101
|
Jørgensen TN, Kovats S, Lotter H. Editorial: Effects of Androgens on Immunity to Self and Foreign. Front Immunol 2021; 11:630066. [PMID: 33408721 PMCID: PMC7779623 DOI: 10.3389/fimmu.2020.630066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Trine N Jørgensen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Hanna Lotter
- Department of Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine (BMITM), Hamburg, Germany
| |
Collapse
|
102
|
Komrakova M, Nagel J, Hoffmann DB, Lehmann W, Schilling AF, Sehmisch S. Effect of Selective Androgen Receptor Modulator Enobosarm on Bone Healing in a Rat Model for Aged Male Osteoporosis. Calcif Tissue Int 2020; 107:593-602. [PMID: 32876707 PMCID: PMC7593387 DOI: 10.1007/s00223-020-00751-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Enobosarm (ostarine, MK-2866, or GTx-024) is a non-steroidal selective androgen receptor modulator. This study evaluated the effect of various regimens of enobosarm (EN) on bone healing in an orchiectomized rat model for aged male osteoporosis and compared it to testosterone (T) treatment. Ninety eight-month-old male Sprague Dawley rats were either orchiectomized (Orx) or left intact (Non-Orx) and divided into groups (n = 15/group): (1) Non-Orx; (2) Orx; (3) Orx+T-th; (4) Orx+EN-th; (5) Orx+T-pr; and (6) Orx+EN-pr. Prophylaxis (Pr) treatments were applied immediately after Orx for up to 18 weeks. Therapy (Th) treatments were applied 12 weeks after Orx for up to 6 weeks. Bilateral tibia osteotomy with plate osteosynthesis was performed 12 weeks after Orx in all groups. EN and T were mixed with the diet; the daily dosage was 0.35 ± 0.06 and 41 ± 8 mg/kg BW, respectively. Both T treatments improved bone healing by increasing callus volume and area, bone volume and density, and cortical width; they had no effect on prostate or levator ani weight. EN-pr increased the callus area and callus density and decreased cortical density, but increased prostate weight. The effect of T-pr and T-th on bone was stronger than EN-pr. EN-th affected bone healing negatively by reducing callus density and area and delaying osteotomy bridging. Levator ani weight was increased in both EN groups. EN treatment after fracture is not advisable in aged males. EN-pr treatment as a therapy for bone healing in men could be further investigated; endocrinological side effects must be closely monitored.
Collapse
Affiliation(s)
- Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany.
| | - Janek Nagel
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
103
|
Chiang VSC, Park JH. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters, and Steroid Independence. Front Behav Neurosci 2020; 14:589882. [PMID: 33328921 PMCID: PMC7732465 DOI: 10.3389/fnbeh.2020.589882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
The survival of animal species predicates on the success of sexual reproduction. Neurotransmitters play an integral role in the expression of these sexual behaviors in the brain. Here, we review the role of glutamate in sexual behavior in rodents and non-rodent species for both males and females. These encompass the release of glutamate and correlations with glutamate receptor expression during sexual behavior. We then present the effects of glutamate on sexual behavior, as well as the effects of antagonists and agonists on different glutamate transporters and receptors. Following that, we discuss the potential role of glutamate on steroid-independent sexual behavior. Finally, we demonstrate the interaction of glutamate with other neurotransmitters to impact sexual behavior. These sexual behavior studies are crucial in the development of novel treatments of sexual dysfunction and in furthering our understanding of the complexity of sexual diversity. In the past decade, we have witnessed the burgeoning of novel techniques to study and manipulate neuron activity, to decode molecular events at the single-cell level, and to analyze behavioral data. They pose exciting avenues to gain further insight into future sexual behavior research. Taken together, this work conveys the essential role of glutamate in sexual behavior.
Collapse
Affiliation(s)
- Vic Shao-Chih Chiang
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Jin Ho Park
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
104
|
Bomfim JHGG. Pharmaceutical Care in Sports. PHARMACY 2020; 8:E218. [PMID: 33207610 PMCID: PMC7712766 DOI: 10.3390/pharmacy8040218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Pharmaceutical care in sports is a new field of work to clinical pharmacists, focused on promoting pharmacotherapeutic follow up and clinical services to athletes, physical activity practitioners and enthusiasts of any sports modality. A broad range of pharmaceuticals, dietary supplements and herbal drugs have been used historically as performance promoters, doping or ergogenic aids. In this context, the role of pharmacists in prevent adverse events, drug interactions or any drug related problems, as doping issues, was described. Its actions can be important to contribute with a multi professional clinical health team, leading athletes to use these resources in a rational way, promoting and optimizing the therapeutic when its necessary.
Collapse
|
105
|
Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur J Med Chem 2020; 210:112981. [PMID: 33160761 DOI: 10.1016/j.ejmech.2020.112981] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Proteolysis targeting chimera (PROTAC), hijacking protein of interest (POI) and recruiting E3 ligase for target degradation via the ubiquitin-proteasome pathway, is a novel drug discovery paradigm which has been widely used as biological tools and medicinal molecules with the potential of clinical application value. Currently, ARV-110, an orally small molecule PROTAC was designed to specifically target Androgen receptor (AR), firstly enters clinical phase I trials for the treatment of metastatic castration-resistant prostate cancer, which turns a new avenue for the development of PROTAC. We herein provide a detail summary on the latest one year progress of PROTAC target various proteins and elucidate the advantages of PROTAC technology. Finally, the potential challenges of this vibrant field are also discussed.
Collapse
|
106
|
FATS regulates polyamine biosynthesis by promoting ODC degradation in an ERβ-dependent manner in non-small-cell lung cancer. Cell Death Dis 2020; 11:839. [PMID: 33037185 PMCID: PMC7547721 DOI: 10.1038/s41419-020-03052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Polyamine biosynthesis is an essential metabolic pathway for cell growth and differentiation in non-small-cell lung cancer (NSCLC). Fragile-site associated tumour suppressor (FATS) is a novel gene involved in cancer. The results of our previous study showed that FATS-mediated polyubiquitination of p53 promotes the activation of p53 in response to DNA damage; however, little is known about the role of FATS in metabolic reprogramming in NSCLC. In the present study, FATS was observed to be significantly downregulated in NSCLC tissues compared with paired adjacent normal tissues and was associated with the survival of NSCLC patients. We further showed that the presence of the tumour suppressor FATS in NSCLC cells led to apoptosis by inducing pro-death autophagy. In addition, FATS was shown to function as a suppressor of polyamine biosynthesis by inhibiting ornithine decarboxylase (ODC) at the protein and mRNA levels, which was partially dependent on oestrogen receptor (ER). Furthermore, FATS was observed to bind to ERβ and translocate to the cytosol, leading to ODC degradation. The findings of our study demonstrate that FATS plays important roles in polyamine metabolism in NSCLC and provides a new perspective for NSCLC progression.
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW Heart failure is a frequent problem in an ageing population, associated with high rates of morbidity and mortality. Today, it is important to not only treat heart failure itself but also the related comorbidities. Among them, cardiac cachexia is one of the major challenges. It is a complex multifactorial disease with a negative impact on quality of life and prognosis. Therefore, prevention, early recognition and treatment of cardiac cachexia is essential. RECENT FINDINGS Cardiac cachexia frequently presents with skeletal as well as heart muscle depletion. Imaging-based diagnostic techniques can help to identify patients with cardiac cachexia and muscle wasting. Several blood biomarkers are available to detect metabolic changes in cardiac cachexia. SUMMARY Several studies are currently ongoing to better comprehend the underlying pathophysiological mechanisms of cardiac cachexia and to find new treatments. It is essential to diagnose it as early as possible to initiate therapy.
