101
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
102
|
Moniruzzaman M, Janjua TI, Martin JH, Begun J, Popat A. Cannabidiol - Help and hype in targeting mucosal diseases. J Control Release 2024; 365:530-543. [PMID: 37952828 DOI: 10.1016/j.jconrel.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.
Collapse
Affiliation(s)
- Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jennifer H Martin
- Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Kookaburra Circuit, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
103
|
Lu Y, Wu Y, Huang M, Chen J, Zhang Z, Li J, Yang R, Liu Y, Cai S. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155190. [PMID: 37972468 DOI: 10.1016/j.phymed.2023.155190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is distinguished by rapid and severe respiratory distress and prolonged hypoxemia. A traditional Chinese medicine (TCM), known as the Fuzhengjiedu formula (FZJDF), has been shown to have anti-inflammatory benefits in both clinical and experimental studies. The precise underlying processes, nevertheless, are yet unclear. PURPOSE This study sought to enlighten the protective mechanism of FZJDF in ALI through the standpoint of the gut-lung crosstalk. METHODS The impact of FZJDF on lipopolysaccharide (LPS)-induced ALI murine model were investigated, and the lung injury score, serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) expression were measured to confirm its anti-inflammatory effects. Additionally, gut microbiota analysis and serum and fecal samples metabolomics were performed using metagenomic sequencing and high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, respectively. RESULTS FZJDF significantly induced histopathological changes caused by LPS-induced ALI as well as downregulated the serum concentration of IL-1β and TNF-α. Furthermore, FZJDF had an effect in gut microbiota disturbances, and linear discriminant effect size analysis identified signal transduction, cell motility, and amino acid metabolism as the potential mechanisms of action in the FZJDF-treated group. Several metabolites in the LPS and FZJDF groups were distinguished by untargeted metabolomic analysis. Correlations were observed between the relative abundance of microbiota and metabolic products. Comprehensive network analysis revealed connections among lung damage, gut microbes, and metabolites. The expression of glycine, serine, glutamate, cysteine, and methionine in the lung and colon tissues was dysregulated in LPS-induced ALI, and FZJDF reversed these trends. CONCLUSION This study revealed that FZJDF considerably protected against LPS-induced ALI in mice by regulating amino acid metabolism via the gut-microbiota-lung axis and offered thorough and in-depth knowledge of the multi-system linkages of systemic illnesses.
Collapse
Affiliation(s)
- Yue Lu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Wu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengfen Huang
- The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiankun Chen
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China.
| | - Rongyuan Yang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yuntao Liu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Shubin Cai
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
104
|
Larsen C, Offersen SM, Brunse A, Pirolo M, Kar SK, Guadabassi L, Thymann T. Effects of early postnatal gastric and colonic microbiota transplantation on piglet gut health. J Anim Sci Biotechnol 2023; 14:158. [PMID: 38143275 PMCID: PMC10749501 DOI: 10.1186/s40104-023-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.
Collapse
Affiliation(s)
- Christina Larsen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Simone Margaard Offersen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Soumya Kanti Kar
- Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, 1 De Elst, 6708, Wageningen, The Netherlands
| | - Luca Guadabassi
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
105
|
Lun J, Guo J, Yu M, Zhang H, Fang J. Circular RNAs in inflammatory bowel disease. Front Immunol 2023; 14:1307985. [PMID: 38187401 PMCID: PMC10771839 DOI: 10.3389/fimmu.2023.1307985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
106
|
He H, Gou Y, Zeng B, Wang R, Yang J, Wang K, Jing Y, Yang Y, Liang Y, Yang Y, Lv X, He Z, Tang Q, Gu Y. Comparative evaluation of the fecal microbiota of adult hybrid pigs and Tibetan pigs, and dynamic changes in the fecal microbiota of hybrid pigs. Front Immunol 2023; 14:1329590. [PMID: 38155960 PMCID: PMC10752980 DOI: 10.3389/fimmu.2023.1329590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The breed of pig can affect the diversity and composition of fecal microbiota, but there is a lack of research on the fecal microbiota of hybrid pigs. In this study, feces samples from Chuanxiang black pigs (a hybrid of Tibetan and Duroc pigs) aged 3 days (n = 24), 70 days (n = 31), 10 months (n = 13) and 2 years (n = 30) and Tibetan pigs aged 10 months (n = 14) and 2 years (n = 15) were collected and sequenced by 16S rRNA gene sequencing technology. We also measured the weight of all the tested pigs and found that the 10-month-old and two-year-old Chuanxiang black pigs weighed about three times the weight of Tibetan pigs of the same age. After comparing the genus-level microbiota composition of Tibetan pigs and Chuanxiang black pigs at 10 months and two years of age, we found that Treponema and Streptococcus were the two most abundant bacteria in Chuanxiang black pigs, while Treponema and Chirstensenellaceae_R.7_group were the two most abundant bacteria in Tibetan pigs. Prediction of microbial community function in adult Chuanxiang black pigs and Tibetan pigs showed changes in nutrient absorption, disease resistance, and coarse feeding tolerance. In addition, we also studied the changes in fecal microbiota in Chuanxiang black pigs at 3 days, 70 days, 10 months, and 2 years of age. We found that the ecologically dominant bacteria in fecal microbiota of Chuanxiang black pigs changed across developmental stages. For example, the highest relative abundance of 70-day-old Chuanxiang black pigs at the genus level was Prevotella. We identified specific microbiota with high abundance at different ages for Chuanxiang black pigs, and revealed that the potential functions of these specific microbiota were related to the dominant phenotype such as fast growth rate and strong disease resistance. Our findings help to expand the understanding of the fecal microbiota of hybrid pigs and provide a reference for future breeding and management of hybrid pigs.
Collapse
Affiliation(s)
- Hengdong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunhan Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
107
|
Sidner B, Lerma A, Biswas B, Do TVT, Yu Y, Ronish LA, McCullough H, Auchtung JM, Piepenbrink KH. Flagellin is essential for initial attachment to mucosal surfaces by Clostridioides difficile. Microbiol Spectr 2023; 11:e0212023. [PMID: 37823657 PMCID: PMC10714722 DOI: 10.1128/spectrum.02120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is one of the leading causes of hospital-acquired infections worldwide and presents challenges in treatment due to recurrent gastrointestinal disease after treatment with antimicrobials. The mechanisms by which C. difficile colonizes the gut represent a key gap in knowledge, including its association with host cells and mucosa. Our results show the importance of flagellin for specific adhesion to mucosal hydrogels and can help to explain prior observations of adhesive defects in flagellin and pilin mutants.
