101
|
Multifaceted Roles of CD5L in Infectious and Sterile Inflammation. Int J Mol Sci 2021; 22:ijms22084076. [PMID: 33920819 PMCID: PMC8071174 DOI: 10.3390/ijms22084076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
CD5L, a protein expressed and secreted mainly by macrophages, is emerging as a critical immune effector. In addition to its well-defined function as an anti-apoptotic protein, research over the last decade has uncovered additional roles that range from pattern recognition to autophagy, cell polarization, and the regulation of lipid metabolism. By modulating all these processes, CD5L plays a key role in highly prevalent diseases that develop by either acute or chronic inflammation, including several infectious, metabolic, and autoimmune conditions. In this review, we summarize the current knowledge of CD5L and focus on the relevance of this protein during infection- and sterile-driven inflammatory pathogenesis, highlighting its divergent roles in the modulation of inflammation.
Collapse
|
102
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
103
|
Adamek M, Davies J, Beck A, Jordan L, Becker AM, Mojzesz M, Rakus K, Rumiac T, Collet B, Brogden G, Way K, Bergmann SM, Zou J, Steinhagen D. Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination. Front Immunol 2021; 12:581786. [PMID: 33717065 PMCID: PMC7943847 DOI: 10.3389/fimmu.2021.581786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jonathan Davies
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,School of Life Sciences, Keele University, Keele, United Kingdom
| | - Alexander Beck
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Lisa Jordan
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Typhaine Rumiac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Graham Brogden
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
104
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
105
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
106
|
Risso D, Leoni V, Fania C, Arveda M, Falchero L, Barattero M, Civra A, Lembo D, Poli G, Menta R. Effect of industrial processing and storage procedures on oxysterols in milk and milk products. Food Funct 2021; 12:771-780. [PMID: 33393572 DOI: 10.1039/d0fo02462g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxysterols are products of enzymatic and/or chemical cholesterol oxidation. While some of the former possess broad antiviral activities, the latter mostly originate from the deterioration of the nutritional value of foodstuff after exposure to heat, light, radiation and oxygen, raising questions about their potential health risks. We evaluated the presence of selected oxysterols in bovine colostrum and monitored the evolution of their cholesterol ratio throughout an entire industrial-scale milk production chain and after industrially employed storage procedures of milk powders. We report here for the first time the presence of high levels of the enzymatic oxysterol 27-hydroxycholesterol (27OHC) in concentrations of antiviral interest in bovine colostrum (87.04 ng mL-1) that decreased during the first postpartum days (56.35 ng mL-1). Of note, this oxysterol is also observed in milk and milk products and is not negatively affected by industrial processing or storage. We further highlight an exponential increase of the non-enzymatic oxysterols 7β-hydroxycholesterol (7βOHC) and 7-ketocholesterol (7KC) in both whole (WMPs) and skimmed milk powders (SMPs) during prolonged storage, confirming their role as reliable biomarkers of cholesterol oxidation over time: after 12 months, 7βOHC reached in both SMPs and WMPs amounts that have been found to be potentially toxic in vitro (265.46 ng g-1 and 569.83 ng g-1, respectively). Interestingly, industrial processes appeared to affect the generation of 7βOHC and 7KC differently, depending on the presence of fat in the product: while their ratios increased significantly after skimming and processing of skimmed milk and milk products, this was not observed after processing whole milk and milk cream.
Collapse
Affiliation(s)
- D Risso
- Soremartec Italia Srl, Ferrero Group, Alba, CN, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Misselwitz B, Wyss A, Raselli T, Cerovic V, Sailer AW, Krupka N, Ruiz F, Pot C, Pabst O. The oxysterol receptor GPR183 in inflammatory bowel diseases. Br J Pharmacol 2021; 178:3140-3156. [PMID: 33145756 DOI: 10.1111/bph.15311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Benjamin Misselwitz
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Niklas Krupka
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Florian Ruiz
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
108
|
Zang R, Case JB, Yutuc E, Ma X, Shen S, Gomez Castro MF, Liu Z, Zeng Q, Zhao H, Son J, Rothlauf PW, Kreutzberger AJB, Hou G, Zhang H, Bose S, Wang X, Vahey MD, Mani K, Griffiths WJ, Kirchhausen T, Fremont DH, Guo H, Diwan A, Wang Y, Diamond MS, Whelan SPJ, Ding S. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A 2020; 117:32105-32113. [PMID: 33239446 PMCID: PMC7749331 DOI: 10.1073/pnas.2012197117] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Eylan Yutuc
- Swansea University Medical School, SA2 8PP Swansea, United Kingdom
| | - Xiucui Ma
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | - Sheng Shen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Program in Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Alex J B Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Michael D Vahey
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Kartik Mani
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | | | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63111
- John Cochran VA Medical Center, St. Louis, MO 63106
| | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, United Kingdom
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110;
| |
Collapse
|
109
|
Wang Y, Yutuc E, Griffiths WJ. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev Proteomics 2020; 17:699-717. [PMID: 33191815 DOI: 10.1080/14789450.2020.1847086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: We present our views on the current application of mass spectrometry (MS) based lipidomics and how lipidomics can develop in the next decade to be most practical use to society. That is not to say that lipidomics has not already been of value. In-fact, in its earlier guise as metabolite profiling most of the pathways of steroid biosynthesis were uncovered and via focused lipidomics many inborn errors of metabolism are routinely clinically identified. However, can lipidomics be extended to improve biochemical understanding of, and to diagnose, the most prevalent diseases of the 21st century? Areas covered: We will highlight the concept of 'level of identification' and the equally crucial topic of 'quantification'. Only by using a standardized language for these terms can lipidomics be translated to fields beyond academia. We will remind the lipid scientist of the value of chemical derivatization, a concept exploited since the dawn of lipid biochemistry. Expert opinion: Only by agreement of the concepts of identification and quantification and their incorporation in lipidomics reporting can lipidomics maximize its value.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School , Swansea, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School , Swansea, Wales, UK
| | | |
Collapse
|
110
|
Host Cell Restriction Factors of Paramyxoviruses and Pneumoviruses. Viruses 2020; 12:v12121381. [PMID: 33276587 PMCID: PMC7761617 DOI: 10.3390/v12121381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
The paramyxo- and pneumovirus family includes a wide range of viruses that can cause respiratory and/or systemic infections in humans and animals. The significant disease burden of these viruses is further exacerbated by the limited therapeutics that are currently available. Host cellular proteins that can antagonize or limit virus replication are therefore a promising area of research to identify candidate molecules with the potential for host-targeted therapies. Host proteins known as host cell restriction factors are constitutively expressed and/or induced in response to virus infection and include proteins from interferon-stimulated genes (ISGs). Many ISG proteins have been identified but relatively few have been characterized in detail and most studies have focused on studying their antiviral activities against particular viruses, such as influenza A viruses and human immunodeficiency virus (HIV)-1. This review summarizes current literature regarding host cell restriction factors against paramyxo- and pneumoviruses, on which there is more limited data. Alongside discussion of known restriction factors, this review also considers viral countermeasures in overcoming host restriction, the strengths and limitations in different experimental approaches in studies reported to date, and the challenges in reconciling differences between in vitro and in vivo data. Furthermore, this review provides an outlook regarding the landscape of emerging technologies and tools available to study host cell restriction factors, as well as the suitability of these proteins as targets for broad-spectrum antiviral therapeutics.