Collapse
|
108
|
Leaney AE, Beck P, Biddle S, Brown P, Grace PB, Hudson SC, Mawson DH. Analysis of supplements available to UK consumers purporting to contain selective androgen receptor modulators. Drug Test Anal 2020; 13:122-127. [PMID: 32748554 DOI: 10.1002/dta.2908] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
Selective androgen receptor modulators (SARMs) are compounds with specific androgenic properties investigated for the treatment of conditions such as muscle wasting diseases. The reported androgenic properties have resulted in their use by athletes, and consequently they have been on the World Anti-Doping Agency prohibited list for more than a decade. SARMs have been investigated by pharmaceutical companies as potential drug candidates, but to date no SARM has demonstrated sufficient safety and efficacy to gain clinical approval by either the European Medicines Agency or the U.S. Food and Drug Administration. Despite their lack of safety approval, SARMs are often illegally marketed as dietary supplements, available for consumers to buy online. In this study, a range of supplement products marketed as SARMs were purchased and analyzed using high resolution accurate mass - mass spectrometry to evaluate the accuracy of product claims and content labeling. This study found discrepancies ranging from a supplement in which no active ingredients were found, to supplements containing undeclared prohibited analytes. Where SARMs were detected, discrepancies were observed between the concentrations measured and those detailed on the product packaging. The outcome of this experiment highlights the high risk of such supplement products to consumers. The inaccurate product claims give rise to uncertainty over both the dose taken and the identity of any of these unapproved drugs. Even for supplements for which the product labeling is correct, the lack of complete toxicity data, especially for combinations of SARMs taken as stacks, means that the safety of these supplements is unknown.
Collapse
Affiliation(s)
- Amy E Leaney
- LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Paul Beck
- LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Simon Biddle
- LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Paul Brown
- LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | | | | | | |
Collapse
|
109
|
Osteosarcopenia: beyond age-related muscle and bone loss. Eur Geriatr Med 2020; 11:715-724. [DOI: 10.1007/s41999-020-00355-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
|
110
|
Temerdashev AZ, Dmitrieva EV. Methods for the Determination of Selective Androgen Receptor Modulators. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Fonseca GWPD, Dworatzek E, Ebner N, Von Haehling S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs 2020; 29:881-891. [PMID: 32476495 DOI: 10.1080/13543784.2020.1777275] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Skeletal muscle wasting is a frequent clinical problem encountered in patients with chronic diseases. Increased levels of inflammatory markers play a role in the imbalance between muscle protein synthesis and degradation. Although testosterone has long been proposed as a treatment for patients with muscle wasting, undesirable side effects have raised concerns about prostatic hypertrophy in men as well as virilization in women. Selective androgen receptor modulators (SARMs) have demonstrated similar results like testosterone at improving lean body mass (LBM) with less side effects on androgen-dependent tissue. AREAS COVERED This review outlines the ongoing clinical development in the field of SARMs and their effectiveness in improving body composition and physical function. The included articles were collected at pubmed.gov and analyzed integrally. EXPERT OPINION There is an unmet clinical need for safe and effective anabolic compounds such as SARMs. Despite the effect on LBM shown by SARMs in phase II clinical trials, results on improved physical function and muscle strength are still lacking and long-term outcomes have to be assessed in these patients. Moreover, there is a need to determine the effect of resistance exercise training and protein intake associated with SARMs in the treatment of patients with muscle wasting.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto Da Fonseca
- Heart Institute (Incor), University of São Paulo Medical School , São Paulo, Brazil.,Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany
| | - Elke Dworatzek
- Institute of Gender in Medicine, Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Berlin Institute of Health , Berlin, Germany.,Departement of Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Association , Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin , Berlin, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen , Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen , Göttingen, Germany
| |
Collapse
|
112
|
La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-Specific SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous Thromboembolism and Hypovitaminosis D. Int J Mol Sci 2020; 21:ijms21082948. [PMID: 32331343 PMCID: PMC7215653 DOI: 10.3390/ijms21082948] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease (COVID-19) appears to have a higher mortality rate in presence of comorbidities and in men. The latter suggests the presence of a possible sex-dependent susceptibility. An enzymatic system involved in this different predisposition could be represented by angiotensin converting enzyme 2 (ACE2). ACE2 is activated and down-regulated by the spike protein of the virus and allows the penetration of SARS-CoV-2 into epithelial cells and myocardium. Data on the experimental animal have shown that 17ß-estradiol increases the expression and activity of ACE2 in both adipose tissue and kidney. Spontaneously hypertensive male mice have a higher myocardial ACE2 expression than females and its levels decrease after orchiectomy. In addition to this first aspect, the recent evidence of an increased frequency of venous thromboembolism in patients with COVID-19 (a clinical element associated with a worse prognosis) calls the attention on the safety of treatment with testosterone, in particular in hypogonadal men with greater genetic predisposition. Evidence that sex hormones are able to modulate the expression of ACE2 could help in interpreting epidemiological results and in designing more appropriate intervention strategies. Moreover, the vitamin D deficiency in elderly men may be worthy of further study regarding the epidemiological aspects of this different susceptibility and lethality between sexes.
Collapse
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (S.L.V.); (R.C.); (R.A.C.); (F.T.); (A.E.C.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (S.L.V.); (R.C.); (R.A.C.); (F.T.); (A.E.C.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (S.L.V.); (R.C.); (R.A.C.); (F.T.); (A.E.C.)
| | - Francesco Torre
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (S.L.V.); (R.C.); (R.A.C.); (F.T.); (A.E.C.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (S.L.V.); (R.C.); (R.A.C.); (F.T.); (A.E.C.)
| |
Collapse
|
113
|
Christiansen AR, Lipshultz LI, Hotaling JM, Pastuszak AW. Selective androgen receptor modulators: the future of androgen therapy? Transl Androl Urol 2020; 9:S135-S148. [PMID: 32257854 PMCID: PMC7108998 DOI: 10.21037/tau.2019.11.02] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Selective androgen receptor modulators (SARMs) are small molecule drugs that function as either androgen receptor (AR) agonists or antagonists. Variability in AR regulatory proteins in target tissues permits SARMs to selectively elicit anabolic benefits while eschewing the pitfalls of traditional androgen therapy. SARMs have few side effects and excellent oral and transdermal bioavailability and may, therefore, represent viable alternatives to current androgen therapies. SARMs have been studied as possible therapies for many conditions, including osteoporosis, Alzheimer’s disease, breast cancer, stress urinary incontinence (SUI), prostate cancer (PCa), benign prostatic hyperplasia (BPH), male contraception, hypogonadism, Duchenne muscular dystrophy (DMD), and sarcopenia/muscle wasting/cancer cachexia. While there are no indications for SARMs currently approved by the Food and Drug Administration (FDA), many potential applications are still being explored, and results are promising. In this review, we examine the literature assessing the use of SARMS for a number of indications.
