101
|
Developmental stalling and organ-autonomous regulation of morphogenesis. Proc Natl Acad Sci U S A 2011; 108:19270-5. [PMID: 22084104 DOI: 10.1073/pnas.1112801108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Timing of organ development during embryogenesis is coordinated such that at birth, organ and fetal size and maturity are appropriately proportioned. The extent to which local developmental timers are integrated with each other and with the signaling interactions that regulate morphogenesis to achieve this end is not understood. Using the absolute requirement for a signaling pathway activity (bone morphogenetic protein, BMP) during a critical stage of tooth development, we show that suboptimal levels of BMP signaling do not lead to abnormal morphogenesis, as suggested by mutants affecting BMP signaling, but to a 24-h stalling of the intrinsic developmental clock of the tooth. During this time, BMP levels accumulate to reach critical levels whereupon tooth development restarts, accelerates to catch up with development of the rest of the embryo and completes normal morphogenesis. This suggests that individual organs can autonomously control their developmental timing to adjust their stage of development to that of other organs. We also find that although BMP signaling is critical for the bud-to-cap transition in all teeth, levels of BMP signaling are regulated differently in multicusped teeth. We identify an interaction between two homeodomain transcription factors, Barx1 and Msx1, which is responsible for setting critical levels of BMP activity in multicusped teeth and provides evidence that correlates the levels of Barx1 transcriptional activity with cuspal complexity. This study highlights the importance of absolute levels of signaling activity for development and illustrates remarkable self-regulation in organogenesis that ensures coordination of developmental processes such that timing is subordinate to developmental structure.
Collapse
|
102
|
Ogawa K, Takemoto N, Ishii M, Pasquale EB, Nakajima T. Complementary expression and repulsive signaling suggest that EphB receptors and ephrin-B ligands control cell positioning in the gastric epithelium. Histochem Cell Biol 2011; 136:617-36. [PMID: 21959989 DOI: 10.1007/s00418-011-0867-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2011] [Indexed: 02/06/2023]
Abstract
Eph receptors and ephrin ligands are membrane-bound cell-cell communication molecules with well-defined roles in development. However, their expression and functions in the gastric epithelium are virtually unknown. We detected several EphB receptors and ephrin-Bs in the gastric corpus mucosa of the adult rodent stomach by RT-PCR amplification. Immunostaining showed complementary expression patterns, with EphB receptors preferentially expressed in the deeper regions and ephrin-Bs in the superficial regions of the gastric units. EphB1, EphB2 and EphB3 are expressed in mucous neck, chief and parietal cells, respectively. In contrast, ephrin-B1 is in pit cells and proliferating cells of the isthmus. In a mouse ulcer model, EphB2 expression was upregulated in the regenerating epithelium and expanded into the isthmus. Thus, EphB/ephrin-B signaling likely occurs preferentially in the isthmus, where receptor-ligand overlap is highest. We show that EphB signaling in primary gastric epithelial cells promotes cell retraction and repulsion at least in part through RhoA activation. Based on these findings, we propose that the EphB-positive progeny of gastric stem cells migrates from the isthmus toward the bottom of the gastric glands due to repulsive signals arising from contact with ephrin-Bs, which are preferentially expressed in the more superficial regions of the isthmus and gastric pits.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan.
| | | | | | | | | |
Collapse
|
103
|
Kim TH, Kim BM, Mao J, Rowan S, Shivdasani RA. Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development 2011; 138:3225-33. [PMID: 21750033 DOI: 10.1242/dev.066233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
104
|
Sherwood RI, Maehr R, Mazzoni EO, Melton DA. Wnt signaling specifies and patterns intestinal endoderm. Mech Dev 2011; 128:387-400. [PMID: 21854845 DOI: 10.1016/j.mod.2011.07.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023]
Abstract
Wnt signaling has been implicated in many developmental processes, but its role in early endoderm development is not well understood. Wnt signaling is active in posterior endoderm as early as E7.5. Genetic and chemical activation show that the Wnt pathway acts directly on endoderm to induce the intestinal master regulator Cdx2, shifting global gene away from anterior endoderm and toward a posterior, intestinal program. In a mouse embryonic stem cell differentiation platform that yields pure populations of definitive endoderm, Wnt signaling induces intestinal gene expression in all cells. We have identified a set of genes specific to the anterior small intestine, posterior small intestine, and large intestine during early development, and show that Wnt, through Cdx2, activates large intestinal gene expression at high doses and small intestinal gene expression at lower doses. These findings shed light on the mechanism of embryonic intestinal induction and provide a method to manipulate intestinal development from embryonic stem cells.
Collapse
Affiliation(s)
- Richard I Sherwood
- Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
105
|
Boundaries, junctions and transitions in the gastrointestinal tract. Exp Cell Res 2011; 317:2711-8. [PMID: 21802415 DOI: 10.1016/j.yexcr.2011.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
Abstract
Contiguous regions along the mammalian gastrointestinal tract, from the esophagus to the rectum, serve distinct digestive functions. Some organs, such as the esophagus and glandular stomach or the small bowel and colon, are separated by sharp boundaries. The duodenal, jejunal and ileal segments of the small intestine, by contrast, have imprecise borders. Because human esophageal and gastric cancers frequently arise in a background of tissue metaplasia and some intestinal disorders are confined to discrete regions, it is useful to appreciate the molecular and cellular basis of boundary formation and preservation. Here we review the anatomy and determinants of boundaries and transitions in the alimentary canal with respect to tissue morphology, gene expression, and, especially, transcriptional control of epithelial identity. We discuss the evidence for established and candidate molecular mechanisms of boundary formation, including the solitary and combinatorial actions of tissue-restricted transcription factors. Although the understanding remains sparse, genetic studies in mice do provide insights into dominant mechanisms and point the way for future investigation.
Collapse
|
106
|
Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 2011; 6:e22493. [PMID: 21799872 PMCID: PMC3142160 DOI: 10.1371/journal.pone.0022493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells underlying the definitive endoderm in vertebrate animals play a vital role in digestive and respiratory organogenesis. Although several signaling pathways are implicated in foregut patterning and morphogenesis, and despite the clinical importance of congenital tracheal and esophageal malformations in humans, understanding of molecular mechanisms that allow a single tube to separate correctly into the trachea and esophagus is incomplete. The homoebox gene Barx1 is highly expressed in prospective stomach mesenchyme and required to specify this organ. We observed lower Barx1 expression extending contiguously from the proximal stomach domain, along the dorsal anterior foregut mesenchyme and in mesenchymal cells between the nascent esophagus and trachea. This expression pattern exactly mirrors the decline in Wnt signaling activity in late development of the adjacent dorsal foregut endoderm and medial mainstem bronchi. The hypopharynx in Barx1(-/-) mouse embryos is abnormally elongated and the point of esophago-tracheal separation shows marked caudal displacement, resulting in a common foregut tube that is similar to human congenital tracheo-esophageal fistula and explains neonatal lethality. Moreover, the Barx1(-/-) esophagus displays molecular and cytologic features of respiratory endoderm, phenocopying abnormalities observed in mouse embryos with activated ß-catenin. The zone of canonical Wnt signaling is abnormally prolonged and expanded in the proximal Barx1(-/-) foregut. Thus, as in the developing stomach, but distinct from the spleen, Barx1 control of thoracic foregut specification and tracheo-esophageal septation is tightly associated with down-regulation of adjacent Wnt pathway activity.