Collapse
|
111
|
Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol 2020; 30:979-989. [DOI: 10.1016/j.tcb.2020.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
|
112
|
Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, Hashiguchi T, Liu X, Green R, Erickson S, Gil G, Fuchs M, Suzuki M, Murai T, Nittono H, Hylemon PB, Zhou H, Pandak WM. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res 2020; 61:1629-1644. [PMID: 33008924 PMCID: PMC7707165 DOI: 10.1194/jlr.ra120000924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Rebecca Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Sandra A LaSalle
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | | | - Xiaoying Liu
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Green
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Erickson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Phillip B Hylemon
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
113
|
Multiple Roles of 25-Hydroxycholesterol in Lipid Metabolism, Antivirus Process, Inflammatory Response, and Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8893305. [PMID: 33274010 PMCID: PMC7695496 DOI: 10.1155/2020/8893305] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC.
Collapse
|
114
|
Aggregation of 25-hydroxycholesterol in a complex biomembrane. Differences with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183413. [PMID: 32721397 DOI: 10.1016/j.bbamem.2020.183413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
25-Hydroxycholesterol (25HC), one of the most important oxysterol molecules, can be used by cells to fight bacterial and viral infections but the mechanism that defines its biological effects are unknown. Using molecular dynamics, we have aimed to describe the orientation and location of 25HC in the membrane as well as the interactions it might have with lipids. We have studied two complex model membrane systems, one similar to the late endosome membrane and the other one to the plasma membrane. Our results reinforce that 25HC is inserted in the membrane in a relative stable location similar to but not identical to cholesterol. 25HC fluctuates in the membrane to a much greater degree than cholesterol, but the effect of 25HC on the phospholipid order parameters is not significantly different. One of the most notable facts about 25HC is that, unlike cholesterol, this molecule tends to aggregate, forming dimers, trimers and higher-order aggregates. These aggregates are formed spontaneously through the formation of hydrogen bonds between the two 25HC atoms, the formation of hydrogen bonds being independent of the studied system. Remarkably, no contacts or hydrogen bonds are observed between 25HC and cholesterol molecules, as well as between cholesterol molecules themselves at any time. It would be conceivable that 25HC, by forming high order aggregates without significantly altering the membrane properties, would modify the way proteins interact with the membrane and henceforth form a true innate antiviral molecule.
Collapse
|
115
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
116
|
Kim KI, Lee UH, Cho M, Jung SH, Min EY, Park JW. Transcriptome analysis based on RNA-seq of common innate immune responses of flounder cells to IHNV, VHSV, and HIRRV. PLoS One 2020; 15:e0239925. [PMID: 32986779 PMCID: PMC7521715 DOI: 10.1371/journal.pone.0239925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) and hirame rhabdovirus (HIRRV) belong to the genus Novirhabdovirus and are the causative agents of a serious disease in cultured flounder. However, infectious hematopoietic necrosis virus (IHNV), a prototype of the genus Novirhabdovirus, does not cause disease in flounder. To determine whether IHNV growth is restricted in flounder cells, we compared the growth of IHNV with that of VHSV and HIRRV in hirame natural embryo (HINAE) cells infected with novirhabdoviruses at 1 multiplicity of infection. Unexpectedly, we found that IHNV grew as well as VHSV and HIRRV. For successful growth in host cells, viruses modulate innate immune responses exerted by virus-infected cells. Our results suggest that IHNV, like VHSV and HIRRV, has evolved the ability to overcome the innate immune response of flounder cells. To determine the innate immune response genes of virus-infected HINAE cells which are commonly modulated by the three novirhabdoviruses, we infected HINAE cells with novirhabdoviruses at multiplicity of infection (MOI) 1 and performed an RNA sequencing-based transcriptome analysis at 24 h post-infection. We discovered ~12,500 unigenes altered by novirhabdovirus infection and found that many of these were involved in multiple cellular pathways. After novirhabdovirus infection, 170 genes involved in the innate immune response were differentially expressed compared to uninfected cells. Among them, 9 genes changed expression by more than 2-fold and were commonly modulated by all three novirhabdoviruses. Interferon regulatory factor 8 (IRF8), C-X-C motif chemokine receptor 1 (CXCR1), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), cholesterol 25-hydroxylase (CH25H), C-X-C motif chemokine ligand 11, duplicate 5 (CXCL11.5), and Toll-like receptor 2 (TLR2) were up-regulated, whereas C-C motif chemokine receptor 6a (CCR6a), interleukin-12a (IL12a), and Toll-like receptor 1 (TLR1) were down-regulated. These genes have been reported to be involved in antiviral responses and, thus, their modulation may be critical for the growth of novirhabdovirus in flounder cells. This is the first report to identify innate immune response genes in flounder that are commonly modulated by IHNV, VHSV, and HIRRV. These data will provide new insights into how novirhabdoviruses survive the innate immune response of flounder cells.
