFEB-/-) revealed enrichment of differentially expressed genes (DEG) representing pathways of nutrient metabolism, DNA damage and repair, cell death and cardiac function. Strikingly, genes involved in macroautophagy, mitophagy and lysosome function constituted a small portion of DEGs in TFEB-/- cardiomyocytes. In myoblasts and/or myocytes, nutrient overload-induced lipid droplet accumulation and caspase-3 activation were exacerbated by silencing TFEB or attenuated by overexpressing constitutively active TFEB. The effect of TFEB overexpression were persistent in the presence of Atg7 loss-of-function, signifying that the effect of TFEB in the myocyte is independent of changes in the macroautophagy pathway. In the cardiomyocyte, the non-canonical effect of TFEB to reprogram energy metabolism is more evident than the canonical action of TFEB on lysosomal autophagy. Loss of TFEB function perturbs metabolic pathways in the cardiomyocyte and renders the heart prematurely susceptible to nutrient overload-induced injury.
Collapse
Affiliation(s)
- Purvi C Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Jordan J Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Angella Mercer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Logan Slade
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Marc Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, 4200 University Blvd, V6T 1Z4 Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, V6T 1Z3 Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, V6T 1Z3 Vancouver, BC, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Dalhousie Medicine New Brunswick, E2L 4L5 Saint John, NB, Canada.
| |
Collapse
|
142
|
Shally A, McDonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy. Biogerontology 2020; 21:461-473. [PMID: 32323076 DOI: 10.1007/s10522-020-09879-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Medical advancements have extended human life expectancy, which is not always accompanied by an improved quality of life or healthspan. A decline in muscle mass and function is a consequence of ageing and can result in a loss of independence in elderly individuals while increasing their risk of falls. Multiple cellular pathways have been implicated in age-related muscle atrophy, including the contribution of reactive oxygen species (ROS) and disrupted redox signalling. Aberrant levels of ROS disrupts the redox environment in older muscle, potentially disrupting cellular signalling and in some cases blunting the adaptive response to exercise. Age-related muscle atrophy is associated with disrupted mitochondrial content and function, one of the hallmarks of age-related diseases. There is a critical link between abnormal ROS generation and dysfunctional mitochondrial dynamics including mitochondrial biogenesis, fusion and fission. In order to develop effective treatments or preventative strategies, it is important to gain a comprehensive understanding of the mechanistic pathways implicated in age associated loss of muscle.
Collapse
Affiliation(s)
- Alice Shally
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
143
|
Gerisch B, Tharyan RG, Mak J, Denzel SI, Popkes-van Oepen T, Henn N, Antebi A. HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Dev Cell 2020; 53:316-329.e5. [PMID: 32302543 DOI: 10.1016/j.devcel.2020.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
All animals have evolved the ability to survive nutrient deprivation, and nutrient signaling pathways are conserved modulators of health and disease. In C. elegans, late-larval starvation provokes the adult reproductive diapause (ARD), a long-lived quiescent state that enables survival for months without food, yet underlying molecular mechanisms remain unknown. Here, we show that ARD is distinct from other forms of diapause, showing little requirement for canonical longevity pathways, autophagy, and fat metabolism. Instead it requires the HLH-30/TFEB transcription factor to promote the morphological and physiological remodeling involved in ARD entry, survival, and recovery, suggesting that HLH-30 is a master regulator of reproductive quiescence. HLH-30 transcriptome and genetic analyses reveal that Max-like HLH factors, AMP-kinase, mTOR, protein synthesis, and mitochondrial fusion are target processes that promote ARD longevity. ARD thus rewires metabolism to ensure long-term survival and may illuminate similar mechanisms acting in stem cell quiescence and long-term fasting.
Collapse
Affiliation(s)
- Birgit Gerisch
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Rebecca George Tharyan
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Jennifer Mak
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sarah I Denzel
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Till Popkes-van Oepen
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Nadine Henn
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
144
|
Goljanek‐Whysall K, Soriano‐Arroquia A, McCormick R, Chinda C, McDonagh B. miR-181a regulates p62/SQSTM1, parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging. Aging Cell 2020; 19:e13140. [PMID: 32291905 PMCID: PMC7189996 DOI: 10.1111/acel.13140] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
One of the key mechanisms underlying skeletal muscle functional deterioration during aging is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria; however, the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during aging concomitant with dysregulation of miR‐181a target interactions. Using functional approaches and mito‐QC assay, we have established that miR‐181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ‐1 in vitro. Downregulation of miR‐181a with age was associated with an accumulation of autophagy‐related proteins and abnormal mitochondria. Restoring miR‐181a levels in old mice prevented accumulation of p62, DJ‐1, and PARK2, and improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA‐based interventions for age‐related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.