Collapse
Affiliation(s)
- Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando Lerma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Leslie A. Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh McCullough
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
108
|
Chen B, Yang X, Zhan M, Chen Y, Xu J, Xiao J, Xiao H, Song M. Dietary tangeretin improved antibiotic-associated diarrhea in mice by enhancing the intestinal barrier function, regulating the gut microbiota, and metabolic homeostasis. Food Funct 2023; 14:10731-10746. [PMID: 37933488 DOI: 10.1039/d3fo02998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Antibiotic-associated diarrhea is mediated by antibiotic treatment and is usually caused by the disruption of the intestinal barrier, gut microbiota, and metabolic balance. To identify a dietary strategy that can mitigate the side effects of antibiotics, this study investigated the effect of tangeretin on antibiotic-associated diarrhea in C57BL/6 mice. The results revealed that dietary tangeretin significantly ameliorated symptoms of antibiotic-associated diarrhea, as evidenced by the decreased diarrhea status scores, the reduced fecal water content, the decreased caecum/body weight ratio, and the alleviated colonic tissue damage. Dietary tangeretin also exhibited a protective effect on the intestinal barrier function by upregulating the mRNA and protein expression of claudin-1 and ZO-1. Furthermore, analysis of the gut microbiota using 16S rRNA gene sequencing indicated that dietary tangeretin modulated the gut microbiota of mice with antibiotic-associated diarrhea via increasing the gut microbiota diversity and the abundance of beneficial bacteria, e.g., Lactobacillaceae and Ruminococcaceae, and decreasing the abundance of harmful bacteria, e.g., Enterococcus and Terrisporobacter. Additionally, dietary tangeretin restored the levels of short-chain fatty acids and modulated metabolic pathways by enriching purine metabolism, bile acid metabolism, ABC transporters, and choline metabolism in cancer. Collectively, these findings provide a solid scientific basis for the rational use of tangeretin as a preventive and therapeutic agent for antibiotic-associated diarrhea.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Xun Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jingyi Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
109
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
110
|
Yang Y, Han Z, Gao Z, Chen J, Song C, Xu J, Wang H, Huang A, Shi J, Gu J. Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:2847-2856. [PMID: 36959686 PMCID: PMC10686596 DOI: 10.1097/cm9.0000000000002421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear. METHODS We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups. RESULTS Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga . CONCLUSIONS Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Collapse
Affiliation(s)
- Yong Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Zihan Han
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Jiajia Chen
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
| | - Can Song
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hanyang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - An Huang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jingyi Shi
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, China
- Peking-Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing 100142, China
| |
Collapse
|
111
|
Gao F, He Q, Wu S, Zhang K, Xu Z, Kang J, Quan F. Catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in rat intestinal epithelial cells. Eur J Pharmacol 2023; 960:176125. [PMID: 37890606 DOI: 10.1016/j.ejphar.2023.176125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Intestinal inflammation is a common clinical intestinal disease. Catalpol, a natural iridoid compound, has been shown to have anti-inflammatory, anti-oxidant and anti-apoptotic functions, but the mechanism of its protection against intestinal inflammation is still unclear. This study investigated the protective effect and potential mechanism of catalpol on the lipopolysaccharide (LPS)-induced inflammatory response of intestinal epithelial cell-6 (IEC-6). The results showed that catalpol could inhibit LPS-induced inflammatory response by dose-dependently reducing the release of inflammatory factors, such as tumor necrosis (TNF)-α, interleukin (IL)-1β and IL-6, and inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Catalpol ameliorated cellular oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) expression. Meanwhile, catalpol also inhibited cell apoptosis, decreased the expression of B-cell lymphoma 2 (Bcl-2) - associated X (Bax), caspase 3 and caspase 9, and increased the expression of Bcl-2. This study found that catalpol activates AMP-activated protein kinase (AMPK) signaling pathway and inhibit mammalian target of rapamycin (mTOR) phosphorylationthe. In a further study, after inhibiting AMPK with dorsomorphin, the anti-inflammatory effects of catalpol were significantly reduced. Therefore, catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qifu He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
112
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
113
|
Oh KK, Choi I, Gupta H, Raja G, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Min BH, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. New insight into gut microbiota-derived metabolites to enhance liver regeneration via network pharmacology study. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:1-12. [PMID: 36562095 DOI: 10.1080/21691401.2022.2155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We intended to identify favourable metabolite(s) and pharmacological mechanism(s) of gut microbiota (GM) for liver regeneration (LR) through network pharmacology. We utilized the gutMGene database to obtain metabolites of GM, and targets associated with metabolites as well as LR-related targets were identified using public databases. Furthermore, we performed a molecular docking assay on the active metabolite(s) and target(s) to verify the network pharmacological concept. We mined a total of 208 metabolites in the gutMGene database and selected 668 targets from the SEA (1,256 targets) and STP (947 targets) databases. Finally, 13 targets were identified between 61 targets and the gutMGene database (243 targets). Protein-protein interaction network analysis showed that AKT1 is a hub target correlated with 12 additional targets. In this study, we describe the potential microbe from the microbiota (E. coli), chemokine signalling pathway, AKT1 and myricetin that accelerate LR, providing scientific evidence for further clinical trials.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Ickwon Choi
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Haripriya Gupta
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Ganesan Raja
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Satya Priya Sharma
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Sung-Min Won
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Jin-Ju Jeong
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Su-Been Lee
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Min-Gi Cha
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Min-Kyo Jeong
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Byeong-Hyun Min
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Ji-Ye Hyun
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Jung-A Eom
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Hee-Jin Park
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Sang-Jun Yoon
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Mi-Ran Choi
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Dong Joon Kim
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| | - Ki-Tae Suk
- Hallym University College of Medicine, Institute for Liver and Digestive Diseases, Chuncheon, Korea
| |
Collapse
|
114
|
Poenariu IS, Boldeanu L, Ungureanu BS, Caragea DC, Cristea OM, Pădureanu V, Siloși I, Ungureanu AM, Statie RC, Ciobanu AE, Gheonea DI, Osiac E, Boldeanu MV. Interrelation of Hypoxia-Inducible Factor-1 Alpha (HIF-1 α) and the Ratio between the Mean Corpuscular Volume/Lymphocytes (MCVL) and the Cumulative Inflammatory Index (IIC) in Ulcerative Colitis. Biomedicines 2023; 11:3137. [PMID: 38137357 PMCID: PMC10741094 DOI: 10.3390/biomedicines11123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
We intended to investigate the presence and medical application of serum hypoxia-inducible factor-1 alpha (HIF-1α) along with the already known systemic inflammatory markers and the new one's inflammatory indices, the proportion of mean corpuscular volume and lymphocytes (MCVL) and the cumulative inflammatory index (IIC), for patients with ulcerative colitis (UC). We sought to establish correlations that may be present between the serum levels of HIF-1α and these inflammatory indices, as well as their relationship with disease activity and the extent of UC, which can provide us with a more precise understanding of the evolution, prognosis, and future well-being of patients. Serum samples were collected from 46 patients diagnosed with UC and 23 controls. For our assessment of the serum levels of HIF-1α, we used the Enzyme-Linked Immunosorbent Assay (ELISA) technique. Thus, for HIF-1α we detected significantly higher values in more severe and more extensive UC. When it came to MCVL and IIC, we observed statistically significant differences between the three groups being compared (Severe, Moderate, and Mild). Our study highlighted that HIF-1α correlated much better with a disease activity score, MCVL, and IIC. With MCVL and IIC, a strong and very strong correlation had formed between them and well-known inflammation indices. By examining the ROC curves of the analyzed parameters, we recognized that TWI (accuracy of 83.70%) provides the best discrimination of patients with early forms of UC, followed by HIF-1α (73.90% accuracy), MCVL (70.90% accuracy), and PLR (70.40%). In our study, we observed that HIF-1α, MCVL, and PLR had the same sensitivity (73.33%) but HIF-1α had a much better specificity (60.87% vs. 58.70%, and 54.35%). Also, in addition to the PLR, HIF-1α and MCVL can be used as independent predictor factors in the discrimination of patients with early forms of UC.