Collapse
Affiliation(s)
- Kwang Il Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Sung-Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail:
| |
Collapse
|
117
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
118
|
Abstract
BACKGROUND 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG), which catalyzes the synthesis of 25-hydroxycholesterol (25HC). 25HC intervenes in metabolic and infectious processes and controls cholesterol homeostasis and influences viral entry into host cells. We verified whether natural resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) individuals is at least partially mediated by particularities in sterol biosynthesis. METHODS Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) isolated from 15 sexually exposed HESN and 15 healthy controls were in vitro HIV-1-infected and analyzed for: percentage of IFNα-producing plasmacytoid dendritic cells (pDCs); cholesterol signaling and inflammatory response RNA expression; resistance to HIV-1 infection. MDMs from five healthy controls were in vitro HIV-1-infected in the absence/presence of exogenously added 25HC. RESULTS IFNα-producing pDCs were augmented in HESN compared with healthy controls both in unstimulated and in in vitro HIV-1-infected PBMCs (P < 0.001). An increased expression of CH25H and of a number of genes involved in cholesterol metabolism (ABCA1, ABCG1, CYP7B1, LXRα, OSBP, PPARγ, SCARB1) was observed as well; this, was associated with a reduced susceptibility to in-vitro HIV-1-infection of PBMCs and MDMs (P < 0.01). Notably, addition of 25HC to MDMs resulted in increased cholesterol efflux and augmented resistance to in-vitro HIV-1-infection. CONCLUSION Results herein show that in HESN sterol metabolism might be particularly efficient. This could be related to the activation of the IFNα pathway and results into a reduced susceptibility to in-vitro HIV-1 infection. These results suggest a possible basis for therapeutic interventions to modulate HIV-1 infection.
Collapse
|
119
|
Cholesterol 25-hydroxylase protects against experimental colitis in mice by modulating epithelial gut barrier function. Sci Rep 2020; 10:14246. [PMID: 32859970 PMCID: PMC7455728 DOI: 10.1038/s41598-020-71198-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) encodes the enzyme that converts cholesterol to 25-hydroxycholesterol (25-HC). 25-HC has been demonstrated to be involved in the pathogenesis of inflammatory bowel disease. However, the role of CH25H in experimental colitis remains unknown. Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Ch25h−/− mice in 8-week-old male for 7 days by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. The function of CH25H was investigated using loss-of-function and gain-of-function such as Ch25h-deficient mice, supplementation with exogenous 25-HC and treatment of 25-HC into Caco2 and HCT116 colonic epithelial cells. Ch25h−/− mice with DSS-induced colitis exhibited aggravated injury, including higher clinical colitis scores, severe injury of the epithelial barrier, lower tight junction protein levels and higher levels of IL-6. Supplementation with exogenous 25-HC ameliorated disease symptoms and reduced the extent of damage in DSS-induced colitis, which was characterized by lower colon damage, higher tight junction protein expression, significantly decreased local and systemic production of pro-inflammatory cytokines IL-6. In Caco2 and HCT116 cells, 25-HC induced tight junction genes expression in colon cancer epithelial cells. These effects of CH25H were obtained by promoting ATF3 expression. Taken together, our findings reveal a protective role for 25-HC in DSS-induced colitis and the ability of CH25H to maintain epithelial gut barrier function through ATF3 expression. Supplementation with exogenous 25-HC ameliorates disease symptoms, which provides a new therapeutic strategy for ulcerative colitis.
Collapse
|
120
|
Marcello A, Civra A, Milan Bonotto R, Nascimento Alves L, Rajasekharan S, Giacobone C, Caccia C, Cavalli R, Adami M, Brambilla P, Lembo D, Poli G, Leoni V. The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biol 2020; 36:101682. [PMID: 32810737 PMCID: PMC7416714 DOI: 10.1016/j.redox.2020.101682] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
There is an urgent need to identify antivirals against the coronavirus SARS-CoV-2 in the current COVID-19 pandemic and to contain future similar emergencies early on. Specific side-chain cholesterol oxidation products of the oxysterols family have been shown to inhibit a large variety of both enveloped and non-enveloped human viral pathogens. Here we report on the in vitro inhibitory activity of the redox active oxysterol 27-hydroxycholesterol against SARS-CoV-2 and against one of the common cold agents HCoV-OC43 human coronavirus without significant cytotoxicity. Interestingly, physiological serum levels of 27-hydroxycholesterol in SARS-CoV-2 positive subjects were significantly decreased compared to the matched control group, reaching a marked 50% reduction in severe COVID-19 cases. Moreover, no correlation at all was observed between 24-hydroxycholesterol and 25-hydroxycholesterol serum levels and the severity of the disease. Opposite to that of 27-hydroxycholesterol was the behaviour of two recognized markers of redox imbalance, i.e. 7-ketocholesterol and 7β-hydroxycholesterol, whose serum levels were significantly increased especially in severe COVID-19. The exogenous administration of 27-hydroxycholesterol may represent in the near future a valid antiviral strategy in the worsening of diseases caused by present and emerging coronaviruses. 27-hydroxycholesterol (27OHC) inhibits the replication of SARS-CoV-2 by interfering with its entry into target cells. The broad antiviral effect of 27OHC is also exerted against another β-coronavirus, HCoV-OC43. Blood levels of 27OHC were decreased in SARS-CoV-2 infected individuals, especially in patients with severe COVID-19. COVID-19 patients showed increased serum levels of 7-ketocholesterol and 7β-hydroxycholesterol, markers of oxidative stress.