Collapse
Affiliation(s)
| | - Larry I Lipshultz
- Scott Department of Urology.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
114
|
Komrakova M, Furtwängler J, Hoffmann DB, Lehmann W, Schilling AF, Sehmisch S. The Selective Androgen Receptor Modulator Ostarine Improves Bone Healing in Ovariectomized Rats. Calcif Tissue Int 2020; 106:147-157. [PMID: 31531719 DOI: 10.1007/s00223-019-00613-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
Non-steroidal selective androgen receptor modulators, including ostarine, have been developed as an alternative to steroidal hormones. Ostarine has shown a beneficial effect on bone in experimental studies, but no data regarding the effect of ostarine on bone healing have yet been reported. We investigated effects of ostarine on bone healing in ovariectomized rats. Sprague-Dawley rats (3 months old) were ovariectomized (Ovx, n = 46) or left intact (Non-Ovx, n = 10). After 8 weeks, an osteotomy of the tibia metaphysis was created in all rats, and the Ovx rats were divided into four groups: untreated Ovx (n = 10) and three Ovx groups (each of 12 rats) treated with ostarine at doses of 0.04, 0.4, or 4 mg/kg BW (OS-0.04, OS-0.4, and OS-4 groups). Five weeks later, bone healing was analyzed. The OS-4 dose enhanced callus formation, increased callus density, accelerated bridging time of the osteotomy, and elevated alkaline phosphatase gene expression in callus and its protein expression in serum. In the Ovx group, most of the callus parameters were diminished. All OS treatments increased the weight of the gastrocnemius muscle, but only partly enhanced uterus weight in OS-0.4 and OS-4. Serum cholesterol level was reduced, and serum phosphorus was elevated in OS-0.04 and OS-4. Ostarine appeared to have a positive effect on early bone healing in ovariectomized rats. Considering its favorable effect on non-osteotomized bone and muscle, this treatment could be further explored as a therapy for osteoporosis. However, possible metabolic side effects should first be evaluated.
Collapse
Affiliation(s)
- Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany.
| | - Judith Furtwängler
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
115
|
Morimoto M, Yamaoka M, Hara T. A selective androgen receptor modulator SARM-2f activates androgen receptor, increases lean body mass, and suppresses blood lipid levels in cynomolgus monkeys. Pharmacol Res Perspect 2020; 8:e00563. [PMID: 32030892 PMCID: PMC7005530 DOI: 10.1002/prp2.563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
SARM-2f a selective androgen receptor (AR) modulator, increases skeletal muscle mass and locomotor activity in rats. This study aimed to clarify its pharmacological effects in monkeys. In reporter assays, the EC50 values of SARM-2f for rat, monkey, and human AR were 2.5, 3, and 3.6 nmol/L, respectively; those of testosterone were 12, 3.2, and 11 nmol/L, respectively. A single oral administration (10 mg/kg SARM-2f) produced a maximal plasma concentration of 3011 ng/mL, with an area under the 24 hours concentration-time curve of 8152 ng·h/mL in monkeys. Body weight (BW), lean body mass (LBM), and plasma levels of total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, lipoprotein (a), alanine aminotransferase, and asparagine aminotransferase were measured after 4 weeks of treatment with SARM-2f (1, 3, and 10 mg/kg/day, QD, p.o.) or testosterone enanthate (TE; 2 mg/kg/2 weeks, s.c.) in monkeys. BW and LBM were significantly increased by 12% each by SARM-2f at 10 mg/kg, and by 5% and 8%, respectively, by TE, but these effects were not statistically significant. Plasma levels of all lipids were either decreased or showed a tendency to be decreased by SARM-2f. TE decreased the triglyceride level and increased the low-density lipoprotein cholesterol level. Liver marker levels were not changed by either SARM-2f or TE. Our data demonstrated that SARM-2f exerted anabolic effects and produced a lipid profile that differed from that produced by testosterone in monkeys, suggesting that SARM-2f might be useful for diseases such as sarcopenia.
Collapse
Affiliation(s)
- Megumi Morimoto
- Oncology Drug Discovery UnitPharmaceutical Research DivisionTakeda Pharmaceutical Company LimitedKanagawaJapan
| | - Masuo Yamaoka
- Oncology Drug Discovery UnitPharmaceutical Research DivisionTakeda Pharmaceutical Company LimitedKanagawaJapan
| | - Takahito Hara
- Oncology Drug Discovery UnitPharmaceutical Research DivisionTakeda Pharmaceutical Company LimitedKanagawaJapan
| |
Collapse
|
116
|
Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci 2019; 239:117060. [DOI: 10.1016/j.lfs.2019.117060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
|
117
|
Kim J, Park J, Kim N, Park HY, Lim K. Inhibition of androgen receptor can decrease fat metabolism by decreasing carnitine palmitoyltransferase I levels in skeletal muscles of trained mice. Nutr Metab (Lond) 2019; 16:82. [PMID: 31788014 PMCID: PMC6880567 DOI: 10.1186/s12986-019-0406-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Background Androgen hormone levels are strongly associated with obesity in adult mammals, especially with advanced age. We investigated androgen receptor inhibition on fat metabolism and long-chain fatty acid (LCFA) transport proteins in skeletal muscle during exercise. Methods Male ICR mice were randomly divided into three groups: CON (control), EX (exercise), and EXIN (exercise + androgen receptor inhibition). EX and EXIN groups were trained on a treadmill five times a week. After 4 weeks, the fat metabolism of each group was measured using open-circuit calorimetry during 1 hour of exercise. After the metabolism measurement, the expression levels of LCFA transport proteins (FAT/CD36, CPTI) were analyzed in skeletal muscle. Results Weight gain and final body weight were significantly lower in the EX group than in either the CON or EXIN groups. Conversely, food intake was significantly higher in the EX group than it was in the CON and EXIN groups. The total weight (CON; 2.07 ± 0.6, EX; 1.64 ± 0.2, EXIN; 1.95 ± 0.2) of the abdominal adipose tissue were significantly lower in the EX group than in the CON and EXIN groups (P < 0.05). However, there was no different between the CON and EXIN group. Oxygen uptake and fat oxidation during exercise tended to be lower (12%) in the EXIN group than in the EX group. Total fat oxidation in the EXIN group was significantly lower during the initial 20-min (P < 0.003) and 40-min (P < 0.041) phases compared to that in the EX group. In addition, the level of FAT/CD36 protein in the EX and EXIN groups was approximately double that in the CON group (P < 0.001, P < 0.001). CPTI expression in the EX group was higher than that in the EX group (P < 0.0069) as well as in the CON group. Conclusion Exercise training increases the expression of LCFA transport proteins (FAT/CD36, CPTI). Blocking androgen receptors can decreases the expression of CPTI in the skeletal muscle, which reduces fat metabolism. Thus, reducing sex hormones or suppressing the sensitivity of AR receptors can inhibit energy efficiency and fat metabolism by suppressing CPTI.
Collapse
Affiliation(s)
- Jisu Kim
- 1Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul Korea.,2Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul Korea
| | - Jonghoon Park
- 3Department of Physical Education, Korea University, Seoul, Korea
| | - Nahyun Kim
- 3Department of Physical Education, Korea University, Seoul, Korea
| | - Hun-Young Park
- 1Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul Korea.,2Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul Korea
| | - Kiwon Lim
- 1Department of Sports Medicine and Science, Konkuk University, Gwangjin-gu, Seoul Korea.,2Physical Activity and Performance Institute (PAPI), Konkuk University, Gwangjin-gu, Seoul Korea.,4Department of Physical Education, Konkuk University, Gwangjin-gu, Seoul Korea
| |
Collapse
|
118
|
Kassem L, Shohdy KS, Makady NF, Salem DS, Ebrahim N, Eldaly M. Efficacy and Safety of Targeting Androgen Receptor in Advanced Breast Cancer: A Systematic Review. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180821145032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::Androgen receptor (AR) upstreams complex signaling pathways that regulate cell proliferation and contribute to breast tumorignensis. Several clinical trials were initiated to investigate the clinical relevance of targeting AR especially in hormone-receptor-negative breast cancer.Methods::The search was performed in PubMed and the meeting libraries of ASCO, ESMO, SABCS, ImpakT congresses from January 2005 to July 2017. The following key words were used: Breast cancer, Androgen receptor, androgen agonist/antagonist, Flutamide, Abiraterone, Bicalutamide, Enzalutamide, Enobosarm, selective androgen receptor modulator.Results::Screening of title/abstracts yielded a total of 20 relevant results. Of those, twelve studies were found eligible: eleven clinical trials along with one case report. Response rates ranged from 0 to 12% while clinical benefit rates reached up to 35% in 2 studies (with enzalutamide and enobosarm). Progression-free survival ranged from 2.8 to 4.5 months. The most widely used cutoff for AR expression was 10%. High expression of AR was associated with more clinical benefit. Regarding safety, anti-androgens were generally well tolerated with hot flushes, elevated transaminases and fatigue being the most commonly reported across all agents.Conclusion::Androgen receptor pathway targeting in advanced breast cancer remains a valid option with reasonable clinical benefit in non-selected patients. Future studies are needed to define an AR addicted cohort with better responses and outcome.