Collapse
Affiliation(s)
- Katarzyna Goljanek‐Whysall
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Ana Soriano‐Arroquia
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Rachel McCormick
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Caroline Chinda
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Brian McDonagh
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
| |
Collapse
|
145
|
Li D, Shao R, Wang N, Zhou N, Du K, Shi J, Wang Y, Zhao Z, Ye X, Zhang X, Xu H. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 2020; 17:872-887. [PMID: 32138578 DOI: 10.1080/15548627.2020.1739442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress underlies a number of pathological conditions, including cancer, neurodegeneration, and aging. Antioxidant-rich foods help maintain cellular redox homeostasis and mitigate oxidative stress, but the underlying mechanisms are not clear. For example, sulforaphane (SFN), an electrophilic compound that is enriched in cruciferous vegetables such as broccoli, is a potent inducer of cellular antioxidant responses. NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2), a transcriptional factor that controls the expression of multiple detoxifying enzymes through antioxidant response elements (AREs), is a proposed target of SFN. NFE2L2/NRF2 is a target gene of TFEB (transcription factor EB), a master regulator of autophagic and lysosomal functions, which we show here to be potently activated by SFN. SFN induces TFEB nuclear translocation via a Ca2+-dependent but MTOR (mechanistic target of rapamycin kinase)-independent mechanism through a moderate increase in reactive oxygen species (ROS). Activated TFEB then boosts the expression of genes required for autophagosome and lysosome biogenesis, which are known to facilitate the clearance of damaged mitochondria. Notably, TFEB activity is required for SFN-induced protection against both acute oxidant bursts and chronic oxidative stress. Hence, by simultaneously activating macroautophagy/autophagy and detoxifying pathways, natural compound SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases.Abbreviations: ANOVA: analyzes of variance; AREs: antioxidant response elements; Baf-A1: bafilomycin A1; BHA: butylhydroxyanisole; CAT: catechin hydrate; CCCP: carbonyl cyanide m- chlorophenylhydrazone; CLEAR: coordinated lysosomal expression and regulation; DCFH-DA: 2',7'-dichlorofluorescin diacetate; FBS: fetal bovine serum; GFP: green fluorescent protein; HMOX1/HO-1: heme oxygenase 1; KD: knockdown; KEAP1: kelch like ECH associated protein 1; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MCOLN1/TRPML1: mucolipin 1; ML-SA1: mucolipin-specific synthetic agonist 1; ML-SI3: mucolipin-specific synthetic inhibitor 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: nuclear factor: erythroid 2 like 2; NPC: Niemann-Pick type C; PBS: phosphate-buffered saline; PPP2/PP2A: protein phosphatase 2; Q-PCR: real time polymerase chain reaction; ROS: reactive oxygen species; RPS6KB1/S6K1/p70S6K: ribosomal protein S6 kinase B1; SFN: sulforaphane; TFEB: transcription factor EB; WT, wild-type.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Na Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jiahui Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yihan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhuangzhuang Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
146
|
Parker BL, Kiens B, Wojtaszewski JFP, Richter EA, James DE. Quantification of exercise‐regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB J 2020; 34:5906-5916. [DOI: 10.1096/fj.202000075r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin L. Parker
- Charles Perkins Centre School of Life and Environmental Science The University of Sydney Sydney NSW Australia
- Department of Physiology Centre for Muscle Research The University of Melbourne Melbourne VIC Australia
| | - Bente Kiens
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Erik A. Richter
- Section of Molecular Physiology, Faculty of Science, Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - David E. James
- Charles Perkins Centre School of Life and Environmental Science The University of Sydney Sydney NSW Australia
- School of Medicine The University of Sydney Sydney NSW Australia
| |
Collapse
|
147
|
Chauhan AS, Zhuang L, Gan B. Spatial control of AMPK signaling at subcellular compartments. Crit Rev Biochem Mol Biol 2020; 55:17-32. [PMID: 32069425 DOI: 10.1080/10409238.2020.1727840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson UT, Houston, TX, USA
| |
Collapse
|
148
|