Collapse
Affiliation(s)
- Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, Turin, 10043, Italy
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Lais Nascimento Alves
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Sreejith Rajasekharan
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Chiara Giacobone
- Laboratory of Clinical Chemistry, Hospitals of Desio and Monza, ASST-Monza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Marco Adami
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Italy
| | - Paolo Brambilla
- Laboratory of Clinical Chemistry, Hospitals of Desio and Monza, ASST-Monza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, Turin, 10043, Italy.
| | - Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, Turin, 10043, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio and Monza, ASST-Monza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| |
Collapse
|
121
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
122
|
Hsieh WY, Zhou QD, York AG, Williams KJ, Scumpia PO, Kronenberger EB, Hoi XP, Su B, Chi X, Bui VL, Khialeeva E, Kaplan A, Son YM, Divakaruni AS, Sun J, Smale ST, Flavell RA, Bensinger SJ. Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome. Cell Metab 2020; 32:128-143.e5. [PMID: 32516576 PMCID: PMC7891175 DOI: 10.1016/j.cmet.2020.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/07/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
Collapse
Affiliation(s)
- Wei-Yuan Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Quan D Zhou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Autumn G York
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eliza B Kronenberger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xen Ping Hoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Baolong Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xun Chi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Viet L Bui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elvira Khialeeva
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amber Kaplan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Young Min Son
- Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jie Sun
- Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
123
|
Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses 2020; 12:v12070727. [PMID: 32640529 PMCID: PMC7411728 DOI: 10.3390/v12070727] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.
Collapse
|
124
|
Abrams ME, Johnson KA, Perelman SS, Zhang LS, Endapally S, Mar KB, Thompson BM, McDonald JG, Schoggins JW, Radhakrishnan A, Alto NM. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat Microbiol 2020; 5:929-942. [PMID: 32284563 PMCID: PMC7442315 DOI: 10.1038/s41564-020-0701-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022]
Abstract
Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene that converts cholesterol to the oxysterol 25-hydroxycholesterol (25HC). Circulating 25HC modulates essential immunological processes including antiviral immunity, inflammasome activation and antibody class switching; and dysregulation of CH25H may contribute to chronic inflammatory disease and cancer. Although 25HC is a potent regulator of cholesterol storage, uptake, efflux and biosynthesis, how these metabolic activities reprogram the immunological state of target cells remains poorly understood. Here, we used recently designed toxin-based biosensors that discriminate between distinct pools of plasma membrane cholesterol to elucidate how 25HC prevents Listeria monocytogenes from traversing the plasma membrane of infected host cells. The 25HC-mediated activation of acyl-CoA:cholesterol acyltransferase (ACAT) triggered rapid internalization of a biochemically defined fraction of cholesterol, termed 'accessible' cholesterol, from the plasma membrane while having little effect on cholesterol in complexes with sphingomyelin. We show that evolutionarily distinct bacterial species, L. monocytogenes and Shigella flexneri, exploit the accessible pool of cholesterol for infection and that acute mobilization of this pool by oxysterols confers immunity to these pathogens. The significance of this signal-mediated membrane remodelling pathway probably extends beyond host defence systems, as several other biologically active oxysterols also mobilize accessible cholesterol through an ACAT-dependent mechanism.
Collapse
Affiliation(s)
- Michael E Abrams
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofya S Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, New York University School of Medicine, NY, NY, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
125
|
Yang X, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif 2020; 53:e12854. [PMID: 32530555 PMCID: PMC7377929 DOI: 10.1111/cpr.12854] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro‐inflammatory macrophages) is higher than that of M2 (anti‐inflammatory macrophages). The increased pro‐inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti‐apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA‐related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
126
|
Zhou QD, Chi X, Lee MS, Hsieh WY, Mkrtchyan JJ, Feng AC, He C, York AG, Bui VL, Kronenberger EB, Ferrari A, Xiao X, Daly AE, Tarling EJ, Damoiseaux R, Scumpia PO, Smale ST, Williams KJ, Tontonoz P, Bensinger SJ. Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nat Immunol 2020; 21:746-755. [PMID: 32514064 PMCID: PMC7778040 DOI: 10.1038/s41590-020-0695-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.
Collapse
Affiliation(s)
- Quan D Zhou
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xun Chi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Sub Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan J Mkrtchyan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Autumn G York
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Viet L Bui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eliza B Kronenberger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Allison E Daly
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth J Tarling
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philip O Scumpia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
127
|
|
128
|
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 2020; 178:3089-3103. [PMID: 32335907 DOI: 10.1111/bph.15073] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oxysterols are oxygenated forms of cholesterol generated via autooxidation by free radicals and ROS, or formed enzymically by a variety of enzymes such as those involved in the synthesis of bile acids. Although found at very low concentrations in vivo, these metabolites play key roles in health and disease, particularly in development and regulating immune cell responses, by binding to effector proteins such as LXRα, RORγ and Insig and directly or indirectly regulating transcriptional programmes that affect cell metabolism and function. In this review, we summarise the routes by which oxysterols can be generated and subsequently modified to other oxysterol metabolites and highlight their diverse and profound biological functions and opportunities to alter their levels using pharmacological approaches. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
129
|
Li S, Li L, Zhu H, Shi M, Fan H, Gao Y, Wang X, Jiang P, Bai J. Cholesterol 25-hydroxylase inhibits encephalomyocarditis virus replication through enzyme activity-dependent and independent mechanisms. Vet Microbiol 2020; 245:108658. [PMID: 32456829 DOI: 10.1016/j.vetmic.2020.108658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Cholesterol-25-hydroxylase (CH25 H) is a reticulum-associated membrane protein induced by an important interferon-stimulating gene (ISG) and can significantly inhibit some virus replication. But the effect of CH25H on encephalomyocarditis virus (EMCV) is still not clear. In this study, we found that EMCV infection increases significantly the endogenous CH25H expression in BHK-21 and N2a cells. CH25H and cholesterol catalytic oxidation product 25-hydroxycholesterol (25HC) obviously inhibits EMCV infection by inhibiting the viral penetration. But the CH25H mutant lacking hydroxylase activity repairs the ability to inhibit the viral replication. Meanwhile, β-cyclodextrin crystalline as a cholesterol inhibitor significantly decreases the viral replication. In addition, CH25H can selectively interact and degrade the viral RNA-Dependent RNA Polymerase-3D protein by independent on the association of proteasome, lysosome and caspase manner. It provides new insights into the interplay mechanisms between CH25H and non-enveloped single-stranded positive RNA viruses.