Collapse
Affiliation(s)
- Loay Kassem
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Kyrillus S. Shohdy
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Nafie F. Makady
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Dalal S. Salem
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Nadia Ebrahim
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mostafa Eldaly
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
119
|
Liu WJ, Zhao G, Zhang CY, Yang CQ, Zeng XB, Li J, Zhu K, Zhao SQ, Lu HM, Yin DC, Lin SX. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J Cell Biochem 2019; 121:2756-2769. [PMID: 31693255 DOI: 10.1002/jcb.29515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiang-Bin Zeng
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jin Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kun Zhu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sheng-Xiang Lin
- Department of Molecular Medicine, Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), Laval University, Québec, Canada
| |
Collapse
|
120
|
|
121
|
Chen JF, Lin PW, Tsai YR, Yang YC, Kang HY. Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells 2019; 8:cells8111318. [PMID: 31731497 PMCID: PMC6912771 DOI: 10.3390/cells8111318] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Androgens are not only essential for bone development but for the maintenance of bone mass. Therefore, conditions with androgen deficiency, such as male hypogonadism, androgen-insensitive syndromes, and prostate cancer with androgen deprivation therapy are strongly associated with bone loss and increased fracture risk. Here we summarize the skeletal effects of androgens—androgen receptors (AR) actions based on in vitro and in vivo studies from animals and humans, and discuss bone loss due to androgens/AR deficiency to clarify the molecular basis for the anabolic action of androgens and AR in bone homeostasis and unravel the functions of androgen/AR signaling in healthy and disease states. Moreover, we provide evidence for the skeletal benefits of androgen therapy and elucidate why androgens are more beneficial than male sexual hormones, highlighting their therapeutic potential as osteoanabolic steroids in improving bone fracture repair. Finally, the application of selective androgen receptor modulators may provide new approaches for the treatment of osteoporosis and fractures as well as building stronger bones in diseases dependent on androgens/AR status.
Collapse
Affiliation(s)
- Jia-Feng Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
| | - Pei-Wen Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung 802, Taiwan
| | - Yi-Chien Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8898)
| |
Collapse
|
122
|
Thevis M, Walpurgis K, Thomas A. Analytical Approaches in Human Sports Drug Testing: Recent Advances, Challenges, and Solutions. Anal Chem 2019; 92:506-523. [DOI: 10.1021/acs.analchem.9b04639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne 50933, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne 50933, Germany
| |
Collapse
|
123
|
Corton JC, Kleinstreuer NC, Judson RS. Identification of potential endocrine disrupting chemicals using gene expression biomarkers. Toxicol Appl Pharmacol 2019; 380:114683. [DOI: 10.1016/j.taap.2019.114683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
124
|
Parente Filho SLA, Gomes PEADC, Forte GA, Lima LLL, Silva Júnior GBD, Meneses GC, Martins AMC, Daher EDF. Kidney disease associated with androgenic-anabolic steroids and vitamin supplements abuse: Be aware! Nefrologia 2019; 40:26-31. [PMID: 31585781 DOI: 10.1016/j.nefro.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023] Open
Abstract
The excessive chase for beauty standards and the rise of muscle dysmorphia have ultimately led to an increase in androgenic-anabolic steroids (AAS) and intramuscular injections of vitamins A, D and E (ADE) abuse, which is associated with several adverse effects and has become a public health issue. This review of literature discusses kidney injury associated with the use of AAS and ADE, highlighting the mechanisms of acute and chronic renal lesion, such as direct renal toxicity, glomerular hyperfiltration and hypercalcemia. Future perspectives regarding evaluation and early diagnosis of kidney injury in these patients are also discussed.
Collapse
Affiliation(s)
- Sérgio Luiz Arruda Parente Filho
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Guilherme Aguiar Forte
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Laio Ladislau Lopes Lima
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Gdayllon Cavalcante Meneses
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
125
|
Gadaj A, Ventura E, Ripoche A, Mooney MH. Monitoring of selective androgen receptor modulators in bovine muscle tissue by ultra-high performance liquid chromatography-tandem mass spectrometry. FOOD CHEMISTRY-X 2019; 4:100056. [PMID: 31650129 PMCID: PMC6804513 DOI: 10.1016/j.fochx.2019.100056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
First UHPLC-MS/MS assay for screening of 15 emerging SARMs in muscle tissue. Method fully validated according to relevant EU food control legislation. Analyte detection capability (CCβ) determined in the range of 0.5–5 ng g−1. Assay amenable for use within routine residue control programmes.
Selective androgen receptor modulators (SARMs) are non-steroidal compounds widely reported as drugs of abuse in human and animal sports, with potential for misuse as growth promoters in animal-based food production. In this study, a first analytical methodology to simultaneous screen for a panel of emerging SARMs in bovine muscle was developed, validated (CCβ values from 0.5–5 ng g−1), and applied to detect 15 structurally diverse compounds from nine SARM families. Muscle samples (200 mg) were homogenised in extraction solvent (MeCN:H2O, 4:1, v/v) before clean-up (end-capped C18 dSPE), defatting (n-hexane pre-saturated with MeCN partitioning) and concentration prior to UHPLC-MS/MS analysis. In the absence of incurred bovine muscle, method applicability was demonstrated by the analysis of rodent muscle tissue. The developed screening assay serves as a rapid, simple and cost-effective tool for surveillance monitoring of SARM abuse in livestock production systems as a pre-emptive measure ensuring food safety.
Collapse
Affiliation(s)
- Anna Gadaj
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG, United Kingdom
| | - Emiliano Ventura
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG, United Kingdom
| | - Alexis Ripoche
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG, United Kingdom
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG, United Kingdom
| |
Collapse
|
126
|
Kirk B, Al Saedi A, Duque G. Osteosarcopenia: A case of geroscience. Aging Med (Milton) 2019; 2:147-156. [PMID: 31942528 PMCID: PMC6880711 DOI: 10.1002/agm2.12080] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many older persons lose their mobility and independence due to multiple diseases occurring simultaneously. Geroscience is aimed at developing innovative approaches to better identify relationships among the biological processes of aging. Osteoporosis and sarcopenia are two of the most prevalent chronic diseases in older people, with both conditions sharing overlapping risk factors and pathogenesis. When occurring together, these diseases form a geriatric syndrome termed "osteosarcopenia," which increases the risk of frailty, hospitalizations, and death. Findings from basic and clinical sciences aiming to understand osteosarcopenia have provided evidence of this syndrome as a case of geroscience. Genetic, endocrine, and mechanical stimuli, in addition to fat infiltration, sedentarism, and nutritional deficiencies, affect muscle and bone homeostasis to characterize this syndrome. However, research is in its infancy regarding accurate diagnostic markers and effective treatments with dual effects on muscle and bone. To date, resistance exercise remains the most promising strategy to increase muscle and bone mass, while sufficient quantities of protein, vitamin D, calcium, and creatine may preserve these tissues with aging. More recent findings, from rodent models, suggest treating ectopic fat in muscle and bone marrow as a possible avenue to curb osteosarcopenia, although this needs testing in human clinical trials.