Collapse
|
107
|
Maloum F, Allaire JM, Gagné-Sansfaçon J, Roy E, Belleville K, Sarret P, Morisset J, Carrier JC, Mishina Y, Kaestner KH, Perreault N. Epithelial BMP signaling is required for proper specification of epithelial cell lineages and gastric endocrine cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1065-79. [PMID: 21415412 PMCID: PMC3119118 DOI: 10.1152/ajpgi.00176.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bone morphogenetic protein (BMP) signaling within the gastrointestinal tract is complex. BMP ligands and their receptors are expressed in both epithelial and mesenchymal compartments, suggesting bidirectional signaling between these two entities. Despite an increasing interest in BMP signaling in gut physiology and pathologies, the distinct contribution of BMP signaling in the epithelium vs. the mesenchyme in gastrointestinal homeostasis remains to be established. We aimed to investigate the role of epithelial BMP signaling in gastric organogenesis, gland morphogenesis, and maintenance of epithelial cell functions. Using the Cre/loxP system, we generated a mouse model with an early deletion during development of BMP receptor 1A (Bmpr1a) exclusively in the foregut endoderm. Bmpr1a(ΔGEC) mice showed no severe abnormalities in gastric organogenesis, gland epithelial proliferation, or morphogenesis, suggesting only a minor role for epithelial BMP signaling in these processes. However, early loss of BMP signaling in foregut endoderm did impact on gastric patterning, leading to an anteriorization of the stomach. In addition, numbers of parietal cells were reduced in Bmpr1a(ΔGEC) mice. Epithelial BMP deletion significantly increased the numbers of chromogranin A-, ghrelin-, somatostatin-, gastrin-, and serotonin-expressing gastric endocrine cells. Cancer never developed in young adult (<100 days) Bmpr1a-inactivated mice although a marker of spasmolytic polypeptide-expressing metaplasia was upregulated. Using this model, we have uncovered that BMP signaling negatively regulates the proliferation and commitment of endocrine precursor cells. Our data also indicate that loss of BMP signaling in epithelial gastric cells alone is not sufficient to induce gastric neoplasia.
Collapse
Affiliation(s)
- Faïza Maloum
- Départements 1d'Anatomie et Biologie Cellulaire,
| | | | | | - Evelyne Roy
- Départements 1d'Anatomie et Biologie Cellulaire,
| | - Karine Belleville
- 5de Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada;
| | - Philippe Sarret
- 5de Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada;
| | | | | | - Yuji Mishina
- 3Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan;
| | - Klaus H. Kaestner
- 4Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
108
|
Kober P, Bujko M, Olędzki J, Tysarowski A, Siedlecki JA. Methyl-CpG binding column-based identification of nine genes hypermethylated in colorectal cancer. Mol Carcinog 2011; 50:846-56. [PMID: 21438024 DOI: 10.1002/mc.20763] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/20/2011] [Accepted: 02/04/2011] [Indexed: 12/19/2022]
Abstract
DNA methylation is an epigenetic event that plays a role in gene expression regulation. Alterations in DNA methylation contribute to cancer development and progression. The aim of this study was to identify gene promoters aberrantly methylated in colorectal tumor tissue in comparison to normal colonic mucosa. Analyses were performed on two pooled DNA samples: from normal and cancerous tissue obtained from CRC patients. DNA was fractionated according to methylation degree with the use of affinity column containing methyl-CpG binding domain. To identify novel hypermethylated gene promoters, methylated DNA from normal and from cancerous tissues were analyzed with the use of promoter microarrays. We identified nine novel genes hypermethylated in colorectal cancer. The frequency of their promoter methylation was assessed in the larger group of patients (n = 77): KCNK12 (methylated in 41% of CRC patients), GPR101 (40%), CDH2 (45%), BARX1 (56%), CNTFR (22%), SYT6 (64%), SMO (21%), EPHA5 (43%), and GSPT2 (21%). The results of gene expression level analysis suggest the role of promoter methylation in downregulation of six out of nine genes examined. We did not find correlation between gene methylation and age, gender, tumor grade or stage. Importantly, in stage IV CRC methylation of GPR101 correlated with longer time to progression (P = 0.0042; HR = 2.5468; 95% CI 1.5391-10.0708).
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
109
|
Kim BM, Woo J, Kanellopoulou C, Shivdasani RA. Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 2011; 138:1081-6. [PMID: 21307095 DOI: 10.1242/dev.056317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although microRNAs (miRNAs) are postulated to fine-tune many developmental processes, their relationships with specific targets and tissues remain largely undefined. The mesenchymal transcription factor Barx1 controls spleen and stomach morphogenesis and is required to specify stomach-specific epithelium in adjacent endoderm. Barx1 expression is precisely regulated in space and time, with a sharp drop in stomach levels after epithelial specification. We tested the hypothesis that specific miRNAs mediate this marked decline in Barx1 levels. Depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchyme and conditional Dicer gene deletion in mice significantly increased Barx1 levels, disrupted stomach and intestine development and caused spleen agenesis. Computational and experimental studies identified miR-7a and miR-203 as candidate miRNAs that regulate Barx1 and are expressed in inverse proportion to it in the fetal mouse stomach. Through specific interactions with cognate sequences in the Barx1 3' untranslated region, miR-7a and miR-203 repress Barx1 expression in stomach mesenchymal cells and its function in inducing gastric epithelium. These results indicate that miRNAs are required for proper digestive tract organogenesis and that miR-7a and miR-203 control expression of the stomach homeotic regulator Barx1.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
110
|
MILLS JASONC, SHIVDASANI RAMESHA. Gastric epithelial stem cells. Gastroenterology 2011; 140:412-24. [PMID: 21144849 PMCID: PMC3708552 DOI: 10.1053/j.gastro.2010.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 12/11/2022]
Abstract
Advances in our understanding of stem cells in the gastrointestinal tract include the identification of molecular markers of stem and early progenitor cells in the small intestine. Although gastric epithelial stem cells have been localized, little is known about their molecular biology. Recent reports describe the use of inducible Cre recombinase activity to indelibly label candidate stem cells and their progeny in the distal stomach, (ie, the antrum and pylorus). No such lineage labeling of epithelial stem cells has been reported in the gastric body (corpus). Among stem cells in the alimentary canal, those of the adult corpus are unique in that they lie close to the lumen and increase proliferation following loss of a single mature progeny lineage, the acid-secreting parietal cell. They are also unique in that they neither depend on Wnt signaling nor express the surface marker Lgr5. Because pathogenesis of gastric adenocarcinoma has been associated with abnormal patterns of gastric differentiation and with chronic tissue injury, there has been much research on the response of stomach epithelial stem cells to inflammation. Chronic inflammation, as induced by infection with Helicobacter pylori, affects differentiation and promotes metaplasias. Several studies have identified cellular and molecular mechanisms in spasmolytic polypeptide-expressing (pseudopyloric) metaplasia. Researchers have also begun to identify signaling pathways and events that take place during embryonic development that eventually establish the adult stem cells to maintain the specific features and functions of the stomach mucosa. We review the cytologic, molecular, functional, and developmental properties of gastric epithelial stem cells.
Collapse
Affiliation(s)
- JASON C. MILLS
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - RAMESH A. SHIVDASANI
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
111
|
Goebel M, Stengel A, Lambrecht NWG, Sachs G. Selective gene expression by rat gastric corpus epithelium. Physiol Genomics 2010; 43:237-54. [PMID: 21177383 DOI: 10.1152/physiolgenomics.00193.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is divided into several segments that have distinct functional properties, largely absorptive. The gastric corpus is the only segment thought of as largely secretory. Microarray hybridization of the gastric corpus mucosal epithelial cells was used to compare gene expression with other segments of the columnar GI tract followed by statistical data subtraction to identify genes selectively expressed by the rat gastric corpus mucosa. This provides a means of identifying less obvious specific functions of the corpus in addition to its secretion-related genes. For example, important properties found by this GI tract comparative transcriptome reflect the energy demand of acid secretion, a role in lipid metabolism, the large variety of resident neuroendocrine cells, responses to damaging agents and transcription factors defining differentiation of its epithelium. In terms of overlap of gastric corpus genes with the rest of the GI tract, the distal small bowel appears to express many of the gastric corpus genes in contrast to proximal small and large bowel. This differential map of gene expression by the gastric corpus epithelium will allow a more detailed description of major properties of the gastric corpus and may lead to the discovery of gastric corpus cell differentiation genes and those mis-regulated in gastric carcinomas.
Collapse
Affiliation(s)
- M Goebel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
112
|
Abstract
The Cdx (Caudal-type homeobox) group of ParaHox genes (Cdx1, Cdx2 and Cdx4 in the mouse) perform multiple functions in mammalian development. Cdx1 is concerned with axial positional information, and its deletion appears to have no important effect other than a disturbance of axial patterning. In contrast, Cdx2 is required for trophoblast differentiation, axial patterning and extension, as well as for morphological specification (i.e. patterning) of gut endoderm. Cdx4-knockout animals do not present an abnormal phenotype, but, when combined with Cdx2 haploinsufficiency, present a dramatic picture involving abnormal cloacal specification. The latter is probably due in large part to defective paraxial mesodermal development in the caudal region, but may also involve defective endodermal growth. A significant degree of redundancy is apparent between the Cdx genes with respect to caudal extension and possibly also during gut development.