Collapse
Affiliation(s)
- Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Shi
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - YanNi Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - XianWei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
130
|
Civra A, Colzani M, Cagno V, Francese R, Leoni V, Aldini G, Lembo D, Poli G. Modulation of cell proteome by 25-hydroxycholesterol and 27-hydroxycholesterol: A link between cholesterol metabolism and antiviral defense. Free Radic Biol Med 2020; 149:30-36. [PMID: 31525455 PMCID: PMC7126780 DOI: 10.1016/j.freeradbiomed.2019.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Physiological cholesterol metabolism implies the generation of a series of oxidized derivatives, whose oxysterols are by far the most investigated ones for their potential multifaceted involvement in human pathophysiology. In this regard, noteworthy is the broad antiviral activity displayed by defined side chain oxysterols, in particular 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol (27HC). Although their antiviral mechanism(s) may vary depending on virus/host interaction, these oxysterols share the common feature to hamper viral replication by interacting with cellular proteins. Here reported is the first analysis of the modulation of a cell proteome by these two oxysterols, that, besides yielding additional clues about their potential involvement in the regulation of sterol metabolism, provides novelinsights about the mechanism underlying the inhibition of virus entry and trafficking within infected cells. We show here that both 25HC and 27HC can down-regulate the junction adhesion molecule-A (JAM-A) and the cation independent isoform of mannose-6-phosphate receptor (MPRci), two crucial molecules for the replication of all those viruses that exploit adhesion molecules and the endosomal pathway to enter and diffuse within target cells.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Mara Colzani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Valeria Cagno
- Department of Molecular Microbiology, University of Geneva, Geneva, Switzerland.
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Milano, Italy.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Hospital, Orbassano, Torino, Italy.
| |
Collapse
|
131
|
A comparative study of the effects of 7β-hydroxycholesterol, 25-hydroxycholesterol, and cholesterol on the structural and thermal phase behavior of multilamellar dipalmitoylphosphatidylcholine bilayer vesicles. Chem Phys Lipids 2020; 227:104872. [DOI: 10.1016/j.chemphyslip.2020.104872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 01/11/2023]
|
132
|
Abstract
Type I interferons (IFNs) can reprogram the cholesterol biosynthetic pathway to facilitate innate immune responses. In this issue of Immunity, Xiao et al. (2020) reveal that type I IFN signaling and 7-dehydrocholesterol (7-DHC) accumulation form a positive feedback loop to amplify innate immune responses to control viral infections by activating AKT3.
Collapse
Affiliation(s)
- Xun Chi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
133
|
Inflammation Triggers Liver X Receptor-Dependent Lipogenesis. Mol Cell Biol 2020; 40:MCB.00364-19. [PMID: 31658997 DOI: 10.1128/mcb.00364-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Immune cell function can be modulated by changes in lipid metabolism. Our studies indicate that cholesterol and fatty acid synthesis increases in macrophages between 12 and 18 h after the activation of Toll-like receptors with proinflammatory stimuli and that the upregulation of lipogenesis may contribute to the resolution of inflammation. The inflammation-dependent increase in lipogenesis requires the induction of the liver X receptors, members of the nuclear receptor superfamily of transcription factors, by type I interferons in response to inflammatory signals. Instead of the well-established role for liver X receptors in stimulating cholesterol efflux, we demonstrate that liver X receptors are necessary for the proper resumption of cholesterol synthesis in response to inflammatory signals. Thus, liver X receptors function as bidirectional regulators of cholesterol homeostasis, driving efflux when cholesterol levels are high and facilitating synthesis in response to inflammatory signals. Liver X receptor activity is also required for the proper shutdown of a subset of type I interferon-stimulated genes as inflammation subsides, placing the receptors in a negative-feedback loop that may contribute to the resolution of the inflammatory response.
Collapse
|
134
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
135
|
Xiao J, Li W, Zheng X, Qi L, Wang H, Zhang C, Wan X, Zheng Y, Zhong R, Zhou X, Lu Y, Li Z, Qiu Y, Liu C, Zhang F, Zhang Y, Xu X, Yang Z, Chen H, Zhai Q, Wei B, Wang H. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity 2019; 52:109-122.e6. [PMID: 31882361 DOI: 10.1016/j.immuni.2019.11.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022]
Abstract
Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xin Zheng
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Zhiqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Chang Liu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China
| | - Yanbo Zhang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaoyan Xu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China; School of Life Sciences, Shanghai University, Shangda Road, Shanghai, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| |
Collapse
|
136
|
Carpenter KJ, Valfort AC, Steinauer N, Chatterjee A, Abuirqeba S, Majidi S, Sengupta M, Di Paolo RJ, Shornick LP, Zhang J, Flaveny CA. LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Sci Rep 2019; 9:19530. [PMID: 31863071 PMCID: PMC6925117 DOI: 10.1038/s41598-019-56038-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.