Collapse
Affiliation(s)
- Ben Kirk
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Ahmed Al Saedi
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Gustavo Duque
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| |
Collapse
|
127
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
128
|
Ventura E, Gadaj A, Monteith G, Ripoche A, Healy J, Botrè F, Sterk SS, Buckley T, Mooney MH. Development and validation of a semi-quantitative ultra-high performance liquid chromatography-tandem mass spectrometry method for screening of selective androgen receptor modulators in urine. J Chromatogr A 2019; 1600:183-196. [DOI: 10.1016/j.chroma.2019.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
|
129
|
Attenuation of frailty in older adults with mesenchymal stem cells. Mech Ageing Dev 2019; 181:47-58. [DOI: 10.1016/j.mad.2019.111120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
130
|
McNamara KM, Sasano H. The role of 17βHSDs in breast tissue and breast cancers. Mol Cell Endocrinol 2019; 489:32-44. [PMID: 30408503 DOI: 10.1016/j.mce.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The family of seventeen beta hydroxysteroid dehydrogenase enzymes has a long and diverse history in breast and breast cancer research. Given the known dependence of the breast on steroid signalling and intracrine steroid metabolism these enzymes are considered to be essential local fine tuners of overall steroid balance in the tissue. This review will cover the current state of knowledge regarding the expression, clinical effect and biological regulation of enzymes in both cancerous and normal states. In addition we will also cover the current state of knowledge regarding 17βHSD actions in the often neglected adipose and stromal components of tumours.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan.
| | - Hironobu Sasano
- Department of Anatomic Pathology, School of Graduate Medicine, Tohoku University, Japan
| |
Collapse
|
131
|
Nieschlag E, Nieschlag S. ENDOCRINE HISTORY: The history of discovery, synthesis and development of testosterone for clinical use. Eur J Endocrinol 2019; 180:R201-R212. [PMID: 30959485 DOI: 10.1530/eje-19-0071] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
As the most important male hormone, testosterone has an impact on almost all organs and body functions. The biological effects of testosterone and the testes have been known since antiquity, long before testosterone was identified as the active agent. Practical applications of this knowledge were castration of males to produce obedient servants, for punishment, for preservation of the prepubertal soprano voice and even for treatment of diseases. Testes were used in organotherapy and transplanted as treatment for symptoms of hypogonadism on a large scale, although these practices had only placebo effects. In reaction to such malpractice in the first half of the 20th century science and the young pharmaceutical industry initiated the search for the male hormone. After several detours together with their teams in 1935, Ernst Laqueur (Amsterdam) isolated and Adolf Butenandt (Gdansk) as well as Leopold Ruzicka (Zürich) synthesized testosterone. Since then testosterone has been available for clinical use. However, when given orally, testosterone is inactivated in the liver, so that parenteral forms of administration or modifications of the molecule had to be found. Over 85 years the testosterone preparations have been slowly improved so that now physiological serum levels can be achieved.
Collapse
Affiliation(s)
- Eberhard Nieschlag
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstr.11, Münster, Germany
| | - Susan Nieschlag
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstr.11, Münster, Germany
| |
Collapse
|
132
|
Fujii S, Kagechika H. Androgen receptor modulators: a review of recent patents and reports (2012-2018). Expert Opin Ther Pat 2019; 29:439-453. [PMID: 31092069 DOI: 10.1080/13543776.2019.1618831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Androgen receptor (AR) is one of the most promising targets of drug discovery because of its importance in male reproductive systems and homeostasis of bone and muscle. Various AR-modulating agents have been developed and used clinically to treat androgen-dependent disorders, including prostate cancer, and some new-generation antiandrogens have recently been approved. Intensive studies are underway to develop various AR-modulating compounds, including conventional antagonists, tissue-specific AR modulators (SARMs), degraders, and nonconventional AR-modulating compounds that target sites other than the ligand-binding domain (LBD), such as the N-terminal domain (NTD) or the DNA-binding domain (DBD). AREAS COVERED The authors provide an overview of AR-modulating agents from 2012 to 2018. EXPERT OPINION The LBD has been the primary target for AR modulation, and important AR-modulating agents, including SARMs and recently approved antiandrogens such as enzalutamide and apalutamide, have been developed as conventional LBD antagonists. Development of LBD-targeting antiandrogens to treat prostate cancer is a kind of cat-and-mouse game between clinical agents and AR mutations, and therefore next-generation antiandrogens are still required. Development of nonconventional AR-modulating agents targeting NTD and DBD, is likely to be a promising approach to develop multiple and synergistic strategies able to overcome any kind of androgen-dependent condition.
Collapse
Affiliation(s)
- Shinya Fujii
- a Institute for Quantitative Biosciences , The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Kagechika
- b Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
133
|
Zierau O, Kolodziejczyk A, Vollmer G, Machalz D, Wolber G, Thieme D, Keiler AM. Comparison of the three SARMs RAD-140, GLPG0492 and GSK-2881078 in two different in vitro bioassays, and in an in silico androgen receptor binding assay. J Steroid Biochem Mol Biol 2019; 189:81-86. [PMID: 30825507 DOI: 10.1016/j.jsbmb.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/28/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Selective androgen receptor modulators comprise compounds that bind as ligands to the androgen receptor and possess tissue-selective activities. Ideally, they show agonistic properties in anabolic target tissues, while inducing antagonistic or only weak agonistic effects in reproductive organs. Due to their myoanabolic effects, selective androgen receptor modulators are included in the list of prohibited substances and methods of the World Anti-Doping Agency. In the current investigation, the androgenic potential of RAD-140, GSK-2881078 and GLPG0492 was comparably investigated in two different in vitro bioassays. In the yeast androgen screen, the androgenic effects were lower than in the reporter gene assay in prostate carcinoma cells (e.g. for GSK-2881078, the EC50 values were 4.44 × 10-6M in the yeast screen and 3.99 × 10-9M in the prostate cells respectively). For future investigations, it is of importance whether the yeast androgen screen, which has been proven to detect androgenic compounds in urine, can detect an abuse of the selective androgen receptor modulators. Molecular modeling of the binding to the androgen receptor ligand binding domain suggests slight differences in the binding modes of RAD-140, GSK-2881078 and GLPG0492. In conclusion, androgenic activity of the three non-steroidal compounds in the two different in vitro test systems confirmed the results of the in silico modeling of the androgen receptor binding.