Collapse
|
113
|
Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 2010; 137:1721-9. [PMID: 20430747 DOI: 10.1242/dev.044586] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homeostasis of the vertebrate digestive tract requires interactions between an endodermal epithelium and mesenchymal cells derived from the splanchnic mesoderm. Signaling between these two tissue layers is also crucial for patterning and growth of the developing gut. From early developmental stages, sonic hedgehog (Shh) and indian hedgehog (Ihh) are secreted by the endoderm of the mammalian gut, indicative of a developmental role. Further, misregulated hedgehog (Hh) signaling is implicated in both congenital defects and cancers arising from the gastrointestinal tract. In the mouse, only limited gastrointestinal anomalies arise following removal of either Shh or Ihh. However, given the considerable overlap in their endodermal expression domains, a functional redundancy between these signals might mask a more extensive role for Hh signaling in development of the mammalian gut. To address this possibility, we adopted a conditional approach to remove both Shh and Ihh functions from early mouse gut endoderm. Analysis of compound mutants indicates that continuous Hh signaling is dispensable for regional patterning of the gut tube, but is essential for growth of the underlying mesenchyme. Additional in vitro analysis, together with genetic gain-of-function studies, further demonstrate that Hh proteins act as paracrine mitogens to promote the expansion of adjacent mesenchymal progenitors, including those of the smooth muscle compartment. Together, these studies provide new insights into tissue interactions underlying mammalian gastrointestinal organogenesis and disease.
Collapse
Affiliation(s)
- Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, LRB 405, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
114
|
Miller RK, McCrea PD. Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Dev Dyn 2010; 239:77-93. [PMID: 19681164 DOI: 10.1002/dvdy.22059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial tubes are crucial to the function of organ systems including the cardiovascular system, pulmonary system, gastrointestinal tract, reproductive organ systems, excretory system, and auditory system. Using a variety of animal model systems, recent studies have substantiated the role of Wnt signaling via the canonical/beta-catenin-mediated trajectory, the non-canonical Wnt trajectories, or both, in forming epithelial tubular tissues. This review focuses on the involvement of the Wnt pathways in the induction, specification, proliferation, and morphogenesis involved in tubulogenesis within tissues including the lungs, kidneys, ears, mammary glands, gut, and heart. The ultimate goal is to describe the developmental processes forming the various tubulogenic organ systems to determine the relationships between these processes.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
115
|
Li X, Udager AM, Hu C, Qiao XT, Richards N, Gumucio DL. Dynamic patterning at the pylorus: formation of an epithelial intestine-stomach boundary in late fetal life. Dev Dyn 2010; 238:3205-17. [PMID: 19877272 DOI: 10.1002/dvdy.22134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the adult mouse, distinct morphological and transcriptional differences separate stomach from intestinal epithelium. Remarkably, the epithelial boundary between these two organs is literally one cell thick. This discrete junction is established suddenly and precisely at embryonic day (E) 16.5, by sharpening a previously diffuse intermediate zone. In the present study, we define the dynamic transcriptome of stomach, pylorus, and intestinal tissues between E14.5 and E16.5. We show that establishment of this boundary is concomitant with the induction of over a thousand genes in intestinal epithelium, and these gene products provide intestinal character. Hence, we call this process intestinalization. We identify specific transcription factors (Hnf4 gamma, Creb3l3, and Tcfec) and examine signaling pathways (Hedgehog and Wnt) that may play a role in this process. Finally, we define a unique expression domain at the pylorus itself and detect novel pylorus-specific patterns for the transcription factor Gata3 and the secreted protein nephrocan.
Collapse
Affiliation(s)
- Xing Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
116
|
Alvarado DM, Veile R, Speck J, Warchol M, Lovett M. Downstream targets of GATA3 in the vestibular sensory organs of the inner ear. Dev Dyn 2010; 238:3093-102. [PMID: 19924793 DOI: 10.1002/dvdy.22149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Haploinsufficiency for the transcription factor GATA3 leads to hearing loss in humans. It is expressed throughout the auditory sensory epithelium (SE). In the vestibular organs, GATA3 is limited to the striola reversal zone of the utricle. Stereocilia orientation shifts 180 degrees at this region, which contains morphologically distinct type-I hair cells. The striola is conserved in all amniotes, its function is unknown, and GATA3 is the only known marker of the reversal zone. To identify downstream targets of GATA3 that might point to striolar function, we measured gene expression differences between striolar and extra-striolar SE. These were compared with profiles after GATA3 RNAi and GATA3 over-expression. We identified four genes (BMP2, FKHL18, LMO4, and MBNL2) that consistently varied with GATA3. Two of these (LMO4 and MBNL2) were shown to be direct targets of GATA3 by ChIP. Our results suggest that GATA3 impacts WNT signaling in this region of the sensory macula.
Collapse
Affiliation(s)
- David M Alvarado
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
117
|
Abstract
The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
118
|
Grainger S, Savory JGA, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 2010; 339:155-65. [PMID: 20043902 DOI: 10.1016/j.ydbio.2009.12.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022]
Abstract
Cdx1, Cdx2 and Cdx4 encode homeodomain transcription factors that are involved in vertebral anterior-posterior (AP) patterning. Cdx1 and Cdx2 are also expressed in the intestinal epithelium during development, suggesting a role in this tissue. Intestinal defects have not been reported in Cdx1 null mutants, while Cdx2 null mutants die at embryonic day 3.5 (E3.5), thus precluding assessment of the null phenotype at later stages. To circumvent this latter shortcoming, we have used a conditional Cre-lox strategy to inactivate Cdx2 in the intestinal epithelium. Using this approach, we found that ablation of Cdx2 at E13.5 led to a transformation of the small intestine to a pyloric stomach-like identity, although the molecular nature of the underlying mesenchyme remained unchanged. Further analysis of Cdx1-Cdx2 double mutants suggests that Cdx1 does not play a critical role in the development of the small intestine, at least after E13.5.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
119
|
Udager A, Prakash A, Gumucio DL. Dividing the tubular gut: generation of organ boundaries at the pylorus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:35-62. [PMID: 21075339 DOI: 10.1016/b978-0-12-381280-3.00002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discrete organs that comprise the gastrointestinal tract (esophagus, stomach, small intestine, and large intestine) arise embryonically by regional differentiation of a single tube that is initially morphologically similar along its length. Regional organ differentiation programs, for example, for stomach or intestine, involve signaling cross-talk between epithelium and mesenchyme and result in the formation of precise boundaries between organs, across which dramatic differences in both morphology and gene expression are seen. The pylorus is a unique area of the gut tube because it not only marks an important organ boundary in the tubular gut (the stomach/intestinal boundary) but is also the hub for the development of multiple accessory organs (liver, pancreas, gall bladder, and spleen). This chapter examines: (a) our current understanding of the molecular and morphogenic processes that underlie the generation of the dramatic epithelial tissue boundary that compartmentalizes stomach and intestine; (b) the tissue interactions that promote development of the accessory organs in this area; and (c) the molecular interactions that specify patterning of the pyloric sphincter. Though the focus here is primarily on the mouse as a model organism, the molecular underpinnings of organ patterning near the pylorus are shared by chick and frog. Thus, further study of these conserved developmental programs could potentially shed light on the mechanisms underlying human pyloric malformations such as infantile hypertrophic pyloric stenosis.