Collapse
Affiliation(s)
- Katherine J Carpenter
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- The Center for Clinical Pharmacology, Saint Louis College of Pharmacy, Saint Louis, MO, 63110, USA
| | - Nick Steinauer
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Arindam Chatterjee
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Suomia Abuirqeba
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Shabnam Majidi
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Monideepa Sengupta
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Richard J Di Paolo
- The Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Laurie P Shornick
- The Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Jinsong Zhang
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Colin A Flaveny
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|
137
|
Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2019; 139:103919. [PMID: 31830579 DOI: 10.1016/j.micpath.2019.103919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause mild to severe infections in animals and humans worldwide with significant morbidity and mortality. Infection of eukaryotic cells with influenza A viruses triggers the induction of innate immune system through the interaction between pattern recognition receptors (PRRs) and pathogen associated molecular patterns (PAMPs), which culminate in the induction of interferons (IFNs). Consequently, IFNs bind to their cognate receptors on the cellular membrane and activate the signaling pathway for transcriptional regulation of interferon-stimulated genes (ISGs) through Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Cumulative actions of these ISGs establish an antiviral state of the host. Several ISGs have been described, which play critical roles to inhibit the infection and replication of influenza A viruses at multiple steps of virus life cycle. In this review, the dynamics and redundancy of these ISGs against influenza A viruses are discussed. Additionally, current understanding and molecular mechanisms that are underlying the roles of ISGs in pathogenesis of influenza virus are critically reviewed.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| | | | - Nelam Sajjad
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faisal Rasheed Anjum
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Irfan Sakhawat
- School of Science and Technology, Orebro University, SE-70182, Orebro, Sweden
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| |
Collapse
|
138
|
Ando H, Horibata Y, Aoyama C, Shimizu H, Shinohara Y, Yamashita S, Sugimoto H. Side-chain oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase by inhibiting the interaction of p300 and NF-Y, and H3K27 acetylation. J Steroid Biochem Mol Biol 2019; 195:105482. [PMID: 31580889 DOI: 10.1016/j.jsbmb.2019.105482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7β-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.
Collapse
Affiliation(s)
- Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasutake Shinohara
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Satoko Yamashita
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| |
Collapse
|
139
|
Lv L, Zhao G, Wang H, He H. Cholesterol 25-Hydroxylase inhibits bovine parainfluenza virus type 3 replication through enzyme activity-dependent and -independent ways. Vet Microbiol 2019; 239:108456. [DOI: 10.1016/j.vetmic.2019.108456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
|
140
|
Oxidized cholesterol species as signaling molecules in the brain: diabetes and Alzheimer's disease. Neuronal Signal 2019; 3:NS20190068. [PMID: 32269839 PMCID: PMC7104322 DOI: 10.1042/ns20190068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes is associated with adverse central nervous system effects, including a doubled risk for Alzheimer's disease (AD) and increased risk of cognitive impairment, but the mechanisms connecting diabetes to cognitive decline and dementia are unknown. One possible link between these diseases may be the associated alterations to cholesterol oxidation and metabolism in the brain. We will survey evidence demonstrating alterations to oxysterols in the brain in AD and diabetes and how these oxysterols could contribute to pathology, as well as identifying research questions that have not yet been addressed to allow for a fuller understanding of the role of oxysterols in AD and diabetes.
Collapse
|
141
|
Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019; 20:863. [PMID: 31729950 PMCID: PMC6858653 DOI: 10.1186/s12864-019-6221-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the most important factors positively associated with meat quality. Triglycerides (TGs), as the main component of IMF, play an essential role in muscle lipid metabolism. This transcriptome analysis of pectoralis muscle tissue aimed to identify functional genes and biological pathways likely contributing to the extreme differences in the TG content of broiler chickens. Results The study included Jingxing-Huang broilers that were significantly different in TG content (5.81 mg/g and 2.26 mg/g, p < 0.01) and deposition of cholesterol also showed the same trend. This RNA sequencing analysis was performed on pectoralis muscle samples from the higher TG content group (HTG) and the lower TG content group (LTG) chickens. A total of 1200 differentially expressed genes (DEGs) were identified between two groups, of which 59 DEGs were related to TG and steroid metabolism. The HTG chickens overexpressed numerous genes related to adipogenesis and lipogenesis in pectoralis muscle tissue, including the key genes ADIPOQ, CD36, FABP4, FABP5, LPL, SCD, PLIN1, CIDEC and PPARG, as well as genes related to steroid biosynthesis (DHCR24, LSS, MSMO1, NSDHL and CH25H). Additionally, key pathways related to lipid storage and metabolism (the steroid biosynthesis and peroxisome proliferator activated receptor (PPAR) signaling pathway) may be the key pathways regulating differential lipid deposition between HTG group and LTG group. Conclusions This study showed that increased TG deposition accompanying an increase in steroid synthesis in pectoralis muscle tissue. Our findings of changes in gene expression of steroid biosynthesis and PPAR signaling pathway in HTG and LTG chickens provide insight into genetic mechanisms involved in different lipid deposition patterns in pectoralis muscle tissue.
Collapse
|
142
|
Hydroxylation of Steroids by a Microbial Substrate-Promiscuous P450 Cytochrome (CYP105D7): Key Arginine Residues for Rational Design. Appl Environ Microbiol 2019; 85:AEM.01530-19. [PMID: 31540985 DOI: 10.1128/aem.01530-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Our previous study showed that CYP105D7, a substrate-promiscuous P450, catalyzes the hydroxylation of 1-deoxypentalenic acid, diclofenac, naringenin, and compactin. In this study, 14 steroid compounds were screened using recombinant Escherichia coli cells harboring genes encoding CYP105D7 and redox partners (Pdx/Pdr, RhFRED, and FdxH/FprD), and the screening identified steroid A-ring 2β- and D-ring 16β-hydroxylation activity. Wild-type CYP105D7 was able to catalyze the hydroxylation of five steroids (testosterone, progesterone, 4-androstene-3,17-dione, adrenosterone, and cortisone) with low (<10%) conversion rates. Structure-guided site-directed mutagenesis of arginine residues around the substrate entrance and active site showed that the R70A and R190A single mutants and an R70A/R190A double mutant exhibited greatly enhanced conversion rates for steroid hydroxylation. For the conversion of testosterone in particular, the R70A/R190A mutant's k cat/Km values increased 1.35-fold and the in vivo conversion rates increased significantly by almost 9-fold with high regio- and stereoselectivity. Molecular docking analysis revealed that when Arg70 and Arg190 were replaced with alanine, the volume of the substrate access and binding pocket increased 1.08-fold, which might facilitate improvement of the hydroxylation efficiency of steroids.IMPORTANCE Cytochrome P450 monooxygenases (P450s) are able to introduce oxygen atoms into nonreactive hydrocarbon compounds under mild conditions, thereby offering significant advantages compared to chemical catalysts. Promiscuous P450s with broad substrate specificity and reaction diversity have significant potential for applications in various fields, including synthetic biology. The study of the function, molecular mechanisms, and rational engineering of substrate-promiscuous P450s from microbial sources is important to fulfill this potential. Here, we present a microbial substrate-promiscuous P450, CYP105D7, which can catalyze hydroxylation of steroids. The loss of the bulky side chains of Arg70 and Arg190 in the active site and substrate entrance resulted in an up to 9-fold increase in the substrate conversion rate. These findings will support future rational and semirational engineering of P450s for applications as biocatalysts.