Collapse
Affiliation(s)
- Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Germany
| | - Annika Kolodziejczyk
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Germany
| | - Günter Vollmer
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin Martina Keiler
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Germany; Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany.
| |
Collapse
|
134
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
135
|
Zhabyeyev P, Gheblawi M, Oudit GY. Testosterone and cardiac remodeling: why are older men susceptible to heart disease? Am J Physiol Heart Circ Physiol 2019; 316:H765-H767. [PMID: 30681369 DOI: 10.1152/ajpheart.00046.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | - Mahmoud Gheblawi
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
136
|
Wang CL, Kung HN, Wu CH, Huang CJ. Dietary wild bitter gourd displays selective androgen receptor modulator like activity and improves the muscle decline of orchidectomized mice. Food Funct 2019; 10:125-139. [PMID: 30600821 DOI: 10.1039/c8fo01777h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of skeletal muscle mass and strength is often associated with disability and poor quality of life. Selective Androgen Receptor Modulators (SARMs) are under development as potential treatment. This study aims at examining the potential of wild bitter gourd (BG) as a SARM and its effects on the muscle decline induced by orchiectomy. In the cell-based androgen receptor (AR) transactivation assay, the BGP extract showed weak agonistic and antagonistic activities, resembling those of some SARMs. Male C57BL/6J mice were sham-operated (Sham group) or castrated (Cast groups) and fed a modified AIN-93G high sucrose diet supplemented without (Cast group) or with 5% lyophilized BG powder (Cast + BGP) or with testosterone propionate (7 mg TP per kg diet, Cast + TP) for 23 weeks. In contrast to the Cast + TP group, the BGP supplementation did not affect the serum testosterone concentration, and prostate and seminal vesicle mass. Both TP and BGP supplementation increased the weight of androgen responsive muscles, bulbocavernosus (BC) and levator ani (LA) (p < 0.05). The grip strength and the performance on a rotarod of the Cast + BGP group were comparable to those of the Cast + TP group (p > 0.05). The number of succinate dehydrogenase (SDH)-positive fibers of the Cast + BGP group was not significantly different from that of the Sham and Cast + TP groups (p > 0.05). The BGP supplementation up-regulated the Pgc1α, Ucp2 or Ucp3 gene expressions in skeletal muscles of castrated mice (p < 0.05). BGP showed some characteristics of the SARM and might improve skeletal muscle function through the up-regulation of mitochondrial biogenic genes and oxidative capacity, and ameliorated the castration-induced decline of skeletal muscle function in mice.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
137
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2019; 11:8-26. [DOI: 10.1002/dta.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
138
|
Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 2019. [PMID: 31372016 DOI: 10.2147/dmso.s186600[publishedonlinefirst:2019/08/03]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The incidence and prevalence of metabolic and musculoskeletal diseases are increasing. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, inflammation, advanced glycation end-product accumulation and increased oxidative stress. These characteristics can negatively affect various aspects of muscle health, including muscle mass, strength, quality and function through impairments in protein metabolism, vascular and mitochondrial dysfunction, and cell death. Sarcopenia is a term used to describe the age-related loss in skeletal muscle mass and function and has been implicated as both a cause and consequence of T2DM. Sarcopenia may contribute to the development and progression of T2DM through altered glucose disposal due to low muscle mass, and also increased localized inflammation, which can arise through inter- and intramuscular adipose tissue accumulation. Lifestyle modifications are important for improving and maintaining mobility and metabolic health in individuals with T2DM and sarcopenia. However, evidence for the most effective and feasible exercise and dietary interventions in this population is lacking. In this review, we discuss the current literature highlighting the bidirectional relationship between T2DM and sarcopenia, highlight current research gaps and treatments, and provide recommendations for future research.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Barbora De Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, VIC, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
139
|
Kupreeva M, Diane A, Lehner R, Watts R, Ghosh M, Proctor S, Vine D. Effect of metformin and flutamide on insulin, lipogenic and androgen-estrogen signaling, and cardiometabolic risk in a PCOS-prone metabolic syndrome rodent model. Am J Physiol Endocrinol Metab 2019; 316:E16-E33. [PMID: 30153063 PMCID: PMC6417686 DOI: 10.1152/ajpendo.00018.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is highly associated with cardiometabolic risk and the metabolic syndrome (MetS), predisposing women to increased risk of developing type 2 diabetes and cardiovascular disease. Metformin is commonly used to treat insulin resistance-glucose intolerance, and flutamide, an androgen receptor (AR) antagonist, is used to target hyperandrogenemia and dyslipidemia. Currently, the physiological mechanism of action of these treatments on androgen, lipidogenic, and insulin signaling pathways remains unclear in PCOS. The aim of this study was to investigate the effects and mechanisms of action of metformin and flutamide on plasma lipid-apolipoprotein (Apo)B-lipoprotein and insulin-glucose metabolism, and endocrine-reproductive indices in a PCOS-prone MetS rodent model. PCOS-prone rodents were treated with metformin (300 mg/kg body wt), flutamide (30 mg/kg body wt), or metformin + flutamide combination treatment for 6 wk. Metformin was shown to improve fasting insulin and HOMA-IR, whereas flutamide and combination treatment were shown to reduce plasma triglycerides, ApoB48, and ApoB100, and this was associated with decreased intestinal secretion of ApoB48/triglyceride. Flutamide and metformin were shown to reduce plasma androgen indices and to improve ovarian primary and preovulatory follicle frequency. Metformin treatment increased hepatic estrogen receptor (ER)α, and metformin-flutamide decreased intestinal AR and increased ERα mRNA expression. Metformin-flutamide treatment upregulated hepatic and intestinal insulin signaling, including insulin receptor, MAPK1, and AKT2. In conclusion, cardiometabolic risk factors, in particular ApoB-hypertriglyceridemia, are independently modulated via the AR, and understanding the contribution of AR and insulin-signaling pathways further may facilitate the development of targeted interventions in high-risk women with PCOS and MetS.
Collapse
Affiliation(s)
- M. Kupreeva
- Metabolic and Cardiovascular Disease Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A. Diane
- Metabolic and Cardiovascular Disease Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - R. Lehner
- Group on Molecular Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - R. Watts
- Group on Molecular Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - M. Ghosh
- Division of Endocrinology and Metabolism, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - S. Proctor
- Metabolic and Cardiovascular Disease Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - D. Vine
- Metabolic and Cardiovascular Disease Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
140
|
Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes 2019; 12:1057-1072. [PMID: 31372016 PMCID: PMC6630094 DOI: 10.2147/dmso.s186600] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/07/2019] [Indexed: 12/05/2022] Open
Abstract
The incidence and prevalence of metabolic and musculoskeletal diseases are increasing. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, inflammation, advanced glycation end-product accumulation and increased oxidative stress. These characteristics can negatively affect various aspects of muscle health, including muscle mass, strength, quality and function through impairments in protein metabolism, vascular and mitochondrial dysfunction, and cell death. Sarcopenia is a term used to describe the age-related loss in skeletal muscle mass and function and has been implicated as both a cause and consequence of T2DM. Sarcopenia may contribute to the development and progression of T2DM through altered glucose disposal due to low muscle mass, and also increased localized inflammation, which can arise through inter- and intramuscular adipose tissue accumulation. Lifestyle modifications are important for improving and maintaining mobility and metabolic health in individuals with T2DM and sarcopenia. However, evidence for the most effective and feasible exercise and dietary interventions in this population is lacking. In this review, we discuss the current literature highlighting the bidirectional relationship between T2DM and sarcopenia, highlight current research gaps and treatments, and provide recommendations for future research.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Correspondence: Jakub MesinovicDepartment of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, Victoria3068, AustraliaTel + 6 138 572 2919Fax + 6 139 594 6495Email
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Barbora De Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, VIC, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Melbourne, VIC, Australia
| |
Collapse
|
141
|
Li D, Zhou W, Pang J, Tang Q, Zhong B, Shen C, Xiao L, Hou T. A magic drug target: Androgen receptor. Med Res Rev 2018; 39:1485-1514. [PMID: 30569509 DOI: 10.1002/med.21558] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is closely associated with a group of hormone-related diseases including the cancers of prostate, breast, ovary, pancreas, etc and anabolic deficiencies such as muscle atrophy and osteoporosis. Depending on the specific type and stage of the diseases, AR ligands including not only antagonists but also agonists and modulators are considered as potential therapeutics, which makes AR an extremely interesting drug target. Here, we at first review the current understandings on the structural characteristics of AR, and then address why and how AR is investigated as a drug target for the relevant diseases and summarize the representative antagonists and agonists targeting five prospective small molecule binding sites at AR, including ligand-binding pocket, activation function-2 site, binding function-3 site, DNA-binding domain, and N-terminal domain, providing recent insights from a target and drug development view. Further comprehensive studies on AR and AR ligands would bring fruitful information and push the therapy of AR relevant diseases forward.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinping Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingling Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
142
|
Miller RR, Roubenoff R. Emerging Interventions for Elderly Patients-The Promise of Regenerative Medicine. Clin Pharmacol Ther 2018; 105:53-60. [PMID: 30387136 DOI: 10.1002/cpt.1272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
The impressive increase in lifespan that occurred in the 20th century has driven a boom in age-associated degeneration resulting from senescence. Geriatric syndromes, such as sarcopenia and frailty, do not fall neatly into classical medical definitions of disease because they result from subtle declines in physiological function that occur over many years instead of specific organ-related pathology. These conditions have become more clinically prominent with the aging population and are the focus of research in regenerative medicine. Two major approaches are being pursued: the first targets specific organs that are adversely affected by senescence, and the second targets senescence pathways themselves, with the goal of favorably altering the affected physiology. This review will highlight a few examples of recent applications of both of these approaches to illustrate the potential of the application of a regenerative medicine approach to improve the quality of life and independence in older adults.