Collapse
Affiliation(s)
- Aaron Udager
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
120
|
The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:175-206. [PMID: 21075345 DOI: 10.1016/b978-0-12-381280-3.00008-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal development is a process of continuous dynamic bidirectional crosstalk between epithelial and underlying mesenchymal cells. This crosstalk is mediated by well-dissected signaling pathways. Another crucial actor in the epithelio-mesenchymal interactions is the stromal microenvironment, which is composed of extracellular matrix molecules. Among them, the basement membrane (BM) molecules are secreted by the epithelium and mesenchyme in a complementary manner. These molecules signal back to the cells via the integrins or other specific receptors. In this review, we mainly focus on the BM molecules, particularly laminins. The major BM molecules are organized in a complex molecular network, which is highly variable among organs. Cell culture, coculture, and grafting models have been of great interest in understanding the importance of these molecules. Mouse gene ablation of laminin chains are interesting models, which often lead to embryonic death and are frequently accompanied by compensatory processes. Overall, the BM molecules have a crucial role in the careful maintenance of intestinal homeostasis.
Collapse
|
121
|
|
122
|
Khurana S, Mills JC. The gastric mucosa development and differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:93-115. [PMID: 21075341 DOI: 10.1016/b978-0-12-381280-3.00004-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development and differentiation of the gastric mucosa are controlled by a complex interplay of signaling proteins and transcriptional regulators. This process is complicated by the fact that the stomach is derived from two germ layers, the endoderm and the mesoderm, with the first giving rise to the mature epithelium and the latter contributing the smooth muscle required for peristalsis. Reciprocal epithelial-mesenchymal interactions dictate the formation of the stomach during fetal development, and also contribute to its continuous regeneration and differentiation throughout adult life. In this chapter, we discuss the discoveries that have been made in different model systems, from zebrafish to human, which show that the Hedgehog, Wnt, Notch, bone morphogenetic protein, and fibroblast growth factor (FGF) signaling systems play essential roles during various stages of stomach development.
Collapse
Affiliation(s)
- Shradha Khurana
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
123
|
Kwek J, De Iongh R, Nicholas K, Familari M. Molecular insights into evolution of the vertebrate gut: focus on stomach and parietal cells in the marsupial,Macropus eugenii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:613-24. [DOI: 10.1002/jez.b.21227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
124
|
McLin VA, Henning SJ, Jamrich M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136:2074-91. [PMID: 19303014 DOI: 10.1053/j.gastro.2009.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/11/2022]
Abstract
The gastrointestinal (GI) tract forms from the endoderm (which gives rise to the epithelium) and the mesoderm (which develops into the smooth muscle layer, the mesenchyme, and numerous other cell types). Much of what is known of GI development has been learned from studies of the endoderm and its derivatives, because of the importance of epithelial biology in understanding and treating human diseases. Although the necessity of epithelial-mesenchymal cross talk for GI development is uncontested, the role of the mesoderm remains comparatively less well understood. The transformation of the visceral mesoderm during development is remarkable; it differentiates from a very thin layer of cells into a complex tissue comprising smooth muscle cells, myofibroblasts, neurons, immune cells, endothelial cells, lymphatics, and extracellular matrix molecules, all contributing to the form and function of the digestive system. Understanding the molecular processes that govern the development of these cell types and elucidating their respective contribution to GI patterning could offer insight into the mechanisms that regulate cell fate decisions in the intestine, which has the unique property of rapid cell renewal for the maintenance of epithelial integrity. In reviewing evidence from both mammalian and nonmammalian models, we reveal the important role of the visceral mesoderm in the ontogeny of the GI tract.
Collapse
Affiliation(s)
- Valérie A McLin
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, Texas, USA.
| | | | | |
Collapse
|
125
|
Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 2009; 16:588-99. [PMID: 19386267 DOI: 10.1016/j.devcel.2009.02.010] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/16/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
Abstract
We demonstrate that conditional ablation of the homeobox transcription factor Cdx2 from early endoderm results in the replacement of the posterior intestinal epithelium with keratinocytes, a dramatic cell fate conversion caused by ectopic activation of the foregut/esophageal differentiation program. This anterior homeotic transformation of the intestine was first apparent in the early embryonic Cdx2-deficient gut by a caudal extension of the expression domains of several key foregut endoderm regulators. While the intestinal transcriptome was severely affected, Cdx2 deficiency only transiently modified selected posterior Hox genes and the primary enteric Hox code was maintained. Further, we demonstrate that Cdx2-directed intestinal cell fate adoption plays an important role in the establishment of normal epithelial-mesenchymal interactions, as multiple signaling pathways involved in this process were severely affected. We conclude that Cdx2 controls important aspects of intestinal identity and development, and that this function is largely independent of the enteric Hox code.
Collapse
|
126
|
Verzi MP, Stanfel MN, Moses KA, Kim BM, Zhang Y, Schwartz RJ, Shivdasani RA, Zimmer WE. Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 2009; 136:1701-10. [PMID: 19208343 PMCID: PMC2955323 DOI: 10.1053/j.gastro.2009.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 12/15/2008] [Accepted: 01/08/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Expansion and patterning of the endoderm generate a highly ordered, multiorgan digestive system in vertebrate animals. Among distal foregut derivatives, the gastric corpus, antrum, pylorus, and duodenum are distinct structures with sharp boundaries. Some homeodomain transcription factors expressed in gut mesenchyme convey positional information required for anterior-posterior patterning of the digestive tract. Barx1, in particular, controls stomach differentiation and morphogenesis. The Nirenberg and Kim homeobox gene Bapx1 (Nkx3-2) has an established role in skeletal development, but its function in the mammalian gut is less clear. METHODS We generated a Bapx1(Cre) knock-in allele to fate map Bapx1-expressing cells and evaluate its function in gastrointestinal development. RESULTS Bapx1-expressing cells populate the gut mesenchyme with a rostral boundary in the hindstomach near the junction of the gastric corpus and antrum. Smooth muscle differentiation and distribution of early regional markers are ostensibly normal in Bapx1(Cre/Cre) gut, but there are distinctive morphologic abnormalities near this rostral Bapx1 domain: the antral segment of the stomach is markedly shortened, and the pyloric constriction is lost. Comparison of expression domains and examination of stomach phenotypes in single and compound Barx1 and Bapx1 mutant mice suggests a hierarchy between these 2 factors; Bapx1 expression is lost in the absence of Barx1. CONCLUSIONS This study reveals the nonredundant requirement for Bapx1 in distal stomach development, places it within a Barx1-dependent pathway, and illustrates the pervasive influence of gut mesenchyme homeobox genes on endoderm differentiation and digestive organogenesis.
Collapse
Affiliation(s)
- Michael P. Verzi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA
| | - Monique N. Stanfel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kelvin A. Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Byeong-Moo Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA
| | - Yan Zhang
- Department of Systems Biology and Translational Medicine, Texas A&M University, College of Medicine, College Station, TX
| | - Robert J. Schwartz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, Center for Environmental and Rural Health, Texas A&M University, College of Medicine, College Station, TX, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA,Address correspondence to: Warren E. Zimmer, Ph.D., Texas A&M Health Science Center, 310B Joe H. Reynold’s Bldg, College Station, TX 77843, Tel. 617-632-5746 Fax 617-582-8490, OR Ramesh A. Shivdasani, M.D., Ph.D., Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 Tel. 979-845-2896 Fax 979-862-4638,
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M University, College of Medicine, College Station, TX, Center for Environmental and Rural Health, Texas A&M University, College of Medicine, College Station, TX,Address correspondence to: Warren E. Zimmer, Ph.D., Texas A&M Health Science Center, 310B Joe H. Reynold’s Bldg, College Station, TX 77843, Tel. 617-632-5746 Fax 617-582-8490, OR Ramesh A. Shivdasani, M.D., Ph.D., Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 Tel. 979-845-2896 Fax 979-862-4638,
| |
Collapse
|
127
|
Damianitsch K, Melchert J, Pieler T. XsFRP5 modulates endodermal organogenesis in Xenopus laevis. Dev Biol 2009; 329:327-37. [PMID: 19285490 DOI: 10.1016/j.ydbio.2009.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 11/15/2022]
Abstract
Canonical Wnt signalling is known to be involved in the regulation of differentiation and proliferation in the context of endodermal organogenesis. Wnt mediated beta-catenin activation is understood to be modulated by secreted Frizzled-related proteins, such as XsFRP5, which is dynamically expressed in the prospective liver/ventral pancreatic precursor cells during late neurula stages, becoming liver specific at tailbud stages and shifting to the posterior stomach/anterior duodenum territory during tadpole stages of Xenopus embryogenesis. These expression characteristics prompted us to analyse the function of XsFRP5 in the context of endodermal organogenesis. We demonstrate that XsFRP5 can form a complex with and inhibit a multitude of different Wnt ligands, including both canonical and non-canonical ones. Knockdown of XsFRP5 results in transient pancreatic hypoplasia as well as in an enlargement of the stomach. In VegT-injected animal cap explants, XsFRP5 can induce expression of exocrine but not endocrine pancreatic marker genes. Both, its expression characteristics as well as its interactions with XsFRP5, define Wnt2b as a putative target for XsFRP5 in vivo. Knockdown of Wnt2b results in a hypoplastic stomach as well as in hypoplasia of the pancreas. On the basis of these findings we propose that XsFRP5 exerts an early regulatory function in the specification of the ventral pancreas, as well as a late function in controlling stomach size via inhibition of Wnt signalling.