Collapse
Affiliation(s)
- Ioan Sabin Poenariu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Oana Mariana Cristea
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Vlad Pădureanu
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Isabela Siloși
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
| | - Anca Marinela Ungureanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (O.M.C.); (A.M.U.)
| | - Răzvan-Cristian Statie
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Alina Elena Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.P.); (R.-C.S.); (A.E.C.)
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.V.B.)
- Medico Science SRL—Stem Cell Bank Unit, 200690 Craiova, Romania
| |
Collapse
|
115
|
Li T, Wan M, Qing C, Guan X, Pi J, Lv H, Li W. Lung protection of Chimonanthus nitens Oliv. essential oil driven by the control of intestinal disorders and dysbiosis through gut-lung crosstalk. Life Sci 2023; 333:122156. [PMID: 37805165 DOI: 10.1016/j.lfs.2023.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This work aimed to investigate whether Chimonanthus nitens Oliv. essential oil (CEO)-mediated lung protection was implicated in gut-lung crosstalk. Results showed that CEO attenuated lung and intestinal impairment by improving histopathological changes and inhibiting TLR4/NF-κB signaling pathway in LPS-stimulated rats, suggesting that there might be a mechanism for its lung protection involved in gut-lung interaction through manipulating the overlap in pathological changes via the similar inflammatory response. Furthermore, CEO-triggered intestinal protection was in parallel with the mitigation of ROS production, apoptosis, Ca2+ transport and mitochondrial membrane potential loss in vivo, and its intestinal protection was confirmed in vitro through IEC-6 cells. Importantly, a combination with CEO and LPS significantly remodeled gut microbiota composition compared with LPS alone in rats, while no significant impact on lung microbiota. Therefore, CEO-exerted lung protection was linked to gut and lung interactions involvement with the control of intestinal disorders and dysbiosis.
Collapse
Affiliation(s)
- Teng Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Min Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Cheng Qing
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiuping Guan
- Qianhu College, Nanchang University, Nanchang 330031, China
| | - Jinchan Pi
- College of Future Technology, Nanchang University, Nanchang 330031, China
| | - Hao Lv
- College of Optometry, Nanchang University, Nanchang 330031, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
116
|
Aidos L, Pallaoro M, Mirra G, Serra V, Castrica M, Agradi S, Curone G, Vigo D, Riva F, Balzaretti CM, De Bellis R, Pastorelli G, Brecchia G, Modina SC, Di Giancamillo A. Intestine Health and Barrier Function in Fattening Rabbits Fed Bovine Colostrum. Vet Sci 2023; 10:657. [PMID: 37999480 PMCID: PMC10675739 DOI: 10.3390/vetsci10110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The permeability of the immature intestine is higher in newborns than in adults; a damaged gut barrier in young animals increases the susceptibility to digestive and infectious diseases later in life. It is therefore of major importance to avoid impairment of the intestinal barrier, specifically in a delicate phase of development, such as weaning. This study aimed to evaluate the effects of bovine colostrum supplementation on the intestinal barrier, such as the intestinal morphology and proliferation level and tight junctions expression (zonulin) and enteric nervous system (ENS) inflammation status (through the expression of PGP9.5 and GFAP) in fattening rabbits. Rabbits of 35 days of age were randomly divided into three groups (n = 13) based on the dietary administration: commercial feed (control group, CTR) and commercial feed supplemented with 2.5% and 5% bovine colostrum (BC1 and BC2 groups, respectively). Rabbits receiving the BC1 diet showed a tendency to have better duodenum morphology and higher proliferation rates (p < 0.001) than the control group. An evaluation of the zonulin expression showed that it was higher in the BC2 group, suggesting increased permeability, which was partially confirmed by the expression of GFAP. Our results suggest that adding 2.5% BC into the diet could be a good compromise between intestinal morphology and permeability, since rabbits fed the highest inclusion level of BC showed signs of higher intestinal permeability.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Giorgio Mirra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Marta Castrica
- Dipartimento di Biomedicina Comparata e Alimentazione—BCA, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via A. Saffi 2, 61029 Urbino, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (L.A.); (M.P.); (G.M.); (V.S.); (S.A.); (G.C.); (D.V.); (F.R.); (C.M.B.); (G.P.); (G.B.); (S.C.M.)
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
117
|
Abo H, Sultana MF, Kawashima H. Dual function of angiogenin-4 inducing intestinal stem cells and apoptosis. Front Cell Dev Biol 2023; 11:1181145. [PMID: 38020881 PMCID: PMC10651741 DOI: 10.3389/fcell.2023.1181145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal epithelium is the first line of host defense, and its homeostasis is dependent on soluble factors that comprise the crypt niche. Antimicrobial proteins are one of the mediators to maintain gut homeostasis. Angiogenin-4 (Ang4) is a member of the ribonuclease A superfamily and plays a pivotal role in antimicrobial activity against gut microbiota. However, the functions of Ang4 within the intestinal crypt niche, particularly its involvement in the development of intestinal epithelial cells (IECs), remain unknown. Here, we demonstrate that Ang4 plays a significant role in maintaining Lgr5+ intestinal stem cells (ISCs) and induces apoptosis of IECs in a concentration-dependent manner. We revealed that Ang4 is highly expressed by Paneth cells in the small intestine, as well as regenerating islet-derived family member-4 (Reg4) expressing goblet cells in the colon, and both cell subsets highly contribute to ISC maintenance. Functional analysis using intestinal organoids revealed that Ang4 induces Wnt and Notch signaling, increases Lgr5+ stem cell expansion, and promotes organoid growth. Furthermore, high concentrations of Ang4 induced apoptosis in the IEC cell line and organoids. Collectively, we propose that Ang4 is a dual functional protein and is a novel member of the crypt niche factor that promotes the expansion of ISCs and induces apoptosis.