Yu S, Wang Z, Ding L, Yang L. The regulation of TFEB in lipid homeostasis of non-alcoholic fatty liver disease: Molecular mechanism and promising therapeutic targets. Life Sci 2020; 246:117418. [PMID: 32057899 DOI: 10.1016/j.lfs.2020.117418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by disruption of lipid homeostasis, has been the leading cause of chronic liver disease worldwide. However, currently there is no effective therapy for NAFLD. Consequently, it is extremely urgent to explore the specific and effective target functioned as lipids regulator during the pathological process of NAFLD for the drug development. Transcription factor EB (TFEB) plays a crucial role in the regulation of lipid homeostasis through linking autophagy to energy metabolism at the transcriptional level. In this review, we summarize the currently available information regarding the mediation of TFEB in lipid metabolism during the pathological process of NAFLD, and the specific regulatory mechanism of TFEB activity. We further recapitulate TFEB as a promising therapeutic target for NAFLD, primarily through the regulation of lipid homeostasis, energy metabolism as well as immune defense. A better understanding of these key issues will be helpful to promote the development of therapeutic agents which specifically target TFEB to halt or reverse the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Shenglan Yu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
149
|
Grunwald SA, Popp O, Haafke S, Jedraszczak N, Grieben U, Saar K, Patone G, Kress W, Steinhagen-Thiessen E, Dittmar G, Spuler S. Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue. Sci Rep 2020; 10:2158. [PMID: 32034223 PMCID: PMC7005895 DOI: 10.1038/s41598-020-58668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.
Collapse
Affiliation(s)
- Stefanie Anke Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| | - Oliver Popp
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Nicole Jedraszczak
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Kathrin Saar
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Wolfram Kress
- Institute for Human Genetics, Julius-Maximilians-University of Würzburg, Würzburg, 97074, Germany
| | | | - Gunnar Dittmar
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| |
Collapse
|
150
|
Theeuwes WF, Gosker HR, Schols AMWJ, Langen RCJ, Remels AHV. Regulation of PGC-1α expression by a GSK-3β-TFEB signaling axis in skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118610. [PMID: 31738957 DOI: 10.1016/j.bbamcr.2019.118610] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In muscle cells, the peroxisome proliferator-activated receptor γ co-activator 1 (PGC-1) signaling network, which has been shown to be disturbed in the skeletal muscle in several chronic diseases, tightly controls mitochondrial biogenesis and oxidative substrate metabolism. Previously, we showed that inactivation of glycogen synthase kinase (GSK)-3β potently increased Pgc-1α abundance and oxidative metabolism in skeletal muscle cells. The current study aims to unravel the molecular mechanism driving the increase in Pgc-1α mediated by GSK-3β inactivation. METHODS GSK-3β was inactivated genetically or pharmacologically in C2C12 myotubes and the requirement of transcription factors known to be involved in Pgc-1α transcription for increases in Pgc-1α abundance mediated by inactivation of GSK-3β was examined. RESULTS Enhanced PGC-1α promoter activation after GSK-3β inhibition suggested a transcriptionally-controlled mechanism. While myocyte enhancer factor (MEF)2 transcriptional activity was unaltered, GSK-3β inactivation increased the abundance and activity of the transcription factors estrogen-related receptor (ERR)α and ERRγ. Pharmacological inhibition or knock-down of ERRα and ERRγ however failed to prevent increases in Pgc-1α mRNA mediated by GSK-3β inactivation. Interestingly, GSK-3β inactivation activated transcription factor EB (TFEB), evidenced by decreased phosphorylation and enhanced nuclear localization of the TFEB protein. Moreover, knock-down of TFEB completely prevented increases in Pgc-1α gene expression, PGC-1α promoter activity and PGC-1α protein abundance induced by GSK-3β inactivation. Furthermore, mutation of a specific TFEB binding site on the PGC-1α promoter blocked promoter activation upon inhibition of GSK-3β. CONCLUSIONS In skeletal muscle, GSK-3β inactivation causes dephosphorylation and nuclear translocation of TFEB resulting in TFEB-dependent induction of Pgc-1α expression.
Collapse
Affiliation(s)
- W F Theeuwes
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - H R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - A M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - R C J Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - A H V Remels
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|