Collapse
Affiliation(s)
- Katharina Damianitsch
- Department of Developmental Biochemistry, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37073 Göttingen, Germany
| | | | | |
Collapse
|
128
|
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol Genomics 2009; 37:67-78. [PMID: 19208773 DOI: 10.1152/physiolgenomics.90408.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular composition and morphology of the stomach epithelium have been described in detail; however, the molecular mechanisms that regulate the differentiation of the various cell lineages as well as the function of mature gastric cells are far less clear. Recently, dissection of the molecular anatomy of the stomach has been boosted by the advent of functional genomics, which allows investigators to determine patterns of gene expression across virtually the entire cellular transcriptome. In this review, we discuss the impact of functional genomic studies on the understanding of gastric epithelial physiology. We show how functional genomic studies have uncovered genes that are useful as new cell lineage-specific markers of differentiation and provide new insights into cell physiology. For example, vascular endothelial growth factor B (Vegfb) has been identified as a parietal cell-specific marker that may allow parietal cells to regulate the mucosal vascular network. We also discuss how functional genomics has identified aberrantly expressed genes in disease states. Human epididymis 4 (HE4), for example, was recently identified as a metaplasia-induced gene product in mice based on microarray analysis. Finally, we will examine how analysis of higher-order patterns of gene expression can go beyond simply identifying individual genes to show how cells work as integrated systems. Specifically, we show how application of a Gene Ontology (GO) analysis of gene expression patterns from multiple tissues identifies the gastric parietal cell as an outlier, unlike other differentiated cell lineages in the stomach or elsewhere in the body.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
129
|
Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 2008; 11:46-55. [PMID: 19079247 PMCID: PMC2722759 DOI: 10.1038/ncb1811] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022]
Abstract
Secreted frizzled related proteins (sFRPs) have emerged as key regulators of a wide range of developmental and disease processes, with virtually all known functions of mammalian sFRPs attributed to their ability to antagonize Wnt signaling. Recently however, the Xenopus and zebrafish sFRP, Sizzled, was shown to function as an antagonist of Chordin processing by Tolloid-like metalloproteinases, leading to the proposal that sFRPs may function as evolutionarily-conserved antagonists of the chordinase activities of this class of proteinases. Herein, in contrast to this proposal, we show that the mammalian sFRP, sFRP2, does not affect Chordin processing, but instead can serve as a direct enhancer of the procollagen C-proteinase activity of Tolloid-like metalloproteinases. We further show that the level of fibrosis, in which procollagen processing by Tolloid-like proteinases plays a rate-limiting role, is markedly reduced in sFRP2-null mice subjected to myocardial infarction. Importantly, this reduced level of fibrosis is accompanied by significantly improved cardiac function. This study thus uncovers a novel function for sFRP2 and a potential therapeutic application for sFRP2 antagonism in controlling fibrosis in the infarcted heart.
Collapse
|
130
|
Benahmed F, Gross I, Gaunt SJ, Beck F, Jehan F, Domon-Dell C, Martin E, Kedinger M, Freund JN, Duluc I. Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. Gastroenterology 2008; 135:1238-1247, 1247.e1-3. [PMID: 18655789 DOI: 10.1053/j.gastro.2008.06.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 06/06/2008] [Accepted: 06/19/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The Cdx2 homeobox gene exerts multiple functions including trophectoderm specification, antero-posterior patterning, and determination of intestinal identity. The aim of this study was to map genomic regions that regulate the transcription of Cdx2, with a particular interest in the gut. METHODS Genomic fragments covering 13 kilobase (kb) of the mouse Cdx2 locus were analyzed in transgenic mice and in cell assays. RESULTS No fragment was active in the trophectoderm. Fragments containing the first intron and extending up to -5-kb upstream of the transcription start site became active posteriorly at gastrulation and then inactive at midgestation in every tissue including the endoderm. Specific persistence of activity in the intestinal endoderm/epithelium beyond midgestation requires extending the genomic fragment up to -9 kb. We identified a 250-base pair segment around -8.5-kb binding and responding to endodermal factors, with a stimulatory effect exerted synergistically by HNF4alpha, GATA6, Tcf4, and beta-catenin. These factors were able to activate endogenous expression of Cdx2 in nonintestinal Hela cells. CONCLUSIONS Multiple regulatory regions control the complex developmental pattern of Cdx2, including far upstream sequences required for the persistence of gene expression specifically in the gut epithelium throughout life. Cooperation between HNF4alpha, GATA6, beta-catenin, and Tcf4 contributes to the intestine-specific expression of Cdx2.
Collapse
|
131
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
132
|
Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008; 121:737-46. [PMID: 18322270 DOI: 10.1242/jcs.026096] [Citation(s) in RCA: 473] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The secreted Frizzled-related proteins (SFRPs) are a family of soluble proteins that are structurally related to Frizzled (Fz) proteins, the serpentine receptors that mediate the extensively used cell-cell communication pathway involving Wnt signalling. Because of their homology with the Wnt-binding domain on the Fz receptors, SFRPs were immediately characterised as antagonists that bind to Wnt proteins to prevent signal activation. Since these initial studies, interest in the family of SFRPs has grown progressively, offering new perspectives on their function and mechanism of action in both development and disease. These studies indicate that SFRPs are not merely Wnt-binding proteins, but can also antagonise one another's activity, bind to Fz receptors and influence axon guidance, interfere with BMP signalling by acting as proteinase inhibitors, and interact with other receptors or matrix molecules. Furthermore, their expression is altered in different types of cancers, bone pathologies, retinal degeneration and hypophosphatemic diseases, indicating that their activity is fundamental for tissue homeostasis. Here we review some of the debated aspects of SFRP-Wnt interactions and discuss the new and emerging roles of SFRPs.
Collapse
Affiliation(s)
- Paola Bovolenta
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain.
| | | | | | | | | |
Collapse
|
133
|
Duverger O, Morasso MI. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol 2008; 216:337-46. [PMID: 18459147 DOI: 10.1002/jcp.21491] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are key regulators during developmental processes such as regional specification, patterning, and differentiation. In this review, we summarize the expression pattern, loss- and/or gain-of-function mouse models, and naturally occurring mouse and human mutations of known homeobox genes required for the development of ectodermal appendages.
Collapse
Affiliation(s)
- Olivier Duverger
- Developmental Skin Biology Unit, National Institute of Arthritis Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
134
|
Stringer EJ, Pritchard CA, Beck F. Cdx2 initiates histodifferentiation of the midgut endoderm. FEBS Lett 2008; 582:2555-60. [PMID: 18577384 DOI: 10.1016/j.febslet.2008.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/06/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Null mutation or haploinsufficiency of Cdx2 results in the development of heterotopic lesions with a gastric phenotype in the midgut endoderm. Conversely transgenic expression of Cdx2 in the stomach causes the endoderm to differentiate into intestinal-type mucosa. We demonstrate that the mesoderm adjacent to intestinal heterotopic areas expresses stomach specific Barx1 while the surrounding mesoderm is Barx1 negative. We conclude that the initiation of gut histodifferentiation lies in the endodermal expression of Cdx2 and that endodermal/mesodermal cross-talk involving Barx1 with appropriate feedback loops results in the development of the postnatal gut phenotype.