Collapse
Affiliation(s)
- Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mst. Farzana Sultana
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
118
|
Lehman PC, Ghimire S, Price JD, Ramer-Tait AE, Mangalam AK. Diet-microbiome-immune interplay in multiple sclerosis: Understanding the impact of phytoestrogen metabolizing gut bacteria. Eur J Immunol 2023; 53:e2250236. [PMID: 37673213 DOI: 10.1002/eji.202250236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. Although HLA genes have emerged as the strongest genetic factor linked to MS, consensus on the environmental risk factors is lacking. Recently, the gut microbiota has garnered increasing attention as a potential environmental factor in MS, as mounting evidence suggests that individuals with MS exhibit microbial dysbiosis (changes in the gut microbiome). Thus, there has been a strong emphasis on understanding the role of the gut microbiome in the pathobiology of MS, specifically, factors regulating the gut microbiota and the mechanism(s) through which gut microbes may contribute to MS. Among all factors, diet has emerged to have the strongest influence on the composition and function of gut microbiota. As MS patients lack gut bacteria capable of metabolizing dietary phytoestrogen, we will specifically discuss the role of a phytoestrogen diet and phytoestrogen metabolizing gut bacteria in the pathobiology of MS. A better understanding of these mechanisms will help to harness the enormous potential of the gut microbiota as potential therapeutics to treat MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Peter C Lehman
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jeffrey D Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
119
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
120
|
Zong Y, Meng J, Mao T, Han Q, Zhang P, Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review. Front Pharmacol 2023; 14:1273407. [PMID: 37942490 PMCID: PMC10628444 DOI: 10.3389/fphar.2023.1273407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Damage to the intestinal mucosal barrier play an important role in the pathogenesis of ulcerative colitis (UC). Discovering the key regulators and repairing the disturbed barrier are crucial for preventing and treating UC. Traditional Chinese medicine (TCM) has been proved to be effective on treating UC and has exhibited its role in repairing the intestinal mucosal barrier. We summarized the evidence of TCM against UC by protecting and repairing the physical barrier, chemical barrier, immune barrier, and biological barrier. Mechanisms of increasing intestinal epithelial cells, tight junction proteins, and mucins, promoting intestinal stem cell proliferation, restoring the abundance of the intestinal microbiota, and modulating the innate and adaptive immunity in gut, were all involved in. Some upstream proteins and signaling pathways have been elucidated. Based on the existing problems, we suggested future studies paying attention to patients' samples and animal models of UC and TCM syndromes, conducting rescue experiments, exploring more upstream regulators, and adopting new technical methods. We hope this review can provide a theoretical basis and novel ideas for clarifying the mechanisms of TCM against UC via repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Yichen Zong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Qiang Han
- Department of Traditional Chinese Medicine, Health Service Center of Beiyuan Community, Beijing, China
| | - Peng Zhang
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Lei Shi
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| |
Collapse
|
121
|
Yan L, Fang YX, Lu EQ, Xu E, Zhang YY, Chen X, Zhu M. Extracellular Glutamine Promotes Intestinal Porcine Epithelial Cell Proliferation via Arf1-mTORC1 Pathway Independently of Rag GTPases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14251-14262. [PMID: 37738360 DOI: 10.1021/acs.jafc.3c00339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Glutamine (Gln) is the major energy source of intestinal porcine epithelial cells (IPEC-J2 cells) and plays a critical role in the nutritional physiological function of the intestine. However, the underlying mechanism requires further investigation. Here, the Gln-sensing pathway in IPEC-J2 cells was investigated. The results showed that Gln increased the cell proliferation. Subsequently, an analysis of the phosphorylated proteome revealed that Gln markedly upregulated ribosomal protein S6 (RPS6) phosphorylation at serine 235/236, suggesting that Gln activated the mTORC1 pathway. mTOR inhibition revealed that Gln promotes cell proliferation through the mTORC1 pathway. Similarly, blocking ADP-ribosylation factor 1 (Arf1) activity indicated that Gln-induced mTORC1 activation promoted cell proliferation in an Arf1-dependent manner. Additionally, the RagA/B pathway did not participate in Gln-induced mTORC1 activation. Collectively, these findings suggest that Gln-induced mTORC1 activation promotes IPEC-J2 cell proliferation via Arf1, not Rag GTPases. These results broaden our understanding of functional-cell-sensing amino acids, particularly Gln, that are regulated by mTORC1.
Collapse
Affiliation(s)
- Ling Yan
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yi-Yu Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
122
|
Macedo MH, Torras N, García-Díaz M, Barrias C, Sarmento B, Martínez E. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model. BIOMATERIALS ADVANCES 2023; 153:213564. [PMID: 37482042 DOI: 10.1016/j.bioadv.2023.213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.
Collapse
Affiliation(s)
- Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Núria Torras
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - María García-Díaz
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Elena Martínez
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER-BBN - Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Avenida Monforte de Lemos 3-5, 28029 Madrid, Spain; Electronics and Biomedical Engineering Department, Universitat de Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
123
|
Cui C, Wang X, Zheng Y, Li L, Wang F, Wei H, Peng J. Paneth cells protect intestinal stem cell niche to alleviate deoxynivalenol-induced intestinal injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115457. [PMID: 37688865 DOI: 10.1016/j.ecoenv.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Deoxynivalenol (DON) is a common toxin in grains and feeds, and DON exposure triggers severe small intestinal injury and inflammation, which harms the health of humans and livestock. DON treatment leads to a decrease in Paneth cells, whereas the role of Paneth cells in DON-induced intestinal injury is poorly understood. We utilized dithizone (40 mg/kg) to keep murine Paneth cell number at a low level. The results showed that dithizone-mediated long-term disruption of Paneth cells aggravated intestinal injury, intestinal stem cell (ISC) loss, and microbiota disorder in DON (2 mg/kg)-treated mice. Unexpectedly, the number of goblet cells and proliferative cells was boosted in mice treated with dithizone and DON. After dithizone and DON treatments, the Firmicutes/Bacteroidetes (F/B) ratio was reduced, and the increased abundance of Dubosiella and the decreased abundance of Lactobacillus were observed in mice. The functional recovery of Paneth cells by lysozyme (200 U/day) supplementation improved intestinal injury and ISC loss in mice after DON challenge. In addition, lysozyme also promoted the growth and ISC activity of intestinal organoids. Taken together, these results demonstrate the protective role of Paneth cells in DON-induced intestinal injury. Our study raises a novel target, Paneth cell, for the treatment of DON exposure.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 400700, China.