Collapse
Affiliation(s)
- Ram R Miller
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA.,Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
143
|
Gagliano-Jucá T, Pencina KM, Ganz T, Travison TG, Kantoff PW, Nguyen PL, Taplin ME, Kibel AS, Li Z, Huang G, Edwards RR, Nemeth E, Basaria S. Mechanisms responsible for reduced erythropoiesis during androgen deprivation therapy in men with prostate cancer. Am J Physiol Endocrinol Metab 2018; 315:E1185-E1193. [PMID: 30325657 PMCID: PMC6336960 DOI: 10.1152/ajpendo.00272.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
Androgen deprivation therapy (ADT) is a mainstay of treatment for prostate cancer (PCa). As androgens stimulate erythropoiesis, ADT is associated with a reduction in hematocrit, which in turn contributes to fatigue and related morbidity. However, the mechanisms involved in ADT-induced reduction in erythropoiesis remain unclear. We conducted a 6-mo prospective cohort study and enrolled men with PCa about to undergo ADT (ADT-Group) and a control group of men who had previously undergone prostatectomy for localized PCa and were in remission (Non-ADT Group). All participants had normal testosterone levels at baseline. Fasting blood samples were collected at baseline, 12 wk, and 24 wk after initiation of ADT; samples were obtained at the same intervals from enrollment in the Non-ADT group. Blood count, iron studies, erythropoietin, erythroferrone, and hepcidin levels were measured. Seventy participants formed the analytical sample (31 ADT, 39 Non-ADT). ADT was associated with a significant reduction in erythrocyte count (estimated mean difference = -0.2×106 cells/µl, 95%CI = -0.3 to -0.1×106 cells/µl, P < 0.001), hematocrit (-1.9%, 95%CI = -2.7 to -1.1%, P < 0.001), and hemoglobin (-0.6 g/dl, 95%CI = -0.8 to -0.3 g/dl, P < 0.001). Serum hepcidin concentration increased in the ADT-group (18 ng/ml, P < 0.001); however, iron concentrations did not change (-1.1 µg/dl, P = 0.837). Ferritin levels increased in men on ADT (60 ng/ml, P < 0.001). Iron binding capacity, transferrin saturation, erythroferrone, and erythropoietin did not change. Nine men undergoing ADT developed new-onset anemia. In conclusion, reduced proliferation of marrow erythroid progenitors leads to ADT-induced reduction in erythropoiesis. Future studies should evaluate the role of selective androgen receptor modulators in the treatment of ADT-induced anemia.
Collapse
Affiliation(s)
- Thiago Gagliano-Jucá
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Karol M Pencina
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Tomas Ganz
- Department of Medicine and Department of Pathology, David Geffen School of Medicine at University of California , Los Angeles, California
| | | | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College , New York, New York
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, Massachusetts
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Zhuoying Li
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Grace Huang
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Robert R Edwards
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Elizabeta Nemeth
- Department of Medicine and Department of Pathology, David Geffen School of Medicine at University of California , Los Angeles, California
| | - Shehzad Basaria
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
144
|
Fragkaki AG, Sakellariou P, Kiousi P, Kioukia-Fougia N, Tsivou M, Petrou M, Angelis Y. Human in vivo metabolism study of LGD-4033. Drug Test Anal 2018; 10:1635-1645. [PMID: 30255601 DOI: 10.1002/dta.2512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Selective androgen receptor modulators (SARMs) are an emerging class of therapeutics targeted to cachexia, sarcopenia, and hypogonadism treatment. LGD-4033 is a SARM which has been included on the Prohibited List annually released by the World Anti-Doping Agency (WADA). The aim of the present work was the investigation of the metabolism of LGD-4033 in a human excretion study after administration of an LGD-4033 supplement, the determination of the metabolites' excretion profiles with special interest in the determination of its long-term metabolites, and the comparison of the excretion time of the phase I and phase II metabolites. The results were also compared to those derived from previous LGD-4033 studies concerning both in vitro and in vivo experiments. Supplement containing LGD-4033 was administered to one human male volunteer and urine samples were collected up to almost 21 days. Analysis of the hydrolyzed (with β-glucuronidase) as well as of the non-hydrolyzed samples was performed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in negative ionization mode and revealed that, in both cases, the two isomers of the dihydroxylated metabolite (M5) were preferred target metabolites. The gluco-conjugated parent LGD-4033 and its gluco-conjugated metabolites M1 and M2 can be also considered as useful target analytes in non-hydrolyzed samples. The study also presents two trihydroxylated metabolites (M6) identified for the first time in human urine; one of them was recently reported in an LGD-4033 metabolism study in horse urine and plasma.
Collapse
Affiliation(s)
- Argyro G Fragkaki
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece
| | - Panagiotis Sakellariou
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece.,Faculty of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Polyxeni Kiousi
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece
| | - Nassia Kioukia-Fougia
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece
| | - Maria Tsivou
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece
| | - Michael Petrou
- Cyprus Anti-Doping Authority, Makarion Athletic Centre Avenue, Engomi, Nicosia, CY, 2400, Cyprus
| | - Yiannis Angelis
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens "Spyros Louis", 37 Kifisias Avenue, 15123, Maroussi, Greece
| |
Collapse
|
145
|
Ahram M, Mustafa E, Abu Hammad S, Alhudhud M, Bawadi R, Tahtamouni L, Khatib F, Zihlif M. The cellular and molecular effects of the androgen receptor agonist, Cl-4AS-1, on breast cancer cells. Endocr Res 2018; 43:203-214. [PMID: 29578828 DOI: 10.1080/07435800.2018.1455105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE The androgen receptor (AR) has attracted attention in the treatment of breast cancer. Due to the undesirable side effects of AR agonists, attempts have been undertaken to develop selective AR modulators. One of these compounds is Cl-4AS-1. This study examined this compound more closely at the cellular and molecular levels. METHODS Three different breast cancer cell lines were utilized, namely the luminal MCF-7 cells, the molecular apocrine MDA-MB-453 cells, and the triple negative, basal MDA-MB-231 cells. RESULTS High and significant concordance between dihydrotestosterone (DHT) and Cl-4AS-1 in regulation of gene expression in MDA-MB-453 cells was found. However, some differences were noted including the expression of AR, which was upregulated by DHT, but not Cl-4AS-1. In addition, both DHT and Cl-4AS-1 caused a similar morphological change and reorganization of the actin structure of MDA-MB-453 cells into a mesenchymal phenotype. Treatment of cells with DHT resulted in induction of proliferation of MCF-7 and MDA-MB-453 cells, but no effect was observed on the growth of MDA-MB-231 cells. On the other hand, increasing doses of Cl-4AS-1 resulted in a dose-dependent inhibition on the growth of the three cell lines. This inhibition was a result of induction of apoptosis whereby Cl-4AS-1 caused a block in entry of cells into the S-phase followed by DNA degradation. CONCLUSIONS These results indicate that although Cl-4AS-1 has characteristics of classical AR agonist, it has dissimilar properties that may make it useful in treating breast cancer.