Collapse
Affiliation(s)
- Emma J Stringer
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
135
|
Sperber SM, Dawid IB. barx1 is necessary for ectomesenchyme proliferation and osteochondroprogenitor condensation in the zebrafish pharyngeal arches. Dev Biol 2008; 321:101-10. [PMID: 18590717 DOI: 10.1016/j.ydbio.2008.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 12/11/2022]
Abstract
Barx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium.
Collapse
Affiliation(s)
- Steven M Sperber
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
136
|
Fukamachi H, Mimata A, Tanaka I, Ito K, Ito Y, Yuasa Y. In vitro differentiation of Runx3-/- p53-/- gastric epithelial cells into intestinal type cells. Cancer Sci 2008; 99:671-6. [PMID: 18377419 PMCID: PMC11160005 DOI: 10.1111/j.1349-7006.2008.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 11/29/2022] Open
Abstract
We have reported that a lack of RUNX3 function is causally associated with gastric carcinogenesis. We have also presented evidence that loss of Runx3 may be related to the genesis of intestinal metaplasia because expression of RUNX3 is reduced in some intestinal metaplasias, and some Runx3(-/-)p53(-/-) gastric epithelial cells differentiate into intestinal type cells in vivo. Recently several reports have indicated that blood cells play important roles in the gastric carcinogenesis. In the present study, we therefore examined whether Runx3(-/-)p53(-/-) gastric epithelial cells differentiate autonomously into intestinal type cells, or whether the presence of other cells is necessary for the differentiation in vitro. When Runx3(-/-)p53(-/-) gastric epithelial cells were cultured with collagen gels, they did not exhibit any morphogenesis and differentiated poorly. When cultured with fetal mouse gastric mesenchymes, the cells formed glandular structures and differentiated into surface mucous cells, but differentiation of intestinal type cells was never observed. When cultured with Matrigel, the cells formed glandular structures, and some cells differentiated into intestinal type cells in vitro. Reverse transcription-polymerase chain reaction analysis showed that the cells expressed stomach-specific genes, and their levels decreased gradually during the culture. The cells expressed some intestine-specific genes weakly at the start of culture, and their levels were increased with time in culture. We therefore conclude that Runx3(-/-)p53(-/-) gastric epithelial cells differentiate into intestinal type cells in combination with Matrigel in the absence of other cell types. Extracellular matrix, not blood cells, may play a role in the genesis of intestinal metaplasia.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
137
|
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317:497-507. [PMID: 18407260 DOI: 10.1016/j.ydbio.2008.02.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
Abstract
5' HoxD genes are required for the correct formation of limb skeletal elements. Hoxd13, the most 5'-located HoxD gene, is important for patterning the most distal limb region, and its mutation causes human limb malformation syndromes. The mechanisms underlying the control of developmental processes by Hoxd13, and by Hox genes in general, are still elusive, due to the limited knowledge on their direct downstream target genes. We identified by ChIP-on-chip 248 known gene loci bound invivo by Hoxd13. Genes relevant to limb patterning and skeletogenesis were further analysed. We found that Hoxd13 binds invivo, in developing limbs, the loci of Hand2, a gene crucial to limb AP axis patterning, of Meis1 and Meis2, involved in PD patterning, of the Sfrp1, Barx1, and Fbn1 genes, involved in skeletogenesis, and of the Dach1, Bmp2, Bmp4, andEmx2 genes. We show that Hoxd13 misexpression in developing chick limbs alters the expression of the majority of these genes, supporting the conclusion that Hoxd13 directly regulates their transcription. Our results indicate that 5' Hox proteins regulate directly both key genes for early limb AP and PD axis patterning and genes involved, at later stages, in skeletal patterning.
Collapse
|
138
|
Chen YN, Chen H, Xu Y, Zhang X, Luo Y. Expression of pituitary homeobox 1 gene in human gastric carcinogenesis and its clinicopathological significance. World J Gastroenterol 2008; 14:292-7. [PMID: 18186570 PMCID: PMC2675129 DOI: 10.3748/wjg.14.292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of pituitary homeobox 1 (PITX1) expression in cases of human gastric cancer on cancer differentiation and progression, and carcinogenesis.
METHODS: Using polyclonal PITX1 antibodies, we studied the expression of PITX1 in normal gastric mucosa, atypical hyperplasia, intestinal metaplasia, and cancer tissue samples from 83 gastric cancer patients by immunohistochemistry. Moreover, semi-reverse transcription polymerase chain reaction (semi-RT-PCR) was performed to detect the mRNA level of PITX1 in three gastric cancer cell lines and a normal gastric epithelial cell line. Subsequently, somatic mutations of the PITX1 gene in 71 gastric cancer patients were analyzed by a combination of denaturing high performance liquid chromatography (DHPLC) and DNA sequencing.
RESULTS: Immunohistochemistry showed that PITX1 was strongly or moderately expressed in the parietal cells of normal gastric mucosa (100%), while 55 (66.3%) out of 83 samples of gastric cancers showed decreased PITX1 expression. Moreover, PITX1 expression was reduced in 20 out of 28 cases (71.5%) of intestinal metaplasia, but in only 1 out of 9 cases (11%) of atypical hyperplasia. More importantly, PITX1 expression was significantly associated with the differentiation, position and invasion depth of gastric cancers (r = -0.316, P < 0.01; r = 0.213, P < 0.05; r = -0.259, P < 0.05, respectively). Similarly, levels of PITX1 mRNA were significantly decreased in 2 gastric cancer cell lines, BGC-823 and SGC-7901, compared with the normal gastric epithelial cell line GES-1 (0.306 ± 0.060 vs 0.722 ± 0.102, P < 0.05; 0.356 ± 0.081 vs 0.722 ± 0.102, P < 0.05, respectively). Nevertheless, no somatic mutation of PITX1 gene was found in 71 samples of gastric cancer by DHPLC analysis followed by sequencing.
CONCLUSION: Down-regulation of PITX1 may be a frequent molecular event in gastric carcinogenesis. Aberrant levels of PITX1 expression may be closely correlated with the progression and differentiation of gastric cancer.
Collapse
|
139
|
Kim BM, Miletich I, Mao J, McMahon AP, Sharpe PA, Shivdasani RA. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development 2007; 134:3603-13. [PMID: 17855428 DOI: 10.1242/dev.009308] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeobox genes convey positional information in embryos and their role in patterning the mammalian gut is a topic of considerable interest. Barx1 is expressed selectively in fetal stomach mesenchyme and directs differentiation of overlying endoderm. Recombinant tissue cultures and study of young mouse embryos previously suggested that Barx1 controls expression of secreted Wnt antagonists, which suppress endodermal Wnt signaling, to enable stomach epithelial differentiation. We overcame mid-gestational lethality of Barx1(-/-) mouse embryos and report here the spectrum of anomalies in a distinctive and unprecedented model of gastrointestinal homeotic transformation. Using various mouse models, we confirm the importance of attenuated Wnt signaling in stomach development and the role of Barx1 in suppressing endodermal Wnt activity. Absence of Barx1 also results in fully penetrant defects in positioning and expansion of the spleen, an organ that originates within the mesothelial lining of the stomach. Barx1 is absent from the spleen primordium but highly expressed in the mesogastrium, indicating an indirect effect on spleen development. However, our results argue against a role for Wnt antagonism in genesis of the spleen. Mouse spleen development relies on several homeodomain transcriptional regulators that are expressed in the spleen primordium. Loss of Barx1 does not affect expression of any of these genes but notably reduces expression of Wt1, a transcription factor implicated in spleen morphogenesis and expressed in the mesothelium. These observations place Barx1 proximally within a Wt1 pathway of spleen development and reveal how a homeotic regulator employs different molecular mechanisms to mold neighboring organs.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
140
|
Muncan V, Faro A, Haramis APG, Hurlstone AFL, Wienholds E, van Es J, Korving J, Begthel H, Zivkovic D, Clevers H. T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO Rep 2007; 8:966-73. [PMID: 17823612 PMCID: PMC2002560 DOI: 10.1038/sj.embor.7401071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that Wnt signals, relayed through beta-catenin and T-cell factor 4 (Tcf4), are essential for the induction and maintenance of crypts in mice. We have now generated a tcf4 (tcf7l2) mutant zebrafish by reverse genetics. We first observe a phenotypic defect at 4 weeks post-fertilization (wpf), leading to death at about 6 wpf. The phenotype comprises a loss of proliferation at the base of the intestinal folds of the middle and distal parts of the intestine. The proximal intestine represents an independent compartment, as it expresses sox2 in the epithelium and barx1 in the surrounding mesenchyme, which are early stomach markers in higher vertebrates. Zebrafish are functionally stomach-less, but the proximal intestine might share its ontogeny with the mammalian stomach. Rare adult homozygous tcf4(-/-) 'escapers' show proliferation defects in the gut epithelium, but have no other obvious abnormalities. This study underscores the involvement of Tcf4 in maintaining proliferative self-renewal in the intestine throughout life.