| |
Collapse
|
124
|
Duan Y, Huang J, Sun M, Jiang Y, Wang S, Wang L, Yu N, Peng D, Wang Y, Chen W, Zhang Y. Poria cocos polysaccharide improves intestinal barrier function and maintains intestinal homeostasis in mice. Int J Biol Macromol 2023; 249:125953. [PMID: 37517750 DOI: 10.1016/j.ijbiomac.2023.125953] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
The function of the intestinal tract is critical to human health. Poria cocos is a widely used functional edible fungus in Asia and has been reported to modulate gastrointestinal function. However, the effects of polysaccharides, the main active constituents of Poria cocos, on the intestinal tract remains unclear and is the focus of the study. Poria cocos polysaccharides (PCP) were extracted, characterized, and administered to mice by gavage. The results show that PCP used in this study has a typical polysaccharide peak with a molecular weight of 11.583 kDa and is composed primarily of mannose, D-glucosamine hydrochloride, glucose, galactose, and fucose with a molar ratio of 15.308: 0.967: 28.723: 31.631: 23.371. The methylation results suggest that the PCP backbone may be t-Gal(p), 6-Gal(p) and 2,6-Gal(p). The effects of PCP on the mucosal barrier function of the mouse intestine (duodenum, jejunum, and ileum) were examined in terms of intestinal physiological status, physical barrier, biochemical barrier, immune barrier, and microbial barrier. The results showed that PCP significantly improved the physiological state of mouse intestine. Moreover, PCP strengthened the intestinal physical barrier by upregulating the expression of intestinal Occludin and ZO-1 and downregulating the levels of serum endotoxin, DAO, D-lactate, and intestinal MPO. Regarding biochemical barrier, PCP could upregulate the expression of MUC2, β-defensin, and SIgA in intestinal tissues. In addition, PCP modulated the immune barrier by increasing IL-2, IL-4, IL-6, IL-10, TGF-β, and IFN-γ expression. Besides, PCP increased the level of SCFAs in small intestinal contents. PCP modulates intestinal barrier function by altering the microbial composition of the gut. We also found that PCP could maintain intestinal barrier function by increasing the expression of Wnt/β-Catenin and Lrp5 proteins. Generally, our findings suggested that PCP may be used as a functional food to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.
Collapse
Affiliation(s)
- Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Yuehang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Shihan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, China.
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, China.
| |
Collapse
|
125
|
Chen Y, Li J, Li S, Cheng Y, Fu X, Li J, Zhu L. Uncovering the Novel Role of NR1D1 in Regulating BNIP3-Mediated Mitophagy in Ulcerative Colitis. Int J Mol Sci 2023; 24:14222. [PMID: 37762536 PMCID: PMC10531686 DOI: 10.3390/ijms241814222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, incurable condition characterized by mucosal inflammation and intestinal epithelial cell (IEC) damage. The circadian clock gene NR1D1, implicated in UC and the critical mitophagy process for epithelial repair, needs further exploration regarding its role in mitophagy regulation in UC. METHODS We created a jet lag mouse model and induced colitis with dextran sulfate sodium (DSS), investigating NR1D1's role. Intestinal-specific Nr1d1 knockout mice were also generated. RNA sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays helped ascertain NR1D1's regulatory effect on BNIP3 expression. The mitochondrial state in IECs was assessed through transmission electron microscopy, while confocal microscopy evaluated mitophagy-associated protein expression in colon tissue and CCD841 cells. Cell apoptosis and reactive oxygen species (ROS) were measured via flow cytometry. RESULTS We observed reduced NR1D1 expression in the IECs of UC patients, accentuated under jet lag and DSS exposure in mice. NR1D1 ablation led to disrupted immune homeostasis and declined mitophagy in IECs. NR1D1, usually a transcriptional repressor, was a positive regulator of BNIP3 expression, leading to impaired mitophagy, cellular inflammation, and apoptosis. Administering the NR1D1 agonist SR9009 ameliorated colitis symptoms, primarily by rectifying defective mitophagy. CONCLUSIONS Our results suggest that NR1D1 bridges the circadian clock and UC, controlling BNIP3-mediated mitophagy and representing a potential therapeutic target. Its agonist, SR9009, shows promise in UC symptom alleviation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
126
|
Lv X, He FL, Dai Y, Dai X. IFNγ synergies with cold atmospheric plasma in triggering colorectal cancer cell ferroptosis via the IFNγ/IFNR2/APC/TCF4/GPX4 axis. Aging (Albany NY) 2023; 15:8692-8711. [PMID: 37671945 PMCID: PMC10522381 DOI: 10.18632/aging.204985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
Colorectal cancer accounts for the second most common cancer-related lethality. Intestinal stem cells are responsible for enteric homeostasis maintenance that, once being transformed, become colorectal cancer stem cells. Arresting cancer stemness represents an innovative strategy for colorectal cancer management. Using intestinal stem cell organoids as the primary model, we screened common inflammatory cytokines to identify key players targeting cancer stemness. We also explored the downstream signaling that drives the functionalities of the identified cytokine through both experimental investigations and computational predictions. As the results, we identified IFNγ as the key cytokine capable of arresting intestinal stem cells via the IFNγ/IFNGR2/APC/TCF4/GPX4 axis, proposed its role in killing colorectal cancer stem cells via triggering GPX4-dependent ferroptosis, and demonstrated its synergistic anti-cancer effect with cold atmospheric plasma in killing colorectal cancer cells that is worthy to be experimentally validated.
Collapse
Affiliation(s)
- Xinyu Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fu-le He
- Zhejiang Chinese Medicine Museum, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yilin Dai
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| |
Collapse
|
127
|
Zhang X, Chen X, Wang Z, Meng X, Hoffmann-Sommergruber K, Cavallari N, Wu Y, Gao J, Li X, Chen H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023; 170:1-12. [PMID: 37067238 DOI: 10.1111/imm.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xiao Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Zhongliang Wang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xuanyi Meng
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | | | - Nicola Cavallari
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Yong Wu
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
128
|
Di Sabatino A, Santacroce G, Rossi CM, Broglio G, Lenti MV. Role of mucosal immunity and epithelial-vascular barrier in modulating gut homeostasis. Intern Emerg Med 2023; 18:1635-1646. [PMID: 37402104 PMCID: PMC10504119 DOI: 10.1007/s11739-023-03329-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/25/2023] [Indexed: 07/05/2023]
Abstract
The intestinal mucosa represents the most extensive human barrier having a defense function against microbial and food antigens. This barrier is represented externally by a mucus layer, consisting mainly of mucins, antimicrobial peptides, and secretory immunoglobulin A (sIgA), which serves as the first interaction with the intestinal microbiota. Below is placed the epithelial monolayer, comprising enterocytes and specialized cells, such as goblet cells, Paneth cells, enterochromaffin cells, and others, each with a specific protective, endocrine, or immune function. This layer interacts with both the luminal environment and the underlying lamina propria, where mucosal immunity processes primarily take place. Specifically, the interaction between the microbiota and an intact mucosal barrier results in the activation of tolerogenic processes, mainly mediated by FOXP3+ regulatory T cells, underlying intestinal homeostasis. Conversely, the impairment of the mucosal barrier function, the alteration of the normal luminal microbiota composition (dysbiosis), or the imbalance between pro- and anti-inflammatory mucosal factors may result in inflammation and disease. Another crucial component of the intestinal barrier is the gut-vascular barrier, formed by endothelial cells, pericytes, and glial cells, which regulates the passage of molecules into the bloodstream. The aim of this review is to examine the various components of the intestinal barrier, assessing their interaction with the mucosal immune system, and focus on the immunological processes underlying homeostasis or inflammation.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy.
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
- Clinica Medica I, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Viale Golgi 19, 27100, Pavia, Italy.