Collapse
|
143
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
144
|
Civra A, Leoni V, Caccia C, Sottemano S, Tonetto P, Coscia A, Peila C, Moro GE, Gaglioti P, Bertino E, Poli G, Lembo D. Antiviral oxysterols are present in human milk at diverse stages of lactation. J Steroid Biochem Mol Biol 2019; 193:105424. [PMID: 31302219 DOI: 10.1016/j.jsbmb.2019.105424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Oxysterols are cholesterol oxidation derivatives. Those containing an additional hydroxyl group on the side chain of the cholesterol molecule result from a physiological enzymatic synthesis and include the majority of oxysterols present in the circulation. Among these, 25-hydroxycholesterol (25OHC) and 27-hydroxycholesterol (27OHC) are characterized by a broad antiviral activity and are now considered involved in the innate immune response against viruses. Despite the emerging role of these sterols in the innate antiviral defences, no data are available on their presence in human breast milk (BM) to date. In this study, we investigated the content of oxysterols of enzymatic synthesis in BM of twelve donor mothers at different stages of lactation (i.e. in colostrum, transitional milk, and mature milk) by gas chromatography-mass spectrometry analysis. The side-chain oxysterols 25OHC, 27OHC, and 24S-hydroxycholesterol (24SOHC) were actually present in BM in all stages of lactation, but the concentration of 27OHC showed a remarkable peak in colostrum. Antiviral assays revealed that all the colostrum samples contained 27OHC concentrations that were active in vitro against two relevant pediatric viral pathogens: the human rotavirus and the human rhinovirus. Overall, this study discloses new antiviral components of BM and suggests a passive transfer of these protective factors to the infant via breastfeeding, especially in the first few days of lactation.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Torino, Italy
| | - Valerio Leoni
- School of Medicine, University of Milano Bicocca, Laboratory of Clinical Chemistry, Desiolab, Hospital of Desio, ASST-Monza, Italy
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milano, MI, Italy
| | - Stefano Sottemano
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paola Tonetto
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Peila
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Milan, Italy
| | - Pietro Gaglioti
- SC2U, Città della Salute e della Scienza-O.I.R.M., Sant'Anna Hospital, 10100, Turin, Italy
| | - Enrico Bertino
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Torino, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Torino, Italy.
| |
Collapse
|
145
|
Porcine Reproductive and Respiratory Syndrome Virus E Protein Degrades Porcine Cholesterol 25-Hydroxylase via the Ubiquitin-Proteasome Pathway. J Virol 2019; 93:JVI.00767-19. [PMID: 31341055 DOI: 10.1128/jvi.00767-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome is one of the most important infectious diseases affecting the global pig industry. Previous studies from our group and other groups showed that cholesterol 25-hydroxylase (CH25H), a multitransmembrane endoplasmic reticulum-associated enzyme, catalyzes the production of 25-hydroxycholesterol (25HC) and inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication. However, PRRSV infection also actively decreases porcine CH25H (pCH25H) expression, through unidentified mechanisms. In this study, we found that the ubiquitin-proteasome pathway plays a major role in pCH25H degradation during PRRSV infection and that the PRRSV-encoded envelope (E) protein interacts with pCH25H. PRRSV E protein degraded pCH25H via ubiquitination, and the ubiquitination site was at pCH25H Lys28. Interestingly, PRRSV E protein appeared to specifically degrade pCH25H but not human CH25H, likely because of a Lys28Arg substitution in the human orthologue. As expected, ubiquitin-mediated degradation by E protein attenuated the antiviral effect of pCH25H by downregulating 25HC production. In addition, we found that knockdown of pCH25H decreased E protein-induced inflammatory cytokine expression and that pCH25H overexpression had the opposite effect. These findings suggested that regulation of pCH25H expression was associated with E protein-induced inflammatory responses. Taken together, our results and those of previous studies of the anti-PRRSV effects of CH25H highlight the complex interplay between PRRSV and pCH25H.IMPORTANCE CH25H has received significant attention due to its broad antiviral activity, which it mediates by catalyzing the production of 25HC. Most studies have focused on the antiviral mechanisms of CH25H; however, whether viruses also actively regulate CH25H expression has not yet been reported. Previous studies demonstrated that pCH25H inhibits PRRSV replication not only via production of 25HC but also by ubiquitination and degradation of viral nonstructural protein 1α. In this study, we expanded on previous work and found that PRRSV actively degrades pCH25H through the ubiquitin-proteasome pathway. PRRSV E protein, a viral structural protein, is involved in this process. This study reveals a novel mechanism of interaction between virus and host during PRRSV infection.