Collapse
Affiliation(s)
- Vanesa Muncan
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ana Faro
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna-Pavlina G Haramis
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Adam F L Hurlstone
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Erno Wienholds
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Johan van Es
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jeroen Korving
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Harry Begthel
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Danica Zivkovic
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Hans Clevers
- Netherlands Institute for Developmental Biology, Center for Biomedical Research, Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Tel: +31 30 212 1800; Fax: +31 30 251 6464; E-mail:
| |
Collapse
|
141
|
Kim BM, Mao J, Taketo MM, Shivdasani RA. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology 2007; 133:529-38. [PMID: 17681174 DOI: 10.1053/j.gastro.2007.04.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/19/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS Intestinal crypts constitute a niche in which epithelial progenitors respond to Wnt signals, replicate, and prepare to differentiate. Because mutations in Wnt pathway genes lead to intestinal cancer, the role of Wnt signaling in gut epithelial homeostasis is a subject of intense investigation. We studied how Wnt signaling is established during intestine development. METHODS We studied spatiotemporal features of Wnt signaling at formative stages in mouse embryos, when villous projections appear and crypt precursors occupy intervillus regions. We used TOP-GAL transgenic and Axin2(LacZ) mice, which report faithfully on canonical Wnt activity, relevant molecular markers, and embryos with aberrant beta-catenin activation. RESULTS Developing intestines first display evidence for Wnt signaling after appearance of villi. During villus morphogenesis, intervillus cells proliferate actively but lack signs of canonical Wnt signaling. Surprisingly, in late gestation and briefly thereafter, conspicuous Wnt activity is evident in differentiated, postmitotic villus epithelium. Neither Tcf4, a principal transcriptional effector of intestinal Wnt signals, nor candidate Wnt targets CD44 and cyclinD1 are expressed in late fetal villus cells that show high Wnt activity. Instead, those cells express the related factor Tcf3 and a different Wnt target, c-Myc. Premature and deregulated beta-catenin activation causes severe villus dysmorphogenesis in transgenic mice. CONCLUSIONS Relationships among Wnt signaling, epithelial proliferation, and tissue differentiation are reversed in the developing and adult gut. The canonical Wnt pathway has independent, albeit possibly overlapping, functions in early intestinal villi and adult crypts. These observations advance understanding of Wnt functions in intestinal development and disease.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
142
|
Welsh IC, Hagge-Greenberg A, O'Brien TP. A dosage-dependent role for Spry2 in growth and patterning during palate development. Mech Dev 2007; 124:746-61. [PMID: 17693063 PMCID: PMC2043129 DOI: 10.1016/j.mod.2007.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/12/2007] [Accepted: 06/30/2007] [Indexed: 11/28/2022]
Abstract
The formation of the palate involves the coordinated outgrowth, elevation and midline fusion of bilateral shelves leading to the separation of the oral and nasal cavities. Reciprocal signaling between adjacent fields of epithelial and mesenchymal cells directs palatal shelf growth and morphogenesis. Loss of function mutations in genes encoding FGF ligands and receptors have demonstrated a critical role for FGF signaling in mediating these epithelial-mesenchymal interactions. The Sprouty family of genes encode modulators of FGF signaling. We have established that mice carrying a deletion that removes the FGF signaling antagonist Spry2 have cleft palate. We show that excessive cell proliferation in the Spry2-deficient palate is accompanied by the abnormal progression of shape changes and movements required for medially directed shelf outgrowth and midline contact. Expression of the FGF responsive transcription factors Etv5, Msx1, and Barx1, as well as the morphogen Shh, is restricted to specific regions of the developing palate. We detected elevated and ectopic expression of these transcription factors and disorganized Shh expression in the Spry2-deficient palate. Mice carrying a targeted disruption of Spry2 fail to complement the craniofacial phenotype characterized in Spry2 deletion mice. Furthermore, a Spry2-BAC transgene rescues the palate defect. However, the BAC transgenic mouse lines express reduced levels of Spry2. The resulting hypomorphic phenotype demonstrates that palate development is Spry2 dosage sensitive. Our results demonstrate the importance of proper FGF signaling thresholds in regulation of epithelial-mesenchymal interactions and cellular responses necessary for coordinated morphogenesis of the face and palate.
Collapse
Affiliation(s)
- Ian C Welsh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
143
|
Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BLM. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 2007; 134:2521-31. [PMID: 17522155 PMCID: PMC3625644 DOI: 10.1242/dev.003855] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmia-esophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the trachea and esophagus fail to separate. Mouse embryos heterozygous for the null allele, Sox2(EGFP), appear normal. However, further reductions in Sox2, using Sox2(LP) and Sox2(COND) hypomorphic alleles, result in multiple abnormalities. Approximately 60% of Sox2(EGFP/COND) embryos have EA with distal TEF in which Sox2 is undetectable by immunohistochemistry or western blot. The mutant esophagus morphologically resembles the trachea, with ectopic expression of Nkx2.1, a columnar, ciliated epithelium, and very few p63(+) basal cells. By contrast, the abnormal foregut of Nkx2.1-null embryos expresses elevated Sox2 and p63, suggesting reciprocal regulation of Sox2 and Nkx2.1 during early dorsal/ventral foregut patterning. Organ culture experiments further suggest that FGF signaling from the ventral mesenchyme regulates Sox2 expression in the endoderm. In the 40% Sox2(EGFP/COND) embryos in which Sox2 levels are approximately 18% of wild type there is no TEF. However, the esophagus is still abnormal, with luminal mucus-producing cells, fewer p63(+) cells, and ectopic expression of genes normally expressed in glandular stomach and intestine. In all hypomorphic embryos the forestomach has an abnormal phenotype, with reduced keratinization, ectopic mucus cells and columnar epithelium. These findings suggest that Sox2 plays a second role in establishing the boundary between the keratinized, squamous esophagus/forestomach and glandular hindstomach.
Collapse
Affiliation(s)
- Jianwen Que
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tadashi Okubo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - James R. Goldenring
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ki-Taek Nam
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reiko Kurotani
- Laboratory of Metabolism, NCI, NIH, Bethesda, MD 20892, USA
| | - Edward E. Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, PA 19104, USA
| | - Olena Taranova
- Department of Genetics, University of North Carolina Neuroscience Center, University North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Larysa H. Pevny
- Department of Genetics, University of North Carolina Neuroscience Center, University North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brigid L. M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Author for correspondence ()
| |
Collapse
|
144
|
Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN. Development and function of the mammalian spleen. Bioessays 2007; 29:166-77. [PMID: 17226804 DOI: 10.1002/bies.20528] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate spleen has important functions in immunity and haematopoiesis, many of which have been well studied. In contrast, we know much less about the mechanisms governing its early embryonic development. However, as a result of work over the past decade-mostly using knockout mice--significant progress has been made in unravelling the genetic processes governing the spleen's early development. Key genetic regulators, such as Tlx1 and Pbx1, have been identified, and we know some of the early transcriptional hierarchies that control the early patterning and proliferation of the splenic primordium. In mouse and humans, asplenia can arise as a result of laterality defects, or the spleen can be absent with no other discernible abnormalities. Surprisingly, given the spleen's diverse functions, asplenic individuals suffer no major haematopoietic or immune defects apart from a susceptibility to infection with encapsulated bacteria. Recent evidence has shed light on a previously unknown role of the spleen in the development and maintenance of specific B cell populations that are involved in the initial response to infection caused by encapsulated bacteria. The lack of these populations in asplenic mice and humans may go some way to explaining this susceptibility.