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
129
|
Wei Y, Tan H, Yang R, Yang F, Liu D, Huang B, OuYang L, Lei S, Wang Z, Jiang S, Cai H, Xie X, Yao S, Liang Y. Gut dysbiosis-derived β-glucuronidase promotes the development of endometriosis. Fertil Steril 2023; 120:682-694. [PMID: 37178109 DOI: 10.1016/j.fertnstert.2023.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To explore the role of gut dysbiosis-derived β-glucuronidase (GUSB) in the development of endometriosis (EMs). DESIGN 16S rRNA sequencing of stool samples from women with (n = 35) or without (n = 30) endometriosis and from a mouse model was conducted to assess gut microbiome changes and identify molecular factors influencing the development of endometriosis. Experiments in vivo in an endometriosis C57BL6 mouse model and in vitro verified the level of GUSB and its role in the development of EMs. SETTING Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases. PATIENT(S) Women of reproductive age with a histological diagnosis of endometriosis were enrolled in the endometriosis group (n = 35) and infertile or healthy age-matched women who had undergone a gynecological or radiological examination in the control group (n = 30). Fecal and blood samples were taken the day before surgery. Paraffin-embedded sections from 50 bowel endometriotic lesions, 50 uterosacral lesions, 50 samples without lesions, and 50 normal endometria were collected. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Changes in the gut microbiome of patients with EMs and mice and the effect of β-glucuronidase on the proliferation and invasion of endometrial stromal cells and the development of endometriotic lesions were assessed. RESULT(S) No difference in α and β diversity was found between patients with EMs and controls. Immunohistochemistry analysis showed higher β-glucuronidase expression in bowel lesions and uterosacral ligament lesions than in the normal endometrium (p<0.01). β-Glucuronidase promoted the proliferation and migration of endometrial stromal cells during cell counting kit-8, Transwell, and wound-healing assays. Macrophage levels, especially M2, were higher in bowel lesions and uterosacral ligament lesions than in controls, and β-glucuronidase promoted the M0 to M2 transition. Medium conditioned by β-glucuronidase-treated macrophages promoted endometrial stromal cell proliferation and migration. β-Glucuronidase increased the number and volume of endometriotic lesions and number of macrophages present in lesions in the mouse EMs model. CONCLUSION(S) This β-Glucuronidase promoted EMs development directly or indirectly by causing macrophage dysfunction. The characterization of the pathogenic role of β-glucuronidase in EMs has potential therapeutic implications.
Collapse
Affiliation(s)
- Yajing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Hao Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Ruyu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Biqi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Linglong OuYang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Shuntian Lei
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zehai Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaoru Jiang
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang, People's Republic of China
| | - Heng Cai
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang, People's Republic of China
| | - Xiaofei Xie
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang, People's Republic of China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China.
| |
Collapse
|
130
|
Liu S, Dong Z, Tang W, Zhou J, Guo L, Gong C, Liu G, Wan D, Yin Y. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2006-2019. [PMID: 37340176 DOI: 10.1007/s11427-022-2298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 06/22/2023]
Abstract
Iron is an important micronutrient that plays a vital role in host defenses and bacterial pathogenicity. As iron treatments increase the risk of infection by stimulating the growth and virulence of bacterial pathogens, their roles in anti-infection immunity have frequently been underestimated. To estimate whether adequate dietary iron intake would help defend against pathogenic bacterial infection, mice were fed iron-deficient (2 mg kg-1 feed), iron-sufficient (35 mg kg-1 feed), or iron-enriched diet (350 mg kg-1 feed) for 12 weeks, followed by oral infection with Salmonella typhimurium. Our results revealed that dietary iron intake improved mucus layer function and decelerated the invasion of the pathogenic bacteria, Salmonella typhimurium. Positive correlations between serum iron and the number of goblet cells and mucin2 were found in response to total iron intake in mice. Unabsorbed iron in the intestinal tract affected the gut microbiota composition, and the abundance of Bacteroidales, family Muribaculaceae, was positively correlated with their mucin2 expression. However, the results from antibiotic-treated mice showed that the dietary iron-regulated mucin layer function was not microbial-dependent. Furthermore, in vitro studies revealed that ferric citrate directly induced mucin2 expression and promoted the proliferation of goblet cells in both ileal and colonic organoids. Thus, dietary iron intake improves serum iron levels, regulates goblet cell regeneration and mucin layer function, and plays a positive role in the prevention of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhenlin Dong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenjie Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jian Zhou
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chengyan Gong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
131
|
Houghton CA. The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut-Organ Dysfunction: A Clinician's Hypothesis. Int J Mol Sci 2023; 24:13448. [PMID: 37686253 PMCID: PMC10487861 DOI: 10.3390/ijms241713448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression.
Collapse
Affiliation(s)
- Christine A. Houghton
- Institute for Nutrigenomic Medicine, Cleveland, QLD 4163, Australia; ; Tel.: +617-3488-0385
- Cell-Logic, 132-140 Ross Court, Cleveland, QLD 4163, Australia
| |
Collapse
|
132
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
133
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Zambrano AK. Role of the gut microbiota in hematologic cancer. Front Microbiol 2023; 14:1185787. [PMID: 37692399 PMCID: PMC10485363 DOI: 10.3389/fmicb.2023.1185787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Hematologic neoplasms represent 6.5% of all cancers worldwide. They are characterized by the uncontrolled growth of hematopoietic and lymphoid cells and a decreased immune system efficacy. Pathological conditions in hematologic cancer could disrupt the balance of the gut microbiota, potentially promoting the proliferation of opportunistic pathogens. In this review, we highlight studies that analyzed and described the role of gut microbiota in different types of hematologic diseases. For instance, myeloma is often associated with Pseudomonas aeruginosa and Clostridium leptum, while in leukemias, Streptococcus is the most common genus, and Lachnospiraceae and Ruminococcaceae are less prevalent. Lymphoma exhibits a moderate reduction in microbiota diversity. Moreover, certain factors such as delivery mode, diet, and other environmental factors can alter the diversity of the microbiota, leading to dysbiosis. This dysbiosis may inhibit the immune response and increase susceptibility to cancer. A comprehensive analysis of microbiota-cancer interactions may be useful for disease management and provide valuable information on host-microbiota dynamics, as well as the possible use of microbiota as a distinguishable marker for cancer progression.
Collapse
|
134
|
Arnesen H, Markussen T, Birchenough G, Birkeland S, Nyström EEL, Hansson GC, Carlsen H, Boysen P. Microbial experience through housing in a farmyard-type environment alters intestinal barrier properties in mouse colons. Sci Rep 2023; 13:13701. [PMID: 37607995 PMCID: PMC10444815 DOI: 10.1038/s41598-023-40640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.