Collapse
|
146
|
Yuan Y, Wang Z, Tian B, Zhou M, Fu ZF, Zhao L. Cholesterol 25-hydroxylase suppresses rabies virus infection by inhibiting viral entry. Arch Virol 2019; 164:2963-2974. [PMID: 31552533 DOI: 10.1007/s00705-019-04415-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Cholesterol-25-hydroxylase (CH25H) is a reticulum-associated membrane protein that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). Recent studies have revealed that CH25H is an interferon-stimulated gene (ISG) that suppresses infection by several viruses. In the present study, we found that overexpression of both human and murine CH25H inhibited rabies virus (RABV) infection in HEK-293T (293T) cells. In contrast, silencing of CH25H enhanced RABV replication in 293T cells, and a catalytic mutant of CH25H lost its ability to inhibit RABV infection. Treatment with the oxysterol 25-hydroxycholesterol (25HC), the product of CH25H, dramatically decreased RABV replication in 293T, BSR and N2a cells by inhibiting viral membrane penetration. These data provide insights into the antiviral function of CH25H against RABV infection, which can potentially be used as a therapeutic agent for rabies.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Department of Pathology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
147
|
Dong H, Zhou L, Ge X, Guo X, Han J, Yang H. Antiviral effect of 25-hydroxycholesterol against porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther 2019; 23:395-404. [PMID: 29561734 DOI: 10.3851/imp3232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes economically huge losses to the pig industry worldwide. Current control of PRRSV infection remains inadequate although various means have been implemented. Thus, investigating novel antiviral therapeutics to combat PRRSV infection is essential. In the present study, the antiviral effect in vitro of 25-hydroxycholesterol (25HC) against PRRSV was investigated. METHODS Cell viability assay was performed to examine the impact of 25HC on the cell viability. Indirect immunofluorescence assay and virus titration were utilized to evaluate the levels of PRRSV growth. Viral attachment assay, penetration assay and release assay were conducted to investigate the antiviral mechanism of 25HC against PRRSV. Real-time RT-PCR assay was used to analyse the effect of 25HC on the genome synthesis of PRRSV. RESULTS We demonstrated that the growth of PRRSV was significantly inhibited in 25HC-pretreated cells and PRRSV-infected cells by 25HC. Moreover, 25HC could impair the attachment and entry of PRRSV in vitro, but not affect viral genome synthesis and virion release. CONCLUSIONS Our findings clearly indicate that 25HC can exert antiviral effect against PRRSV infection in vitro, suggesting that 25HC might be a novel potential agent to control PRRSV infection.
Collapse
Affiliation(s)
- Hong Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
148
|
Raselli T, Wyss A, Gonzalez Alvarado MN, Weder B, Mamie C, Spalinger MR, Van Haaften WT, Dijkstra G, Sailer AW, Imenez Silva PH, Wagner CA, Tosevski V, Leibl S, Scharl M, Rogler G, Hausmann M, Misselwitz B. The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis. J Crohns Colitis 2019; 13:1186-1200. [PMID: 31220227 PMCID: PMC6751338 DOI: 10.1093/ecco-jcc/jjz039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- T Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - A Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M N Gonzalez Alvarado
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - C Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - W T Van Haaften
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - C A Wagner
- Institute of Physiology, Zurich University, Zurich, Switzerland
| | - V Tosevski
- Mass Cytometry Facility, Zurich University, Zurich, Switzerland
| | - Sebastian Leibl
- Institute of Pathology and Molecular Pathology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Corresponding author: Dr. Benjamin Misselwitz, Dept. of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Freiburgstr 18, 3010 Bern, Switzerland.
| |
Collapse
|
149
|
Jamadagni P, Patten SA. 25-hydroxycholesterol impairs neuronal and muscular development in zebrafish. Neurotoxicology 2019; 75:14-23. [PMID: 31449834 DOI: 10.1016/j.neuro.2019.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Oxysterols have essential effects on brain homeostasis and their levels are often altered in neurodegenerative and neuroinflammatory diseases. Several studies have demonstrated the cytotoxic effects of 25-HC on different cell lines, however, not much is known about its effects on neurons in vivo. In this study, we examined the effects of 25-HC exposure on the nervous system development in the zebrafish. We showed that survival rate of zebrafish embryos/larvae is significantly decreased at doses of 25-HC above 40 μM. 25-HC was found to affect the motility of zebrafish larvae, primary motor axon and muscle morphology. Furthermore, larvae treated with 25-HC showed a reduced neuronal network and number of HuC-positive cells in the brain. An increased cell death was also observed in both the brain and spinal cord of zebrafish treated with 25-HC. Interestingly, administration of 25-HC at later stages of development (24 and 48 h post fertilization) had no detrimental effects on motor axons. Altogether, our findings show that elevated levels of 25-HC may have important consequences on neuronal development and cell survival.
Collapse
Affiliation(s)
| | - Shunmoogum A Patten
- INRS Institut Armand-Frappier, Laval, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.
| |
Collapse
|
150
|
Magoro T, Dandekar A, Jennelle LT, Bajaj R, Lipkowitz G, Angelucci AR, Bessong PO, Hahn YS. IL-1β/TNF-α/IL-6 inflammatory cytokines promote STAT1-dependent induction of CH25H in Zika virus-infected human macrophages. J Biol Chem 2019; 294:14591-14602. [PMID: 31375561 DOI: 10.1074/jbc.ra119.007555] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)3 is an enveloped, single-stranded, positive-sense RNA virus of the Flaviviridae family that has emerged as a public health threat because of its global transmission and link to microcephaly. Currently there is no vaccine for this virus. Conversion of cholesterol to 25-hydroxycholesterol by cholesterol 25-hydroxylase (CH25H) has been shown to have broad antiviral properties. However, the molecular basis of induction of CH25H in humans is not known. Elucidation of signaling and transcriptional events for induction of CH25H expression is critical for designing therapeutic antiviral agents. In this study, we show that CH25H is induced by ZIKV infection or Toll-like receptor stimulation. Interestingly, CH25H is induced by pro-inflammatory cytokines, including IL-1β, tumor necrosis factor α, and IL-6, and this induction depends on the STAT1 transcription factor. Additionally, we observed that cAMP-dependent transcription factor (ATF3) weakly binds to the CH25H promoter, suggesting cooperation with STAT1. However, ZIKV-induced CH25H was independent of type I interferon. These findings provide important information for understanding how the Zika virus induces innate inflammatory responses and promotes the expression of anti-viral CH25H protein.
Collapse
Affiliation(s)
- Tshifhiwa Magoro
- HIV/AIDS and Global Health Research Program, Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa.,Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Aditya Dandekar
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lucas T Jennelle
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Rohan Bajaj
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Gabriel Lipkowitz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Angelina R Angelucci
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Pascal O Bessong
- HIV/AIDS and Global Health Research Program, Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908 .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|