Collapse
Affiliation(s)
- Andrea Brendolan
- Department of Cell and Developmental Biology, Cornell University, Weill Medical School, New York, NY, USA
| | | | | | | | | |
Collapse
|
145
|
Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 2006; 235:1334-44. [PMID: 16628661 DOI: 10.1002/dvdy.20706] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re-aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re-aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well-defined dental epithelial structure, leading to the formation of a well-differentiated tooth organ after sub-renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus-mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large-scale analysis of gene function in mammalian tooth development.
Collapse
Affiliation(s)
- Yiqiang Song
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Nyeng P, Norgaard GA, Kobberup S, Jensen J. FGF10 signaling controls stomach morphogenesis. Dev Biol 2006; 303:295-310. [PMID: 17196193 PMCID: PMC1864952 DOI: 10.1016/j.ydbio.2006.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 12/18/2022]
Abstract
Maintenance of progenitor cell properties in development is required for proper organogenesis of most organs, including those derived from the endoderm. FGF10 has been shown to play a role in both lung and pancreatic development. Here we find that FGF10 signaling controls stomach progenitor maintenance, morphogenesis and cellular differentiation. Through a characterization of the initiation of terminal differentiation of the three major gastric regions in the mouse, forestomach, corpus and antrum, we first describe the existence of a "secondary transition" event occurring in mouse stomach between E15.5 and E16.5. This includes the formation of terminally differentiated squamous cells, parietal, chief and gastric endocrine cells from a pre-patterned gastric progenitor epithelium. Expression analysis of both FGF and Notch signaling components suggested a role of these networks in such progenitors, which was tested through ectopically expressing FGF10 in the developing posterior stomach. These data provide evidence that gastric gland specification and progenitor cell maintenance is controlled by FGF10. The glandular proliferative niche was disrupted in pPDX-FGF10(FLAG) mice leading to aberrant gland formation, and endocrine and parietal cell differentiation was attenuated. These effects were paralleled by changes in Hes1, Shh and Wnt6 expression, suggesting that FGF10 acts in concert with multiple morphogenetic signaling systems during gastric development.
Collapse
Affiliation(s)
| | | | | | - Jan Jensen
- Author for correspondence: Jan Jensen, PhD, Barbara Davis Center for Childhood Diabetes, U. Colorado, HSC. 4200 E 9 Avenue, B140, 80262 Denver, CO, USA, phone + 303-315-1389, fax +303-315-4892. E-mail:
| |
Collapse
|
147
|
Choi MY, Romer AI, Hu M, Lepourcelet M, Mechoor A, Yesilaltay A, Krieger M, Gray PA, Shivdasani RA. A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development. Development 2006; 133:4119-29. [PMID: 16971476 DOI: 10.1242/dev.02537] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue-restricted transcription factors (TFs), which confer specialized cellular properties, are usually identified through sequence homology or cis-element analysis of lineage-specific genes; conventional modes of mRNA profiling often fail to report non-abundant TF transcripts. We evaluated the dynamic expression during mouse gut organogenesis of 1381 transcripts, covering nearly every known and predicted TF, and documented the expression of approximately 1000 TF genes in gastrointestinal development. Despite distinctive structures and functions, the stomach and intestine exhibit limited differences in TF genes. Among differentially expressed transcripts, a few are virtually restricted to the digestive tract, including Nr2e3, previously regarded as a photoreceptor-specific product. TFs that are enriched in digestive organs commonly serve essential tissue-specific functions, hence justifying a search for other tissue-restricted TFs. Computational data mining and experimental investigation focused interest on a novel homeobox TF, Isx, which appears selectively in gut epithelium and mirrors expression of the intestinal TF Cdx2. Isx-deficient mice carry a specific defect in intestinal gene expression: dysregulation of the high density lipoprotein (HDL) receptor and cholesterol transporter scavenger receptor class B, type I (Scarb1). Thus, integration of developmental gene expression with biological assessment, as described here for TFs, represents a powerful tool to investigate control of tissue differentiation.
Collapse
Affiliation(s)
- Michael Y Choi
- Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Torihashi S, Kuwahara M, Ogaeri T, Zhu P, Kurahashi M, Fujimoto T. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells 2006; 24:2618-26. [PMID: 16888283 DOI: 10.1634/stemcells.2006-0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, we reported the formation of gut-like structures from mouse ESCs in vitro. To determine whether ESCs provide an in vitro model of gastrointestinal (GI) tracts and their organogenesis, we investigated the morphological features, formation process, cellular development, and regional location within the GI tract by immunohistochemistry, electron microscopy, and reverse transcription-polymerase chain reaction. We also examined the developmental potential by transplantation into kidney capsules. The results demonstrated that Id2-expressing epithelium developed first, alpha-smooth muscle actin appeared around the periphery, and finally, the gut-like structures were formed into a three-layer organ with well-differentiated epithelium. A connective tissue layer and musculature with interstitial cells of Cajal developed, similar to organogenesis of the embryonic gut. Enteric neurons appeared underdeveloped, and blood vessels were absent. Many structures expressed intestinal markers Cdx2 and 5-hydroxytryptamine but not the stomach marker H(+)/K(+) ATPase. Transplants obtained blood vessels and extrinsic nerve growth from the host to prolong life, and even grafts of premature structures did not form teratoma. In conclusion, gut-like structures were provided with prototypical tissue components of the GI tract and are inherent in the intestine rather than the stomach. The formation process was basically same as in gut organogenesis. They maintain their developmental potential after transplantation. Therefore, gut-like structures provide a unique and useful in vitro system for development and stem cell studies of the GI tract, including transplantation experiments.
Collapse
Affiliation(s)
- Shigeko Torihashi
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
149
|
Fukamachi H. Runx3 controls growth and differentiation of gastric epithelial cells in mammals. Dev Growth Differ 2006; 48:1-13. [PMID: 16466388 DOI: 10.1111/j.1440-169x.2006.00832.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Runx3 is a transcription factor expressed by gastric epithelial cells. In the Runx3(-/-) mouse, gastric epithelia exhibited hyperplasia, and epithelial apoptosis was suppressed. By analyzing growth of the epithelial cells in primary culture, we found that Runx3(-/-) gastric epithelial cells are less sensitive to the growth-inhibitory and apoptosis-inducing activities of TGF-beta, suggesting that Runx3 is a major growth regulator of gastric epithelial cells by regulating their response to TGF-beta. We also found that Runx3 plays an important role in the control of gastric epithelial differentiation. When subcutaneously implanted into nude mice, Runx3(-/-) gastric epithelial cells formed tumors in which some cells differentiated into intestinal-type cells. Clonal analysis showed that gastric epithelial cells transdifferentiate into intestinal-type cells in the tumor. Considering that gastric epithelial differentiation is very stable, and that intestinal-type cells never differentiate in the mouse stomach, it is remarkable that gastric epithelial cells transdifferentiate into intestinal-type cells. We conclude that Runx3 is deeply involved in the control of both growth and differentiation of gastric epithelial cells. The role of Runx3 in the specification of gastric epithelial cells is discussed.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| |
Collapse
|
150
|
Listyorini D, Yasugi S. Expression and function of Wnt5a in the development of the glandular stomach in the chicken embryo. Dev Growth Differ 2006; 48:243-52. [PMID: 16681649 DOI: 10.1111/j.1440-169x.2006.00861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epithelium of the chicken embryonic glandular stomach (proventriculus) differentiates into both a glandular and a luminal epithelium, the cells of which express specific marker genes. The subsequent formation and differentiation of the glands then proceed under the influence of the mesenchyme. To search for possible candidates for the mesenchymal factors involved, we have now investigated the expression and function of Wnt5a in this process. Our current results show that Wnt5a is expressed in the mesenchyme during active gland formation and that overexpression of this gene in ovo results in the increased and ectopic expression of some of the marker genes of the luminal and glandular epithelia. In particular, the overexpression of Wnt5a markedly enhances the expression of the embryonic chicken pepsinogen gene, a marker of the glandular epithelium, indicating its role as a mesenchymal factor that regulates the differentiation of the proventricular epithelium.
Collapse
Affiliation(s)
- Dwi Listyorini
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|