Collapse
Affiliation(s)
- Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - George Birchenough
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elisabeth E L Nyström
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
135
|
Li D, Li J, Chen T, Qin X, Pan L, Lin X, Liang W, Wang Q. Injectable Bioadhesive Hydrogels Scavenging ROS and Restoring Mucosal Barrier for Enhanced Ulcerative Colitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38273-38284. [PMID: 37530040 DOI: 10.1021/acsami.3c06693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Despite the progress in the therapy of ulcerative colitis (UC), long-lasting UC remission can hardly be achieved in the majority of UC patients. The key pathological characteristics of UC include an impaired mucosal barrier and local inflammatory infiltration. Thus, a two-pronged approach aiming at repairing damaged mucosal barrier and scavenging inflammatory mediators simultaneously might hold great potential for long-term remission of UC. A rectal formulation can directly offer preferential and effective drug delivery to inflamed colon. However, regular intestinal peristalsis and frequent diarrhea in UC might cause transient drug retention. Therefore, a bioadhesive hydrogel with strong interaction with intestinal mucosa might be preferable for rectal administration to prolong drug retention. Here, we designed a bioadhesive hydrogel formed by the cross-linking of sulfhydryl chondroitin sulfate and polydopamine (CS-PDA). The presence of PDA would ensure the mucosa-adhesive behavior, and the addition of CS in the hydrogel network was expected to achieve the restoration of the intestinal epithelial barrier. To scavenge the key player (excessive reactive oxygen species, ROS) in inflamed colon, sodium ferulic (SF), a potent ROS inhibitor, was incorporated into the CS-PDA hydrogel. After rectal administration, the SF-loaded CS-PDA hydrogel could adhere to the colonic mucosa to allow prolonged drug retention. Subsequently, sustained SF release could be achieved to persistently scavenge ROS in inflammatory areas. Meanwhile, the presence of CS would promote the restoration of the mucosal barrier. Ultimately, scavenging ROS and restoring the mucosal barrier could be simultaneously achieved via this SF-loaded bioadhesive hydrogel scaffold. Our two-pronged approach might provide new insight for effective UC treatment.
Collapse
Affiliation(s)
- Daming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
136
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
137
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
138
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
139
|
Yang L, Fang C, Song C, Zhang Y, Zhang R, Zhou S. Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5 + Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Eng Regen Med 2023; 20:739-751. [PMID: 37326937 PMCID: PMC10352229 DOI: 10.1007/s13770-023-00541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Radiation enteritis (RE) is a common complication of abdominal or pelvic radiotherapy, which when severe, could be life-threatening. Currently, there are no effective treatments. Studies have shown that mesenchymal stem cells (MSCs)-derived exosomes (MSC-exos) exhibit promising therapeutic effects in inflammatory diseases. However, the specific role of MSC-exos in RE and the regulatory mechanisms remain elusive. METHODS In vivo assay was carried out by injecting MSC-exos into the total abdominal irradiation (TAI)-induced RE mouse model. For in vitro assay, Lgr5-positive intestinal epithelial stem cells (Lgr5+ IESC) were extracted from mice, followed by irradiation along with MSC-exos treatment. HE staining was performed to measure histopathological changes. mRNA expression of inflammatory factors TNF-α and IL-6 and stem cell markers LGR5, and OCT4 were quantified by RT-qPCR. EdU and TUNEL staining was performed to estimate cell proliferation and apoptosis. MiR-195 expression in TAI mice and radiation-induced Lgr5+ IESC was tested. RESULTS We found that the injection of MSC-exos inhibited inflammatory reaction, increased stem cell marker expression, and maintained intestinal epithelial integrity in TAI mice. Furthermore, MSC-exos treatment increased the proliferation and simultaneously suppressed apoptosis in radiation-stimulated Lgr5+ IESC. MiR-195 expression increased by radiation exposure was decreased by MSC-exos therapy. MiR-195 overexpression facilitated the progress of RE by counteracting the effect of MSC-exos. Mechanistically, the Akt and Wnt/β-catenin pathways inhibited by MSC-exos were activated by miR-195 upregulation. CONCLUSION MSC-Exos are effective in treating RE and are essential for the proliferation and differentiation of Lgr5+ IESCs. Moreover, MSC-exos mediates its function by regulating miR-195 Akt β-catenin pathways.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Caifang Song
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Yaya Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
140
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
141
|
Luo JQ, Ren H, Chen MY, Zhao Q, Yang N, Liu Q, Gao YC, Zhou HH, Huang WH, Zhang W. Hydrochlorothiazide-induced glucose metabolism disorder is mediated by the gut microbiota via LPS-TLR4-related macrophage polarization. iScience 2023; 26:107130. [PMID: 37456847 PMCID: PMC10338205 DOI: 10.1016/j.isci.2023.107130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Hydrochlorothiazide (HCTZ) is reported to impair glucose tolerance and may induce new onset of diabetes, but the pharmacomicrobiomics of the adverse effect for HCTZ remains unknown. Mice-fed HCTZ exhibited insulin resistance and impaired glucose tolerance. By using FMT and antibiotic cocktail models, we found that HCTZ-induced metabolic disorder was mediated by commensal microbiota. HCTZ consumption disturbed the structure of the intestinal microbiota, causing abnormal elevation of Gram-negative Enterobacteriaceae and lipopolysaccharide (LPS) then leading to intestinal barrier dysfunction. Additionally, HCTZ activated TLR4 signaling and induced macrophage polarization and inflammation in the liver. Furthermore, HCTZ-induced macrophage polarization and metabolic disorder were abrogated by blocking TLR4 signaling. HCTZ consumption caused a significant increase in Gram-negative Enterobacteriaceae, which elevated the levels of LPS, thereby activating LPS/TLR4 pathway, promoting inflammation and macrophage polarization, and resulting in metabolic disorders. These findings revealed that the gut microbiome is the key medium underlying HCTZ-induced metabolic disorder.
Collapse
Affiliation(s)
- Jian-Quan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, No.61 Western Jiefang Road, Changsha, Hunan, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Nian Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
142
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
143
|
Ahmad R, Kumar B, Tamang RL, Talmon GA, Dhawan P, Singh AB. P62/SQSTM1 binds with claudin-2 to target for selective autophagy in stressed intestinal epithelium. Commun Biol 2023; 6:740. [PMID: 37460613 PMCID: PMC10352296 DOI: 10.1038/s42003-023-05116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Impaired autophagy promotes Inflammatory Bowel Disease (IBD). Claudin-2 is upregulated in IBD however its role in the pathobiology remains uncertain due to its complex regulation, including by autophagy. Irrespective, claudin-2 expression protects mice from DSS colitis. This study was undertaken to examine if an interplay between autophagy and claudin-2 protects from colitis and associated epithelial injury. Crypt culture and intestinal epithelial cells (IECs) are subjected to stress, including starvation or DSS, the chemical that induces colitis in-vivo. Autophagy flux, cell survival, co-immunoprecipitation, proximity ligation assay, and gene mutational studies are performed. These studies reveal that under colitis/stress conditions, claudin-2 undergoes polyubiquitination and P62/SQSTM1-assisted degradation through autophagy. Inhibiting autophagy-mediated claudin-2 degradation promotes cell death and thus suggest that claudin-2 degradation promotes autophagy flux to promote cell survival. Overall, these data inform for the previously undescribed role for claudin-2 in facilitating IECs survival under stress conditions, which can be harnessed for therapeutic advantages.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
144
|
Liang Q, Ma C, Crowley SM, Allaire JM, Han X, Chong RWW, Packer NH, Yu HB, Vallance BA. Sialic acid plays a pivotal role in licensing Citrobacter rodentium's transition from the intestinal lumen to a mucosal adherent niche. Proc Natl Acad Sci U S A 2023; 120:e2301115120. [PMID: 37399418 PMCID: PMC10334811 DOI: 10.1073/pnas.2301115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Joannie M. Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Xiao Han
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Raymond W. W. Chong
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Nicolle H. Packer
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| |
Collapse
|
145
|
Wei S, Tian Q, Husien HM, Tao Y, Liu X, Liu M, Bo R, Li J. The synergy of tea tree oil nano-emulsion and antibiotics against multidrug-resistant bacteria. J Appl Microbiol 2023; 134:lxad131. [PMID: 37401131 DOI: 10.1093/jambio/lxad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
AIMS We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.