Collapse
Affiliation(s)
- Mamoun Ahram
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Ebtihal Mustafa
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Shatha Abu Hammad
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Mariam Alhudhud
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Randa Bawadi
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Lubna Tahtamouni
- c Department of Biology and Biotechnology, Faculty of Science , Hashemite University , Zarqa , Jordan
| | - Faisal Khatib
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Malek Zihlif
- b Department of Pharmacology, School of Medicine , The University of Jordan , Amman , Jordan
| |
Collapse
|
146
|
Liu YX, Zhang KJ, Tang LL. Clinical significance of androgen receptor expression in triple negative breast cancer-an immunohistochemistry study. Oncol Lett 2018; 15:10008-10016. [PMID: 29844843 PMCID: PMC5958876 DOI: 10.3892/ol.2018.8548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) is closely associated with the occurrence and progression of breast cancer; however, the clinical significance of it in triple negative breast cancer (TNBC) has been controversial. There is a limited amount of research regarding the effect of neoadjuvant chemotherapy on AR expression. By examining the expression of AR in patients with TNBC, the aim of the present study is to explore the clinical significance of AR and provide evidence for AR-directed treatment in TNBC. A total of 188 patients with primary TNBC with complete medical records were included in this retrospective study. Tumor sections from 41 patients (21.8%) were positive for AR, which was more often detected in small tumors (P=0.042) and cases with no lymph node involvement (P=0.032). Among them, 102 were treated with neoadjuvant chemotherapy (NAC). A total of 17 patients (16.7%) exhibited pathological complete response. However, the patient response was irrelevant to AR expression. Matched pathological tissues before and after NAC were collected for 49 cases, suggesting an enrichment of AR-expressing tumors following chemotherapy (P=0.008). Further analysis indicated that AR expression had no correlation with the disease-free and overall survival of patients with general TNBC; rather, it predicted a poor survival of the patients with stage III TNBC in comparison with those at earlier stages (P=0.035). AR expression occurs more often in small TNBC tumors or in cases with no lymph node metastasis. It is associated with a poor prognosis of the patients with advanced stages of tumors.
Collapse
Affiliation(s)
- Ya-Xuan Liu
- Department of Breast Surgery, Breast Cancer Prevention and Clinical Research Center, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| | - Ke-Jing Zhang
- Department of Breast Surgery, Breast Cancer Prevention and Clinical Research Center, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| | - Li-Li Tang
- Department of Breast Surgery, Breast Cancer Prevention and Clinical Research Center, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
147
|
Wilhelmson AS, Lantero Rodriguez M, Svedlund Eriksson E, Johansson I, Fogelstrand P, Stubelius A, Lindgren S, Fagman JB, Hansson GK, Carlsten H, Karlsson MCI, Ekwall O, Tivesten Å. Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1519-1527. [PMID: 29853568 PMCID: PMC6039408 DOI: 10.1161/atvbaha.118.311252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size. Here, we tested the hypothesis that atherosclerosis induced by testosterone deficiency in male mice is T-cell dependent. Further, given the important role of the thymic epithelium for T-cell homeostasis and development, we hypothesized that depletion of the AR in thymic epithelial cells will result in increased atherosclerosis. Approach and Results— Prepubertal castration of male atherosclerosis-prone apoE−/− mice increased atherosclerotic lesion area. Depletion of T cells using an anti-CD3 antibody abolished castration-induced atherogenesis, demonstrating a role of T cells. Male mice with depletion of the AR specifically in epithelial cells (E-ARKO [epithelial cell-specific AR knockout] mice) showed increased thymus weight, comparable with that of castrated mice. E-ARKO mice on an apoE−/− background displayed significantly increased atherosclerosis and increased infiltration of T cells in the vascular adventitia, supporting a T-cell–driven mechanism. Consistent with a role of the thymus, E-ARKO apoE−/− males subjected to prepubertal thymectomy showed no atherosclerosis phenotype. Conclusions— We show that atherogenesis induced by testosterone/AR deficiency is thymus- and T-cell dependent in male mice and that the thymic epithelial cell is a likely target cell for the antiatherogenic actions of testosterone. These insights may pave the way for new therapeutic strategies for safer endocrine treatment of prostate cancer.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Marta Lantero Rodriguez
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Elin Svedlund Eriksson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Inger Johansson
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Per Fogelstrand
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Alexandra Stubelius
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Susanne Lindgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Johan B Fagman
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| | - Göran K Hansson
- Department of Medicine, Center for Molecular Medicine (G.K.H.)
| | - Hans Carlsten
- Center for Bone and Arthritis Research, Institute of Medicine (A.S., H.C.).,Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.)
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology (M.C.I.K.), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine (A.S., S.L., H.C., O.E.).,Department of Pediatrics, Institute of Clinical Sciences (S.L., O.E.), University of Gothenburg, Sweden
| | - Åsa Tivesten
- From the Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine (A.S.W., M.L.R., E.S.E., I.J., P.F., J.B.F., A.T.)
| |
Collapse
|
148
|
Affiliation(s)
- Douglas A Gibson
- Centre for Inflammatory Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France, Crescent, Edinburgh, EH16 4TJ, UK.
| | - Philippa T K Saunders
- Centre for Inflammatory Research, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France, Crescent, Edinburgh, EH16 4TJ, UK.
| | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
149
|
Zhang W, Yang GJ, Wu SX, Li DQ, Xu YB, Ma CH, Wang JL, Chen WW. The guiding role of bone metabolism test in osteoporosis treatment. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:40-49. [PMID: 29755856 PMCID: PMC5944817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis (OP) and osteoporotic fractures are becoming a serious health care issue in the world. Calcium and vitamin D are the basic treatment for osteoporosis. Nonetheless, they do not effectively reduce the incidences of fracture. Currently approved treatments for osteoporosis include selective estrogen receptor modulators (SERMs), bisphosphonates, denosumab, teriparatide, calcitonin and others. However, the appearance of some adverse effects including atypical fracture and breast cancer has limited long-term treatments above mentioned. Therefore, treatment decision should be made on an individual basis, taking into account the relative benefits and risks in different patients. Bone metabolism test helps to assess the patient's condition, which may ultimately lead to therapeutic options and better clinical outcomes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
- Department of Workstation for Academicians and Experts of Yunnan Province, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Guo-Ji Yang
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Qujing655000, Yunnan, China
| | - Shi-Xian Wu
- Department of Science and Education, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Dong-Qing Li
- Department of Dermatology, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Ying-Bo Xu
- Department of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Cheng-Hong Ma
- Department of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Jun-Ling Wang
- Department of Workstation for Academicians and Experts of Yunnan Province, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| | - Wei-Wen Chen
- Department of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
- Department of Workstation for Academicians and Experts of Yunnan Province, Qujing Affiliated Hospital of Kunming Medical University655000, Yunnan, China
| |
Collapse
|
150
|
Gennari L, Bilezikian JP. New and developing pharmacotherapy for osteoporosis in men. Expert Opin Pharmacother 2018; 19:253-264. [DOI: 10.1080/14656566.2018.1428559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luigi Gennari
- Department Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - John P. Bilezikian
- Medicine and Pharmacology, International Education and Research, Division of Endocrinology, Emeritus, Metabolic Bone Diseases Unit, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|