Collapse
Affiliation(s)
- SiMin Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - QiMing Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Al Jazirah, Sudan
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - XiaoPan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - MingJiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - RuoNan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
146
|
Guo XK, Wang J, van Hensbergen VP, Liu J, Xu H, Hu X. Interactions between host and intestinal crypt-resided biofilms are controlled by epithelial fucosylation. Cell Rep 2023; 42:112754. [PMID: 37405914 DOI: 10.1016/j.celrep.2023.112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
As highly organized consortia of bacteria, biofilms have long been implicated in aggravating inflammation. However, our understanding regarding in vivo host-biofilm interactions in the complex tissue environments remains limited. Here, we show a unique pattern of crypt occupation by mucus-associated biofilms during the early stage of colitis, which is genetically dependent on bacterial biofilm-forming capacity and restricted by host epithelial α1,2-fucosylation. α1,2-Fucosylation deficiency leads to markedly augmented crypt occupation by biofilms originated from pathogenic Salmonella Typhimurium or indigenous Escherichia coli, resulting in exacerbated intestinal inflammation. Mechanistically, α1,2-fucosylation-mediated restriction of biofilms relies on interactions between bacteria and liberated fucose from biofilm-occupied mucus. Fucose represses biofilm formation and biofilm-related genes in vitro and in vivo. Finally, fucose administration ameliorates experimental colitis, suggesting therapeutic potential of fucose for biofilm-related disorders. This work illustrates host-biofilm interactions during gut inflammation and identifies fucosylation as a physiological strategy for restraining biofilm formation.
Collapse
Affiliation(s)
- Xue-Kun Guo
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China.
| | - Jiali Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Vincent P van Hensbergen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Jintao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 10084, China
| | - Huji Xu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; School of Clinical Medicine and School of Medicine, Tsinghua University, Beijing 100084, China; Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
147
|
Ramírez-Perdomo A, Márquez-Barrios G, Gutiérrez-Castañeda LD, Parra-Medina R. NEUROENDOCRINE PEPTIDES IN THE PATHOGENESIS OF COLORECTAL CARCINOMA. Exp Oncol 2023; 45:3-16. [PMID: 37417286 DOI: 10.15407/exp-oncology.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 07/08/2023]
Abstract
Colorectal carcinoma (CRC) is the third most frequent neoplasm worldwide and the second leading cause of mortality. Neuroendocrine peptides such as glucagon, bombesin, somatostatin, cholecystokinin, and gastrin as well as growth factors such as platelet-derived growth factor, epidermal growth factor, insulin-like growth factor, and fibroblast growth factor have been postulated as being involved in carcinogenesis. The fact that these neuroendocrine peptides are involved in the development of CRC through the activation of growth factors that stimulate a series of molecular pathways that activate oncogenic signaling mechanisms is emphasized in this review. Peptides such as CCK1, serotonin, and bombesin have been found to be over-expressed in human tumor tissues. Meanwhile, the expression of peptides such as GLP2 has been seen mainly in murine models. The information contained in this review provides a better understanding of the role these peptides play in the pathogenesis of CRC for basic and clinical science studies.
Collapse
Affiliation(s)
- A Ramírez-Perdomo
- Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, ColombiaPathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
| | - G Márquez-Barrios
- Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
| | - L D Gutiérrez-Castañeda
- Basic Health Sciences Group, University Foundation of Health Sciences, Bogota, Colombia
- Research Institute, University Foundation of Health Sciences (FUCS), Bogotá, Colombia
| | - R Parra-Medina
- Pathology Department, University Foundation of Health Sciences (FUCS), Bogota Calle 10 #18-75, Colombia
- Research Institute, University Foundation of Health Sciences, Bogota, Colombia
| |
Collapse
|
148
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
149
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
150
|
Puértolas-Balint F, Schroeder BO. Intestinal α-Defensins Play a Minor Role in Modulating the Small Intestinal Microbiota Composition as Compared to Diet. Microbiol Spectr 2023; 11:e0056723. [PMID: 37039638 PMCID: PMC10269482 DOI: 10.1128/spectrum.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
The intestinal microbiota is at the interface between the host and its environment and thus under constant exposure to host-derived and external modulators. While diet is considered to be an important external factor modulating microbiota composition, intestinal defensins, one of the major classes of antimicrobial peptides, have been described as key host effectors that shape the gut microbial community. However, since dietary compounds can affect defensin expression, thereby indirectly modulating the intestinal microbiota, their individual contribution to shaping gut microbiota composition remains to be defined. To disentangle the complex interaction among diet, defensins, and small-intestinal microbiota, we fed wild-type (WT) mice and mice lacking functionally active α-defensins (Mmp7-/- mice) either a control diet or a Western-style diet (WSD) that is rich in saturated fat and simple carbohydrates but low in dietary fiber. 16S rDNA sequencing and robust statistical analyses identified that bacterial composition was strongly affected by diet while defensins had only a minor impact. These findings were independent of sample location, with consistent results between the lumen and mucosa of the jejunum and ileum, in both mouse genotypes. However, distinct microbial taxa were also modulated by α-defensins, which was supported by differential antimicrobial activity of ileal protein extracts. As the combination of WSD and defensin deficiency exacerbated glucose metabolism, we conclude that defensins only have a fine-tuning role in shaping the small-intestinal bacterial composition and might instead be important in protecting the host against the development of diet-induced metabolic dysfunction. IMPORTANCE Alterations in the gut microbial community composition are associated with many diseases, and therefore identifying factors that shape the microbial community under homeostatic and diseased conditions may contribute to the development of strategies to correct a dysbiotic microbiota. Here, we demonstrate that a Western-style diet, as an extrinsic parameter, had a stronger impact on shaping the small intestinal bacterial composition than intestinal defensins, as an intrinsic parameter. While defensins have been previously shown to modulate bacterial composition in young mice, our study supplements these findings by showing that defensins may be less important in adult mice that harbor a mature microbial community. Nevertheless, we observed that defensins did affect the abundance of distinct bacterial taxa in adult mice and protected the host from aggravated diet-induced glucose impairments. Consequently, our study uncovers a new angle on the role of intestinal defensins in the development of metabolic diseases in adult mice.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bjoern O. Schroeder
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|